JP2004269626A - Adhesive, method for producing adhesive and electric apparatus - Google Patents

Adhesive, method for producing adhesive and electric apparatus Download PDF

Info

Publication number
JP2004269626A
JP2004269626A JP2003060228A JP2003060228A JP2004269626A JP 2004269626 A JP2004269626 A JP 2004269626A JP 2003060228 A JP2003060228 A JP 2003060228A JP 2003060228 A JP2003060228 A JP 2003060228A JP 2004269626 A JP2004269626 A JP 2004269626A
Authority
JP
Japan
Prior art keywords
resin
resin material
adhesive
binder
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003060228A
Other languages
Japanese (ja)
Other versions
JP4240460B2 (en
Inventor
Kaori Suemasa
香里 末政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Sony Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Chemicals Corp filed Critical Sony Chemicals Corp
Priority to JP2003060228A priority Critical patent/JP4240460B2/en
Publication of JP2004269626A publication Critical patent/JP2004269626A/en
Application granted granted Critical
Publication of JP4240460B2 publication Critical patent/JP4240460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • H01L2224/83851Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester being an anisotropic conductive adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an adhesive which has an excellent adhesive force and facilitates a position-adjusting process. <P>SOLUTION: Since the third resin material constituting resin particles 30 have in the polymer structural units a main skeleton common to that of the first resin material in a binder, the visible light refractive index of the binder is approximately equal to that of the resin particles 30. Thereby, visible light is not scattered in an adhesive layer 25, and a process for adjusting the position of an adherend is facilitated. When phenoxy resins are used as the first and second resin materials, the adhesive force of the adhesive to adherends such as LCD11 and FPC15 are especially excellent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は接着剤にかかり、特に、基板に半導体チップやTCPを熱圧着により接続する接着剤に関する。
【0002】
【従来の技術】
従来より、半導体チップを基板上に接続する場合や、TCP(Tape Carrier Package)と、LCD(Liquid Crystal Display)とを接続する場合に、熱硬化性樹脂と、熱可塑性樹脂とを含有する接着剤が用いられている。
【0003】
図6(a)の符号111はLCDを示しており。LCD111は透明なガラス基板112を有しており、ガラス基板112の表面には、金属箔のパターニングによって電極113とアライメントマーク114とがそれぞれ形成されている。図6(b)の符号125は接着フィルムを示しており、接着フィルム125はLCD111の電極113が配置された面に貼着されている。
【0004】
図6(b)の符号115は、LCD111の上方に配置されたTCPを示している。TCP115はベースフィルム116を有しており、ベースフィルム116の表面には金属箔のパターニングによって金属配線117とアライメントマーク119とがそれぞれ形成されている。この状態では、TCP115の金属配線117が配置された側の面が接着フィルム125に向けられている。
【0005】
ガラス基板112の電極113が配置されていない側からガラス基板112と、接着フィルム125とを透過する光によって、LCD111のアライメントマーク114と、TCP115のアライメントマーク119の両方を観察し、これらのアライメントマーク114、119が重ねあうようにLCD111とTCP115とを相対的に移動させると、互いに接続されるべき金属配線117と電極113とが相対する位置に配置される。
【0006】
TCP115を、LCD111上の接着フィルム125表面に押しつけ(図6(c))、TCP115とLCD111とが重なり合った部分を押圧しながら加熱すると、加熱によって接着フィルム125が軟化し、押圧によって金属配線117が軟化した接着フィルム125を押し退け、電極113表面に当接される。
【0007】
接着フィルム125はエポキシ樹脂のような熱硬化性樹脂を有しており、加熱によって熱硬化性樹脂が重合すると、金属配線117が電極113に当接された状態で接着フィルム125が硬化する。
【0008】
図6(d)の符号101は接着フィルム125が硬化した状態の電気装置を示している。LCD111とTCP115とは接着フィルム125によって機械的に接続されているだけではなく、電極113に当接された金属配線117によって電気的にも接続されている。
【0009】
しかし、LCD111やTCP115と、接着フィルム125とでは、線膨張係数や弾性率が異なるため、電気装置101を高温条件に置いた場合に、生じる応力によって、LCD111やTCP115から接着フィルム125が剥離したり、電気装置101に反り等の変形が生じる場合がある。
【0010】
特開平2000−40542や特開平5−347464に記載されているように、ゴム等からなる絶縁粒子を、エポキシ樹脂等からなるバインダーに分散させた接着剤を用いれば、絶縁粒子によって電気装置101の内部応力が緩和されるので、変形が生じにくい。
【0011】
しかしながら、上記のような接着剤は、ベースフィルム116がポリイミド樹脂からなるFPC(Flexible Printed Circuit Board)を被着体として用いた場合の接着強度が充分ではなく、また、バインダーの主成分であるエポキシ樹脂の屈折率と、絶縁粒子を構成するゴムの屈折率とは異なるため、接着フィルムを透過する光は接着フィルム内で散乱する。従って、上記のような接着フィルムの光透過性は低く、LCD111とTCP115とを位置合せする工程は困難であった。
【0012】
【発明が解決しようとする課題】
本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、接着強度に優れ、かつ、光透過性の高い接着剤を提供することにある。
【0013】
【課題を解決するための手段】
上記課題を解決するために、請求項1記載の発明は、熱可塑性樹脂からなる第一の樹脂材料と、熱硬化性樹脂からなる第二の樹脂材料とが混合されたバインダー中に、樹脂粒子が分散された接着剤であって、前記樹脂粒子は、熱可塑性樹脂からなり、前記第一の樹脂材料の重合構造単位と、共通する主骨格を重合構造単位に有する第三の樹脂材料を主成分とする接着剤である。
請求項2記載の発明は、請求項1記載の接着剤であって、前記第一の樹脂材料と、前記第三の樹脂材料が同じ種類の熱可塑性樹脂でそれぞれ構成された接着剤である。
請求項3記載の発明は、請求項1又は請求項2のいずれか1項記載の接着剤であって、前記第一、第三の樹脂材料はフェノキシ樹脂からなり、前記第二の樹脂材料がエポキシ樹脂からなる接着剤である。
請求項4記載の発明は、請求項1乃至請求項3のいずれか1項記載の接着剤であって、前記バインダー中に導電性粒子が分散された接着剤である。
請求項5記載の発明は、請求項1乃至請求項4のいずれか1項記載の接着剤であって、前記樹脂粒子の平均粒径が0.1μm以上50μm以下の接着剤である。
請求項6記載の発明は、請求項1乃至請求項5のいずれか1項記載の接着剤であって、前記樹脂粒子の含有量が0.5重量%以上70重量%以下の接着剤である。
請求項7記載の発明は、接着剤の製造方法であって、熱可塑性樹脂からなる第一の樹脂材料と、熱硬化性樹脂からなる第二の樹脂材料とをそれぞれ溶媒に溶解させ、バインダーを作製するバインダー作製工程と、前記第一の樹脂材料と同じ主骨格を重合構造単位中に有する第三の樹脂材料を用いて樹脂粒子を製造し、前記樹脂粒子を前記バインダー中に分散させる分散工程とを有し、前記分散工程は、前記バインダーの温度を前記第三の樹脂材料のガラス転移温度未満に維持して行う接着剤の製造方法である。
請求項8記載の発明は、請求項7記載の接着剤の製造方法であって、前記バインダー作製工程は、前記第一の樹脂材料を前記溶媒に溶解し、第一の樹脂材料溶液を作製する第一の溶解工程と、前記第二の樹脂材料を前記溶媒に溶解し、第二の樹脂材料溶液を作製する第二の溶解工程と、前記第一の樹脂材料溶液と、前記第二の樹脂材料溶液とを混合する混合工程とを有し、前記第一の溶解工程は、前記溶媒の温度を前記第一の樹脂材料のガラス転移温度以上に維持して行い、前記第二の溶解工程は、前記溶媒の温度を前記第二の樹脂材料の熱重合開始温度以下に維持して行う接着剤の製造方法である。
請求項9記載の発明は、樹脂フィルムと、ガラス基板とを有する電気装置であって、前記ガラス基板と前記樹脂フィルムとの間に請求項1乃至請求項6のいずれか1項記載の接着剤が配置され、前記接着剤が熱処理によって硬化された電気装置である。
【0014】
本発明は上記のように構成されており、バインダーに含まれる第一の樹脂材料と、樹脂粒子の主成分である第三の樹脂材料とは、重合構造単位中に互いに共通する主骨格を有しているため、バインダーに入射する光の屈折率と、樹脂粒子に入射する光の屈折率が略等しい。
【0015】
従って、接着剤に入射した光は、樹脂粒子の表面とバインダーとの界面で反射せず、接着剤中で散乱することなく透過するので、本発明の接着剤は光の透過率が高く、被着体の位置合わせを容易に行うことができる。
【0016】
接着剤の高信頼性を維持するため、第三の樹脂材料は硬化前の接着剤のガラス転移温度を低下させないようなものが好ましい。接着剤をフィルム状に成形した場合(接着フィルム)、接着フィルムの硬化前のガラス転移温度は110℃以上140℃以下の温度範囲にあり、かつ、該接着フィルムの50℃における弾性率が1.0×10以上であることが好ましい。
【0017】
第一、第三の樹脂材料は種々の熱可塑性樹脂を用いることができるが、フェノキシ樹脂はLCD、TCP、FPC、半導体チップ等の被着体との接着力が高いので、他の熱可塑性樹脂に比べ本発明の接着剤に適している。
【0018】
接着剤中に導電性粒子が分散されている場合、樹脂粒子の加熱押圧時の硬度が導電性粒子の硬度よりも低ければ、樹脂粒子の平均粒径が導電性粒子の平均粒径よりも大きい場合であっても、電極間に位置する樹脂粒子の変形量が導電性粒子の変形量よりも大きくなるので、導電性粒子が対向する電極の両方に接触し、被着体が導電性粒子を介して電気的に接続される。
【0019】
本発明の接着剤は、バインダー中に熱硬化性樹脂である第二の樹脂材料が添加されているので、被着体で接着剤を挟んだ状態で加熱すると、熱硬化性樹脂が加熱によって重合して接着剤が硬化し、硬化した接着剤によって被着体が固定される。
【0020】
第二の樹脂材料を構成する熱硬化性樹脂としては種々のものを用いることができるが、第一、第三の樹脂材料としてフェノキシ樹脂を用いた場合は、エポキシ樹脂のようにフェノキシ樹脂と光の屈折率が類似する樹脂を用いれば、接着剤中での光の散乱を抑制することができる。
【0021】
樹脂粒子をバインダーに分散させる工程では、バインダー中に第三の樹脂材料と重合構造単位が類似する第一の樹脂材料が既に溶解しているため、第三の樹脂材料の溶解度が低くなっている上、バインダーの温度が第三の樹脂材料のガラス転移温度未満に維持されているので、第三の樹脂材料はバインダー中の溶媒に溶解しない。
【0022】
これに対し、第一の溶解工程では、溶媒が第一の樹脂材料のガラス転移温度以上に維持されているので、第一の樹脂材料を溶媒中に完全に溶解させることができる。従って、接着剤中では第一の樹脂材料は溶媒に完全に溶解した状態で存在するが、第三の樹脂材料は樹脂粒子として存在する。
【0023】
他方、第二の溶解工程では、溶媒が第二の樹脂材料の熱重合開始温度以下に維持されており、第二の樹脂材料の熱重合反応が進行しないので、バインダー及び接着剤の粘度が必要以上に高くならない。
【0024】
【発明の実施の形態】
以下に本発明の接着剤の製造方法を説明する。
先ず、熱可塑性樹脂からなる第一の樹脂材料を溶媒と共に攪拌容器内に入れ、攪拌容器内を第一の樹脂材料のガラス転移温度以上に維持しなら攪拌し、第一の樹脂材料溶液を得る(第一の溶解工程)。
【0025】
熱硬化性樹脂からなり、可視光の屈折率が、第一の樹脂材料の可視光の屈折率と略等しい第二の樹脂材料を、溶媒と共に攪拌装置に入れ、攪拌装置内の温度を第二の樹脂材料の熱重合反応開始温度以下に維持しながら攪拌し、第二の樹脂材料溶液を得る(第二の攪拌工程)。次いで、第一、二の樹脂材料溶液を所定の配合比率で混合し、液状のバインダーを作製する。
【0026】
第一の樹脂材料と共通する主骨格を重合構造単位中に有する第三の樹脂材料を用意し、第三の樹脂材料を溶媒に溶解させて第三の樹脂材料溶液を作製する。次いで、第三の樹脂材料溶液を噴霧乾燥装置のノズルから噴射、乾燥し、粉体状の第三の樹脂材料(樹脂粒子)を作製する(スプレードライヤー法)。
【0027】
次に、樹脂粒子と、バインダーとを上記攪拌装置とは異なる攪拌装置に入れ、該攪拌装置内の温度を第三の樹脂材料のガラス転移温度以下に維持しながら攪拌し、樹脂粒子をバインダー中に分散させる。この状態では、第三の樹脂材料はバインダー中の有機溶媒に溶解せず、樹脂粒子としてバインダー中存在する。
【0028】
また、第三の樹脂材料は第一の樹脂材料と共通する主骨格を重合構造単位中に有するため、樹脂粒子の可視光の屈折率は、バインダー中の第一の樹脂材料の可視光の屈折率と略等しくなっている。
【0029】
樹脂粒子が分散された状態のバインダーに、更に、樹脂粒子よりも硬度が大きい導電性粒子を添加、分散させ、本発明の接着剤を作成する。この状態では接着剤は液状である。
【0030】
図1(a)の符号21は樹脂からなる剥離フィルムを示しており、この剥離フィルム21の表面に上記工程で作製した接着剤を塗布、乾燥し、膜厚5μm以上100μm以下の接着剤層を形成する。図1(b)の符号25は乾燥し、フィルム状に成形された接着剤層を示しており、接着剤層25中には、導電性粒子27と樹脂粒子30とが分散されている。
【0031】
次に、本発明の接着剤を用いて電気装置を製造する工程について詳細に説明する。図2(a)の符号11はLCDを示している。LCD11は透明なガラス基板12を有しており、ガラス基板12の表面には、導電性薄膜のパターニングによって電極13とアライメントマーク14とが形成されている。
【0032】
LCD11の電極13が配置された側の面に、接着フィルム20の接着剤層25を押し当てる(図2(b)))。接着剤層25と剥離フィルム21との接着力は、LCD11と接着剤層25との接着力よりも低いので、図2(b)に示した状態で、剥離フィルム21をめくると、接着剤層25が剥離フィルム21から離れ、LCD11上に残る。図2(c)はその状態を示しており、LCD11の電極13と、アライメントマーク14は接着剤層25で覆われている。
【0033】
図2(d)の符号15はFPCを示している。FPC15はポリイミド樹脂からなるベースフィルム16(樹脂フィルム)を有しており、ベースフィルム16表面には、金属箔のパターニングによって金属配線17とアライメントマーク19とが形成されている。
【0034】
図4を参照し、LCD11の平面形状とFPC15の平面形状とはここではそれぞれ矩形にされている。電極13と金属配線17の平面形状はそれぞれ細長にされており、電極13と金属配線17はそれぞれLCD11とFPC15の矩形形状の一辺と平行に延設されている。
【0035】
LCD11のアライメントマーク14と、FPC15のアライメントマーク19は、LCD11、FPC15の細長の端部であって、矩形形状の一隅にそれぞれ配置されている。
【0036】
LCD11の電極13が配置された側の面と、FPC15の金属配線17が配置された側の面とが対向させ、電極13が延びる方向と、金属配線17の延びる方向とが逆方向になるよう、FPC15とLCD11とを平行配置し、LCD11のアライメントマーク14とFPC15のアライメントマーク19とを略重なり合うよう、LCD11とFPC15とを相対的に移動させると、LCD11とFPC15とが部分的に重なり合った状態になる。
【0037】
本発明の接着剤に入射した光は散乱せずに透過するので、ガラス基板23の電極13とは反対側の面を観察すると、接着剤層25と、ガラス基板23とを透過した光によって、アライメントマーク14、19が観察される。
【0038】
両方のアライメントマーク14、19を観察しながら、LCD11のアライメントマーク14と、FPC15のアライメントマーク19とが正確に重なり合うように、LCD11とFPC15とを相対的に移動させると、互いに接続されるべき金属配線17と電極13とが対向配置される(位置合わせ)。
【0039】
この状態で、FPC15をLCD11上の接着剤層25表面に押し当て、(図3(e))、FPC15とLCD11とが重なりあった部分を押圧しながら加熱すると、加熱によって接着剤層25が軟化し、押圧によって金属配線17が軟化した接着剤層25にめり込む。
【0040】
この状態では、金属配線17と電極13との間には、接着剤層25中の導電性粒子27と樹脂粒子30とが存在する。導電性粒子27の平均粒径が、樹脂粒子30の平均粒径よりも大きい場合、押圧を続けることによって、更に金属配線17がめり込むと、導電性粒子27が金属配線17と電極13との間に挟み込まれ、導電性粒子27を介して電極13と金属配線17とが電気的に接続される。
【0041】
導電性粒子27の平均粒径が樹脂粒子30の平均粒径よりも小さい場合は、金属配線17が更にめり込むと、先ず、樹脂粒子30が金属配線17と電極13との間に挟み込まれるが、樹脂粒子30の硬度は導電性粒子27の硬度よりも小さいので、更に押圧を続けることで、樹脂粒子30は押しつぶされ、導電性粒子27が電極13と金属配線17との両方に接触し、電極13と金属配線17とが電気的に接続される。
【0042】
電極13と金属配線17とが電気的に接続された状態で、更に加熱押圧を続けると、接着剤層25中の熱硬化性樹脂(第二の樹脂材料)が加熱によって重合し、導電性粒子27が電極13と金属配線17とに接触した状態で接着剤層25が硬化する。
【0043】
図3(f)の符号10は接着剤層25が硬化した状態の電気装置を示しており、LCD11とFPC15とは硬化した接着剤層25を介して機械的に接続されているだけではなく、導電性粒子27を介して電気的にも接続されている。
【0044】
接着剤層25中には樹脂粒子30が存在しており、電気装置10を加熱した場合に、接着剤層25に生じる内部応力が緩和されるので、電気装置10が変形したり、接着剤層25がLCD11やFPC15から剥離しない。
【0045】
【実施例】
トルエンと酢酸エチルとの混合溶媒と、熱可塑性樹脂(ここではフェノキシ樹脂)からなる第一の樹脂材料とを、60℃に保温した攪拌装置内で48時間攪拌し、第一の樹脂材料溶液を作製した。
【0046】
熱硬化性樹脂(ここではエポキシ樹脂)からなる第二の樹脂材料と、上記混合溶媒とを上記の攪拌装置内に入れ、攪拌装置内を冷却しながら所定温度に維持した状態で攪拌し、第二の樹脂材料溶液を作製した。次いで、第一の樹脂材料溶液に、第二の樹脂材料溶液を添加、混合し、バインダーを作成した。
【0047】
これとは別に、上記第一の樹脂材料溶液と同じ溶液を第三の樹脂材料溶液として用い、該第三の樹脂材料溶液を噴霧乾燥装置を用いて噴霧、乾燥し、平均粒径3μmの樹脂粒子を作製した。従って、バインダー中の第一の樹脂材料と、樹脂粒子を構成する第三の樹脂材料とは同じ種類のフェノキシ樹脂によって構成されている。
【0048】
次いで、バインダーと樹脂粒子とを上記攪拌装置とは異なる攪拌装置に入れ、装置内の温度を所定温度に維持しながら、1分間攪拌して樹脂粒子をバインダー中に分散させ、更に、導電性粒子と硬化剤とシランカップリング剤とを添加し、樹脂粒子の含有量がそれぞれ異なる5種類の接着剤を作製した。第一、第三の樹脂材料に用いたフェノキシ樹脂の屈折率と、第二の樹脂材料に用いたエポキシ樹脂の屈折率は略等しく、5種類の接着剤は可視光の透過率が高かった。
【0049】
これら5種類の接着剤の樹脂粒子の含有量(重量%)をそれぞれ下記表1に記載する。尚、接着剤に用いた導電性粒子の平均粒径は5μmであり、導電性粒子の含有量は接着剤全体の4.5重量%であった。
【0050】
【表1】

Figure 2004269626
【0051】
これら5種類の接着剤をそれぞれ用いて図1(a)、(b)の工程で5種類の接着フィルム20を作製した。ここでは接着剤層25の膜厚が20μmになるよう成形した。それら接着フィルム20を用いてLCD11とFPC15とをそれぞれ接続し、実施例1〜5の電気装置10を作製した。尚、各接着フィルム20の接着剤層25は可視光の透過率が高く、電気装置10を作製する際に位置合わせが容易であった。
【0052】
ここでは、LCD11としてガラス基板12表面にITO(Indium Tin Oxide)電極13が形成されたものを用いた。また、LCD11とFPC15との接続条件は、加熱温度170℃、荷重3MPa、20秒間であった。
【0053】
これら実施例1〜5の電気装置10を用いて下記に示す「導通抵抗」、「外観試験」、「接着強度試験」の各評価試験を行った。
【0054】
〔導通抵抗〕
実施例1〜5の電気装置10について、導通抵抗を測定した後、各電気装置10を温度85℃、相対湿度85%の条件で1000時間保存し(エージング)、再び各電気装置10の導通抵抗を測定した。エージング前の導通抵抗を上記表1中の「導通抵抗、初期」の欄に、エージング後の導通抵抗を上記表1中「導通抵抗、エージング後」の欄にそれぞれ記載した。
【0055】
〔外観〕電気装置10に反りや変形が見られた場合を×、反りや変形が見られなかった場合を○として評価した。
【0056】
〔接着強度〕
実施例1〜5の電気装置10について、LCD11からFPC15を剥がすときに要する力(接着強度)を測定した後、上記「導通抵抗」試験と同じ条件で各電気装置10をエージングし、エージング後の電気装置10についてエージング前と同様に接着強度を測定した。エージング前の接着強度を上記表1中「接着強度、初期」の欄に、エージング後の接着強度を上記表1中の「接着強度、エージング後」の欄」にそれぞれ記載した。
【0057】
尚、比較例1、2は樹脂粒子の代わりに、第一の樹脂材料溶液(フェノキシ樹脂溶液)をバインダーに添加した場合であり、比較例3は樹脂粒子として平均粒径0.1μmのゴム微粒子を用いた場合である。
【0058】
上記表1から明らかなように、第一、第三の樹脂材料としてそれぞれ同じ種類のフェノキシ樹脂を用いた実施例1〜5では、「導通抵抗」、「外観」、「接着強度」のいずれの評価試験においても、実用上充分な結果が得られた。
【0059】
他方、樹脂粒子を添加せず、フェノキシ樹脂溶液を更に添加した比較例1、2は、実用上充分な接着力が得られず、特に、比較例2は導通抵抗の値も高かった。また、樹脂粒子としてゴム粒子を用いた比較例3は、接着強度や導通抵抗で充分な結果が得られたが、外観評価の結果が悪かった。また、ゴム粒子の屈折率とバインダーの屈折率とが著しく異なったため、接着剤の透過性が悪く、比較例3の電気装置を製造する工程で位置合せが困難であった。
【0060】
【実施例】
次に、樹脂粒子の直径(平均粒径)をそれぞれ下記表2に記載するよう変えた以外は実施例3と同じ条件で4種類の接着剤を作製し、これらの接着剤を用いて4種類の接着フィルム20を作製した。
【0061】
これら4種類の接着剤を用いて上記実施例1〜5と同じ条件で実施例6〜11の電気装置10を作製した。尚、各接着フィルム20の接着剤層25はそれぞれ可視光の透過性が高く、電気装置10を作製する際の位置合わせは容易であった。
【0062】
実施例6〜11の電気装置10を用いて上記実施例1〜5と同じ条件で「導通抵抗」、「外観」、「接着強度」の各評価試験を行った。これらの評価結果を、樹脂粒子の平均粒径と共に下記表2に記載する。
【0063】
【表2】
Figure 2004269626
【0064】
尚、上記表2中の実施例10は、樹脂粒子の平均粒径が0.05μmである点が実施例6〜9と異なり、実施例11は樹脂粒子の平均粒径が70μmであり、かつ、該樹脂粒子の添加量が50重量%である点が実施例6〜9と異なる。
【0065】
上記表2から明らかなように、実施例6〜9の電気装置10では、各評価試験で高い評価結果が得られた。実施例10、11は各評価試験で実用上十分な値が得られたものの、導通抵抗が実施例6〜9に比べ高く、特に実施例10は外観評価の結果も悪かった。
【0066】
【実施例】
次に、第三の樹脂材料に用いるフェノキシ樹脂の種類をそれぞれ変えた以外は実施例2と同じ条件で3種類の接着剤を作製し、更にこれら3種類の接着剤をそれぞれ用いて3種類の接着フィルム20を作製した。
【0067】
これら3種類の接着フィルム20を用いて実施例10〜12の電気装置10を作製した。尚、各接着フィルム20の接着剤層25はそれぞれ可視光の透過率が高く、位置合わせが容易であった。
【0068】
実施例12〜14の電気装置10を用いて実施例1〜9と同じ条件で「導通抵抗」、「外観」、「接着強度」の各評価試験を行った。それらの評価結果を実施例2の評価結果と共に下記表3に記載した。
【0069】
【表3】
Figure 2004269626
【0070】
上記表3から明らかなように、実施例2、12〜14の電気装置10は各評価試験で優れた結果が得られた。また、実施例2、12〜14の電気装置10は、第一、第三の樹脂材料が互いに異なる種類のフェノキシ樹脂で構成されていたにもかかわらず、製造する工程での位置合せも容易であった。
【0071】
これは、第一、第三の樹脂材料はその重合構造単位中にフェノキシ樹脂共通の主骨格をそれぞれ有するので、第一、第三の樹脂材料を透過する光の屈折率が略等しく、接着剤中を透過する光が散乱しなかったためと推測される。
【0072】
以上は、接着剤をフィルム状に成形する場合について説明したが、本発明はこれに限定されるものではなく、例えば、接着剤をペースト状のまま用いても良い。
図5(a)の符号11は図3(a)で示したものと同じLCDを示しており、このLCD11にFPC15を接続するには、先ず、LCD11のITO電極13表面のうち、FPC15を接続する部分に接着剤を塗布し、接着剤層45を形成する(図5(b))。
【0073】
次いで、上記図3(d)の工程でFPC15の位置合せを行った後、上記図4(e)、(f)の工程でFPC15とLCD11とを接続すると、電気装置70が得られる(図5(c))。
【0074】
以上は、被着体としてFPC15とLCD11とを接続する場合について説明したが、本発明はこれに限定されるものではなく、被着体としては半導体チップやTCP等種々のものを用いることができる。
【0075】
また、以上は接着剤中に導電性粒子を分散させる場合について説明したが、本発明はこれに限定されるものではなく、例えば、導電性粒子を含有しない場合も本発明には含まれる。
【0076】
以上はスプレードライヤー法により樹脂粒子を製造する場合について説明したが、本発明はこれに限定されるものではなく、例えば、固形のフェノキシ樹脂を粉砕し、粉体上としたものを用いても良いが、この場合はふるいを用いて樹脂粒子を分球し、樹脂粒子の粒径を揃えることが好ましい。
【0077】
第一、第三の樹脂材料に用いることのできるフェノキシ樹脂の種類は特に限定されるものではなく、InChem社製の商品名「PKHH」、「PKHC」、「PKHJ」、「PKHB」、「PKFE」や、東都化成(株)社製の商品名「YP−50」、「YP−50S」のように一般的に用いられる種々のフェノキシ樹脂を用いることができる。尚、これらのフェノキシ樹脂のガラス転移温度は40℃以上80℃以下の範囲にある。
【0078】
また、以上は第一、第三の樹脂材料にフェノキシ樹脂を用いる場合について説明したが、本発明はこれに限定されるものではなく、例えば、アクリル樹脂、ポリエステル樹脂、スチレン樹脂、エチレン酢酸ビニル樹脂等種々の熱可塑性樹脂を用いることができる。
【0079】
以上は熱硬化性樹脂としてエポキシ樹脂を用いる場合について説明したが、本発明はこれに限定されるものではなく、第一、第三の樹脂材料用いる熱可塑性樹脂と屈折率が類似する熱硬化性樹脂であれば、種々のものを用いることができる。
【0080】
本発明の接着剤は、要するにバインダーと、バインダーに分散される樹脂粒子を、屈折率の略等しい樹脂でそれぞれ構成することで、光の透過率を高めたものであるので、第一〜第三の樹脂材料の光の屈折率が互いに類似していれば、透明、半透明に係わらず、種々の樹脂を用いることができる。
【0081】
以上は、常温で固体の第一〜第三の樹脂材料を溶媒に溶解させて用いる場合について説明したが、本発明はこれに限定するものではない。例えば、常温で流動性のある樹脂を第一〜第三の樹脂材料として用いることも可能であり、この場合はバインダーを作成する際に溶媒を用いる必要がない。
【0082】
導電性粒子も特に限定されるものでは無く、熱圧着時の硬度が樹脂粒子30よりも大きいものであれば、例えば、ニッケル、金等からなる金属粒子や、樹脂粒子表面に金属メッキ層を形成した金属メッキ被膜樹脂粒子等種々のものを用いることができる。
【0083】
また、本発明の接着剤に、シランカップリング剤、硬化剤、老化防止剤、充填剤、着色剤等の種々の添加剤を添加することもできるが、透過光により被着体の位置合せを行う場合は、接着剤の光透過性を阻害しないものが好ましい。
【0084】
【発明の効果】
樹脂粒子を構成する第三の樹脂材料は、バインダーに用いられる第一の樹脂材料と同じ主骨格を重合構造単位に有するので、接着剤中で光の散乱が少なく、透過光による位置合せが容易である。また、熱圧着工程時に樹脂粒子が所謂スペーサーとして機能するので、被着体の反発力や接着剤の内部応力が緩和される。また、第一、第三の樹脂材料にフェノキシ樹脂を用いた場合には、LCDやFPC等の被着体に対する接着強度も高くなるので、得られる電気装置の信頼性が高い。
【図面の簡単な説明】
【図1】(a)、(b):本発明の接着剤を用いて接着フィルムを製造する工程の一例を説明するための図
【図2】(a)〜(d):本発明の接着剤を用いてLCDとFPCとを接続する工程の前半を説明するための図
【図3】(e)、(f):FPCとLCDとを接続する工程の後半を説明するための図
【図4】FPCとLCDとを重ねあわせた状態を説明するための平面図
【図5】(a)〜(c):本発明の接着剤を用いてFPCとLCDとを接続する工程の他の例を説明するための図
【図6】(a)〜(d):従来技術の接着剤を用いてTPCとLCDとを接続する工程を説明するための図
【符号の説明】
10、70……電気装置
20、45……接着剤(接着剤層)
30……樹脂粒子
12……ガラス基板
16……樹脂フィルム[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an adhesive, and more particularly to an adhesive for connecting a semiconductor chip or TCP to a substrate by thermocompression bonding.
[0002]
[Prior art]
Conventionally, when a semiconductor chip is connected on a substrate or when a TCP (Tape Carrier Package) is connected to an LCD (Liquid Crystal Display), an adhesive containing a thermosetting resin and a thermoplastic resin is used. Is used.
[0003]
Reference numeral 111 in FIG. 6A indicates an LCD. The LCD 111 has a transparent glass substrate 112. On the surface of the glass substrate 112, an electrode 113 and an alignment mark 114 are formed by patterning a metal foil. Reference numeral 125 in FIG. 6B indicates an adhesive film, and the adhesive film 125 is attached to a surface of the LCD 111 on which the electrodes 113 are arranged.
[0004]
Reference numeral 115 in FIG. 6B indicates a TCP arranged above the LCD 111. The TCP 115 has a base film 116, and a metal wiring 117 and an alignment mark 119 are formed on the surface of the base film 116 by patterning a metal foil. In this state, the surface of the TCP 115 on which the metal wiring 117 is arranged faces the adhesive film 125.
[0005]
The light transmitted through the glass substrate 112 and the adhesive film 125 from the side where the electrode 113 of the glass substrate 112 is not disposed observes both the alignment mark 114 of the LCD 111 and the alignment mark 119 of the TCP 115, and these alignment marks are observed. When the LCD 111 and the TCP 115 are relatively moved so that the 114 and 119 overlap each other, the metal wiring 117 and the electrode 113 to be connected to each other are arranged at positions facing each other.
[0006]
When the TCP 115 is pressed against the surface of the adhesive film 125 on the LCD 111 (FIG. 6C) and heated while pressing the portion where the TCP 115 and the LCD 111 overlap, the adhesive film 125 is softened by the heating, and the metal wiring 117 is pressed by the pressing. The softened adhesive film 125 is pushed away and is brought into contact with the surface of the electrode 113.
[0007]
The adhesive film 125 has a thermosetting resin such as an epoxy resin. When the thermosetting resin is polymerized by heating, the adhesive film 125 is cured while the metal wiring 117 is in contact with the electrode 113.
[0008]
Reference numeral 101 in FIG. 6D indicates an electric device in a state where the adhesive film 125 is cured. The LCD 111 and the TCP 115 are not only mechanically connected by the adhesive film 125 but also electrically connected by the metal wiring 117 in contact with the electrode 113.
[0009]
However, since the LCD 111 or the TCP 115 and the adhesive film 125 have different linear expansion coefficients or elastic moduli, the adhesive film 125 may be separated from the LCD 111 or the TCP 115 due to stress generated when the electric device 101 is placed in a high temperature condition. The electric device 101 may be deformed such as warpage.
[0010]
As described in JP-A-2000-45542 and JP-A-5-347664, if an adhesive in which insulating particles made of rubber or the like are dispersed in a binder made of epoxy resin or the like is used, the electric device 101 can be formed by the insulating particles. Since the internal stress is relieved, deformation is less likely to occur.
[0011]
However, the adhesive described above does not have sufficient adhesive strength when an FPC (Flexible Printed Circuit Board) made of a polyimide resin is used as an adherend for the base film 116, and epoxy as the main component of the binder is not used. Since the refractive index of the resin is different from the refractive index of the rubber constituting the insulating particles, light transmitted through the adhesive film is scattered in the adhesive film. Therefore, the light transmittance of the adhesive film as described above is low, and the step of aligning the LCD 111 and the TCP 115 has been difficult.
[0012]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned disadvantages of the prior art, and an object of the present invention is to provide an adhesive having excellent adhesive strength and high light transmittance.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that, in a binder in which a first resin material made of a thermoplastic resin and a second resin material made of a thermosetting resin are mixed, resin particles are mixed. Wherein the resin particles are made of a thermoplastic resin and mainly include a polymerized structural unit of the first resinous material and a third resinous material having a common main skeleton in the polymerized structural unit. An adhesive as a component.
The invention according to claim 2 is the adhesive according to claim 1, wherein the first resin material and the third resin material are each made of the same type of thermoplastic resin.
The invention according to claim 3 is the adhesive according to any one of claims 1 or 2, wherein the first and third resin materials are made of a phenoxy resin, and the second resin material is made of a phenoxy resin. An adhesive made of epoxy resin.
According to a fourth aspect of the present invention, there is provided the adhesive according to any one of the first to third aspects, wherein the conductive particles are dispersed in the binder.
The invention according to claim 5 is the adhesive according to any one of claims 1 to 4, wherein the resin particles have an average particle diameter of 0.1 μm or more and 50 μm or less.
The invention according to claim 6 is the adhesive according to any one of claims 1 to 5, wherein the content of the resin particles is 0.5% by weight or more and 70% by weight or less. .
The invention according to claim 7 is a method for producing an adhesive, wherein a first resin material made of a thermoplastic resin and a second resin material made of a thermosetting resin are respectively dissolved in a solvent, and a binder is formed. A binder producing step of producing, and a dispersion step of producing resin particles using a third resin material having the same main skeleton as the first resin material in a polymerized structural unit, and dispersing the resin particles in the binder. Wherein the dispersing step is a method for producing an adhesive which is performed while maintaining the temperature of the binder below the glass transition temperature of the third resin material.
The invention according to claim 8 is the method for producing an adhesive according to claim 7, wherein in the binder producing step, the first resin material is dissolved in the solvent to produce a first resin material solution. A first dissolving step, a second dissolving step of dissolving the second resin material in the solvent to produce a second resin material solution, the first resin material solution, and the second resin And a mixing step of mixing the material solution, the first melting step is performed while maintaining the temperature of the solvent is equal to or higher than the glass transition temperature of the first resin material, the second melting step A method for producing an adhesive, wherein the temperature of the solvent is maintained at or below the thermal polymerization start temperature of the second resin material.
The invention according to claim 9 is an electric device having a resin film and a glass substrate, wherein the adhesive according to any one of claims 1 to 6, between the glass substrate and the resin film. Is an electric device in which the adhesive is cured by heat treatment.
[0014]
The present invention is configured as described above, and the first resin material contained in the binder and the third resin material that is the main component of the resin particles have a main skeleton common to each other in the polymerized structural unit. Therefore, the refractive index of the light incident on the binder is substantially equal to the refractive index of the light incident on the resin particles.
[0015]
Therefore, the light incident on the adhesive is not reflected at the interface between the surface of the resin particles and the binder, and is transmitted without being scattered in the adhesive. Therefore, the adhesive of the present invention has a high light transmittance, and The positioning of the body can be easily performed.
[0016]
In order to maintain high reliability of the adhesive, it is preferable that the third resin material does not lower the glass transition temperature of the adhesive before curing. When the adhesive is formed into a film (adhesive film), the glass transition temperature of the adhesive film before curing is in a temperature range of 110 ° C. or more and 140 ° C. or less, and the elastic modulus of the adhesive film at 50 ° C. 0x10 9 It is preferable that it is above.
[0017]
Various thermoplastic resins can be used for the first and third resin materials. However, phenoxy resin has a high adhesive strength to adherends such as LCD, TCP, FPC, and semiconductor chip. Are more suitable for the adhesive of the present invention.
[0018]
When the conductive particles are dispersed in the adhesive, if the hardness of the resin particles during heating and pressing is lower than the hardness of the conductive particles, the average particle size of the resin particles is larger than the average particle size of the conductive particles. Even in this case, the amount of deformation of the resin particles located between the electrodes is larger than the amount of deformation of the conductive particles, so that the conductive particles contact both of the opposing electrodes, and the adherend adheres to the conductive particles. Electrically connected via the
[0019]
In the adhesive of the present invention, since the second resin material which is a thermosetting resin is added to the binder, when the adhesive is heated while the adhesive is sandwiched between the adherends, the thermosetting resin is polymerized by heating. Then, the adhesive is cured, and the adherend is fixed by the cured adhesive.
[0020]
Although various kinds of thermosetting resins can be used as the second resin material, when a phenoxy resin is used as the first and third resin materials, a phenoxy resin and an optical resin like an epoxy resin are used. If a resin having a similar refractive index is used, scattering of light in the adhesive can be suppressed.
[0021]
In the step of dispersing the resin particles in the binder, since the first resin material having a similar polymerized structural unit to the third resin material in the binder has already been dissolved, the solubility of the third resin material is low. In addition, since the temperature of the binder is maintained below the glass transition temperature of the third resin material, the third resin material does not dissolve in the solvent in the binder.
[0022]
On the other hand, in the first dissolving step, since the solvent is maintained at a temperature equal to or higher than the glass transition temperature of the first resin material, the first resin material can be completely dissolved in the solvent. Accordingly, in the adhesive, the first resin material exists in a state completely dissolved in the solvent, but the third resin material exists as resin particles.
[0023]
On the other hand, in the second dissolution step, the solvent is maintained at a temperature lower than the thermal polymerization start temperature of the second resin material, and the thermal polymerization reaction of the second resin material does not proceed. It will not be higher.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for producing the adhesive of the present invention will be described.
First, a first resin material made of a thermoplastic resin is put into a stirring vessel together with a solvent in a stirring vessel. If the inside of the stirring vessel is maintained at a temperature equal to or higher than the glass transition temperature of the first resin material, stirring is performed to obtain a first resin material solution. (First dissolution step).
[0025]
A second resin material made of a thermosetting resin and having a visible light refractive index substantially equal to the visible light refractive index of the first resin material is put into a stirrer together with a solvent, and the temperature inside the stirrer is set to a second value. Is stirred while maintaining the temperature of the resin material at or below the thermal polymerization reaction start temperature to obtain a second resin material solution (second stirring step). Next, the first and second resin material solutions are mixed at a predetermined mixing ratio to prepare a liquid binder.
[0026]
A third resin material having a main skeleton common to the first resin material in a polymerized structural unit is prepared, and the third resin material is dissolved in a solvent to prepare a third resin material solution. Next, a third resin material solution is sprayed from a nozzle of the spray drying device and dried to produce a powdery third resin material (resin particles) (spray dryer method).
[0027]
Next, the resin particles and the binder are placed in a stirring device different from the stirring device, and the resin particles are stirred while maintaining the temperature in the stirring device at or below the glass transition temperature of the third resin material. Disperse in. In this state, the third resin material does not dissolve in the organic solvent in the binder but exists in the binder as resin particles.
[0028]
Further, since the third resin material has a main skeleton common to the first resin material in the polymerized structural unit, the refractive index of the visible light of the resin particles is determined by the refractive index of the visible light of the first resin material in the binder. It is almost equal to the rate.
[0029]
Conductive particles having a hardness higher than that of the resin particles are further added to and dispersed in the binder in a state where the resin particles are dispersed, thereby preparing the adhesive of the present invention. In this state, the adhesive is in a liquid state.
[0030]
Reference numeral 21 in FIG. 1A indicates a release film made of a resin. The adhesive prepared in the above process is applied to the surface of the release film 21 and dried to form an adhesive layer having a thickness of 5 μm or more and 100 μm or less. Form. Reference numeral 25 in FIG. 1B indicates an adhesive layer that is dried and formed into a film. In the adhesive layer 25, conductive particles 27 and resin particles 30 are dispersed.
[0031]
Next, a process of manufacturing an electric device using the adhesive of the present invention will be described in detail. Reference numeral 11 in FIG. 2A indicates an LCD. The LCD 11 has a transparent glass substrate 12, and on the surface of the glass substrate 12, an electrode 13 and an alignment mark 14 are formed by patterning a conductive thin film.
[0032]
The adhesive layer 25 of the adhesive film 20 is pressed against the surface of the LCD 11 on the side where the electrodes 13 are arranged (FIG. 2B). Since the adhesive force between the adhesive layer 25 and the release film 21 is lower than the adhesive force between the LCD 11 and the adhesive layer 25, when the release film 21 is turned in the state shown in FIG. 25 is separated from the release film 21 and remains on the LCD 11. FIG. 2C shows the state, in which the electrodes 13 of the LCD 11 and the alignment marks 14 are covered with an adhesive layer 25.
[0033]
Reference numeral 15 in FIG. 2D indicates an FPC. The FPC 15 has a base film 16 (resin film) made of a polyimide resin, and a metal wiring 17 and an alignment mark 19 are formed on the surface of the base film 16 by patterning a metal foil.
[0034]
Referring to FIG. 4, the planar shape of LCD 11 and the planar shape of FPC 15 are each rectangular here. The planar shapes of the electrode 13 and the metal wiring 17 are each elongated, and the electrode 13 and the metal wiring 17 extend in parallel with one side of the rectangular shape of the LCD 11 and the FPC 15, respectively.
[0035]
The alignment mark 14 of the LCD 11 and the alignment mark 19 of the FPC 15 are arranged at one of the narrow ends of the LCD 11 and the FPC 15 at one corner of a rectangular shape.
[0036]
The surface of the LCD 11 on which the electrode 13 is arranged and the surface of the FPC 15 on which the metal wiring 17 is arranged face each other, and the direction in which the electrode 13 extends and the direction in which the metal wiring 17 extends are opposite to each other. When the LCD 11 and the FPC 15 are relatively moved so that the FPC 15 and the LCD 11 are arranged in parallel and the alignment mark 14 of the LCD 11 and the alignment mark 19 of the FPC 15 are substantially overlapped, the LCD 11 and the FPC 15 are partially overlapped. become.
[0037]
Since the light incident on the adhesive of the present invention is transmitted without being scattered, when the surface of the glass substrate 23 opposite to the electrode 13 is observed, the light transmitted through the adhesive layer 25 and the glass substrate 23 The alignment marks 14 and 19 are observed.
[0038]
While observing both alignment marks 14 and 19, the LCD 11 and the FPC 15 are relatively moved so that the alignment marks 14 of the LCD 11 and the alignment marks 19 of the FPC 15 are accurately overlapped with each other. The wiring 17 and the electrode 13 are arranged to face each other (alignment).
[0039]
In this state, the FPC 15 is pressed against the surface of the adhesive layer 25 on the LCD 11 (FIG. 3 (e)), and when the portion where the FPC 15 and the LCD 11 overlap is pressed and heated, the adhesive layer 25 is softened by heating. Then, the metal wiring 17 sinks into the softened adhesive layer 25 due to the pressing.
[0040]
In this state, the conductive particles 27 and the resin particles 30 in the adhesive layer 25 exist between the metal wiring 17 and the electrode 13. When the average particle size of the conductive particles 27 is larger than the average particle size of the resin particles 30, the metal particles 17 are further sunk by continuing to press, and the conductive particles 27 are moved between the metal lines 17 and the electrodes 13. The electrode 13 and the metal wiring 17 are electrically connected via the conductive particles 27.
[0041]
When the average particle size of the conductive particles 27 is smaller than the average particle size of the resin particles 30, when the metal wiring 17 is further immersed, the resin particles 30 are first sandwiched between the metal wiring 17 and the electrode 13, Since the hardness of the resin particles 30 is smaller than the hardness of the conductive particles 27, the resin particles 30 are crushed by further pressing, and the conductive particles 27 come into contact with both the electrode 13 and the metal wiring 17. 13 and metal wiring 17 are electrically connected.
[0042]
When the heating and pressing are further continued in a state where the electrode 13 and the metal wiring 17 are electrically connected, the thermosetting resin (second resin material) in the adhesive layer 25 is polymerized by heating, and the conductive particles The adhesive layer 25 is cured while the electrode 27 is in contact with the electrode 13 and the metal wiring 17.
[0043]
Reference numeral 10 in FIG. 3F indicates an electric device in a state where the adhesive layer 25 is cured, and the LCD 11 and the FPC 15 are not only mechanically connected via the cured adhesive layer 25 but also They are also electrically connected via the conductive particles 27.
[0044]
Since the resin particles 30 are present in the adhesive layer 25 and the internal stress generated in the adhesive layer 25 is reduced when the electric device 10 is heated, the electric device 10 may be deformed or the adhesive layer 25 may be deformed. 25 does not peel off from the LCD 11 or the FPC 15.
[0045]
【Example】
A mixed solvent of toluene and ethyl acetate and a first resin material made of a thermoplastic resin (here, a phenoxy resin) are stirred for 48 hours in a stirrer kept at 60 ° C., and the first resin material solution is dissolved. Produced.
[0046]
The second resin material made of a thermosetting resin (here, epoxy resin) and the mixed solvent are put into the stirring device, and the stirring is performed while maintaining the predetermined temperature while cooling the inside of the stirring device. A second resin material solution was prepared. Next, the second resin material solution was added to and mixed with the first resin material solution to form a binder.
[0047]
Separately from this, the same solution as the first resin material solution is used as a third resin material solution, and the third resin material solution is sprayed and dried using a spray dryer, and the resin having an average particle diameter of 3 μm is formed. Particles were prepared. Therefore, the first resin material in the binder and the third resin material constituting the resin particles are made of the same type of phenoxy resin.
[0048]
Next, the binder and the resin particles are placed in a stirring device different from the above-described stirring device, and the resin particles are dispersed in the binder by stirring for 1 minute while maintaining the temperature in the device at a predetermined temperature. , A curing agent and a silane coupling agent were added to produce five types of adhesives having different contents of resin particles. The refractive index of the phenoxy resin used for the first and third resin materials was substantially equal to the refractive index of the epoxy resin used for the second resin material, and the five types of adhesives had high visible light transmittance.
[0049]
The content (% by weight) of the resin particles of these five types of adhesives is shown in Table 1 below. The average particle size of the conductive particles used for the adhesive was 5 μm, and the content of the conductive particles was 4.5% by weight of the entire adhesive.
[0050]
[Table 1]
Figure 2004269626
[0051]
Using these five types of adhesives, five types of adhesive films 20 were produced in the steps of FIGS. 1 (a) and 1 (b). Here, the adhesive layer 25 was formed so as to have a thickness of 20 μm. The LCD 11 and the FPC 15 were connected to each other using the adhesive films 20, and the electric devices 10 of Examples 1 to 5 were produced. The adhesive layer 25 of each adhesive film 20 had a high visible light transmittance, and was easy to align when the electric device 10 was manufactured.
[0052]
Here, an LCD 11 having an ITO (Indium Tin Oxide) electrode 13 formed on the surface of a glass substrate 12 was used. The connection conditions between the LCD 11 and the FPC 15 were a heating temperature of 170 ° C., a load of 3 MPa, and 20 seconds.
[0053]
Using the electric devices 10 of Examples 1 to 5, the following evaluation tests of “conduction resistance”, “appearance test”, and “adhesion strength test” were performed.
[0054]
(Conduction resistance)
After measuring the conduction resistance of the electric devices 10 of Examples 1 to 5, each electric device 10 was stored for 1000 hours under conditions of a temperature of 85 ° C. and a relative humidity of 85% (aging), and again the conduction resistance of each electric device 10 was measured. Was measured. The conduction resistance before aging was described in the column of “Conduction resistance, initial” in Table 1 above, and the conduction resistance after aging was described in the column of “Conduction resistance after aging” in Table 1 above.
[0055]
[Appearance] The case where the electric device 10 was warped or deformed was evaluated as x, and the case where no warpage or deformation was observed was evaluated as ○.
[0056]
(Adhesive strength)
For the electric devices 10 of Examples 1 to 5, after measuring the force (adhesive strength) required when peeling the FPC 15 from the LCD 11, each electric device 10 was aged under the same conditions as the above “Conduction Resistance” test, and after aging. The adhesive strength of the electric device 10 was measured in the same manner as before the aging. The adhesive strength before aging is described in the column of "Adhesive strength, initial" in Table 1 above, and the adhesive strength after aging is described in the column of "Adhesive strength, after aging" in Table 1 above.
[0057]
Comparative Examples 1 and 2 are cases where the first resin material solution (phenoxy resin solution) was added to the binder instead of the resin particles, and Comparative Example 3 was rubber fine particles having an average particle diameter of 0.1 μm as the resin particles. This is the case where is used.
[0058]
As is clear from Table 1, in Examples 1 to 5 in which the same kind of phenoxy resin was used as the first and third resin materials, respectively, any one of “conductive resistance”, “appearance”, and “adhesive strength” was used. In the evaluation test, practically sufficient results were obtained.
[0059]
On the other hand, in Comparative Examples 1 and 2 in which the resin particles were not added and the phenoxy resin solution was further added, practically sufficient adhesion was not obtained, and in particular, Comparative Example 2 had a high value of conduction resistance. In Comparative Example 3 using rubber particles as the resin particles, sufficient results were obtained in the adhesive strength and conduction resistance, but the results of the appearance evaluation were poor. In addition, since the refractive index of the rubber particles was significantly different from the refractive index of the binder, the permeability of the adhesive was poor, and alignment was difficult in the process of manufacturing the electric device of Comparative Example 3.
[0060]
【Example】
Next, four types of adhesives were prepared under the same conditions as in Example 3 except that the diameter (average particle size) of the resin particles was changed as shown in Table 2 below, and four types of adhesives were prepared using these adhesives. Was produced.
[0061]
Using these four types of adhesives, the electrical devices 10 of Examples 6 to 11 were manufactured under the same conditions as in Examples 1 to 5 described above. In addition, the adhesive layer 25 of each adhesive film 20 has high transmittance of visible light, and the alignment at the time of manufacturing the electric device 10 was easy.
[0062]
Using the electric devices 10 of Examples 6 to 11, evaluation tests of “conduction resistance”, “appearance”, and “adhesion strength” were performed under the same conditions as in Examples 1 to 5 described above. These evaluation results are shown in Table 2 below together with the average particle size of the resin particles.
[0063]
[Table 2]
Figure 2004269626
[0064]
In addition, Example 10 in Table 2 is different from Examples 6 to 9 in that the average particle size of the resin particles is 0.05 μm, Example 11 is that the average particle size of the resin particles is 70 μm, and The difference from Examples 6 to 9 is that the addition amount of the resin particles is 50% by weight.
[0065]
As is clear from Table 2, in the electric devices 10 of Examples 6 to 9, high evaluation results were obtained in each evaluation test. In Examples 10 and 11, practically sufficient values were obtained in the respective evaluation tests, but the conduction resistance was higher than Examples 6 to 9, and particularly, Example 10 had poor appearance evaluation results.
[0066]
【Example】
Next, three types of adhesives were prepared under the same conditions as in Example 2 except that the type of the phenoxy resin used for the third resin material was changed, and three types of adhesives were further used using these three types of adhesives. An adhesive film 20 was produced.
[0067]
Using these three types of adhesive films 20, the electric devices 10 of Examples 10 to 12 were produced. The adhesive layer 25 of each adhesive film 20 had a high visible light transmittance and was easy to align.
[0068]
Using the electric devices 10 of Examples 12 to 14, each evaluation test of “conduction resistance”, “appearance”, and “adhesion strength” was performed under the same conditions as in Examples 1 to 9. The evaluation results are shown in Table 3 below together with the evaluation results of Example 2.
[0069]
[Table 3]
Figure 2004269626
[0070]
As is clear from Table 3, the electrical devices 10 of Examples 2 and 12 to 14 obtained excellent results in each evaluation test. Further, in the electric devices 10 of the second and twelfth to twelfth embodiments, the alignment in the manufacturing process is easy even though the first and third resin materials are made of different types of phenoxy resins. there were.
[0071]
This is because the first and third resin materials each have a main skeleton common to the phenoxy resin in their polymerized structural units, so that the refractive indices of light passing through the first and third resin materials are substantially equal, and the adhesive It is presumed that the light passing through the inside did not scatter.
[0072]
Although the case where the adhesive is formed into a film shape has been described above, the present invention is not limited to this. For example, the adhesive may be used as a paste.
Reference numeral 11 in FIG. 5A indicates the same LCD as that shown in FIG. 3A. To connect the FPC 15 to the LCD 11, first connect the FPC 15 on the surface of the ITO electrode 13 of the LCD 11. An adhesive is applied to the portion to be formed to form an adhesive layer 45 (FIG. 5B).
[0073]
Next, after the FPC 15 is aligned in the step shown in FIG. 3D, the FPC 15 and the LCD 11 are connected in the steps shown in FIGS. 4E and 4F to obtain the electric device 70 (FIG. 5). (C)).
[0074]
The case where the FPC 15 and the LCD 11 are connected as the adherend has been described above, but the present invention is not limited to this, and various objects such as a semiconductor chip and TCP can be used as the adherend. .
[0075]
Although the case where the conductive particles are dispersed in the adhesive has been described above, the present invention is not limited to this. For example, the case where the conductive particles are not contained is also included in the present invention.
[0076]
Although the case where the resin particles are produced by the spray dryer method has been described above, the present invention is not limited to this.For example, a solid phenoxy resin may be pulverized and a powder formed on a powder may be used. However, in this case, it is preferable to use a sieve to separate the resin particles so as to make the particle diameters of the resin particles uniform.
[0077]
The type of phenoxy resin that can be used for the first and third resin materials is not particularly limited, and the trade names “PKHH”, “PKHC”, “PKHJ”, “PKHB”, “PKFE” and “PKHH” manufactured by InChem. And various commonly used phenoxy resins such as "YP-50" and "YP-50S" (trade names, manufactured by Toto Kasei Co., Ltd.). In addition, the glass transition temperature of these phenoxy resins is in the range of 40 ° C. or more and 80 ° C. or less.
[0078]
In addition, although the case where the phenoxy resin is used for the first and third resin materials has been described above, the present invention is not limited to this. For example, acrylic resin, polyester resin, styrene resin, ethylene vinyl acetate resin Various thermoplastic resins can be used.
[0079]
Although the case where an epoxy resin is used as the thermosetting resin has been described above, the present invention is not limited to this, and a thermosetting resin having a similar refractive index to the thermoplastic resin used for the first and third resin materials. Various resins can be used as long as the resin is used.
[0080]
The adhesive of the present invention is, in short, a binder and resin particles dispersed in the binder, each of which is composed of a resin having substantially the same refractive index, thereby increasing the light transmittance, so that the first to third As long as the resin materials have similar refractive indices, various resins can be used regardless of whether they are transparent or translucent.
[0081]
In the above, the case where the first to third resin materials which are solid at room temperature are used by dissolving them in a solvent has been described, but the present invention is not limited to this. For example, a resin having fluidity at room temperature can be used as the first to third resin materials. In this case, it is not necessary to use a solvent when preparing the binder.
[0082]
The conductive particles are also not particularly limited. For example, if the hardness at the time of thermocompression bonding is higher than that of the resin particles 30, metal particles made of nickel, gold, or the like, or a metal plating layer formed on the surface of the resin particles Various kinds of metal plated coating resin particles and the like can be used.
[0083]
In addition, various additives such as a silane coupling agent, a curing agent, an antioxidant, a filler, and a coloring agent can be added to the adhesive of the present invention. In the case of performing, it is preferable that the adhesive does not hinder the light transmittance.
[0084]
【The invention's effect】
Since the third resin material constituting the resin particles has the same main skeleton as the first resin material used for the binder in the polymerized structural unit, light scattering in the adhesive is small, and alignment by transmitted light is easy. It is. In addition, since the resin particles function as so-called spacers during the thermocompression bonding step, the repulsive force of the adherend and the internal stress of the adhesive are alleviated. Further, when a phenoxy resin is used as the first and third resin materials, the bonding strength to an adherend such as an LCD or an FPC is increased, so that the reliability of the obtained electric device is high.
[Brief description of the drawings]
FIGS. 1A and 1B are diagrams for explaining an example of a process for producing an adhesive film using the adhesive of the present invention.
FIGS. 2A to 2D are diagrams for explaining the first half of a process of connecting an LCD and an FPC using the adhesive of the present invention.
FIGS. 3E and 3F are diagrams for explaining the latter half of the process of connecting the FPC and the LCD.
FIG. 4 is a plan view for explaining a state in which an FPC and an LCD are superimposed.
FIGS. 5A to 5C are diagrams for explaining another example of a process of connecting an FPC and an LCD using the adhesive of the present invention.
FIGS. 6A to 6D are diagrams for explaining a process of connecting a TPC and an LCD using a conventional adhesive.
[Explanation of symbols]
10, 70 ... electric device
20, 45 ... adhesive (adhesive layer)
30 ... Resin particles
12 Glass substrate
16 ... Resin film

Claims (9)

熱可塑性樹脂からなる第一の樹脂材料と、熱硬化性樹脂からなる第二の樹脂材料とが混合されたバインダー中に、樹脂粒子が分散された接着剤であって、
前記樹脂粒子は、熱可塑性樹脂からなり、前記第一の樹脂材料の重合構造単位と、共通する主骨格を重合構造単位に有する第三の樹脂材料を主成分とする接着剤。
In a binder in which a first resin material made of a thermoplastic resin and a second resin material made of a thermosetting resin are mixed, an adhesive in which resin particles are dispersed,
An adhesive mainly composed of a third resin material having a polymerized structural unit of the first resin material and a common main skeleton in the polymerized structural unit, wherein the resin particles are made of a thermoplastic resin.
前記第一の樹脂材料と、前記第三の樹脂材料が同じ種類の熱可塑性樹脂でそれぞれ構成された請求項1記載の接着剤。2. The adhesive according to claim 1, wherein the first resin material and the third resin material are each formed of the same type of thermoplastic resin. 前記第一、第三の樹脂材料はフェノキシ樹脂からなり、前記第二の樹脂材料がエポキシ樹脂からなる請求項1又は請求項2のいずれか1項記載の接着剤。The adhesive according to claim 1, wherein the first and third resin materials are made of a phenoxy resin, and the second resin material is made of an epoxy resin. 前記バインダー中に導電性粒子が分散された請求項1乃至請求項3のいずれか1項記載の接着剤。The adhesive according to any one of claims 1 to 3, wherein conductive particles are dispersed in the binder. 前記樹脂粒子の平均粒径が0.1μm以上50μm以下である請求項1乃至請求項4のいずれか1項記載の接着剤。The adhesive according to any one of claims 1 to 4, wherein an average particle size of the resin particles is 0.1 µm or more and 50 µm or less. 前記樹脂粒子の含有量が0.5重量%以上70重量%以下である請求項1乃至請求項5のいずれか1項記載の接着剤。The adhesive according to any one of claims 1 to 5, wherein the content of the resin particles is 0.5% by weight or more and 70% by weight or less. 熱可塑性樹脂からなる第一の樹脂材料と、熱硬化性樹脂からなる第二の樹脂材料とをそれぞれ溶媒に溶解させ、バインダーを作製するバインダー作製工程と、
前記第一の樹脂材料と同じ主骨格を重合構造単位中に有する第三の樹脂材料を用いて樹脂粒子を製造し、前記樹脂粒子を前記バインダー中に分散させる分散工程とを有し、
前記分散工程は、前記バインダーの温度を前記第三の樹脂材料のガラス転移温度未満に維持して行う接着剤の製造方法。
A first resin material made of a thermoplastic resin and a second resin material made of a thermosetting resin are each dissolved in a solvent, and a binder producing step of producing a binder,
A resin particle is produced using a third resin material having the same main skeleton as the first resin material in a polymerized structural unit, and a dispersing step of dispersing the resin particle in the binder,
The method for producing an adhesive, wherein the dispersing step is performed while maintaining the temperature of the binder below the glass transition temperature of the third resin material.
前記バインダー作製工程は、前記第一の樹脂材料を前記溶媒に溶解し、第一の樹脂材料溶液を作製する第一の溶解工程と、
前記第二の樹脂材料を前記溶媒に溶解し、第二の樹脂材料溶液を作製する第二の溶解工程と、
前記第一の樹脂材料溶液と、前記第二の樹脂材料溶液とを混合する混合工程とを有し、
前記第一の溶解工程は、前記溶媒の温度を前記第一の樹脂材料のガラス転移温度以上に維持して行い、
前記第二の溶解工程は、前記溶媒の温度を前記第二の樹脂材料の熱重合開始温度以下に維持して行う請求項7記載の接着剤の製造方法。
The binder production step, the first resin material is dissolved in the solvent, a first dissolution step of producing a first resin material solution,
Dissolving the second resin material in the solvent, a second dissolving step of preparing a second resin material solution,
The first resin material solution, having a mixing step of mixing the second resin material solution,
The first melting step is performed while maintaining the temperature of the solvent at or above the glass transition temperature of the first resin material,
The method for producing an adhesive according to claim 7, wherein the second dissolving step is performed while maintaining the temperature of the solvent at or below the thermal polymerization start temperature of the second resin material.
樹脂フィルムと、ガラス基板とを有する電気装置であって、
前記ガラス基板と前記樹脂フィルムとの間に請求項1乃至請求項6のいずれか1項記載の接着剤が配置され、前記接着剤が熱処理によって硬化された電気装置。
An electrical device having a resin film and a glass substrate,
An electrical device in which the adhesive according to any one of claims 1 to 6 is arranged between the glass substrate and the resin film, and the adhesive is cured by heat treatment.
JP2003060228A 2003-03-06 2003-03-06 Adhesive, adhesive manufacturing method, and electrical apparatus Expired - Lifetime JP4240460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060228A JP4240460B2 (en) 2003-03-06 2003-03-06 Adhesive, adhesive manufacturing method, and electrical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060228A JP4240460B2 (en) 2003-03-06 2003-03-06 Adhesive, adhesive manufacturing method, and electrical apparatus

Publications (2)

Publication Number Publication Date
JP2004269626A true JP2004269626A (en) 2004-09-30
JP4240460B2 JP4240460B2 (en) 2009-03-18

Family

ID=33122838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060228A Expired - Lifetime JP4240460B2 (en) 2003-03-06 2003-03-06 Adhesive, adhesive manufacturing method, and electrical apparatus

Country Status (1)

Country Link
JP (1) JP4240460B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084811A1 (en) * 2007-01-10 2008-07-17 Hitachi Chemical Company, Ltd. Adhesive for connection of circuit member and semiconductor device using the same
JP5088376B2 (en) * 2007-11-29 2012-12-05 日立化成工業株式会社 Circuit member connecting adhesive and semiconductor device
JP5557526B2 (en) * 2007-07-11 2014-07-23 日立化成株式会社 Circuit member connecting adhesive and semiconductor device
KR101552749B1 (en) 2010-11-23 2015-09-14 주식회사 엘지화학 Adhesive composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084811A1 (en) * 2007-01-10 2008-07-17 Hitachi Chemical Company, Ltd. Adhesive for connection of circuit member and semiconductor device using the same
US8044524B2 (en) 2007-01-10 2011-10-25 Hitachi Chemical Company, Ltd. Adhesive for connection of circuit member and semiconductor device using the same
TWI485227B (en) * 2007-01-10 2015-05-21 Hitachi Chemical Co Ltd Adhesive for circuit component connection and semiconductor device using the same
TWI493014B (en) * 2007-01-10 2015-07-21 Hitachi Chemical Co Ltd Adhesive for circuit component connection and semiconductor device using the same
JP5557526B2 (en) * 2007-07-11 2014-07-23 日立化成株式会社 Circuit member connecting adhesive and semiconductor device
JP5088376B2 (en) * 2007-11-29 2012-12-05 日立化成工業株式会社 Circuit member connecting adhesive and semiconductor device
KR101552749B1 (en) 2010-11-23 2015-09-14 주식회사 엘지화학 Adhesive composition

Also Published As

Publication number Publication date
JP4240460B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP5010990B2 (en) Connection method
US8980043B2 (en) Anisotropic conductive film, joined structure and method for producing the joined structure
US8524032B2 (en) Connecting film, and joined structure and method for producing the same
TWI388645B (en) An anisotropic conductive film and a connecting structure
JP5823117B2 (en) Anisotropic conductive film, bonded body, and manufacturing method of bonded body
JP2001049228A (en) Low-temperature-curing adhesive and anisotropically conductive adhesive film using the same
JP3516379B2 (en) Anisotropic conductive film
TW201037055A (en) Ambient-curable anisotropic conductive adhesive
JP2001126541A (en) Anisotropic-conductive film and electric/electronic parts
JP2002201450A (en) Adhesive composition, connecting method of circuit terminal using the same, and connected structure of circuit terminal
JP5956362B2 (en) Anisotropic conductive film, connection method, and joined body
KR102114802B1 (en) Anisotropic conductive film, connection method, and connected body
JP4240460B2 (en) Adhesive, adhesive manufacturing method, and electrical apparatus
JP2001254058A (en) Anisometric conductive adhesive
JP2001164210A (en) Anisotropic conductive film and electronic equipment using the same
JP6007022B2 (en) Circuit connection material
JP2007018760A (en) Anisotropic conduction film for glass base plate connection
JP3876993B2 (en) Adhesive structure, liquid crystal device, and electronic device
JP5539039B2 (en) Anisotropic conductive film and manufacturing method thereof
JP2003249287A (en) Anisotropically conductive adhesive, heat seal connector and connection structure
KR20020089870A (en) Anisotropic Conductive Film Including Silicon Intermediate
JP4056772B2 (en) Manufacturing method of heat seal connector
WO2024090129A1 (en) Connection material, connection structure, and method for producing connection structure
JP2014084400A (en) Adhesive film
KR20110059274A (en) Insulated conductive ball for anisotropic electric connection and anisotropic conductive material using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081104

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081219

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4240460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term