JP2004257593A - Grain detection device of grain drier - Google Patents

Grain detection device of grain drier Download PDF

Info

Publication number
JP2004257593A
JP2004257593A JP2003046189A JP2003046189A JP2004257593A JP 2004257593 A JP2004257593 A JP 2004257593A JP 2003046189 A JP2003046189 A JP 2003046189A JP 2003046189 A JP2003046189 A JP 2003046189A JP 2004257593 A JP2004257593 A JP 2004257593A
Authority
JP
Japan
Prior art keywords
moisture
grain
grains
drying
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003046189A
Other languages
Japanese (ja)
Other versions
JP4066841B2 (en
Inventor
Shinji Ninomiya
伸治 二宮
Kiyoaki Minazu
清明 水津
Noriki Nomaru
憲樹 能丸
Naoki Mukoyama
直樹 向山
Takashi Nagai
永井  隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2003046189A priority Critical patent/JP4066841B2/en
Publication of JP2004257593A publication Critical patent/JP2004257593A/en
Application granted granted Critical
Publication of JP4066841B2 publication Critical patent/JP4066841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Solid Materials (AREA)
  • Storage Of Harvested Produce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a grain detection device of a grain drier capable of increasing working efficiency by strictly selecting the stoppage of drying when grains are circulated and continuing, as far as possible, safe drying action according to the abnormal state of the flow of the grains when a moisture meter 31 can detect the flow of the grains. <P>SOLUTION: In this grain drier, the grains passed through a drying chamber 2 are returned to a storage chamber 1 and, while conditioning, repeatedly circulated until a moisture content reaches a specified moisture value, and the moisture meter 31 detecting the moisture value of the grains by taking a part of the grains under circulation is installed in a grain circulation route so that the presence or absence of the flow of the grains can be detected by the detection of the grains taken into the moisture meter 31. The measurement of moisture is stopped when the moisture meter 31 is defective, and the defect is classified into a defect which can detect the presence or absence of the flow of the grains and a defect which cannot detect it. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、穀粒乾燥機の乾燥穀粒の有無を検出する穀粒検出装置に関する。穀粒を循環搬送しながら熱風を当てて乾燥する循環形態の乾燥機に有効に利用できる。
【0002】
【従来の技術】
水分計が穀物の正常な範囲の水分測定をしないことによって、乾燥箱から穀物が全て排出されたことを検出する穀物乾燥機の穀物排出完了検知方法が知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特公平5−26115号公報(第1頁、図1)。
【0004】
【課題を解決しようとする課題】
水分計によって乾燥穀粒の循環搬送の流れを検出する形態では、この水分計の水分検出の可否によって乾燥制御が左右され易い。つまり水分計が誤検出すると過乾燥となったり、乾燥効率が低下することが多いため、水分計の出力に異常が生じると直ちに乾燥作業を中断するなどの措置がとられる。
【0005】
このとき水分計は停止されてしまうため、穀粒の流れの有無も検出できなくなる。
【0006】
【課題を解決するための手段】
この発明は上記の欠点に鑑みて、極力水分計による穀粒流れの有無検出を継続させようとするもので、次の技術的手段を講じた。
即ち、請求項1に記載の発明は、乾燥室2を通過した穀粒を貯留室1に還元して調質しながら所定の水分値に達するまで循環を繰り返し行うよう構成し、穀粒循環経路の途中に循環中の穀粒を一部取り込むことにより該穀粒の水分値を検出する水分計31を設け、該水分計31への穀粒取り込みの検出に基づき乾燥穀粒の流れの有無を検出可能とする穀物乾燥機において、該水分計31の異常によって水分測定を停止すると共に、この異常を穀物の流れの有無を検出できる異常と、検出できない異常とに区分けする判定手段を構成したことを特徴とする水分測定装置の構成とする。
【0007】
これによって、穀物の循環搬送乾燥中においては一部の穀粒を水分計31に取込んで、この穀粒の水分を検出すると共に、該水分測定の信号、例えば所定の電気的情報、をもって乾燥穀粒の流れの有無を検出する。ここで水分計31が水分検出できるときは正常な乾燥作用が行われる。しかし、水分計31に穀粒が取込まれても、電極温度の異常や、水分測定時間の経過等によって正常な水分測定を行うことができない場合、即ち、穀粒の流れ検出可能の異常と判定される。又、水分計31への穀粒の取込みのためのモータがロックしたり、水分計31測定電圧の異常等によって、水分計31に穀粒を取込みできず、しかも正常な水分測定を行うことができない場合、即ち、穀粒の流れ検出不可能の異常と判定される。
【0008】
請求項2に記載の発明は、前記水分計31の異常が穀物の流れの有無を検出できるときは通風乾燥し、検出できないときは乾燥停止することを特徴とするものである。これによって穀物乾燥中の水分計31は、前記のように穀粒の流れ検出可能の異常と、穀粒の流れ検出不可能の異常とに判定される。この穀粒の流れ検出可能の異常のときは、これによって自動的に通風乾燥が継続され、穀粒検出不可能の異常のときは乾燥を停止する。
【0009】
【発明の効果】
請求項1に記載の発明は、穀物乾燥作用中の水分計31が異常であるときは、穀粒の水分測定は停止するが、この異常を穀粒の流れ検出可能の場合と、穀粒の流れ検出不可能の場合とに区分判定して、穀粒の循環が行われているときは乾燥停止を厳選し、水分計31が穀粒の流れを検出できる場合はできるだけこの異常状態に応じた安全な乾燥作用を継続させて、作業能率を高めることができる。
【0010】
請求項2に記載の発明は、水分計31が異常であるときは水分測定は停止されるが、この異常が穀粒の流れ検出可能の場合は安全な通風乾燥が継続され、穀粒の流れ検出不可能の場合に乾燥停止されるため、穀粒が循環されるときはできるだけ通風乾燥を自動的に継続されて、乾燥効率、及び乾燥効率を向上することができる。
【0011】
【発明の実施の形態】
この発明の実施の形態について図面に基づいて説明する。先ず、図1〜図11に基づいて、穀粒乾燥機は、乾燥機框4を主体として乾燥形態の異なる熱風乾燥機と遠赤外線乾燥機とを選択的に構成する。この乾燥機框4は、直方箱形形態で、上部には張込まれる穀粒を収容して調質する貯留室1を有し、この下側には該貯留穀粒を流下させながら加熱風を通風させて乾燥させる乾燥室2を有し、この下側にはこの乾燥室2から繰り出される穀粒を受けて流下させながら集送する集穀室3を有する。この乾燥機框4は、これら全高さにわたって、略前記各貯留室1、乾燥室2、及び集穀室3の各高さ毎の各機框4H,4M,4Lのブロックとして複数段に積重させて組み立てる構成としている。
【0012】
この貯留室1は、乾燥機框4の正面外一側寄りに設けられるバケットコンベア19によって揚穀される乾燥用穀粒を収容するもので、上部には、バケットコンベア19から供給される穀粒を搬送する供給オーガ20と、この供給オーガ20で搬送される穀粒を受けて回転しながら拡散する拡散盤21等が設けられる。この貯留室1の下端は乾燥室2のへ字状断面の分岐板部の上側に連通して、収容する穀粒を各乾燥室2へ分岐流下させることがでる。
【0013】
この乾燥室2は、左右両側面を多孔板形態の目抜板で通風面12を有し、一定左右幅にして傾斜形成され、機框4M上下間に渡って正面視で略W字状に構成される。この各乾燥室2の下端部には繰出バルブ22が設けられて、この繰出バルブ22の回動によって乾燥室2、貯留室1内の穀粒を下側の集穀室3へ繰出すことができる。これら各乾燥室2の通風面12は下側の集穀室3に露出対面して、この集穀室3側から乾燥室2内へ熱風を通風させる。又、通風面12の上側には上側の貯留室1との間に排気吸引室23を形成して、この吸引室23の背面壁9側に装着される排風機8の吸引風圧を働かせることができる。このため集穀室3から吸引される熱風が通風面12及び乾燥室2内を横断するように通風されて吸引室23へ吸引排風される。
【0014】
この乾燥室2の下端部及び繰出バルブ22部は、この乾燥室2の機框4M部の下縁よりも下方へ突出されて、集穀室3部の機框4L内に嵌合される形態に構成されている。
集穀室3は、これら乾燥室2の下側において機框4L幅間にわたって設けられて、底部には正面視で略V字状に傾斜の集穀板24が設けられる。この左右の集穀板24上には繰出バルブ22が接近され、下端部には前後方向にわたる集穀オーガ25が設けられて、これら繰出バルブ22から繰出される穀粒を受けて流下させながら、集穀オーガ25へ集穀させる。この集穀オーガ25内を集穀搬送される穀粒は、前記バケットコンベア19の下端部へ供給されて、貯留室1内へ還元させることができる。この集穀室3は前記繰出バルブ22部を境界として、機框4L幅の中央部を中央室部3Aとし、左右外側を側室部3Bとして区画形成している。
【0015】
前記乾燥機框4の正面壁7及び背面壁9は板金材によって所定広さ乃至外郭形態に形成されて、機框4M,4Lブロック部の正面側と背面側に取付けられる。これら正面壁7と背面壁9に形成される開口10や、取付けられるダクト11等は乾燥機の仕様形態によって異なる。ここで、前記熱風乾燥機(図11参照)では、正面壁7に開口10部として、各中央室部3Aの前端に開口のダクト口27が形成され、側室部3Bに開口のダクト口28が形成される。又、ダクト11として、この正面壁7の前側に該各ダクト口27,28間にわたって連通するバーナダクト26が取付けられる。このバーナダクト26の前側にはバーナ6が連通されて、このバーナ6で燃焼加熱された熱風をバーナダクト26で案内して各ダクト口27,28から中央室部3A,側室部3B等へ分岐吸引させる。更に、背面壁9には開口10として、前記各吸引室23の後端に開口のダクト口29が形成され、ダクト11として、この背面壁9後側に各ダクト口29間にわたって連通する排風ダクト30が取付けられる。この排風ダクト30は後側に吸引排風機8を連通して、この排風機8の駆動によってこれら排風ダクト30やダクト口29等を介して吸引室23内に吸引風圧を働かせ、バーナ6側で加熱される熱風を集穀室3から乾燥室2を通して吸引室23へ流して、この乾燥室2や集穀室3内の穀粒を加熱乾燥させることができる。排風ダクト30は高位の吸引室23の後側に対向して設けられるため、機框4Mブロックの背面壁9に取付けられる。又これらの上下の機框4M,4Lの正面壁7、背面壁9は各別の壁板形態の構成として取付けられているが、上下単一枚の壁板形態として取付る構成とすることもできる。
【0016】
前記遠赤外線乾燥機(図7参照)では、正面壁7と背面壁9とに開口10として、中央室部3Aに対向させて遠赤外線放射装置5を取付けるための取付口37、38を形成し、バーナ6を正面壁7の前側に配置し、集穀板24上を流下する穀粒に遠赤外線を照射すべく構成している。又このバーナ6を覆うバーナカバー32が取付けられ、このバーナカバー32に形成の吸気口33からはバーナ6用の燃焼風等の外気が吸入される。又、背面壁9には、前記熱風乾燥機と同様に排風機8や排風ダクト30等を取付けると共に、この下方部には前記中央室部3Aのダクト口35と左右の側室部3Bのダクト口36との間を遠赤迂回ダクト18で連通する。このダクト口36を迂回ダクト18の連通口部よりも拡張した形態の外気口16を形成している。この外気口16には吸気ダンパーを設けて、外気の吸入量を調節できる構成としている。
【0017】
これら前後の正面壁7と背面壁9とには、中央室部3Aに対向して開口10としての大きい取付口37、38が形成されて、ユニットとしての遠赤外線放射装置5をこれら取付口37、38から内側へ嵌合させるようにして取付けできる。この遠赤外線放射装置5は、断面方形状の角筒状形態に形成した遠赤外線放射筒40を主体とし、正面壁7と背面壁9との間にわたる前後長さに設定している。この遠赤外線放射筒40の内側には前側上位から後側下位へ向けて下り傾斜の案内板41が設けられ、これら遠赤外線放射筒40の底部42と、左右両側部43と、上側の案内板41との間に、熱風筒45を形成し、バーナ6からの火焔による加熱風を案内させて、背面壁9側の出口44へ通風させる。この案内板41の左右横幅は遠赤外線放射筒40の幅よりも狭くして、案内板41の左右両側縁と側部43との間に適宜の間隔部46が形成されている。そして、熱風筒45は熱風の流れる後方向にわたって順次低く形成されると共に、この熱風筒45内には、底部42側と案内板41側とから交互に突出する邪魔板47が配置されて、熱風を上下波形状に流すように案内する。
【0018】
このような遠赤外線放射筒40の前端部内には、バーナ6から噴出される火焔の周りを囲うように円筒形状の火焔カバー39が設けられる。又、案内板41の上側には吸気筒53が形成されて、前記前側の外気口34から外気を吸入して後部側の出口44上側部の熱風室51に案内する。この熱風室51は、これら吸気筒53や案内板41と、この左右両側の側壁部48と、上側の防塵板13と、後側の後壁部50と等によって形成される。熱風筒45の出口44を経てこの熱風室51内へ流入される熱風は、該外気口34から吸気筒53を経て熱風室51内へ吸入される外気、及び後壁50に形成される外気口55からこの熱風室51内へ吸入される外気等と混合される。この熱風室51で外気混合された熱風は、上側の防塵板13との間に形成される排気口52から中央室部3Aへ送込まれ、又後壁部50のダクト口35から迂回ダクト18を経て側室部3Bへ送込まれる。この遠赤外線放射装置5は、上側に屋根形の防塵板13を有し、乾燥室2の上側の通風面12を経て漏下される塵埃を受けて、遠赤外線放射筒40内へ降りかからないようにして、遠赤外線放射筒40の左右外側部を経て集穀板24上へ降下させて、この遠赤外線放射筒40からの輻射熱により熱風を加熱する遠赤効果を維持するように構成している。この防塵板13は前後端を正面壁7と背面壁9に取付けできるが、これを遠赤外線放射筒40の構成部材に取付けてユニット化して取付ける形態とする。
【0019】
遠赤外線放射筒40は、前記のように熱風筒45内にバーナ6による燃焼熱風が通風されることによって、約300℃〜400℃程度の適正温度領域に加熱されて、穀粒を乾燥するための最適状態の遠赤外線を放射するように構成される。このため、この加熱温度が適正温度域を越えて低過ぎると遠赤外線放射による遠赤効果が低下し、又、過熱状態となるとバーナ燃料が無駄となり、又危険性を伴うことになる。このため、この遠赤外線放射装置5による遠赤効果を高く維持するための熱風筒45内の熱風温度や、遠赤効果を受けた熱風を乾燥室2へ送って穀粒乾燥するための熱風室51内の熱風温度等は、各々適正温度域を異にするものであるから、これらを前記各開口10部からの外気吸入混合によって各部における適当する温度に調節、制御することができる。
【0020】
前記正面壁7や背面壁9の開口10部で、バーナ6ののぞむ取付口37や、吸気筒53の吸気口34、迂回ダクト18の介入する取付口38部の外気口55、及び、外気口16等には、外気吸入量を調節できる吸気ダンパー(図面省略)を各々設けている。
【0021】
穀物乾燥機は前記バケットコンベア19の下部に穀粒を供給する供給ホッパー17を設ける。水分計31はこのバケットコンベア19の側部に取付けられて、このバケットコンベア19のバケット56から漏下する穀粒を受けて、一対の電極ロール57,58の回転によって、穀粒を挾持し圧砕しながら電気抵抗値を検出しながら穀粒水分の検出とする。この電極ロール57,58の上側にはバケット56から漏下する穀粒を受けるホッパー59、このホッパー59から案内される穀粒を一粒毎横送りして電極ロール57,58間へ送る取込螺旋60及び案内板61等を有し、これら取込螺旋60や電極ロール57,58等をモータ軸62で駆動することによって、乾燥機を循環搬送される穀粒を一粒毎取込みしながら水分を検出することができる。水分検出後の圧砕粒はバケットコンベア19内へ還元される。
【0022】
この乾燥機の乾燥制御装置は、コントローラ54(図1)の入力側に、乾燥室内に穀粒を張込む張込スイッチ53と、バーナ6を燃焼させないで排風機8による通風のもとに乾燥させる通風スイッチ64と、バーナ6を燃焼させて排風機8等の駆動で熱風乾燥させる乾燥スイッチ65と、乾燥後の穀粒を乾燥機外へ排出する排出スイッチ66、乾燥運転を停止する停止スイッチ67と、及び、乾燥室内に乾燥しようとする穀粒を張込む張込量を設定するための張込量設定スイッチ68等を設ける。更には、穀粒流検出を共用する水分計31や、熱風温度や排風温度等を検出する各センサ69,70等を有する。又、出力側には、前記供給オーガ20、集穀オーガ25、バケットコンベア19、及び繰出バルブ22等の各モータや、排風機8のモータ、バーナ6等の燃焼系出力、及び、ディスプレイ等の表示部71等を有する。
【0023】
ここに、前記水分計31は、各通風、乾燥、排出モードの各スイッチ64,65,66のONによって一定時間毎に間歇的に出されるスタート信号により、前記循環搬送中のバケットコンベア19から所定穀粒数の穀粒が張込まれて水分検出される。この検出値が処理されて穀粒の水分値とされると、これによって乾燥風量や、温度、時間、更には穀粒循環不良検出や排出自動停止検出等の穀粒循環監視、判定、及び処置等を行うものである。即ち、電極ロール57,57間で1粒毎に圧砕された穀粒の電気的抵抗値を入力し、所定の水分値に換算するものであるが、この1粒の電気的抵抗値の出力の有無をもって、搬送循環系に穀粒が循環状態であるか否か、即ち循環穀粒の有無を判定できる構成である。
【0024】
前記各制御モード(図2〜図4)では、水分計31に異常が発生すると、直ちに水分検出作用は停止されるが、これと同時にこの異常が何であるかが判定される。この異常が電極ロール57,58の温度異常であったり、水分測定時間の超過であるようなときで、水分計31では正確な水分検出はできないが、穀粒の循環不良を検出できる場合は、乾燥、通風モードにおいても穀粒循環不良検出を継続させる。又、これが排出モードにおける排出自動停止においても電極ロール57,58温度異常等のときは排出を継続させるものである。なお、電極ロールのロック検出は、水分測定信号出力中における電極ロールに設けた回転センサの回転停止出力に基づくものである。水分測定時間の超過検出は、予め設定した粒数分に必要な時間の設定時間との比較によって行う。また、電極温度異常の場合も電極近傍に付設したセンサとの組合せによって行うことができる。
【0025】
又、わら屑や石礫等の異物が前記取込螺旋60や、電極ロール57,58間等に詰って穀粒の循環流れを検出できないときや、測定電圧が異常で粒であるか否かが不確定であるようなときは、乾燥モードでバーナ6等の運転を所定時間にわたって停止する。この場合の停止時間は長時間となり、前記普通の熱風乾燥機では、例えば約4分とするが、遠赤外線乾燥機ではさらに長く約20分として設定している。
【0026】
このように穀粒水分測定における異常があっても、穀粒循環チェック或は排出自動停止判定に影響ない場合は、処理を継続させることで穀粒流れセンサの機能を有効に行わせることができ、乾燥の安全性や、作業操作性を向上させることができる。
【0027】
次に、主として図12に基づいて上例と異なる点を説明する。前記水分計31においては、電極ローラ57,58が回っていることが外観からわかる。しかしながら、水分測定中に電極ローラ57,58が取込んだ穀粒を粉砕している否かはわかり難い。そこで、コントローラ54における外部入力、或は内部設定等により、自動、手動の水分測定中は、通常の水分値表示の他に、水分測定粒数のカウント値や、一粒毎の水分ピーク電圧値等の水分測定関連データを前記表示部71に表示できるように構成したものである。これにより、水分測定粒数カウント値が表示できるため、サンプル測定時間の確認が容易となる。又、水分ピーク電圧を表示できるためサンプル水分のばらつき確認が容易である。これによって、市場での水分計31に関する点検、確認や、バケットコンベア19のベルト張力調整等が容易となる。
【0028】
次に、主として図13に基づいて上例と異なる点を説明する。前記乾燥機に穀粒を張込むときには、集穀オーガ25とバケットコンベア19との間にわら屑や塵等が留まり易いために、乾燥開始時にはこのわら屑等が一挙に搬送されて、上部の供給オーガ20が詰ることがある。このため、前記のように張込(モード)時に水分計31を間歇作動させる水分計制御においては、この間歇作動時に穀粒流の検出を行い、穀粒が水分計31に入ってこないと判定したときは、前記繰出バルブ22を張込時は停止されている状態から所定時間作動させるように構成する。穀粒が貯留室1に満杯になるまで連続して張込続けられることは少ないため、この張込が中断した時間に少し循環することにより、わら屑等を少しずつ搬送して、集穀オーガ25でのわら屑等が留りが少なくなり、乾燥開始時の詰りを防止できる。
【0029】
図13のタイムチャートにおいて、張込時の水分計31の間歇作動は、例えば2分間周期で、電極ロール57,58逆回転20〜30秒、正回転10秒〜20秒の計30秒〜50秒間作動させて穀粒の流れ検出を行い、穀粒の検出が二回連続して行われなかったときは繰出バルブ22を数秒間駆動させる。
【0030】
次に、主として、図14に基づいて上例と異なる点を説明する。前記穀粒の乾燥中に繰出バルブ22の間歇的回転等によって穀粒の循環を間歇に行わせる形態では、穀粒の循環が一時的に途切れるため、水分測定時間が、連続循環時よりも長くなり易い。そこで、水分測定時は測定終了までの循環を連続に変更するように構成することによって、水分測定時間を短かくするものである。繰出バルブ22の運転を間歇回動から連続回転に切替えるか、又は通常の回転速度よりも高速回転に切替えて、水分計31への穀粒取込を促進するように構成する。特に、この連続回転への切替えを乾燥仕上げ水分(約16%)近くになった時点で切替えるように構成することができる。又、このような切替操作のため手動操作の外部スイッチを設けて、任意に変化させるように構成することもできる。繰出バルブ22の繰出量を増加させるのは、水分測定時の2〜3分程度であるため、乾燥、バケットコンベア19の搬送能力への影響がなく、適正な時間で水分測定ができて、停止精度を安定させることができる。
【0031】
又、このような繰出バルブ22の回転において、予め設定された時間内に所定粒数をカウント確保できるか否かを判定し、所定粒数を確保できないときは、繰出量を多くするように切替えるよう構成することもできる。
次に、主として図15〜図17に基づいて上例と異なる点を説明する。前記水分計31による水分測定において、上下限カットの範囲を水分値の高低によって異ならせ、高い水分域では有効範囲を広くし、低水分域では有効範囲を小さくするものである。
【0032】
低水分域の上下限のカット領域を小さくする処理形態があるが、算出した平均水分値が高くなり、整粒相当の水分は過乾燥となり易い。
このため、一粒水分計31で多粒の穀粒の水分値を検出し、高水分粒及び低水分粒を上下限処理によりカットする計算処理により測定時の水分値を算出するとき、高水分域は上下限のカット領域を小さく(有効範囲を大きく)、低水分域(停止近傍水分)は上下限のカット領域を大きく(有効範囲を小さく)する。一回の測定時における一定粒数の単純平均値(又はメジアン値)を基準に上限水分及び下限水分を決めて、有効範囲内だけの穀粒で平均水分を算出する。このとき測定水分値は又は停止設定水分値までの水分値により、上限及び下限水分を区別する。
【0033】
このような構成により、高水分域はカット領域を小さくし青米等の高水分粒も含んで平均水分を算出することにより、平均水分が低くなるのを抑え、低水分域はカット領域を大きくし高水分粒をある程度削除することで平均水分を整粒に近づけて整粒の過乾燥を防ぐことができる。
【0034】
次に、主として図18に基づいて上例と異なる点を説明する。前記水分測定装置おいて、上下限カットの範囲を水分値の高低によって異ならせ、高い水分域では有効範囲を広くし、低水分域では有効範囲を小さくするものである。
通常、水分算出値の上下限処理は、単純平均値±10%である。しかしながら上限の10%は範囲が広く、この分平均水分が高くなり、過乾燥の要因となっている。又、水分停止近傍では、水分分布を狭くなってきており、上下限範囲を縮めることで、水分検出精度を向上し、過乾燥の危険を防止することができる。
【0035】
そこで、水分平均算出の上下限処理を水分分布のメジアン値と偏差により処理すると共に、上下限範囲の決め方をメジアン値、或は水分測定間隔により変更するように構成したものである。
水分値の高低を、予め設定した水分測定間隔の変更によらせたが、この変更例として、水分測定間隔が30分では、(メジアン値−2σ)から(メジアン値+3σ)の範囲で平均処理する。又、水分測定間隔が10分では、(メジアン値−1.2σ)から(メジアン値+2σ)の範囲で平均処理する。ここに水分測定間隔が10分となるのは、水分設定+1.5%≧水分測定値である。
【0036】
このように、水分停止近傍前と以降で水分平均算出における上下限処理を変更することで、過乾燥防止、及び水分検出精度を向上させることができる。
次に、主として図19、図20に基づいて上例と異なる点は、前記水分計31の測定値を単純平均とメジアン水分の差でばらつきを判定するものである。
【0037】
通常、水分ばらつきの判定に偏差を使用すると、計算処理が複雑で大きいメモリ容量も必要となる。又、水分ばらつきが大きいと停止水分近傍では計算水分値の低下が遅れて、過乾燥の恐れがある。
そこで、一粒水分計で多粒の水分値を検出し計算処理により測定時の水分値を算出するとき、一定粒数の単純平均値がメジアン水分値と一定以上離れている場合は、測定時の水分ばらつきが大きいと判定し、水分停止処理を通常の場合と区別する構成とする。
【0038】
一回の測定時における一定粒数の単純平均値とメジアン値を求めて、その差により水分ばらつきを判定する。水分ばらつきが大きいときは過乾燥防止の処理を行う。例えば、前回測定の水分値以上は前回の水分値としたり、停止判定の回数を少くしたり、又、時間で停止させる等の処理を行うことができる。
【0039】
このように、簡単に水分ばらつきの大小を判定することができ、そのばらつきに応じた停止処理により停止時の水分値を適正にすることができる。
【図面の簡単な説明】
【図1】穀粒乾燥制御のブロック図。
【図2】その通風モード制御のフローチャート。
【図3】その乾燥モード制御のフローチャート。
【図4】その排出モード制御のフローチャート。
【図5】その水分計部の側面図。
【図6】その穀物乾燥機全体の側面図。
【図7】その一部の平面図。
【図8】その一部の背面図。
【図9】その一部遠赤外線放射装置部の斜視図。
【図10】その一部の断面図。
【図11】熱風乾燥機とする場合の平面図。
【図12】一部別実施例を示す水分計制御のフローチャート。
【図13】一部別実施例を示す水分計制御のタイムチャート。
【図14】一部別実施例を示す水分計制御のタイムチャート。
【図15】一部別実施例を示す水分計制御のブロック図。
【図16】その水分計制御のフローチャート。
【図17】その水分検出の分布グラフ。
【図18】一部別実施例を示す水分計制御のフローチャートと、水分値分布グラフ。
【図19】一部別実施例を示す水分計制御のフローチャート。
【図20】その水分検出の分布グラフ。
【符号の説明】
1 貯留室
2 乾燥室
6 バーナ
8 排風機
19 バケットコンベア
22 繰出バルブ
31 水分計
54 コントローラ
57 電極ロール
58 電極ロール
60 取込螺旋
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a grain detection device for detecting the presence or absence of dried grains in a grain dryer. The present invention can be effectively used for a circulation type dryer in which kernels are dried by applying hot air while being circulated and conveyed.
[0002]
[Prior art]
There is known a grain drying completion detection method of a grain dryer that detects that all grains have been discharged from a drying box by preventing the moisture meter from measuring moisture in a normal range of the grains (for example, see Patent Document 1). ).
[0003]
[Patent Document 1]
JP-B 5-26115 (page 1, FIG. 1).
[0004]
[Problem to be solved]
In a mode in which the flow of the circulating transport of the dried kernels is detected by the moisture meter, the drying control is easily influenced by whether or not the moisture meter can detect the moisture. In other words, erroneous detection by the moisture meter often results in overdrying or a decrease in drying efficiency. Therefore, if an abnormality occurs in the output of the moisture meter, measures such as immediately stopping the drying operation are taken.
[0005]
At this time, since the moisture meter is stopped, the presence or absence of the flow of the grain cannot be detected.
[0006]
[Means for Solving the Problems]
In view of the above drawbacks, the present invention intends to continue detecting the presence or absence of a grain flow by a moisture meter as much as possible, and has taken the following technical measures.
That is, the invention according to claim 1 is configured such that the grains passed through the drying chamber 2 are returned to the storage chamber 1 and circulated repeatedly while reaching a predetermined moisture value while being refined. A moisture meter 31 is provided for detecting the moisture value of the grain by partially taking in the circulating grain in the middle of the process. Based on the detection of the grain intake into the moisture meter 31, the presence or absence of the flow of the dried grain is determined. In the grain dryer that can be detected, the moisture measurement is stopped by the abnormality of the moisture meter 31, and the determination means is configured to classify the abnormality into an abnormality that can detect the presence or absence of the flow of the grain and an abnormality that cannot be detected. The configuration of the moisture measuring device characterized by the following.
[0007]
Thereby, during the circulating transport drying of the grains, a part of the grains is taken into the moisture meter 31 to detect the moisture of the grains and to dry with the signal of the moisture measurement, for example, predetermined electrical information. Detects the presence or absence of grain flow. Here, when the moisture meter 31 can detect moisture, a normal drying action is performed. However, even if the grain is taken into the moisture meter 31, even if the electrode temperature is abnormal, the normal moisture measurement cannot be performed due to elapse of the moisture measurement time, etc., Is determined. Further, the motor for taking in the grain into the moisture meter 31 is locked, or the grain cannot be taken into the moisture meter 31 due to an abnormality of the voltage measured by the moisture meter 31, and the normal moisture measurement can be performed. If it is not possible, that is, it is determined that the grain flow is undetectable.
[0008]
The invention described in claim 2 is characterized in that when the abnormality of the moisture meter 31 can detect the presence or absence of the flow of the grain, the drying is performed by ventilation, and when the abnormality cannot be detected, the drying is stopped. As a result, the moisture meter 31 during the drying of the grain determines that the grain flow can be detected abnormally and the grain flow cannot be detected as described above. In the case of an abnormality in which the grain flow can be detected, the ventilation drying is automatically continued, and in the case of an abnormality in which the grain cannot be detected, the drying is stopped.
[0009]
【The invention's effect】
According to the first aspect of the present invention, when the moisture meter 31 during the grain drying operation is abnormal, the measurement of the moisture content of the grain is stopped. When the flow is undetectable, the classification is determined, and when the circulation of the kernel is performed, the drying stop is carefully selected. When the moisture meter 31 can detect the flow of the kernel, the abnormal condition is determined as much as possible. The safe drying action can be continued to increase the work efficiency.
[0010]
According to the second aspect of the present invention, when the moisture meter 31 is abnormal, the moisture measurement is stopped. However, when the abnormality can be detected as the flow of the grain, safe ventilation drying is continued and the flow of the grain is stopped. Since drying is stopped when detection is not possible, ventilation drying is automatically continued as much as possible when the grains are circulated, so that drying efficiency and drying efficiency can be improved.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. First, based on FIG. 1 to FIG. 11, the grain dryer selectively configures a hot-air dryer and a far-infrared dryer having different drying modes mainly using the dryer frame 4. The dryer frame 4 has a rectangular box shape, and has a storage room 1 for storing and conditioning grain to be stretched at an upper portion, and a heating air while flowing down the stored grain at a lower portion thereof. There is a drying chamber 2 for drying by passing through the air, and a grain collecting chamber 3 for receiving the grains fed from the drying chamber 2 and collecting them while flowing down is provided below the drying chamber 2. The dryer frame 4 is stacked in a plurality of stages as blocks of the machine frames 4H, 4M, and 4L for each height of the storage room 1, the drying room 2, and the grain collection room 3 over the entire height. It is configured to be assembled.
[0012]
The storage room 1 accommodates drying grains to be dried by a bucket conveyor 19 provided on one side outside the front of the dryer frame 4, and has a grain supplied from the bucket conveyor 19 in the upper part. Auger 20 is provided, and a diffusion board 21 or the like that receives and transports the grains transported by the auger 20 and spreads while rotating. The lower end of the storage chamber 1 communicates with the upper side of the branch plate portion having a rectangular cross section of the drying chamber 2 so that the grains to be stored can be branched and flow down to each drying chamber 2.
[0013]
The drying chamber 2 has a ventilation surface 12 which is a perforated plate in the form of a perforated plate on both left and right sides, is formed to have a constant left and right width, and is inclined. Be composed. A feed valve 22 is provided at the lower end of each drying chamber 2, and the grains in the drying chamber 2 and the storage chamber 1 can be fed to the lower grain collecting chamber 3 by rotating the feed valve 22. it can. The ventilation surface 12 of each of the drying chambers 2 is exposed to and faces the lower grain collecting chamber 3 to allow hot air to flow into the drying chamber 2 from the grain collecting chamber 3 side. Further, an exhaust suction chamber 23 is formed above the ventilation surface 12 between the upper storage chamber 1 and the upper storage chamber 1, and the suction wind pressure of the exhaust fan 8 mounted on the rear wall 9 side of the suction chamber 23 can be used. it can. Therefore, the hot air sucked from the grain collection chamber 3 is passed across the ventilation surface 12 and the drying chamber 2, and is sucked and discharged to the suction chamber 23.
[0014]
The lower end portion of the drying chamber 2 and the feed valve 22 protrude downward from the lower edge of the machine frame 4M of the drying chamber 2 and are fitted into the machine frame 4L of the grain collection room 3 portion. Is configured.
The grain collecting room 3 is provided below the drying room 2 over the width of the machine frame 4L, and a grain collecting plate 24 which is inclined substantially in a V shape in a front view is provided at the bottom. The feed valve 22 is approached on the left and right grain collecting plates 24, and a grain collecting auger 25 extending in the front-rear direction is provided at a lower end portion, while receiving and flowing down the grains fed from the feed valves 22, The grain is collected in the grain collecting auger 25. The grains collected and conveyed in the grain collecting auger 25 are supplied to the lower end of the bucket conveyor 19 and can be returned to the storage chamber 1. The grain collecting room 3 is defined by defining the center portion of the width of the machine frame 4L as a central chamber portion 3A and the left and right outer sides as side chamber portions 3B with the feeding valve 22 as a boundary.
[0015]
The front wall 7 and the rear wall 9 of the dryer frame 4 are formed in a predetermined width or outer shape by a sheet metal material, and are attached to the front side and the rear side of the frame sections 4M and 4L. The openings 10 formed in the front wall 7 and the rear wall 9 and the duct 11 to be attached are different depending on the specification of the dryer. Here, in the hot air dryer (see FIG. 11), a duct port 27 having an opening is formed at the front end of each central chamber 3A as an opening 10 in the front wall 7, and a duct port 28 having an opening is formed in the side chamber 3B. It is formed. Further, as the duct 11, a burner duct 26 communicating between the respective duct ports 27 and 28 is attached to the front side of the front wall 7. The burner 6 is communicated with the front side of the burner duct 26, and the hot air burned and heated by the burner 6 is guided by the burner duct 26 to be branched and sucked from the duct ports 27 and 28 to the central chamber 3A, the side chamber 3B, and the like. . Further, a duct opening 29 is formed in the rear wall 9 as an opening 10 at the rear end of each of the suction chambers 23, and the duct 11 communicates with the rear side of the rear wall 9 as a duct 11. The duct 30 is attached. The exhaust duct 30 communicates with the suction exhaust fan 8 on the rear side, and drives the exhaust fan 8 to apply suction air pressure into the suction chamber 23 through the exhaust duct 30 and the duct port 29 to drive the burner 6. Hot air heated on the side flows from the grain collection chamber 3 to the suction chamber 23 through the drying chamber 2, and the grains in the drying chamber 2 and the grain collection chamber 3 can be heated and dried. Since the exhaust duct 30 is provided to face the rear side of the high-order suction chamber 23, it is attached to the rear wall 9 of the frame 4M block. The front and rear walls 7 and 9 of the upper and lower frames 4M and 4L are mounted as separate wall plate configurations, but may be mounted as a single upper and lower wall plate configuration. it can.
[0016]
In the far-infrared dryer (see FIG. 7), mounting openings 37 and 38 for mounting the far-infrared radiation device 5 are formed as openings 10 in the front wall 7 and the back wall 9 so as to face the central chamber 3A. The burner 6 is arranged in front of the front wall 7 so as to irradiate far-infrared rays to grains flowing down on the grain collecting plate 24. A burner cover 32 that covers the burner 6 is attached, and outside air such as combustion air for the burner 6 is sucked from an intake port 33 formed in the burner cover 32. The rear wall 9 is provided with an exhaust fan 8, an exhaust duct 30 and the like in the same manner as the hot air dryer, and a duct port 35 of the central chamber 3A and ducts of the left and right side chambers 3B are provided below this. The far-red bypass duct 18 communicates with the port 36. The outside air port 16 is formed such that the duct port 36 is expanded from the communication port of the bypass duct 18. The outside air port 16 is provided with an intake damper so that the intake amount of outside air can be adjusted.
[0017]
The front and rear front and rear walls 7 and 9 are provided with large mounting openings 37 and 38 as openings 10 facing the central chamber 3A. , 38 so as to be fitted inside. The far-infrared radiation device 5 is mainly composed of a far-infrared radiation tube 40 formed in a square tubular shape having a rectangular cross section, and is set to have a front-rear length extending between the front wall 7 and the back wall 9. Inside the far-infrared radiation tube 40, there are provided guide plates 41 which are inclined downward from the front upper part to the rear lower part. The bottom part 42, the left and right side parts 43 of the far-infrared radiation tube 40, and the upper guide plate A hot-air tube 45 is formed between the hot-air tube 41 and the hot-air tube 41, and guides heated air generated by a flame from the burner 6 to ventilate the air to the outlet 44 on the back wall 9 side. The lateral width of the guide plate 41 is narrower than the width of the far-infrared radiation tube 40, and an appropriate gap 46 is formed between the left and right side edges of the guide plate 41 and the side portion 43. The hot air cylinder 45 is formed so as to be lower sequentially in the rear direction in which the hot air flows, and inside the hot air cylinder 45, a baffle plate 47 that protrudes alternately from the bottom portion 42 and the guide plate 41 side is arranged. Are guided so as to flow in a vertical wave shape.
[0018]
A cylindrical flame cover 39 is provided in the front end of the far-infrared radiation tube 40 so as to surround the flame ejected from the burner 6. An intake cylinder 53 is formed on the upper side of the guide plate 41 to take in outside air from the front outside air port 34 and guide the outside air to the hot air chamber 51 above the outlet 44 on the rear side. The hot air chamber 51 is formed by the intake cylinder 53 and the guide plate 41, the left and right side walls 48, the upper dustproof plate 13, the rear wall 50, and the like. The hot air flowing into the hot air chamber 51 through the outlet 44 of the hot air cylinder 45 is drawn into the hot air chamber 51 from the outside air port 34 through the suction pipe 53 and the outside air port formed in the rear wall 50. The air 55 is mixed with the outside air sucked into the hot air chamber 51. The hot air mixed with the outside air in the hot air chamber 51 is sent into the central chamber 3A from an exhaust port 52 formed between the hot air chamber 51 and the dustproof plate 13 on the upper side. Through the side chamber 3B. The far-infrared radiation device 5 has a roof-shaped dustproof plate 13 on the upper side, and receives dust leaking through the ventilation surface 12 on the upper side of the drying chamber 2 so as not to fall into the far-infrared radiation tube 40. Then, the far-infrared radiation tube 40 is lowered onto the grain-gathering plate 24 via the left and right outer portions, and the far-infrared effect of heating hot air by the radiant heat from the far-infrared radiation tube 40 is maintained. . Although the front and rear ends of the dustproof plate 13 can be attached to the front wall 7 and the rear wall 9, the dustproof plate 13 is attached to a constituent member of the far-infrared radiation tube 40 to be unitized and attached.
[0019]
The far-infrared radiation cylinder 40 is heated to an appropriate temperature range of about 300 ° C. to 400 ° C. by the combustion hot air from the burner 6 being passed through the hot air cylinder 45 as described above to dry the kernels. It is configured to emit far infrared rays in an optimal state. For this reason, if the heating temperature is too low, exceeding the appropriate temperature range, the far-infrared effect due to the far-infrared radiation will be reduced, and if overheated, the burner fuel will be wasted and will be accompanied by danger. Therefore, a hot air temperature in the hot air tube 45 for maintaining the far-infrared effect by the far-infrared ray radiating device 5 and a hot-air chamber for sending hot air subjected to the far-red effect to the drying chamber 2 to dry the grains. Since the hot air temperature and the like in the inside 51 have different appropriate temperature ranges, they can be adjusted and controlled to an appropriate temperature in each part by mixing the outside air from each of the openings 10.
[0020]
At the opening 10 of the front wall 7 and the back wall 9, the mounting port 37 of the burner 6, the suction port 34 of the suction cylinder 53, the outside air port 55 of the mounting port 38 where the bypass duct 18 intervenes, and the outside air port 16 and the like are provided with intake dampers (not shown) that can adjust the amount of outside air intake.
[0021]
The grain dryer is provided with a supply hopper 17 for supplying grains below the bucket conveyor 19. The moisture meter 31 is attached to the side of the bucket conveyor 19, receives the grains leaking from the bucket 56 of the bucket conveyor 19, and holds the grains by rotating a pair of electrode rolls 57, 58 to crush the grains. While detecting the electrical resistance value, the detection of the grain moisture is performed. Above the electrode rolls 57, 58, a hopper 59 that receives the grains leaking from the bucket 56, and feeds the grains guided from the hopper 59 side by side and feeds them between the electrode rolls 57, 58. By having the spiral 60 and the guide plate 61, etc., and driving the intake spiral 60, the electrode rolls 57, 58, etc. by the motor shaft 62, water is taken in while taking in the grains circulated and transported through the dryer one by one. Can be detected. The crushed particles after the detection of the moisture are reduced into the bucket conveyor 19.
[0022]
The drying control device of this drier includes, on the input side of a controller 54 (FIG. 1), a setting switch 53 for setting kernels in a drying chamber, and drying under ventilation by an exhaust fan 8 without burning the burner 6. A ventilation switch 64 for burning, a drying switch 65 for burning the burner 6 and drying with hot air by driving the exhaust fan 8, etc., a discharge switch 66 for discharging the dried grains to the outside of the dryer, and a stop switch for stopping the drying operation. 67, and a setting switch 68 for setting the amount of the grain to be dried into the drying chamber. Further, it has a moisture meter 31 for sharing grain flow detection, and sensors 69 and 70 for detecting hot air temperature, exhaust air temperature and the like. On the output side, motors such as the supply auger 20, the grain collection auger 25, the bucket conveyor 19, and the delivery valve 22, the motor of the exhaust fan 8, the combustion system output such as the burner 6, the display, and the like. It has a display unit 71 and the like.
[0023]
Here, the moisture meter 31 receives a predetermined signal from the bucket conveyor 19 during the circulating conveyance by a start signal that is intermittently output at regular intervals by turning on the switches 64, 65, and 66 in the ventilation, drying, and discharge modes. Water is detected by embedding the number of grains. When the detected value is processed to obtain the moisture value of the grain, the flow rate of the dry air, the temperature, the time, and the grain circulation monitoring, determination, and treatment such as the detection of a defective grain circulation or the automatic discharge stop are determined. And so on. That is, the electrical resistance value of the grains crushed for each grain between the electrode rolls 57 and 57 is inputted and converted into a predetermined moisture value. With the presence or absence, it is possible to determine whether or not the kernels are circulating in the transport circulation system, that is, whether or not the kernels are circulating.
[0024]
In each of the control modes (FIGS. 2 to 4), when an abnormality occurs in the moisture meter 31, the moisture detecting operation is immediately stopped. At the same time, the abnormality is determined. When this abnormality is such as a temperature abnormality of the electrode rolls 57 and 58 or an excess of the moisture measurement time, the moisture meter 31 cannot accurately detect moisture, but if it is possible to detect defective circulation of grains, The detection of defective grain circulation is continued even in the drying and ventilation modes. In addition, even if the temperature of the electrode rolls 57 and 58 is abnormal even when the discharge is automatically stopped in the discharge mode, the discharge is continued. The detection of the lock of the electrode roll is based on the rotation stop output of the rotation sensor provided on the electrode roll during the output of the moisture measurement signal. The detection of the excess of the moisture measurement time is performed by comparing the time required for a predetermined number of grains with the set time. In addition, when the electrode temperature is abnormal, it can be determined by a combination with a sensor provided near the electrode.
[0025]
In addition, when foreign matter such as straw debris or rubble is clogged in the intake spiral 60 or between the electrode rolls 57 and 58, etc., and the circulating flow of the grain cannot be detected, or whether the measurement voltage is abnormal and whether the grain is granular or not. Is uncertain, the operation of the burner 6 and the like in the drying mode is stopped for a predetermined time. In this case, the stop time is long, and is set to, for example, about 4 minutes in the ordinary hot air dryer, and set to about 20 minutes in the far infrared dryer.
[0026]
In this way, even if there is an abnormality in the grain moisture measurement, if the grain circulation check or the automatic discharge stop determination is not affected, the function of the grain flow sensor can be effectively performed by continuing the processing. Thus, the safety of drying and the work operability can be improved.
[0027]
Next, differences from the above example will be described mainly with reference to FIG. In the moisture meter 31, it can be seen from the appearance that the electrode rollers 57 and 58 are rotating. However, it is difficult to know whether or not the grain taken in by the electrode rollers 57 and 58 is crushed during the moisture measurement. Therefore, during the automatic or manual moisture measurement by the external input or the internal setting in the controller 54, in addition to the normal moisture value display, the count value of the number of moisture measurement grains, the moisture peak voltage value for each grain, etc. , Etc., so that the data relating to moisture measurement can be displayed on the display unit 71. Accordingly, the count value of the number of measured water particles can be displayed, so that it is easy to confirm the sample measurement time. Further, since the moisture peak voltage can be displayed, it is easy to confirm the variation of the sample moisture. This facilitates inspection and confirmation of the moisture meter 31 in the market, adjustment of the belt tension of the bucket conveyor 19, and the like.
[0028]
Next, differences from the above example will be described mainly with reference to FIG. When the grains are loaded into the dryer, since straw dust and dust and the like easily stay between the grain collecting auger 25 and the bucket conveyor 19, the straw scraps and the like are conveyed at once at the start of drying, and the The supply auger 20 may become clogged. For this reason, in the moisture meter control for intermittently operating the moisture meter 31 at the time of the indentation (mode) as described above, the grain flow is detected at the time of the intermittent operation, and it is determined that the grain does not enter the moisture meter 31. Then, the delivery valve 22 is configured to operate for a predetermined time from the stopped state at the time of extension. Since it is rare that the grains are continuously loaded until the storage room 1 is full, the refuse circulates a little during the suspension of the loading, so that the straw scraps and the like are transported little by little so that the grain collecting auger can be used. In this way, the amount of remaining waste such as straw waste is reduced, and clogging at the start of drying can be prevented.
[0029]
In the time chart of FIG. 13, the intermittent operation of the moisture meter 31 at the time of insertion is, for example, in a period of 2 minutes, and the electrode rolls 57 and 58 are reversely rotated for 20 to 30 seconds and forwardly rotated for 10 to 20 seconds, for a total of 30 to 50. The flow of the grain is detected by operating for 2 seconds, and when the detection of the grain is not performed twice consecutively, the feeding valve 22 is driven for several seconds.
[0030]
Next, points different from the above example will be mainly described based on FIG. In the mode in which the circulation of the grains is intermittently performed by intermittent rotation of the feed valve 22 or the like during the drying of the grains, the circulation of the grains is temporarily interrupted, so that the moisture measurement time is longer than in the continuous circulation. Easy to become. Therefore, when the moisture measurement is performed, the circulation until the end of the measurement is continuously changed so as to shorten the moisture measurement time. The operation of the delivery valve 22 is switched from intermittent rotation to continuous rotation, or is switched to rotation at a higher speed than the normal rotation speed, so as to promote grain intake into the moisture meter 31. In particular, it can be configured that the switching to the continuous rotation is switched at the time when the dry finish moisture (about 16%) is reached. In addition, it is also possible to provide a manually operated external switch for such a switching operation, so that the switch can be arbitrarily changed. Since the amount of the supply of the supply valve 22 is increased for about 2 to 3 minutes at the time of measuring the moisture, there is no influence on the drying and the transport capacity of the bucket conveyor 19, and the moisture can be measured in a proper time, and the operation is stopped. Accuracy can be stabilized.
[0031]
Further, in such rotation of the delivery valve 22, it is determined whether or not the predetermined number of grains can be counted within a preset time. If the predetermined number of grains cannot be secured, switching is performed so as to increase the delivery amount. It can also be configured as follows.
Next, differences from the above example will be described mainly with reference to FIGS. In the moisture measurement by the moisture meter 31, the range of upper and lower cuts is made different depending on the level of the moisture value, so that the effective range is widened in a high moisture range, and the effective range is reduced in a low moisture range.
[0032]
Although there is a processing mode in which the cut regions at the upper and lower limits of the low moisture region are reduced, the calculated average moisture value increases, and moisture equivalent to sizing is likely to be overdried.
For this reason, when the moisture value of many grains is detected by the single moisture meter 31 and the moisture value at the time of measurement is calculated by a calculation process of cutting the high moisture particles and the low moisture particles by the upper and lower limits processing, The area makes the cut area of the upper and lower limits small (effective range is large), and the low moisture area (moisture near stop) makes the cut area of the upper and lower limits large (effective area is made small). The upper limit moisture and the lower limit moisture are determined based on the simple average value (or median value) of a certain number of grains in one measurement, and the average moisture is calculated only for grains within the effective range. At this time, the upper limit and the lower limit are distinguished by the measured moisture value or the moisture value up to the stop set moisture value.
[0033]
With such a configuration, the high moisture region reduces the cut region and calculates the average moisture including the high moisture particles such as blue rice, so that the average moisture is prevented from becoming low, and the low moisture region enlarges the cut region. By removing the high moisture particles to some extent, the average moisture can be brought close to the sizing to prevent overdrying of the sizing.
[0034]
Next, differences from the above example will be described mainly with reference to FIG. In the above-mentioned moisture measuring device, the range of the upper and lower cuts is made different depending on the level of the moisture value, so that the effective range is widened in a high moisture range and the effective range is reduced in a low moisture range.
Usually, the upper and lower limit processing of the calculated moisture value is a simple average value ± 10%. However, the upper limit of 10% has a wide range, and accordingly, the average moisture becomes high, which causes overdrying. In addition, near the water stoppage, the water distribution is becoming narrower, and by narrowing the upper and lower limits, the water detection accuracy can be improved and the danger of overdrying can be prevented.
[0035]
Therefore, the upper and lower limit processing of the moisture average calculation is performed based on the median value and the deviation of the moisture distribution, and the method of determining the upper and lower limit range is changed according to the median value or the moisture measurement interval.
The level of the moisture value was changed by changing a preset moisture measurement interval. As a modification example, when the moisture measurement interval is 30 minutes, the averaging process is performed in a range of (median value -2σ) to (median value + 3σ). I do. When the moisture measurement interval is 10 minutes, the averaging process is performed in the range of (median value -1.2σ) to (median value + 2σ). The reason why the moisture measurement interval is 10 minutes is that moisture setting + 1.5% ≧ moisture measurement value.
[0036]
As described above, by changing the upper and lower limit processing in the moisture average calculation before and after the vicinity of the moisture stop, it is possible to prevent overdrying and improve the accuracy of moisture detection.
Next, the difference from the above example mainly based on FIGS. 19 and 20 is that the variation in the measured value of the moisture meter 31 is determined by the difference between the simple average and the median moisture.
[0037]
Normally, when a deviation is used to determine moisture variation, the calculation process is complicated and a large memory capacity is required. Also, if the variation in moisture is large, the decrease in the calculated moisture value is delayed in the vicinity of the stop moisture, which may cause overdrying.
Therefore, when detecting the moisture value of multiple grains with a single grain moisture meter and calculating the moisture value at the time of measurement by calculation processing, if the simple average value of a certain number of grains is more than a certain distance from the median moisture value, Is determined to be large, and the water stop process is distinguished from the normal case.
[0038]
A simple average value and a median value of a certain number of grains at one time of measurement are obtained, and a difference in water content is determined based on the difference. When the variation in water content is large, a process for preventing overdrying is performed. For example, it is possible to perform processing such as setting the previous moisture value as the moisture value equal to or more than the previously measured moisture value, reducing the number of stop determinations, and stopping the operation over time.
[0039]
As described above, the magnitude of the moisture variation can be easily determined, and the moisture value at the time of stoppage can be made appropriate by the stop processing according to the variation.
[Brief description of the drawings]
FIG. 1 is a block diagram of grain drying control.
FIG. 2 is a flowchart of the ventilation mode control.
FIG. 3 is a flowchart of the drying mode control.
FIG. 4 is a flowchart of the discharge mode control.
FIG. 5 is a side view of the moisture meter section.
FIG. 6 is a side view of the whole grain dryer.
FIG. 7 is a plan view of a part thereof.
FIG. 8 is a rear view of a part thereof.
FIG. 9 is a perspective view of a part of the far-infrared radiation device.
FIG. 10 is a cross-sectional view of a part thereof.
FIG. 11 is a plan view when a hot air dryer is used.
FIG. 12 is a flowchart of moisture meter control showing a partially different embodiment.
FIG. 13 is a time chart of moisture meter control showing a partially different embodiment.
FIG. 14 is a time chart of moisture meter control showing a partially different embodiment.
FIG. 15 is a block diagram of moisture meter control showing a partially different embodiment.
FIG. 16 is a flowchart of the moisture meter control.
FIG. 17 is a distribution graph of the moisture detection.
FIG. 18 is a flowchart of moisture meter control and a moisture value distribution graph showing another embodiment.
FIG. 19 is a flowchart of a moisture meter control showing a partially different embodiment.
FIG. 20 is a distribution graph of the moisture detection.
[Explanation of symbols]
1 storage room
2 Drying room
6 burners
8 exhaust fan
19 Bucket conveyor
22 Feeding valve
31 Moisture meter
54 Controller
57 Electrode roll
58 Electrode roll
60 Intake spiral

Claims (2)

乾燥室2を通過した穀粒を貯留室1に還元して調質しながら所定の水分値に達するまで循環を繰り返し行うよう構成し、穀粒循環経路の途中に循環中の穀粒を一部取り込むことにより該穀粒の水分値を検出する水分計31を設け、該水分計31への穀粒取り込みの検出に基づき乾燥穀粒の流れの有無を検出可能とする穀粒乾燥機において、該水分計31の異常によって水分測定を停止すると共に、この異常を穀物の流れの有無を検出できる異常と、検出できない異常とに区分けする判定手段を構成したことを特徴とする穀粒乾燥機における穀粒検出装置。The grains passed through the drying chamber 2 are returned to the storage chamber 1 and circulated repeatedly until they reach a predetermined moisture value while being refined, and a part of the circulating grains is partway along the grain circulation path. A moisture analyzer 31 for detecting the moisture value of the grain by taking in the grain, and a grain dryer capable of detecting the presence or absence of the flow of the dried grain based on the detection of grain incorporation into the moisture meter 31; A grain drying machine characterized in that the moisture measurement is stopped by an abnormality of the moisture meter 31, and a judging means for classifying the abnormality into an abnormality capable of detecting the presence or absence of the flow of the grain and an undetectable abnormality is configured. Grain detector. 前記水分計31の異常が穀物の流れの有無を検出できるときは通風乾燥し、検出できないときは乾燥停止することを特徴とする請求項1に記載の穀粒乾燥機の穀粒検出装置。2. The grain detecting device according to claim 1, wherein ventilation drying is performed when the abnormality of the moisture meter 31 can detect the presence or absence of grain flow, and drying is stopped when the abnormality cannot be detected. 3.
JP2003046189A 2003-02-24 2003-02-24 Grain dryer Expired - Fee Related JP4066841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046189A JP4066841B2 (en) 2003-02-24 2003-02-24 Grain dryer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046189A JP4066841B2 (en) 2003-02-24 2003-02-24 Grain dryer

Publications (2)

Publication Number Publication Date
JP2004257593A true JP2004257593A (en) 2004-09-16
JP4066841B2 JP4066841B2 (en) 2008-03-26

Family

ID=33112796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046189A Expired - Fee Related JP4066841B2 (en) 2003-02-24 2003-02-24 Grain dryer

Country Status (1)

Country Link
JP (1) JP4066841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271321A (en) * 2006-03-30 2007-10-18 National Agriculture & Food Research Organization Moisture meter
JP2009210184A (en) * 2008-03-04 2009-09-17 Iseki & Co Ltd Grain drying machine
JP2010054148A (en) * 2008-08-29 2010-03-11 Iseki & Co Ltd Grain dryer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271321A (en) * 2006-03-30 2007-10-18 National Agriculture & Food Research Organization Moisture meter
JP2009210184A (en) * 2008-03-04 2009-09-17 Iseki & Co Ltd Grain drying machine
JP2010054148A (en) * 2008-08-29 2010-03-11 Iseki & Co Ltd Grain dryer

Also Published As

Publication number Publication date
JP4066841B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP6413538B2 (en) Grain dryer
JP2004257593A (en) Grain detection device of grain drier
JP4561777B2 (en) Far infrared grain dryer
JP4144449B2 (en) Grain drying equipment
JP6421978B2 (en) Grain dryer
JPH02236436A (en) Detection of impurity in grain drier and drying control system
JP4325053B2 (en) Grain dryer burner abnormality determination device
JP3870850B2 (en) Grain dryer
JP4985064B2 (en) Grain dryer
JP4697536B2 (en) Circulation prevention operation method of circulation type grain dryer
JPH0827135B2 (en) Hot air temperature controller for grain dryer
JP2005049027A (en) Grain feeding device of grain dryer
JP2017133759A (en) Grain drier
JP4019657B2 (en) Far infrared grain dryer
JP2973672B2 (en) Grain dispensing control system of grain dryer
JPH0658667A (en) Operation control system for crop particle drying machine
JP3116567B2 (en) Grain moisture detection method of grain dryer
JPH03101848A (en) Drying method for grain
JP3915343B2 (en) Cereal dryer
JP2579330Y2 (en) Abnormal wind pressure detector for grain dryer
JPH116685A (en) Circulating grain drier
JP3743045B2 (en) Grain dryer
JP4374733B2 (en) Grain dryer
JP3151937B2 (en) Wind pressure detector in grain dryer
JP2002257470A (en) Grain dryer having far infrared ray radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071231

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4066841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees