JP2004266757A - 画像処理装置および方法 - Google Patents

画像処理装置および方法 Download PDF

Info

Publication number
JP2004266757A
JP2004266757A JP2003057429A JP2003057429A JP2004266757A JP 2004266757 A JP2004266757 A JP 2004266757A JP 2003057429 A JP2003057429 A JP 2003057429A JP 2003057429 A JP2003057429 A JP 2003057429A JP 2004266757 A JP2004266757 A JP 2004266757A
Authority
JP
Japan
Prior art keywords
image
texture
component
signal
frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003057429A
Other languages
English (en)
Inventor
Shigeru Harada
茂 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003057429A priority Critical patent/JP2004266757A/ja
Publication of JP2004266757A publication Critical patent/JP2004266757A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Controls And Circuits For Display Device (AREA)
  • Picture Signal Circuits (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

【課題】複数のマルチ画像を1画面に表示する場合において、マルチ画像毎にコントラストを調整できるようにする。
【解決手段】S/T分離回路51は、輝度信号YINをストラクチャ成分S1とテクスチャ成分T1に分離する。ストラクチャ補正回路53は、ストラクチャ成分S1を補正することにより、ストラクチャ成分S2を生成する。テクスチャ増幅回路52は、テクスチャ成分T1を増幅し、テクスチャ成分T2を生成する。スイッチ54は、マルチ画面処理部14から供給されるDE信号に基づいて、テクスチャ成分T1およびテクスチャ成分T2のうちいずれか一方を選択し、選択したテクスチャ成分を加算器55に供給する。加算器55は、スイッチ54からテクスチャ成分を取得し、ストラクチャ成分S2に加算する。本発明は、テレビジョン受像機に適用することができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、画像処理装置および方法に関し、特に、複数のマルチ画像を1画面に表示する場合において、マルチ画像毎にコントラストを調整できるようにした画像処理装置および方法に関する。
【0002】
【従来の技術】
画像処理装置は、入力画像に画質補正を施してから出力する画像処理機能として、例えば、明暗やコントラストの調整、輪郭補正等の機能を有している。
【0003】
例えば、特許文献1には、輝度分布の広がり量から自動的にコントラストの強調程度を判断し、ユーザが容易にコントラストを適正量だけ強調できるような画像処理機能を有する画像処理装置が提案されている。
【0004】
また、入力画像信号のヒストグラムを取ることにより、画像のコントラストを強調するコントラスト強調方法が提案されている。
【0005】
【特許文献1】
特開平10−208034号公報
【0006】
【発明が解決しようとする課題】
ところで、近年、1つの画面上に複数の縮小画像を同時に表示させるマルチ画面表示機能を有するテレビジョン受像機が販売されている。
【0007】
テレビジョン受像機にマルチ画面を表示させる場合、特許文献1に記載の画像処理機能では、縮小画像毎にコントラストを強調することができないという課題があった。
【0008】
また、上述したコントラスト強調方法では、縮小画像毎にコントラストを強調するには、縮小画像毎のヒストグラムを取らなければならず、その演算処理が多くなり、処理に時間がかかるという課題があった。
【0009】
本発明はこのような状況に鑑みてなされたものであり、マルチ画面を表示する場合において、簡単かつ迅速に縮小画像毎にコントラストを調整できるようにするものである。
【0010】
【課題を解決するための手段】
本発明の画像処理装置は、1画面に同時に表示される複数のマルチ画像のデータを含む入力画像データを、マルチ画像の輪郭を構成するストラクチャ成分とマルチ画像の細部を構成するテクスチャ成分とに分離するデータ分離手段と、データ分離手段により分離されたテクスチャ成分を強調するテクスチャ強調手段と、データ分離手段により分離されたストラクチャ成分に対して、非直線的補正を施すストラクチャ補正手段と、テクスチャ強調手段により強調されたテクスチャ成分と、強調されていないテクスチャ成分のうちいずれか一方を選択する選択手段と、ストラクチャ補正手段により補正されたストラクチャ成分と、選択手段により選択されたテクスチャ強調手段により強調されたテクスチャ成分を合成して加工データを生成する合成手段と、合成手段により合成された加工データに基づいて、複数のマルチ画像を1つの画面に表示させるように制御する表示制御手段とを備えることを特徴とする。
【0011】
前記マルチ画像の枠であることを表わす枠信号を出力する枠信号出力手段をさらに備えるようにすることができる。
【0012】
前記選択手段は、枠信号出力手段から、マルチ画像の枠であることを表わす枠信号が出力された場合、強調されていないテクスチャ成分を選択し、合成手段に供給するようにすることができる。
【0013】
前記枠信号出力手段は、マルチ画像の画像表示期間でない場合、マルチ画像の枠であることを表わす枠信号を出力するようにすることができる。
【0014】
前記枠信号出力手段は、さらに、マルチ画像の画像表示期間であって、マルチ画像の縁の近傍の所定の範囲のとき、マルチ画像の枠であることを表わす枠信号を出力するようにすることができる。
【0015】
本発明の画像処理方法は、1画面に同時に表示される複数のマルチ画像のデータを含む入力画像データを、マルチ画像の輪郭を構成するストラクチャ成分とマルチ画像の細部を構成するテクスチャ成分とに分離するデータ分離ステップと、データ分離ステップの処理により分離されたテクスチャ成分を強調するテクスチャ強調ステップと、データ分離ステップの処理により分離されたストラクチャ成分に対して、非直線的補正を施すストラクチャ補正ステップと、テクスチャ強調ステップの処理により強調されたテクスチャ成分と、強調されていないテクスチャ成分のうちいずれか一方を選択する選択ステップと、ストラクチャ補正ステップの処理により補正されたストラクチャ成分と、選択ステップの処理により選択されたテクスチャ成分を合成して加工データを生成する合成ステップと、合成ステップの処理により合成された加工データに基づいて、複数のマルチ画像を1つの画面に表示させるように制御する表示制御ステップとを含むことを特徴とする。
【0016】
本発明の画像処理装置および方法においては、入力画像データが、ストラクチャ成分とテクスチャ成分とに分離され、テクスチャ成分が強調されるとともに、ストラクチャ成分に対して、非直線的補正が施される。そして、強調されたテクスチャ成分と、強調されていないテクスチャ成分のうちいずれか一方が選択され、補正されたストラクチャ成分と、選択されたテクスチャ成分が合成されて加工データが生成され、加工データに基づいて、複数のマルチ画像が1つの画面に表示されるように制御される。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態について図面を参照して説明する。
【0018】
図1は、本発明を適用したテレビジョン受像機1の構成例を示すブロック図である。
【0019】
テレビジョン受像機1は、放送電波を受信し、所定のチャンネルの信号を復調する画像処理部2と、復調して得られた信号をもとに画像表示を行うディスプレイ3により構成されている。
【0020】
画像処理部2のチューナ11A,11Bは、それぞれ異なるチャンネル(番組)のテレビジョン信号を時分割で受信し、復調してコンポジット信号(CVBS:Composite Video Burst Signal)を出力する。Y/C分離回路12A,12Bは、対応するチューナ11A,11Bからコンポジット信号を取得し、コンポジット信号をそれぞれ輝度信号Yおよび色信号C(Y/C分離回路12A),輝度信号Yおよび色信号C(Y/C分離回路12B)に分離して出力する。クロマデコーダ13Aは、輝度信号Yと色信号Cを、YUV信号としての信号Yに変換し、クロマデコーダ13Bは、輝度信号Yと色信号Cを、YUV信号としての信号Yに変換して出力する。
【0021】
マルチ画面処理部14は、クロマデコーダ13Aとクロマデコーダ13BからのYUV信号(ここではYUV信号としての信号Y、および、信号Y)を取得し、取得したYUV信号に基づいて、1つの画面上に複数の縮小画像を同時に表示させるようなYUV信号としての信号YIN,UIN,VINを生成し、出力する。例えば、チューナ11Aがチャンネル1乃至5のテレビジョン信号を時分割で順次受信し、チューナ11Bがチャンネル6乃至9のテレビジョン信号を時分割で受信(すなわち、チャンネル6乃至9を順次受信)した場合、マルチ画面処理部14は、取得した9個のチャンネル(時分割で受信された9個のチャンネル)のYUV信号(信号Y、および、信号Y)に基づいて、1つの画面上に9個の縮小画像(以下、マルチ画像と称する)を同時に表示させるようなYUV信号としての信号YIN,UIN,VINを(1フレーム毎に)生成する(YUV信号としての信号Y、および信号Yを合成して生成する)。すなわち、信号YIN,UIN,VINには、9つのチャンネルの画像に対応する信号が含まれる。
【0022】
また、マルチ画面処理部14は、出力するYUV信号としての信号YIN,UIN,VINが、画像表示期間であるか否か(マルチ画像であるか否か)を示すDE(Display Enable)信号を生成し、テクスチャ強調部15のスイッチ54に出力する。
【0023】
画像データは、主に、画像の輪郭を構成するストラクチャ成分と、主に、その細部を構成するテクスチャ成分とを有する。テクスチャ強調部15,遅延回路16,およびクロマアンプ17では、主に、このテクスチャ成分を強調するテクスチャ強調に関する処理が行われる(詳細は後述する)。テクスチャ強調部15は、入力される輝度信号YINに対しテクスチャ強調処理を施し、輝度信号YOUT1として輪郭補正回路18に出力するとともに、クロマアンプ17に出力する。
【0024】
輪郭補正回路18には、シャープネス機能、すなわち、画像中の人物や物体の縁部、輪郭部の部分の鮮鋭度を強調する機能(周波数特性を補正する機能)が備えられている。輪郭補正回路18は、輝度信号YOUT1に対して、周波数特性の補正(輪郭強調補正)を行なうことにより、画像中の人物や物体の縁部、輪郭部の部分の鮮鋭度を補正する。例えば、輝度信号YOUT1の鮮鋭度が異常に強かった場合、輪郭補正回路18は、周波数特性を下げるように補正し、逆に、輝度信号YOUT1の鮮鋭度が弱すぎた場合、周波数特性を上げるように補正する。また、輪郭補正回路18のパラメータは、ユーザが設定することも可能であるので、ユーザは、自分の好みの鮮鋭度を設定することができる。輪郭補正回路18は、輝度信号YOUT1に対して、周波数特性を補正し(輪郭強調補正を行ない)、輝度信号YOUT2を生成し、マトリクス回路19に出力する。
【0025】
遅延回路16は、色差信号UIN,VINに対して遅延をかけ、テクスチャ強調部15において生成される輝度信号YOUT1と同期をとって出力する。クロマアンプ17は、入力される色差信号UIN,VINに「YIN/YOUT1」の比を乗じ、Y/C比(C;色差信号U,Vの双方を指す)を、テクスチャ強調処理の前後で一定の値に保つようにして色差信号UOUT,VOUTを生成する。生成された色差信号UOUT,VOUTは、マトリクス回路19に出力される。
【0026】
なお、YUV信号(ディジタルデータ)は、画像上の位置に対応する画素値の集合である。そのうち、輝度信号Yは輝度レベルを表現し、白100%である白レベルと、黒100%である黒レベルとの間の振幅値をとる。なお、画像信号の白100%は、IRE(Institute of Radio Engineers)という画像信号の相対的な比を表す単位において、100(IRE)と定められている。日本のNTSC信号の規格では、白レベルが100IRE,黒レベルが0IREである。それゆえ、以下の説明では、輝度信号Yが、黒を表す最低値(0IRE)またはその近傍の値をとることを「黒側」、白を表す最大値(100IRE)またはその近傍の値をとることを「白側」と称する。また、色差信号U,Vはそれぞれ、青(B;Blue)から輝度信号Yを減算した信号「B−Y」、赤(R;Red)から輝度信号Yを減算した信号「R−Y」に対応しており、これらU信号,V信号を輝度信号Yと組み合わせることによって色(色相,彩度,輝度)が表現される。
【0027】
マトリクス回路19は、テクスチャ強調処理後のYUV信号である信号YOUT2,UOUT,VOUTをRGB信号に変換し、ドライバ20に出力する。ドライバ20は、RGB信号に基づいて、ディスプレイ3の駆動信号を生成し、出力する。ディスプレイ3は、ドライバ20から供給される駆動信号に基づいて画像を表示する。ディスプレイ3は、どのような種類のディスプレイデバイスであってもよく、CRT(Cathode Ray Tube)21や、LCD(Liquid Crystal Display)22,PDP(Plasma Display Panel)(図示せず)等が用いられる。
【0028】
なお、いまの例の場合、入力される画像信号を放送信号としたが、これに限らず、VCR(VideoCassette Recorder)、またはDVD(Digital Versatile Disc)などの出力信号であってもよい。
【0029】
次に、このテレビジョン受像機1のうち、テクスチャ強調部15の構成と機能について、より詳細に説明する。テクスチャ強調部15は、S/T(ストラクチャ/テクスチャ)分離回路51,テクスチャ増幅回路52,ストラクチャ補正回路53、スイッチ54、および加算器55により構成されている。
【0030】
このテクスチャ強調部15では、図2に示されるような処理が行われる。すなわち、入力される輝度信号YINは、S/T分離回路51により、主に画像の輪郭成分を構成するストラクチャ成分S1と、主に、画像の細部を構成するテクスチャ成分T1とに分離される。テクスチャ成分T1は、テクスチャ増幅回路52により増幅されてテクスチャ成分T2となる。
【0031】
また、ストラクチャ成分S1は、ストラクチャ補正回路53により、低域側(黒側)が強調されると共に、高域側(白側)が抑えられるように振幅が補正され、ストラクチャ成分S2となる。ストラクチャ成分S2、選択されたテクスチャ成分(テクスチャ成分T1またはT2)は、加算器55により加算されて輝度信号YOUT1となる。
【0032】
スイッチ54は、テクスチャ増幅回路52により増幅されたテクスチャ成分T2と、増幅されていないテクスチャ成分T1のうちいずれか一方を、マルチ画面処理部14から供給されるDE信号に基づいて選択し、加算器55に出力する。DE信号は、画像表示期間である場合、DE=0とされ、画像表示期間でない場合、DE=1とされる。スイッチ54は、DE=0である場合(画像表示期間である(マルチ画像の表示期間である)場合)、テクスチャ増幅回路52により増幅されたテクスチャ成分T2を選択し、DE=1である場合(画像表示期間でない(マルチ画像の枠の表示期間である)場合)、増幅されていないテクスチャ成分T1を選択する。
【0033】
すなわち、DE信号は、マルチ画像の画像信号表示期間であることを表わす信号としても理解できるし(DE=0の場合)、マルチ画像の枠の表示期間であることを表わす信号としても理解することができる(DE=1)の場合)。
【0034】
画像表示期間である場合(マルチ画像の表示期間である場合)、補正が施されたストラクチャ成分S2にテクスチャ成分T2が重畳される格好となり、輝度信号YOUT1の振幅拡大は抑えられる。これに対して、画像表示期間でない場合(マルチ画像の枠の表示期間である場合)、補正が施されたストラクチャ成分S2にテクスチャ成分T1(増幅されていないテクスチャ成分)が重畳され、マルチ画像の枠におけるテクスチャの増幅は抑えられる。
【0035】
図3は、S/T分離回路51の構成を示すブロック図である。S/T分離回路51は、レベル判定部81,周波数判定部82,フィルタ特性決定部83,非線形フィルタ84、および減算器85により構成されている。レベル判定部81,周波数判定部82は、それぞれ、輝度信号YINの振幅レベル、および周波数の変動範囲を判定し、フィルタ特性決定部83に判定結果を出力する。フィルタ特性決定部83は、この判定結果に応じて、非線形フィルタ84の振幅レベル、および周波数の閾値を決定する。非線形フィルタ84は、フィルタ特性決定部83によって決められたフィルタ特性で輝度信号YINに平滑化を行い、ストラクチャ成分S1を抽出する。減算器85は、元の輝度信号YINからストラクチャ成分S1を減算することでテクスチャ成分T1を抽出する。
【0036】
非線形フィルタ84は、通常用いられる線形ローパスフィルタとは異なり、輝度信号YINの振幅レベルと周波数の双方を加味した非線形のフィルタであって、画像の輪郭を構成するストラクチャ成分S1が、それ以外の成分から峻別されるようになっている。より具体的には、輝度信号YINのうち、振幅変動が急峻なエッジ成分はそのまま保存し、エッジ成分以外の小振幅成分に対して平滑化を行うようになっている。その構成としては、例えば、特開2001−298621号公報に開示されているものを採用することができる。
【0037】
非線形フィルタ84は、2次元の非線形フィルタもしくは画像の水平方向と垂直方向それぞれに適用される1次元の非線形フィルタとして構成され、フィルタリングの中心画素に対し、画素値(振幅)の差の絶対値が所定の閾値ε以下に収まっている周辺画素の画素値はそのまま適用するが、画素値の絶対値の差が閾値εよりも大きければ、そこをエッジと判断し、周辺画素の画素値の代わりに中心画素の画素値を用いることで周辺画素の影響を排除してから平滑化を行う。
【0038】
ただし、実際の画像では、振幅変動が大きい部分が必ずしも画像上の輪郭線であるとは限らず、逆に、振幅変動が小さくとも輪郭線である場合がある。そのため、ここでは、振幅レベルだけでなく周波数からの情報を合わせて平滑化を行うことで、ストラクチャ成分S1の抽出の確度を上げるようにしている。
【0039】
なお、この非線形フィルタ84は、ストラクチャ成分S1としてエッジ以外の部分では出来るだけ変化が少ない信号を得ることが望ましいが、そのためには、空間的に広い範囲をカバーできるフィルタとすることが必要となる。例えば、輝度信号YINが水平有効画素720ドット,垂直走査ライン288本に相当するデータであれば、両方向に1/4である(180画素×72画素)程度の大きさのフィルタを用いるとよい。
【0040】
図4は、主として、S/T分離回路51に続くストラクチャ補正回路53の構成を示すブロック図である。テクスチャ増幅回路52は、S/T分離回路51から入力されるテクスチャ成分T1を、外部入力されるエンハンスゲインTEに応じて増幅することでテクスチャ成分T2を生成し、出力する。なお、実際のエンハンスゲインTEの値は、1乃至2の間の値とするのが適当である。通常の使用では、その値は例えば1.3乃至1.4程度とされるが、それ以上ではテクスチャ強調の効果が強く現れる。エンハンスゲインTEの値が2以上とされた場合、テクスチャ成分が強調され過ぎて違和感を与えるようになる。
【0041】
スイッチ54は、マルチ画面処理部14から供給されるDE信号に基づいて、テクスチャ増幅回路52により増幅されたテクスチャ成分T2、および増幅されていないテクスチャ成分T1のうちいずれか一方を選択し、選択したテクスチャ成分を加算器55に出力する。上述したように、DE信号は、画像表示期間(マルチ画像の画像表示期間)である場合、DE=0とされ、画像表示期間でない(マルチ画像の枠の表示期間)である場合、DE=1とされているので、スイッチ54は、画像表示期間では、テクスチャ成分T2を選択し、画像表示期間でないとき、テクスチャ成分T1を選択する。
【0042】
また、ストラクチャ補正回路53は、ガンマ曲線生成回路101,ゲイン調整回路102,遅延回路103、および加算器104からなる。このストラクチャ補正回路53は、S/T分離回路51から入力されるストラクチャ成分S1に対し、ストラクチャ成分S1の輝度レベルの最低値と最高値を除いた中間輝度領域において補正量が正の極大となるような非直線的補正、および輝度レベルの最高値を低減する補正を同時に施す。なお、本実施の形態では、上記非直線的補正を便宜的にガンマ補正と称する。
【0043】
ガンマ曲線生成回路101は、図5に示したように、予め基準となるガンマ特性101Aを保持しており、これからストラクチャS1を差し引いてガンマ補正の補正量であるガンマ曲線γを求め、ゲイン調整回路102に出力する。このガンマ特性101Aのガンマ値は、例えば、0.5乃至0.7(入力値をX,出力値をYとしたときの入出力特性がY=X0.5乃至Y=X0.7)とするとよい。またここでは、ガンマ特性101Aは、白側のレンジが下がった出力が得られるよう、最高出力値が、入力されるストラクチャ成分S1の最高値よりもオフセット値ΔYだけ低く設定されている。
【0044】
さらに、このガンマ特性101Aは、入力信号レベルの20乃至40(IRE)の範囲内にピーク(入力信号との差、すなわち補正量が最大となる振幅出力)Pを有している。人間の顔の輪郭や影の部分の黒は、振幅レベルでは、ほぼ20乃至40(IRE)に相当する。したがって、このように20乃至40(IRE)の範囲内の振幅レベルを持ち上げる(強調する)ように補正することで、人間の顔の輪郭や影の部分に対する強調効果を和らげ、顔に対し違和感を生じないようにすることができる。このように、最高値に対してオフセット値ΔYがあり、20乃至40(IRE)にピークPをもつという特徴は、生成されるガンマ曲線γに受け継がれる。
【0045】
ゲイン調整回路102は、ガンマ曲線γのゲインGを加減して調整する増幅器として構成されている。図6は、その調整の様子を示している。ガンマ曲線γは、ゲインGを上げると(G>1)、ガンマ曲線γのように変化し(ガンマ曲線γの場合に較べて、出力レベルが正または負の方向に大きくなり(絶対値が大きくなり))、ゲインGを下げると(0<G<1)、ガンマ曲線γのように変化する(ガンマ曲線γの場合に較べて、出力レベルが正または負の方向に小さくなる(絶対値が小さくなる))。これにより、ガンマ曲線γは、ピークP側への曲がり具合とオフセット値ΔYの値が同時に調整される。オフセット値ΔYは、例えば、入力側の最大振幅値に対して2乃至25%の範囲で選択される。
【0046】
ゲイン調整回路102は、ゲインGをエンハンスゲインTEに応じて加減する。エンハンスゲインTEが大きいほどテクスチャ成分T2の振幅は大きくなる。ストラクチャ成分S2は、ダイナミックレンジに対して黒側、および白側で飽和しないよう、エンハンスゲインTEに応じて黒側の特性は大きく曲げられねばならないし、白側の特性は低く抑えられねばならない。したがって、この場合にはゲインGが大きくなるように調整され、γ型のガンマ曲線が得られる。逆に、エンハンスゲインTEが小さい場合には、テクスチャ成分T2の振幅増大はさほど考慮する必要がないので、ゲインGはあまり変える必要はない。よって、この場合には、その増幅の度合いに応じてゲインGが小さくなるように調整され、γ型のガンマ曲線が得られる。
【0047】
本実施の形態では、ゲイン調整回路102はさらに、ゲインGをドライブゲインDに応じて加減するようになっている。前述のように、ドライバ20は、輝度階調に応じた電圧値の駆動信号を生成する。しかしながら、通常のテレビジョン受像機では、駆動信号のダイナミックレンジは可変であり、ダイナミックレンジの高輝度側(白側)にオフセットを付けて実効的な駆動電圧を加減することにより、画像の明るさが調整されるようになっている。このダイナミックレンジに対するゲインが、ドライブゲインDである。すなわち、ここでは、エンハンスゲインTEとドライブゲインDの2つの要素が同時に考慮されてガンマ曲線γのゲインGが決定される。
【0048】
ドライブゲインDが大きいことは、高圧で駆動されることを意味する。このときの白側は、輝度がひときわ高くなるために、人間の目の特性上、階調がとれなくなってくる。そのような状態では、いくらテクスチャ成分を強調しても効果的な画質改善は望めない。こうした場合、階調を視認できるレベルまでストラクチャ成分S2の振幅を下げるようにすれば、強調されたテクスチャ成分T2を十分に認めることができる。したがって、ドライブゲインDが大きい場合には、ゲインGは大きくなるように調整される。また、その場合にエンハンスゲインTEが大きければ、一層ゲインGは大きくする必要がある。
【0049】
逆に、ドライブゲインDが小さくなれば、このような問題が生じないのでストラクチャ成分S2を補正する必要はなく、ゲインGは小さく選ばれる。ただし、エンハンスゲインTEも小さければゲインGは小さいままでよいが、エンハンスゲインTEが大きければ、ゲインGはエンハンスゲインTEに応じて大きくする必要がある。
【0050】
なお、ドライブゲインDは連続的に可変であるが、一般的には、画質モードに対応して予め数段階に設定されており、そのうちの1つが外部から選択されるようになっている。具体例としては、ダイナミックモード(D=100%)、スタンダードモード(D=80乃至90%)、ソフトモード(D=50%)などと設定される。ダイナミックモードやスタンダードモードでは、CRT21またはLCD22などよりなるディスプレイ3をフルレンジに対し100%乃至80%の電圧で駆動させる。このようにドライブレベル上限近くで駆動させるほど輝度は高くなるが、ディスプレイ3上で視認される輝度は白側で飽和したようになり、白側の階調はあまりとれなくなってくる。これに対して、ソフトモードでは、フルレンジをダイナミックモード時の50%の電圧で駆動するので、輝度は多少低くなるが適正な階調表現がなされる。よって、ダイナミックモードやスタンダードモードのように、ドライブゲインDが大きな画質モードほど、高輝度側の特性を確保するために最終的に得られる輝度信号の白レベルを下げる必要がある。よって、ゲインGを大きくして、ガンマ曲線γのオフセットΔYを大きくとるようにする。
【0051】
なお、ゲインGは、最終的にドライバ20における駆動信号の振幅がダイナミックレンジいっぱいとなるような値に選ばれるのが好ましい。ただし、ディスプレイ3がCRT21である場合には、管面に表示される画像の輝度のうち高周波成分が高輝度側で大幅に低下する傾向があるため、駆動信号の振幅レベルを、ダイナミックレンジぎりぎりではなく、さらに少し下げるようにゲインGを調整する。このように、ゲインGはディスプレイ3の種類によっても加減され、例えば、エンハンスゲインTEが1.7であるときには、ディスプレイ3がLCD22であればゲインGは95%前後、CRT21であれば90%前後とされる。
【0052】
ゲイン調整回路102では、以上のようにして得られたゲインGによって、ガンマ曲線γの補正量が調整される。
【0053】
遅延回路103は、入力されるストラクチャ成分S1に遅延をかけ、ガンマ曲線生成回路101,ゲイン調整回路102によるガンマ曲線γに基づく補正成分と同期をとって出力する。加算器104は、入力されるストラクチャ成分S1とガンマ曲線γによる成分とを加算し、ストラクチャ成分S2を生成し、出力する。
【0054】
ストラクチャ成分S2は、さらに加算器55によりテクスチャ成分(テクスチャ成分T1またはテクスチャ成分T2)と加算される。これにより、画像表示期間ではテクスチャ成分が強調されると共に、ストラクチャ成分が補正された輝度信号YOUT1が生成され、画像表示期間でないとき、テクスチャ成分は強調されず、ストラクチャ成分のみが補正された輝度信号YOUT1が生成される。
【0055】
次に、図7乃至図11のフローチャートを参照して、テレビジョン受像機1における画像表示処理を説明する。なお、この処理は、図1のテレビジョン受像機1のY/C分離回路12A,12Bに、画像信号が入力されたとき開始される。
【0056】
ステップS1において、Y/C分離回路12A,12Bは、それぞれ画像信号を取得し、対応する画像信号を輝度信号Yおよび色信号C、並びに輝度信号Yおよび色信号Cに、それぞれ分離する。具体的には、Y/C分離回路12Aには、チューナ11Aにより受信され、復調されたテレビジョン信号が、コンポジット信号として入力されるので、Y/C分離回路12Aは、入力されたコンポジット信号(画像信号)を、輝度信号Yと色信号Cに分離し、クロマデコーダ13Aに出力する。また、Y/C分離回路12Bには、チューナ11Bにより受信され、復調されたテレビジョン信号が、コンポジット信号として入力されるので、Y/C分離回路12Bは、入力されたコンポジット信号(画像信号)を、輝度信号Yと色信号Cに分離し、クロマデコーダ13Bに出力する。
【0057】
例えば、チューナ11Aは、チャンネル1乃至5の5個の番組のテレビジョン信号を時分割で受信し、チューナ11Bは、チャンネル6乃至9の4個の番組のテレビジョン信号を時分割で受信する。このため、輝度信号Y,色信号Cには、5個の番組に対応するテレビジョン信号が順次含まれており、輝度信号Y,色信号Cには、4個の番組に対応するテレビジョン信号が順次含まれている。
【0058】
ステップS2において、クロマデコーダ13A,13Bは、対応する輝度信号と色信号(クロマデコーダ13Aは輝度信号Yおよび色信号C、クロマデコーダ13Bは輝度信号Yおよび色信号C)をそれぞれデコードし、YUV信号(クロマデコーダ13Aは、信号Y、クロマデコーダ13Bは、信号Y)を生成する。クロマデコーダ13A,13Bは、生成したYUV信号(クロマデコーダ13Aは信号Y、クロマデコーダ13Bは、信号Y)を、それぞれマルチ画面処理部14に供給する。
【0059】
マルチ画面処理部14には、クロマデコーダ13AからYUV信号としての信号Yが供給され、クロマデコーダ13BからYUV信号としての信号Yが供給されてくる。いまの例の場合、クロマデコーダ13Aは5個の番組に対応するYUV信号を供給し、クロマデコーダ13Bは、4個の番組に対応するYUV信号を供給するので、マルチ画面処理部14には、9個の番組に対応するYUV信号を取得する。
【0060】
そこで、ステップS3において、マルチ画面処理部14は、供給されたYUV信号としての信号Yおよび信号Y、いまの例の場合、9個の番組に対応するYUV信号に基づいて、マルチ画面表示を行なうためのYUV信号として信号YINININを生成する。具体的には、各チャンネルの画像の大きさを、縦方向と横方向にそれぞれ約1/3に縮小した画像(マルチ画像)を生成し、1フレーム内に3×3個のマトリックス上に配置した信号YINININを生成する。生成された信号YINININのうち、輝度信号YINはテクスチャ強調部15、およびクロマアンプ17に出力され、色差信号UIN,VINは遅延回路16に入力される。
【0061】
ステップS4において、テクスチャ強調部15は、テクスチャ強調処理を実行する。具体的には、輝度信号YINがストラクチャ成分S1とテクスチャ成分T1に分離され、テクスチャ成分T1が増幅されてテクスチャ成分T2が生成されるとともに、ストラクチャ成分S1が補正されてストラクチャ成分S2が生成される。スイッチ54は、増幅されたテクスチャ成分T2と、増幅されていないテクスチャ成分T1のうちいずれか一方を選択し、選択したテクスチャ成分を加算器55に出力する。加算器55は、スイッチ54から供給されたテクスチャ成分と、補正されたストラクチャ成分S2を加算し、輝度信号YOUT1を生成する(図2参照)。その処理の詳細は、図8乃至図11を参照して後述する。テクスチャ強調部15は、生成した輝度信号YOUT1を、輪郭補正回路18に供給するとともに、クロマアンプ17に供給する。
【0062】
ステップS5において、輪郭補正回路18は、輝度信号YOUT1を輪郭補正し(輝度信号YOUT1の周波数特性を補正し)、輝度信号YOUT2を生成する。
【0063】
ステップS6において、遅延回路16は、ステップS3の処理によりマルチ画面処理部14により供給された色差信号UIN,VINを遅延させる。具体的には、遅延回路16は、テクスチャ強調部15において生成される輝度信号YOUT1と同期をとるように、色差信号UIN,VINを遅延させる。遅延回路16は、遅延させた色差信号UIN,VINをクロマアンプ17に供給する。
【0064】
ステップS7において、クロマアンプ17は、ステップS3の処理によりマルチ画面処理部14から供給された輝度信号YIN(テクスチャ強調処理前の輝度信号)、およびステップS4の処理により供給された輝度信号YOUT1(テクスチャ強調処理後の輝度信号)の比「(YIN/YOUT1)」を求め、色差信号UIN,VINに乗じることにより、色差信号UIN,VINを輝度信号YOUTの増幅分だけ増幅する。これにより、Y/C比がテクスチャ強調処理の前後で一定に保たれるように色差信号UOUT,VOUTが生成される。クロマアンプ17は、生成した色差信号UOUT,VOUTを、マトリクス回路19に供給する。
【0065】
ステップS8において、マトリクス回路19は、輪郭補正回路18から輝度信号YOUT2(ステップS5の処理により生成された輝度信号YOUT2)を取得し、クロマアンプ17から色差信号UOUT,VOUT(ステップS7の処理により生成された色差信号UOUT,VOUT)を取得し、このYUV信号としての信号YOUT2OUTOUTをRGB信号に変換する。すなわち、テクスチャ強調処理後のYUV信号からRGB信号が生成される。マトリクス回路19は、変換したRGB信号をドライバ20に出力する。
【0066】
ステップS9において、ドライバ20は、RGB信号に基づいて、駆動信号を生成し、ディスプレイ3に出力する。具体的には、ドライバ20は、入力されるRGB信号(ステップS8の処理によりマトリクス回路19により変換されたRGB信号)を増幅し、輝度階調に応じた電圧値の駆動信号を生成し、ディスプレイ3に出力する。
【0067】
ステップS10において、ディスプレイ3は、入力される駆動信号に基づく画像を表示する。例えば、ディスプレイ3として、CRT21が選択されていた場合、CRT21は、この駆動信号に基づく画像を表示する。
【0068】
次に、図8のフローチャートを参照して、テクスチャ強調部15におけるテクスチャ強調処理を説明する。このフローチャートは、図7のステップS4の処理を詳細に説明するものである。なお、この処理は、マルチ画面処理部14から輝度信号YINがS/T分離回路51に供給されたとき開始される。
【0069】
ステップS51において、S/T分離回路51は、S/T分離処理を実行する。具体的には、輝度信号YINにおける、振幅レベルの変動範囲と周波数の変動範囲に基づいて、フィルタの特性が求められ、輝度信号YINが平滑化されることにより、ストラクチャ成分S1が求められるとともに、テクスチャ成分T1が求められる(図2)。その処理の詳細は、図9を参照して後述する。S/T分離回路51は、生成したテクスチャ成分T1をテクスチャ増幅回路52に供給し、ストラクチャ成分S2をストラクチャ補正回路53に供給する。
【0070】
ステップS52において、テクスチャ増幅回路52はテクスチャ増幅処理を実行する。具体的には、テクスチャ成分T1をエンハンスゲインTEに基づいて増幅し、テクスチャ成分T2を生成する(図2)。テクスチャ増幅回路52は、生成(増幅)したテクスチャ成分T2をスイッチ54に出力する。スイッチ54は、増幅されたテクスチャ成分T2と、増幅されていないテクスチャ成分T1のうちいずれか一方を選択し、選択したテクスチャ成分を加算器55に出力する。なお、この処理の詳細は、図10を参照して後述する。
【0071】
ステップS53において、ストラクチャ補正回路53は、ストラクチャ補正処理を実行する。具体的には、ストラクチャ成分S1を遅延させるとともに、ガンマ曲線γを求めてガンマ曲線γのゲインを加減し、遅延させたストラクチャ成分S1とガンマ曲線γを加算することにより、ストラクチャ成分S2を生成する(図2)。その処理の詳細は、図11を参照して後述する。ストラクチャ補正回路53は、生成したストラクチャ成分S2を加算器55に出力する。
【0072】
ステップS54において、加算器55は、ステップS53の処理により補正されたストラクチャ成分S2と、ステップS52の処理によりスイッチ54に選択されたテクスチャ成分(テクスチャ成分T1またはテクスチャ成分T2)を加算し、輝度信号YOUT1を生成する(図2)。生成された輝度信号YOUT1は、マトリクス回路19に供給されるとともに、クロマアンプ17に供給される。この処理により、テクスチャ成分が強調される。
【0073】
図8の処理によりテクスチャ強調処理が行なわれた輝度信号YOUT1に基づいて、上述したように、さらに、図7のステップS5乃至ステップS10の処理が実行される。
【0074】
図9は、図8のステップS51のS/T分離回路51におけるS/T分離処理を説明するフローチャートである。なお、この処理は、図3のS/T分離回路51(テクスチャ増幅回路52のレベル判定部81、周波数判定部82、および非線形フィルタ84)に輝度信号YINが供給されたとき開始される。
【0075】
ステップS101において、レベル判定部81は、輝度信号YINの振幅レベルの変動範囲を判定し、判定結果をフィルタ特性決定部83に出力する。
【0076】
ステップS102において、周波数判定部82は、輝度信号YINの周波数の変動範囲を判定し、判定結果をフィルタ特性決定部83に出力する。
【0077】
ステップS103において、フィルタ特性決定部83は、レベル判定部81による判定結果(ステップS101の処理)、および周波数判定部82による判定結果(ステップS102の処理)に基づいて、非線形フィルタ84の振幅レベル、および周波数の閾値を決定する。決定された振幅レベル、および周波数の閾値は、非線形フィルタ84に出力される。
【0078】
ステップS104において、非線形フィルタ84は、フィルタ特性決定部83から振幅レベル、および周波数の閾値を取得し、これに基づいて、輝度信号YINに平滑化処理を行ない、ストラクチャ成分S1を抽出する(図2)。ここで抽出されたストラクチャ成分S1は、エッジ部分はそのまま保存され、それ以外の部分のみ平滑化された画像データとされる。すなわち、画像の中の輪郭線等の大まかな構成を表すデータである。例えば、図12(ストラクチャ成分とテクスチャ成分とを原理的に説明する図)に示されるように、入力されるYUV信号としての信号YINININにより生成される画像が、画像121とされる場合、抽出されたストラクチャ成分S1(主に画像の輪郭成分を構成する成分)により生成される画像は、画像122とされる。
【0079】
ステップS105において、減算器85は、輝度信号YINからストラクチャ成分S1を減算する。これにより、テクスチャ成分S1が抽出される(図2)。抽出されたテクスチャ成分T1は、元信号からストラクチャ成分S1を除いた小振幅成分となっており、画像の中の細部、例えば衣服の模様などの細かな起伏に相当するデータである。図12の例の場合、抽出されたテクスチャ成分S1(主に画像の細部を構成する成分)により生成される画像は、画像123とされる。このように、画像信号が、ストラクチャ成分S1(画像122に対応する成分)とテクスチャ成分T1(画像123に対応する成分)に分離される。
【0080】
図9の処理により、S/T分離回路51からストラクチャ成分S1、およびテクスチャ成分T1が生成され、出力される。図9の処理により分離されたテクスチャ成分T1に基づいて、上述したように、図8のステップS52の処理が実行され、ストラクチャ成分S1に基づいて、図8のステップS53の処理が実行される。
【0081】
図10は、図8のステップS52のテクスチャ増幅回路52、および、スイッチ54(図4のテクスチャ増幅回路52とスイッチ54)におけるテクスチャ増幅処理を説明するフローチャートである。なお、この処理は、S/T分離回路51から、テクスチャ成分T1が供給されたとき開始される。
【0082】
ステップS151において、テクスチャ増幅回路52は、S/T分離回路51の減算器85からテクスチャ成分T1を取得する(図2参照)。
【0083】
ステップS152において、テクスチャ増幅回路52は、取得したテクスチャ成分T1を、外部入力されるエンハンスゲインTEに基づいて増幅し、テクスチャ成分T2を生成する(図2参照)。
【0084】
ステップS153において、テクスチャ増幅回路52は、生成したテクスチャ成分T2を、加算器55に出力する。
【0085】
ステップS154において、スイッチ54は、マルチ画面処理部14からDE信号を取得する。マルチ画面処理部14は、いま供給しているYUV信号が画像表示期間である場合、DE=0を出力し、画像表示期間でない場合(例えば、マルチ画像の枠(マルチ画像でない領域の画像)の表示期間である場合)、DE=1を出力する。
【0086】
具体的には、図13に示されるような、1画面に複数の縮小画像(マルチ画像)201乃至209を含む全体画像200を表示させる場合、マルチ画像201乃至209の内部の範囲では、DE=0とされ、マルチ画像201乃至209ではない範囲では、DE=1とされる。なお、いまの例の場合、マルチ画像201乃至205に対応する番組のテレビジョン信号は、チューナ11Aにより受信され、マルチ画像206乃至209に対応する番組のテレビジョン信号は、チューナ11Bにより受信されたものである。すなわち、マルチ画像201乃至205は、チューナ11Aにより受信された番組のチャンネル1乃至5に対応し、マルチ画像206乃至209は、チューナ11Bにより受信された番組のチャンネル6乃至9に対応する。
【0087】
ステップS155において、スイッチ54は、マルチ画面処理部14から供給されたDE信号がDE=0である(画像表示期間である)か否かを判定する。DE=0であると判定された場合、処理はステップS156に進み、スイッチ54は、テクスチャ増幅回路52からテクスチャ成分T2(ステップS153の処理で生成されたテクスチャ成分T2)を取得する。
【0088】
ステップS155において、DE=0でないと判定された場合、すなわち、DE=1である(マルチ画像の枠である)と判定された場合、ステップS157に進み、スイッチ54は、S/T分離回路51からテクスチャ成分T1を取得する。
【0089】
ステップS156の処理の後、またはステップS157の処理の後、ステップS158において、スイッチ54は、取得したテクスチャ成分を加算器55に出力する。すなわち、スイッチ54が、ステップS156においてテクスチャ成分T2を選択した場合、テクスチャ成分T2を加算器55に出力し、スイッチ54が、ステップS157においてテクスチャ成分T1を選択した場合、テクスチャ成分T1を加算器55に出力する。
【0090】
図10の処理により、図13に示されるような全体画像200を表示させる場合、縮小画像とされるマルチ画像201乃至マルチ画像209以外であって、全体画像200とされる部分(すなわち、マルチ画像の枠)を確実に識別することができ、もって、マルチ画像の枠領域のコントラストの強調(不要な強調)を防ぐことができる。
【0091】
具体的には、各マルチ画像間の枠の幅が狭い場合(例えば、マルチ画像201とマルチ画像204の間隔が狭い場合)においても、スイッチ54が、画像表示期間である場合(DE=0)とない場合(DE=1)を区別して、テクスチャ成分を選択するので、結果的に、枠領域のコントラストの不要な強調が抑えられる。これにより、例えば、枠周辺の画像(例えば、マルチ画像20i(i=1,2,3,・・・,9)の縁の近傍)とマルチ画像20i(i=1,2,3,・・・,9)の枠との輝度差が大きい場合に、マルチ画像の枠をテクスチャ成分と判定して、その輝度差を強調してしまうことを防ぐことができる。
【0092】
また、マルチ画像201乃至209のそれぞれを、1つの画像とみなし、ストラクチャ成分とテクスチャ成分に任意に分離して、テクスチャ成分を強調することができるので、容易に、本来のマルチ画像毎のコントラストの調整を行なうことができる。
【0093】
図10の処理により生成されたテクスチャ成分(テクスチャ成分T1またはテクスチャ成分T2)に基づいて、上述したように、さらに、図8のステップS54の処理が実行される。
【0094】
図11は、図8のステップS53のストラクチャ補正回路53におけるストラクチャ補正処理を説明するフローチャートである。なお、この処理は、S/T分離回路51からストラクチャ成分S1が図4のストラクチャ補正回路53(ストラクチャ補正回路53のガンマ曲線生成回路101、および遅延回路103)に供給されたとき開始される。
【0095】
ステップS201において、遅延回路103は、ストラクチャ成分S1を取得し、これを遅延させる。具体的には、ゲイン調整回路102において生成されるガンマ曲線γと同期を取るように遅延させ、遅延させたストラクチャ成分S1を加算器104に出力する。
【0096】
ステップS202において、ガンマ曲線生成回路101は、ストラクチャ成分S1をガンマ特性101Aから減算することでガンマ補正の補正量であるガンマ曲線γを求め、ゲイン調整回路102に出力する(図5)。いまの例の場合、ガンマ曲線γは、以下の3つの特徴と備えるものとされる。第1に、ガンマ値が選ばれることで黒側が持ち上がるような曲線とされる。第2に、入力信号の20乃至40(IRE)の範囲内に曲線のピークPを有する。第3に、最高出力値が最高入力値に対しオフセット値ΔYだけ低く設定さる。ガンマ曲線生成回路101は、生成したガンマ曲線γをゲイン調整回路102に出力する。
【0097】
ステップS203において、ゲイン調整回路102は、入力されたガンマ曲線γに対し、そのゲイン(ゲインG)を加減する(図4,図6)。具体的には、ゲイン調整回路102には、エンハンスゲインTE、およびドライブゲインDが入力され、両者の兼ね合いによってゲインGに強弱がつけられる。これにより、ゲインGは、テクスチャ成分T1の増幅の度合い、さらにはドライバ20側の信号制御、ディスプレイ3自体の特性等の画質に関わる条件を考慮した値となる。このゲインGにより、ガンマ曲線γの特性は、合成後の輝度信号YOUT1の振幅レンジがダイナミックレンジ内に収まるように設定される。ここでは、輝度信号YOUT1の振幅レンジがダイナミックレンジいっぱいに収まるようにゲインGを加減し、ガンマ曲線γを調整するものとする。このゲインGが加減されたガンマ曲線γは、加算器104に出力される。
【0098】
ステップS204において、加算器104は、ガンマ曲線γ(ステップS203の処理によりゲインGが加減されたガンマ曲線)と遅延回路103によりガンマ曲線γとの同期が取れているストラクチャ成分S1を取得し、ストラクチャ成分S1にガンマ曲線γを加算する。このことは、ガンマ補正が行なわれていることと等価である。このガンマ補正では、黒側の振幅レベルが持ち上がるように増幅されてコントラストが補正されるだけでなく、オフセットΔYにより白側の振幅レベルが低減される。また、20乃至40(IRE)の範囲内の輝度領域にピークを持たせ、振幅を持ち上げるような補正が施される。このように、ストラクチャ成分S1に上述したガンマ曲線γの特性が付与され、ストラクチャ成分S2が生成される(図2)。
【0099】
ステップS205において、加算器104は、生成したストラクチャ成分S2を加算器55に出力する。
【0100】
図11の処理により生成されたストラクチャ成分S2は、上述したように、さらに、図8のステップS54の処理が実行される。
【0101】
図7乃至図11の処理をまとめると、次のようになる。図10のステップS155において、スイッチ54は、画像表示期間である(DE=0)場合と、画像表示期間でない(DE=1)場合とを区別して、増幅されたテクスチャ成分T2、および増幅されていないテクスチャ成分T1のうち、いずれか一方を選択し、図8のステップS54において、加算器55は、ストラクチャ成分S2と、選択されたテクスチャ成分を加算して輝度信号YOUT1を生成する。
【0102】
画像表示期間である(DE=0)場合、ストラクチャ成分S2は、エンハンスゲインTEとドライブゲインDを参照したガンマ補正によって黒側が持ち上げられているので(図11の処理)、テクスチャ成分T2を加算した後の最小振幅レベルは、ダイナミックレンジいっぱいになる。また、白側の振幅レベルがエンハンスゲインTEとドライブゲインDを参照して低減されているので(図11の処理)、テクスチャ成分T2を加算した後の最大振幅レベルは、ダイナミックレンジいっぱいになる。したがって、輝度信号YOUT1は、テクスチャ強調処理がなされていると同時に、ドライバ20の駆動信号のダイナミックレンジ内にちょうど収まるようになっている。
【0103】
すなわち、元信号である輝度信号YOUT1のストラクチャ成分補正により、駆動信号は白側、黒側ともダイナミックレンジ内に収まったものとなる。よって、黒づまりや白づまりの現象が防止される。しかも、ここでは、駆動信号はダイナミックレンジいっぱいに駆動されるようになっており、必要以上に画像が暗くなるのを防いでいる。なお、上述したように、輝度信号YOUT1には、ドライバ20側での信号制御、ディスプレイ3自体の特性等の画質に関わる条件を考慮してストラクチャ成分補正がなされているので、これに基づく駆動信号は、適正なコントラスト配分で表示を行うようになっている。
【0104】
また、輝度信号YOUT1では、20乃至40(IRE)の範囲内にピークを有するように低輝度領域の振幅を持ち上げるような補正がなされているので、これに基づく駆動信号においても、この輝度領域の振幅が持ち上がったものとなる。よって、ちょうど人物の顔の輪郭や影に相当する黒色が明るく補正され、この範囲のテクスチャ成分増幅の効果が緩和される。
【0105】
したがって、ディスプレイ3に表示される画像では、黒づまりや白づまりの現象が防止され、テクスチャ強調処理による効果、すなわち細部のコントラスト向上により、鮮鋭であるにも関わらず自然な印象を与えるという効果が遺憾なく発揮される。また、ストラクチャ成分の補正により全体のコントラストバランスが調整されているため、細部のコントラスト向上を明るい部分でもはっきりと視認することができ、テクスチャ強調が一層有効なものとなる。さらに、テクスチャ強調処理によって人物の顔の輪郭や影の部分が黒く強調されてしまうことが緩和され、画質を落とさないようにすることができる。また、この画質に、さらに、輪郭補正が行なわれた画質とすることができる。
【0106】
画像表示期間でない(DE=1)場合、テクスチャ成分の不要な強調を防ぐことができる。
【0107】
以上の処理により、マルチ画像201乃至マルチ画像209の範囲と、マルチ画像でない範囲を確実に識別することができるので、マルチ画像の枠領域のコントラストの不要な強調を防ぐことができる。
【0108】
具体的には、各画像間の枠の幅が狭い場合(例えば、マルチ画像201とマルチ画像204の間隔が狭い場合)においても、スイッチ54が、画像表示期間である場合(DE=0)とない場合(DE=1)を区別して、テクスチャ成分を選択するので、結果的に、枠領域のコントラストの不要な強調が抑えられる。これにより、例えば、枠周辺の画像(例えば、マルチ画像20i(i=1,2,3,・・・,9)の縁の近傍)とマルチ画像20i(i=1,2,3,・・・,9)の枠との輝度差が大きい場合に、マルチ画像の枠をテクスチャ成分と判定して、その輝度差を強調してしまうことを防ぐことができる。
【0109】
また、マルチ画像201乃至209のそれぞれを、1つの画像とみなし、ストラクチャ成分とテクスチャ成分に任意に分離して、テクスチャ成分を強調することができるので、容易に、マルチ画像毎のコントラストの調整を行なうことができる。
【0110】
また、複数のマルチ画像201乃至209を含む全体画像200を表示する場合において、簡単かつ迅速に、マルチ画像毎にコントラストを調整することができる。
【0111】
なお、1つの画面上に複数のマルチ画像(縮小画像)を同時に表示させるマルチ画面表示機能を有するテレビジョン受像機は、以下のように構成することもできる。
【0112】
図14は、本発明を適用した他のテレビジョン受像機400の構成例を示すブロック図である。図中、図1と対応する部分については、同一の符号を付してあり、その説明は、繰り返しになるので省略する。
【0113】
図14の例の場合、テレビジョン受像機400には、DE領域変換部411が設けられており、DE領域変換部411は、マルチ画面処理部14から供給されるDE信号(上述した図1と同様に、出力したYUV信号(信号YINININ)が、画像表示期間でない(マルチ画像の枠である)ことを示すDE信号)の領域を2次元(水平および垂直方向)でさらに広くなるように枠信号DE’を生成する。具体的には、図15に示されるように、マルチ画像の枠の領域が広げられるように(マルチ画像の一部が枠となるように)、DE信号がDE’信号に変更される。
【0114】
図15において、マルチ画像20i(i=1,2,3,・・・,9)は、左または右の端部から内側に水平方向にx画素だけ狭められ(枠が広げられ)、また、上または下の端部から内側に、垂直方向にy画素(ライン)だけ狭められ(枠が広げられ)ている。すなわち、マルチ画像の縁の近傍の所定の範囲において、マルチ画像の表示領域が、DE領域変換部411によりマルチ画像の枠とされる。DE領域変換部411は、結果的に画像50i(i=1,2,・・・,9)の領域では、画像表示期間を示す信号DE’=0を出力し、画像50i(i=1,2,3,・・・,9)以外の領域では、画像表示期間でないことを示す信号(すなわち、マルチ画像の枠領域であることを示す枠信号)DE’=1を出力する。
【0115】
スイッチ412は、DE領域変換部411からDE’信号を取得し、DE’信号に基づいて、テクスチャ増幅回路52により生成されたテクスチャ成分T2(テクスチャ成分T1が増幅された成分)と、増幅されていないテクスチャ成分T1(S/T分離回路51から出力されたテクスチャ成分T1)のいずれか一方を選択する。
【0116】
具体的には、マルチ画面処理部14は、いま出力したYUV信号が画像表示期間である場合(マルチ画像20iの範囲内の場合)、DE=0をDE領域変換部411に供給し、YUV信号が画像表示期間でない場合(マルチ画像20iの領域外の枠領域である場合)、DE=1をDE領域変換部411に供給する。DE領域変換部411は、画像表示期間である場合(DE=0である場合)においても、そのマルチ画像20i(i=1,2,3,・・・,9)の左右の縁から水平方向にx画素だけ内側の領域と、上下の縁から垂直方向にy画素(ライン)だけ内側の範囲も枠の領域となるように信号をDE’=1と設定し、それ以外の範囲(例えば、画像501の内側、またはマルチ画像201の外側)のDE信号は、そのままDE’として設定する(すなわちDE’=DEとされる)。
【0117】
スイッチ412は、DE領域変換部411からのDE’信号が、DE’=0とされる場合、テクスチャ増幅回路52からテクスチャ成分T2を取得し、DE’=1とされる場合、S/T分離回路51からテクスチャ成分T1(すなわち、増幅されていないテクスチャ成分T1)を取得する。
【0118】
次に、図16のフローチャートを参照して、図14のテレビジョン受像機400のテクスチャ強調部410におけるテクスチャ強調処理を説明する。なお、図16のフローチャートは、上述した図7乃至図11のうち、図10のフローチャートに対応する処理とされ、その他の処理(図7,図8,図9,図11の処理)は、上述した図7,図8,図9,図11の処理と同様であるのでその説明は省略する。すなわち、図16のフローチャートは、図8のステップS52の処理の詳細な説明であって、図10のフローチャートに対応している。また、図16のステップS301乃至S303は、図10のステップS151乃至ステップS153にそれぞれ対応しており、図16のステップS310乃至ステップS313は、図10のステップS155乃至ステップS158にそれぞれ対応している。
【0119】
ステップS301において、テクスチャ増幅回路52は、S/T分離回路51の減算器85からテクスチャ成分T1を取得する(図10のステップS151に対応する処理)。
【0120】
ステップS302において、テクスチャ増幅回路52は、取得したテクスチャ成分T1を、外部入力されるエンハンスゲインTEに基づいて増幅し、テクスチャ成分T2を生成する(図10のステップS152に対応する処理)。
【0121】
ステップS303において、テクスチャ増幅回路52は、生成したテクスチャ成分T2をスイッチ412に出力する(図10のステップS153に対応する処理)。
【0122】
ステップS304において、DE領域変換部411は、マルチ画面処理部14からDE信号を取得する。上述したように、DE信号は、いま供給しているYUV信号が画像表示期間である場合、DE=0とされ、画像表示期間でない場合(マルチ画像の枠である場合)、DE=1とされている。
【0123】
ステップS305において、DE領域変換部411は、DE=1であるか(マルチ画像の枠であるか)否かを判定する。DE=1でない(すなわち、DE=0である)と判定された場合、ステップS306において、DE領域変換部411は、いま処理しているYUV信号に対応する領域を、枠領域とするか否かを判定する。
【0124】
具体的には、DE領域変換部411は、いま処理しているYUV信号に対応する箇所が、図15の画像501乃至509のいずれかの内側であるか否かを判定し、画像501乃至509のいずれかの内側にであると判定した場合、ステップS306の処理では、枠領域としないと判定される。逆に、DE領域変換部411は、マルチ画像201乃至209の内側であって、画像501乃至509の外側であると判定した場合、ステップS306の処理では、枠領域とすると判定される。なお、この処理は、ステップS305において、DE=1でない(すなわち、DE=0である)と判定された後の処理であるので、勿論、マルチ画像20i(i=1,2,3,・・・,9)より外側ではない。
【0125】
ステップS306において、枠領域としない(すなわち、画像501乃至509のいずれかの内側である)と判定された場合、ステップS307において、DE領域変換部411は、DE’=0を出力する。
【0126】
ステップS305において、DE=1であると判定された場合、またはステップS306において、枠領域すると判定された場合、処理はステップS308に進み、DE領域変換部411は、DE’=1(マルチ画像の枠の表示期間であることを示す信号)を出力する。
【0127】
ステップS309において、スイッチ412は、DE領域変換部411からDE’を取得する(図10のステップS154に対応する処理)。このDE’は、値が0または1とされている。
【0128】
ステップS310において、スイッチ412は、DE’信号が、DE’=0である(枠領域でない、すなわち、画像501乃至509のいずれかの内側である)か否かを判定する(図10のステップS155に対応する処理)。DE’=0であると判定された場合、処理はステップS311に進み、スイッチ412は、テクスチャ増幅回路52からテクスチャ成分T2(ステップS303の処理で生成されたテクスチャ成分T2)を取得する(図10のステップS156に対応する処理)。
【0129】
ステップS310において、DE’=0でないと判定された場合、すなわち、DE’=1である(画像表示期間でない)と判定された場合、ステップS312に進み、スイッチ412は、S/T分離回路51からテクスチャ成分T1(増幅されていないテクスチャ成分T1)を取得する(図10のステップS157に対応する処理)。
【0130】
ステップS311の処理の後、またはステップS312の処理の後、ステップS313において、スイッチ412は、取得したテクスチャ成分(テクスチャ成分T1またはテクスチャ成分T2)を加算器55に出力する。例えば、スイッチ412が、ステップS311においてテクスチャ成分T2を取得した場合、スイッチ412は、テクスチャ成分T2を加算器55に出力する。また、スイッチ412がステップS312においてテクスチャ成分T1を取得した場合、これを加算器55に出力する。
【0131】
図16の処理により、図15に示されるような複数のマルチ画像201乃至209よりなる全体画像200を表示させる場合、各マルチ画像の枠領域をさらに広くして(マルチ画像の縁の近傍の所定の範囲において、マルチ画像の枠をさらに広くして)、枠の領域、およびマルチ画像201乃至209の縁の近傍の所定の範囲のコントラストの強調(調整)を防ぐようにしたので、マルチ画像の枠(縁)が、異常に強調されるのを防ぐことができる。
【0132】
これにより、マルチ画面を表示させる場合に、コントラストの強調を弊害なく実現することができる。
【0133】
また、マルチ画像20i(i=1,2,3,・・・,9)の縁の近傍の所定の範囲の画像と枠との輝度差が大きい場合に、枠および縁の近傍の所定の範囲の画像のテクスチャ成分T1を増幅しないようにしたので、画像と枠の輝度差の強調を防ぐことができる。
【0134】
さらに、複数のマルチ画像を含む全体画像を表示する場合において、簡単かつ迅速に、マルチ画像毎にコントラストを調整することができる。
【0135】
以上により、テレビジョン受像機が、画像信号をテクスチャ成分とストラクチャ成分に分離し、テクスチャ成分を強調するようにしたので、複数のマルチ画像を1画面に表示させる場合(マルチ画面表示を行なう場合)においても、容易にマルチ画像毎にコントラストの強調(調整)を行なうことができる。
【0136】
また、枠領域範囲を示す信号(画像表示期間を示す信号)に基づいて、テクスチャの強調を調整するようにしたので、複数のマルチ画像を1つの画面上に同時に表示させる場合かつ、各マルチ画像間(マルチ画像の枠)が狭い場合においても、各マルチ画像間の枠をテクスチャ成分として判断されるのを防ぐことができ、もって、枠とマルチ画像の輝度差の強調を防ぐようにすることができる。
【0137】
さらに、複数のマルチ画像を1画面に表示させる場合に、マルチ画像毎のコントラストを調整し、かつ、枠と各マルチ画像の輝度差の強調を防ぐようにしたので、自然な画像とすることができる。
【0138】
また、画像表示期間を示す信号に基づいて、マルチ画像の枠を示す枠信号を生成するようにしたので、簡単に実現することができる。
【0139】
さらに、マルチ画像の枠領域より広い領域(マルチ画像の縁の近傍の所定の範囲)においても、枠領域と設定する(DE’)ようにしたので、各マルチ画像の縁が異常に強調されるのを防ぐことができる。
【0140】
なお、マルチ画面表示機能を有するテレビジョン受像機に限らず、各放送番組のチャンネルの内容を静止画で表示させるようなマルチチャンネルインデックス表示を行なうテレビジョン受像機においても、本発明は適用することができる。
【0141】
また、マルチ画像は、必ずしもサイズを縮小した画像である必要はない。もともと標準サイズの画像に較べてサイズが小さい画像であってもよい。
【0142】
さらに、以上の例では、ガンマ曲線γの調整をエンハンスゲインTE,ドライブゲインDの2つの条件を組み合わせて行なうようにしたが、エンハンスゲインTEだけを参照して行なうようにしてもよい。
【0143】
また、以上の例は、テレビジョン受像機について説明したが、画像表示機能を有するテレビジョン受像機に限らず、テレビジョンカメラ、デジタルカメラ、VTR(Video Tape Recorder)、プリンタ、およびパーソナルコンピュータ等の画像処理を行なう装置全般に適用することができる。
【0144】
さらに、上述した実施の形態では、本発明の画像処理方法に係るS/T分類、テクスチャ強調、およびストラクチャ補正の各動作を回路によって行なうものとしたが、これらをソフトウエア上で実現させてもよい。
【0145】
なお、本明細書において、各フローチャートを記述するステップは、記載された順序に従って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0146】
【発明の効果】
以上の如く、本発明によれば、画像のコントラストを調整することができる。特に、本発明によれば、複数のマルチ画像を1画面に表示する場合において、マルチ画像毎にコントラストを調整することができる。また、簡単かつ迅速にマルチ画像毎にコントラストを調整することができる。
【図面の簡単な説明】
【図1】本発明を適用したテレビジョン受像機の構成例を示すブロック図である。
【図2】図1のテクスチャ強調部の作用を説明する図である。
【図3】図1のS/T分離回路の構成例を示すブロック図である。
【図4】図1のストラクチャ補正回路とテクスチャ増幅回路の構成例を示すブロック図である。
【図5】図4のガンマ曲線生成回路の作用を説明する図である。
【図6】図4のゲイン調整回路の作用を説明する図である。
【図7】図1のテレビジョン受像機における画像表示処理を説明するフローチャートである。
【図8】図7のステップS4のテクスチャ強調処理を説明するフローチャートである。
【図9】図8のステップS51のS/T分離処理を説明するフローチャートである。
【図10】図8のステップS52のテクスチャ強調処理を説明するフローチャートである。
【図11】図8のステップS53のストラクチャ補正処理を説明するフローチャートである。
【図12】ストラクチャ成分とテクスチャ成分を説明する図である。
【図13】複数のマルチ画像を含む全体画像の例を説明する図である。
【図14】本発明を適用したテレビジョン受像機の他の構成例を示すブロック図である。
【図15】複数のマルチ画像を含む全体画像の例を説明する図である。
【図16】図14のテクスチャ増幅回路におけるテクスチャ増幅処理を説明するフローチャートである。
【符号の説明】
2 画像処理部, 3 ディスプレイ, 14 マルチ画面処理部, 15 テクスチャ強調部, 16 遅延回路, 17 クロマアンプ, 18 輪郭補正回路, 51 輪郭補正回路, 52 テクスチャ増幅回路, 53 ストラクチャ補正回路, 54 スイッチ, 55 加算器, 81 レベル判定部,82 周波数判定部, 83 フィルタ特性決定部, 84 非線形フィルタ, 85 減算器, 101 ガンマ曲線生成回路, 102 ゲイン調整回路, 103 遅延回路, 104 加算器, 200 全体画像, 410 テクスチャ強調部, 411 DE領域変換部, 412 スイッチ

Claims (6)

  1. 画像を処理する画像処理装置において、
    1画面に同時に表示される複数のマルチ画像のデータを含む入力画像データを、マルチ画像の輪郭を構成するストラクチャ成分とマルチ画像の細部を構成するテクスチャ成分とに分離するデータ分離手段と、
    前記データ分離手段により分離された前記テクスチャ成分を強調するテクスチャ強調手段と、
    前記データ分離手段により分離された前記ストラクチャ成分に対して、非直線的補正を施すストラクチャ補正手段と、
    前記テクスチャ強調手段により強調された前記テクスチャ成分と、強調されていない前記テクスチャ成分のうちいずれか一方を選択する選択手段と、
    前記ストラクチャ補正手段により補正された前記ストラクチャ成分と、前記選択手段により選択された前記テクスチャ強調手段により強調された前記テクスチャ成分を合成して加工データを生成する合成手段と、
    前記合成手段により合成された前記加工データに基づいて、複数の前記マルチ画像を1つの画面に表示させるように制御する表示制御手段と
    を備えることを特徴とする画像処理装置。
  2. 前記マルチ画像の枠であることを表わす枠信号を出力する枠信号出力手段をさらに備える
    ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記選択手段は、前記枠信号出力手段から、前記マルチ画像の枠であることを表わす前記枠信号が出力された場合、強調されていない前記テクスチャ成分を選択し、前記合成手段に供給する
    ことを特徴とする請求項2に記載の画像処理装置。
  4. 前記枠信号出力手段は、前記マルチ画像の画像表示期間でない場合、前記マルチ画像の枠であることを表わす枠信号を出力する
    ことを特徴とする請求項2に記載の画像処理装置。
  5. 前記枠信号出力手段は、さらに、前記マルチ画像の画像表示期間であって、前記マルチ画像の縁の近傍の所定の範囲のとき、前記マルチ画像の枠であることを表わす枠信号を出力する
    ことを特徴とする請求項4に記載の画像処理装置。
  6. 画像を処理する画像処理装置の画像処理方法において、
    1画面に同時に表示される複数のマルチ画像のデータを含む入力画像データを、マルチ画像の輪郭を構成するストラクチャ成分とマルチ画像の細部を構成するテクスチャ成分とに分離するデータ分離ステップと、
    前記データ分離ステップの処理により分離された前記テクスチャ成分を強調するテクスチャ強調ステップと、
    前記データ分離ステップの処理により分離された前記ストラクチャ成分に対して、非直線的補正を施すストラクチャ補正ステップと、
    前記テクスチャ強調ステップの処理により強調された前記テクスチャ成分と、強調されていない前記テクスチャ成分のうちいずれか一方を選択する選択ステップと、
    前記ストラクチャ補正ステップの処理により補正された前記ストラクチャ成分と、前記選択ステップの処理により選択された前記テクスチャ成分を合成して加工データを生成する合成ステップと、
    前記合成ステップの処理により合成された前記加工データに基づいて、複数の前記マルチ画像を1つの画面に表示させるように制御する表示制御ステップと
    を含むことを特徴とする画像処理方法。
JP2003057429A 2003-03-04 2003-03-04 画像処理装置および方法 Pending JP2004266757A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003057429A JP2004266757A (ja) 2003-03-04 2003-03-04 画像処理装置および方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003057429A JP2004266757A (ja) 2003-03-04 2003-03-04 画像処理装置および方法

Publications (1)

Publication Number Publication Date
JP2004266757A true JP2004266757A (ja) 2004-09-24

Family

ID=33120861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003057429A Pending JP2004266757A (ja) 2003-03-04 2003-03-04 画像処理装置および方法

Country Status (1)

Country Link
JP (1) JP2004266757A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233340A (ja) * 2006-02-27 2007-09-13 Lg Phillips Lcd Co Ltd 液晶表示装置及びその駆動方法
JP2008154150A (ja) * 2006-12-20 2008-07-03 Sony Corp 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
WO2008152861A1 (ja) * 2007-06-15 2008-12-18 Sony Corporation 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
WO2009001955A1 (ja) * 2007-06-25 2008-12-31 Olympus Corporation 画像処理装置、画像処理方法及び画像処理プログラム
WO2009093386A1 (ja) * 2008-01-21 2009-07-30 Olympus Corporation 画像処理装置、画像処理プログラム、画像処理プログラムを記憶したコンピュータ読取り可能な記憶媒体、及び画像処理方法
WO2010018695A1 (en) * 2008-08-15 2010-02-18 Sharp Kabushiki Kaisha Image modifying method and device
US8175411B2 (en) 2010-09-28 2012-05-08 Sharp Laboratories Of America, Inc. Methods and systems for estimation of compression noise
CN102771113A (zh) * 2010-02-24 2012-11-07 汤姆逊许可证公司 用于3d的分割屏幕
US8351725B2 (en) 2008-09-23 2013-01-08 Sharp Laboratories Of America, Inc. Image sharpening technique
US8538193B2 (en) 2010-09-28 2013-09-17 Sharp Laboratories Of America, Inc. Methods and systems for image enhancement and estimation of compression noise
CN106296737A (zh) * 2016-08-09 2017-01-04 惠州学院 一种基于无背景学习的直接前景视频提取***

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233340A (ja) * 2006-02-27 2007-09-13 Lg Phillips Lcd Co Ltd 液晶表示装置及びその駆動方法
JP4661775B2 (ja) * 2006-12-20 2011-03-30 ソニー株式会社 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
JP2008154150A (ja) * 2006-12-20 2008-07-03 Sony Corp 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
US8031945B2 (en) 2006-12-20 2011-10-04 Sony Corporation Image-processing device, image-processing method, program of image-processing method, and recording medium recording program of image-processing method
US8369624B2 (en) * 2007-06-15 2013-02-05 Sony Corporation Image processing apparatus, image processing method, program of image processing method, and recording medium having program of image processing method recorded thereon
WO2008152861A1 (ja) * 2007-06-15 2008-12-18 Sony Corporation 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
US20100189359A1 (en) * 2007-06-15 2010-07-29 Shinichiro Gomi Image processing apparatus, image processing method, program of image processing method, and recording medium having program of image processing method recorded thereon
JP2008310117A (ja) * 2007-06-15 2008-12-25 Sony Corp 画像処理装置、画像処理方法、画像処理方法のプログラム及び画像処理方法のプログラムを記録した記録媒体
US8768054B2 (en) 2007-06-25 2014-07-01 Olympus Corporation Image processing device, image processing method, and computer-readable storage medium storing image processing program
WO2009001955A1 (ja) * 2007-06-25 2008-12-31 Olympus Corporation 画像処理装置、画像処理方法及び画像処理プログラム
JP2009005252A (ja) * 2007-06-25 2009-01-08 Olympus Corp 画像処理装置
WO2009093386A1 (ja) * 2008-01-21 2009-07-30 Olympus Corporation 画像処理装置、画像処理プログラム、画像処理プログラムを記憶したコンピュータ読取り可能な記憶媒体、及び画像処理方法
US8098951B2 (en) 2008-08-15 2012-01-17 Sharp Laboratories Of America, Inc. Image sharpening technique
WO2010018695A1 (en) * 2008-08-15 2010-02-18 Sharp Kabushiki Kaisha Image modifying method and device
US8351725B2 (en) 2008-09-23 2013-01-08 Sharp Laboratories Of America, Inc. Image sharpening technique
CN102771113A (zh) * 2010-02-24 2012-11-07 汤姆逊许可证公司 用于3d的分割屏幕
JP2013520923A (ja) * 2010-02-24 2013-06-06 トムソン ライセンシング 3dのための分割画面
US8175411B2 (en) 2010-09-28 2012-05-08 Sharp Laboratories Of America, Inc. Methods and systems for estimation of compression noise
US8538193B2 (en) 2010-09-28 2013-09-17 Sharp Laboratories Of America, Inc. Methods and systems for image enhancement and estimation of compression noise
CN106296737A (zh) * 2016-08-09 2017-01-04 惠州学院 一种基于无背景学习的直接前景视频提取***

Similar Documents

Publication Publication Date Title
KR101263420B1 (ko) 화상처리장치, 화상표시장치 및 화상처리방법
EP1858247B1 (en) Image correction circuit, image correction method and image display
US10129511B2 (en) Image processing apparatus, image projection apparatus, and image processing method
JP4011122B2 (ja) 映像信号の画質補正回路
JP4200890B2 (ja) 映像信号処理装置及びそれを用いたテレビジョン受信機並びに映像信号処理方法
JP4648071B2 (ja) 映像表示装置及び映像信号の色飽和度制御方法
US8369645B2 (en) Image correction circuit, image correction method and image display
JP2006093753A (ja) 映像表示装置
JP2011014958A (ja) 画像信号処理装置
JP4930781B2 (ja) 画像補正回路、画像補正方法および画像表示装置
JP2004266757A (ja) 画像処理装置および方法
JP4175024B2 (ja) 画像表示装置および画像処理装置、並びに画像処理方法
WO2017159182A1 (ja) 表示制御装置、表示装置、テレビジョン受像機、表示制御装置の制御方法、制御プログラム、及び記録媒体
JP4174656B2 (ja) 画像表示装置および画像処理装置、並びに画像処理方法
JP2008193645A (ja) 明るさ補正装置、その方法、および、表示装置
JP5012195B2 (ja) 画像補正回路、画像補正方法および画像表示装置
JP2007060169A (ja) 画像処理装置、画像表示装置および画像処理方法
JP4085285B2 (ja) フラットパネルディスプレイ型テレビジョン受信機、および、パネル用信号生成装置
JP2005012285A (ja) 動画像処理装置、動画像処理プログラムおよび記録媒体
US8564725B2 (en) Video data processing apparatus and contrast correcting method
JP2009278227A (ja) 画像補正装置及び方法
JP2008042392A (ja) 画像処理装置及び方法
KR20070023530A (ko) 화상 처리 장치, 화상 표시 장치 및 화상 처리 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080327