JP2004256903A - Method for repairing rotor, and device for repairing rotor - Google Patents

Method for repairing rotor, and device for repairing rotor Download PDF

Info

Publication number
JP2004256903A
JP2004256903A JP2003051873A JP2003051873A JP2004256903A JP 2004256903 A JP2004256903 A JP 2004256903A JP 2003051873 A JP2003051873 A JP 2003051873A JP 2003051873 A JP2003051873 A JP 2003051873A JP 2004256903 A JP2004256903 A JP 2004256903A
Authority
JP
Japan
Prior art keywords
rotor
repairing
repair
repaired
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003051873A
Other languages
Japanese (ja)
Other versions
JP4000075B2 (en
Inventor
Masahiro Saito
正弘 齋藤
Hiroaki Yoshioka
洋明 吉岡
Hideki Chiba
英樹 千葉
Shinji Takahashi
伸二 高橋
Kiyoshi Miyaike
潔 宮池
Shozo Murata
省三 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Murata Boring Giken Co Ltd
Original Assignee
Toshiba Corp
Murata Boring Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Murata Boring Giken Co Ltd filed Critical Toshiba Corp
Priority to JP2003051873A priority Critical patent/JP4000075B2/en
Publication of JP2004256903A publication Critical patent/JP2004256903A/en
Priority to US11/678,072 priority patent/US20070269608A1/en
Application granted granted Critical
Publication of JP4000075B2 publication Critical patent/JP4000075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/005Repairing methods or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/286Particular treatment of blades, e.g. to increase durability or resistance against corrosion or erosion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0006Disassembling, repairing or modifying dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Nozzles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a method for repairing a rotor and a device for repairing a rotor where the damage of a rotor can be repaired in such a manner that thermal damage to a rotor base material is reduced, and the reduction of the period for periodical inspection and the reduction of repairing cost can be attained. <P>SOLUTION: In the stage S1, the damaged location to be repaired in a rotor 1 is subjected to removing and shaping by machining or grinder working. In the stage S2, the surface from which the damaged location to be repaired is removed and shaped by machining or grinder working is subjected to roughening by blast treatment. In the stage S3, a film is formed on the surface roughened in the stage S2 by a high speed flame spraying device. In the stage S4, the film formed in the stage S3 is subjected to finishing treatment by machining or polishing. In the stage S5, defect inspection is performed for inspecting whether defects or the like are present or not. In the stage S6, inspection for the dimensions and quality of the location repaired in the stage S6 is performed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えばタービン発電機に使用されるロータであって補修すべき損傷部に対して、溶射皮膜を形成して損傷部を補修するロータの補修方法及びロータ補修装置に関する。
【0002】
【従来の技術】
図7は、従来のタービン発電機の構造を示す概略構成図である。タービン発電機は、大きく固定側のステータ2、回転側のロータ1、ロータ1を回転自在に支承する軸受3で構成されている。
【0003】
ステータ2には、ステータ鉄心2a中にステータコイル2bが挿入されており、一方のロータ1には、ロータコイル1aとその固定のためのエンドリング1b、冷却のためのファン1cがそれぞれ設けられており、ロータ1の端部はそれぞれロータカップリング1dによってガスタービンや蒸気タービンへと連結され、発電の働きをする。
【0004】
また、ロータ1のジャーナル部1eは、ジャーナル軸受3によって回転自在に支承され回転をスムーズ行うことができる。
【0005】
これら、水車、ガスタービン、蒸気タービン等の大型のロータ1や発電機等のロータ1は、運搬輸送時の損傷、運転による損傷などが発生し、機械加工によるロータ1損傷部の削込みや、それに伴う周辺機器の改良など補修対策に苦慮している。
【0006】
特に、図8(a)に示す様にジャーナル軸受3により支持されるロータ1のジャーナル部1eに異物や運転中による異常および部品寿命による損傷部4が発生する場合がある。
【0007】
この場合には、ロータのジャーナル部1eに発生した損傷部4を除去するため、図8(b)に示す様に機械加工等によりロータ径1fを1gに示すように減寸させて除去する。
【0008】
このため、減寸1gしたロータ径1fにしたがって再度ジャーナル軸受3も製造し直す必要があり、長時間の運転停止による稼働率低下と、製造コスト増大に繋がっていた。
【0009】
また、図9(a)に示すように、ロータ1では製造時の機械加工工程で誤加工部5が生じたときは、その都度設計変更等を行い、さらに図9(b)に示すように、機械加工等により誤加工部5の異常を除去していた。これにより、機器の性能低下や信頼性を低下させるおそれがあった。
【0010】
損傷部4や誤加工部5を肉盛溶接などの高入熱プロセスにより補修することも考えられるが、ロータ1などは高速で回転する回転軸のため、基材にダメージを与える補修プロセスを用いることができない。また、高入熱により変形などが生じ、調質処理などの熱処理が必要となり、補修時間の短縮および補修コストの低減の観点から大きな課題となっている。
【0011】
従来、回転体の製造方法として、以下に述べる第1及び第2の公知例がある。第1の公知例の製造方法は、オイルポンプやその他の回転機械において、ケーシングと回転体との接触する摺動部に熱膨張差による間隙を生じさせたり、焼き付きを生じさせるといった不具合を生じさせずに、耐摩耗性を高めたものであり、軽量かつ簡素な回転機械ないしその製造方法を提供することを目的としたものである。第1の公知例は、特に、軽合金製のケーシング内に収容される軽合金製の回転体との接触部に、溶射装置を用いて耐摩耗性を有する金属材料、例えば鋼を溶射し、この後少なくとも回転体のエッジ部に加圧処理、例えばショットピーニングを施すことを特徴としたものである(特許文献1参照)。
【0012】
第2の公知例の製造方法は、優れた機能性溶射皮膜を被覆し、剥離の恐れなく製鉄プロセスロールとして使用できる溶射ロールを提供することを目的したものである。第2の公知例は、特に、ロール基材表面に、タングステン炭化物(WC)とコバルト(Co)からなる組成の溶射皮膜を20から200μm形成し、その皮膜上に、さらにMo、Ni、Cr、Co、Al、Y、Al、Cr、TiOいずれか1種もしくは2種以上を主成分とする金属、金属化合物、セラミックスもしくはサーメットの機能性皮膜を被覆するものである(特許文献2参照)。
【0013】
【特許文献1】
特開平4−232244号公報
【0014】
【特許文献2】
特開平9−20975号公報
【0015】
【発明が解決しようとする課題】
第1の公知例の製造方法は、軽合金製の回転ロータ表面に耐摩耗性機能を付加したものであり、第2の公知例の製造方法は、ロール表面への溶射で耐剥離等の機能を持たせたもので、元のロータ基材あるいはロール基材より材料特性の性能が優れ、より高い性能を持たせる為に用いた方法である。
【0016】
また、タングステン炭化物やコバルトからなる組成の溶射皮膜をは、皮膜硬さが高く、主に耐摩耗性を得るために用いたものである。
【0017】
しかしながら、いずれは溶射部も機能が低下したり、損傷する場合も発生するが、これらはいずれも製造時に溶射によって表面機能を持たせたもので、溶射による補修、再生を目的としたものではなく、溶射施工部や他のロータ、ロールの回転体が損傷した場合の補修ができないという課題がある。
【0018】
本発明はこのような問題点を解決するためになされたもので、ロータの損傷を、ロータ基材への熱的ダメージが少なく、定期点検工期の短縮や補修コスト低減および機器の信頼性向上を図ることを目的としたロータの補修方法及びロータ補修装置を提供する。
【0019】
【課題を解決するための手段】
前記目的を達成するため、請求項1に対応する発明は、軸受にて回転自在に支承されたロータの補修すべき損傷部に対して、フレーム速度が600m/sec〜3000m/sec、粒子速度が500m/sec〜2000m/secを有する高速フレーム溶射装置にて溶射皮膜を形成して前記損傷部を補修することを特徴とするロータの補修方法である。
【0020】
前記目的を達成するため、請求項12に対応する発明は、補修対象であるロータを回転させながら、前記ロータの補修すべき部位に溶射皮膜を形成するための溶射ガンを備えた溶射装置と、前記溶射ガンを前記ロータの回転軸に対して水平方向、又は及び垂直方向に0.1mm/secピッチの移動速度にて移動させる移動装置とを具備したロータ補修装置である。
【0021】
【発明の実施の形態】
以下、本発明の実施形態に図面を参照して説明する。図1は、本発明の第1の実施形態に係るロータの補修方法を説明するためのフローチャートであり、以下これについて具体的に説明する。第1の工程S1で、ロータ1に生じた補修すべき損傷部位を機械加工あるいはグラインダー加工にて除去、整形を行う。その後、第2の工程S2で、第1の工程S1において機械加工あるいはグラインダー加工にて補修すべき損傷部位の除去、整形した表面をブラスト処理にて粗面化する。第3の工程S3では、第2の工程S2において粗面化した表面を、後述する高速フレーム溶射(HP/HVOF:High Pressure / High Velocity Oxygen Fuel)装置にて皮膜形成を実施する。第4の工程S4で、第3の工程S3において形成した皮膜を機械加工あるいは研磨加工にて仕上げ処理を実施する。第5の工程S5で、欠陥などの有無を検査する欠陥検査を行なう。第6の工程S6で第5の工程S5において補修した部位の寸法、品質検査を行うものである。なお、ロータ1に生じた補修すべき損傷部位は、例えば補修員が目視によって観察した結果である。
【0022】
第1の工程S1において、ロータ1に生じた補修すべき損傷部位を機械加工あるいはグラインダー加工にて除去、整形するのは、損傷部位を完全に除去した上で補修を行うことにより、損傷による欠陥の進展や拡大を防止して機器の信頼性を向上させるためである。損傷部の除去量および除去範囲については、損傷部に発生した損傷深さ、幅の程度によって判断する必要があるが、必要最小限の範囲とすることが、強度低下や信頼性低下を防ぐ観点から望ましい。
【0023】
前述の第1の工程S1で、機械加工あるいはグラインダー加工にて補修すべき損傷部位を除去、整形する場合、図2に示すように損傷の除去部4aと健全部4bの境界部4cの加工形状を45°以下(0°を含まず)の角度で勾配あるいは円弧4dを形成する。
【0024】
第2の工程S2でブラスト処理を行なうことにより、ロータ1の基材表面を均一に粗面化することができると共に、第3の工程S3の高速フレーム溶射による皮膜形成時に発生する境界部4cの欠陥を低減することができ、皮膜の密着性の向上、溶射補修の信頼性向上を図ることができる。
【0025】
これらは、損傷の除去部4aと健全部4bの境界部4cの加工形状を30°や15°の低角度で勾配4dを形成することにより、さらに効果が大きい。
【0026】
第1の工程S1で処理した損傷部位の除去、整形した表面を、第2の工程S2のブラスト処理にて粗面化するのは、第3の工程S3における高速フレーム溶射によって吹き付けられた溶射材料がロータ1表面に強固に付着し、形成する皮膜の密着性を向上させるためである。
【0027】
前述した第2の工程S2におけるブラスト処理時のブラスト材料としては、アルミナやシリカ、ガラスビーズ、軽合金材料、コルク、ゴム等の粒子を用いることができる。
【0028】
また、ブラスト処理時の圧力は2kg/cm〜6kg/cm(0.2〜0.6MPa)の空気あるいはガス圧力を用いることにより、ロータ1表面の変形を防止した粗面化ができる。この粗面化を行なうとき、ロータ1基材表面に対し45°〜90°のブラスト角度にてブラストすることにより、ロータ1基材表面が三次元的に粗面化することができ、皮膜の密着性向上が図れる。
【0029】
第3の工程S3において、高速フレーム溶射装置を使用して皮膜形成を実施するのは、音速の2〜3倍の速度で溶射材料を吹き付け、ロータ1の基材表面に高速で衝突させて皮膜を形成するためである。このように高速フレーム溶射装置を使用することにより、形成される皮膜は気孔が少なく、緻密で、密着力が高く、粒子間結合力に優れた皮膜を得ることができ、補修による機器の信頼性を向上させることができる。また、音速の2〜3倍の速度で溶射材料を吹き付け、ロータ1の基材表面に高速で衝突させて皮膜を形成すると、皮膜にはピーニング効果による圧縮残留応力が生じ、皮膜の割れ、剥離を低減させることができると共に、最大8.0mm以上の厚膜を形成することができる。
【0030】
この第3の工程S3を実施するとき、ロータ1の基材表面に対し溶射角度を45°〜90°にて高速フレーム溶射することにより、さらにロータ1の基材への皮膜密着性が向上すると共に、皮膜中には気孔が少なく、より緻密で、粒子間結合力に優れた皮膜を得ることができる。
【0031】
第4の工程S4で、第3の工程S3により形成した溶射皮膜を機械加工あるいは研磨加工にて仕上げ処理を実施するのは、第3の工程S3の高速フレーム溶射高速フレーム溶射にて元のロータ径例えば図8、図9の1fよりも大きくなるように溶射皮膜を形成するため、溶射による補修部位の径を元のロータ径1fに戻すためであると共に、ロータ1の設計数値の表面粗さに戻すためである。この時、補修部位と元のロータ1基材表面との境界部に段差がつかないように仕上げすることで、信頼性を大きく向上させることができる。
【0032】
第5の工程S5における欠陥などの有無を検査する欠陥検査および第6の工程S6における補修部位の寸法、品質検査は、健全な製品を提供する上で必要な工程であり、欠陥は、皮膜の剥離や亀裂の伝播を助長するもので、補修部の性能を低下させる一因である。このような部位の欠陥を無くすことにより、補修した製品の信頼性向上が図られる。
【0033】
図2は、図1の第3の工程S3である、高速フレーム溶射施工工程にしたがって、図7に示すジャーナル軸受3あるいは図示しないスラスト軸受により回転自在に支承されたロータ1の損傷部4を、フレーム速度6aが600m/sec〜3000m/sec、粒子速度が500m/sec〜2000m/secを有する溶射ガン6bを備えた高速フレーム溶射装置6にて補修10した状態を示す構成図である。
【0034】
補修方法10に用いた第3の工程S3である、高速フレーム溶射施工工程の施工条件は、次の通りである。その一例として、商品名JP5000TAFA社製の溶射装置6を用い、ロータの基材がNiCrMoV鋼であって、皮膜すなわち溶射粉末がNiCrMoV鋼で、燃料にケロシンと酸素、4インチガンバレル、酸素流量1850scfh(870l/min)、灯油燃料供給量5.7gph(22l/hr)、燃焼圧力97psi(0.7MPa)、ガン移動速度350mm/sec、粉末供給量40g/min、溶射距離380mmの施工条件にて溶射した。
【0035】
このような施工条件でロータの補修を行なう場合であって、第1の工程である、機械加工あるいはグラインダー加工にて損傷部位を除去、整形する際、損傷の除去部4aと健全部4bの境界部4cの加工形状を45°以下(0°を含まず)の角度で勾配4dを形成することで、図3に示すように高速フレーム溶射による皮膜形成時に発生する境界部4cの欠陥発生率(後述する補修部9のコーナ部の測定個所5箇所に対する欠陥発生率)を低減することができる。
【0036】
具体的には、図3(a)は、高速フレーム溶射装置6による皮膜形成時に発生する境界部4cの欠陥発生率(補修部9のコーナ部の測定個所5箇所に対する欠陥発生率)を示している。これに対して、図3(b)は損傷部位の除去部4aと健全部4bの境界部4cにおけるコーナ部の仕上げ角度を45°以下(0°を含まず)とした場合の境界部4cにおける断面図である。また、図3(c)は、損傷部位の除去部4aと健全部4bの境界部4cにおけるコーナ部の仕上げ角度を45°を超えるようにした場合の境界部4cにおける断面図である。
【0037】
図3から明らかなように、補修部9のコーナ部の仕上げ角度を45°以下(0°を含まず)とすることで、欠陥発生率が10%以下でほとんど欠陥が発生しないことが分る。この結果、欠陥発生率を低減することができ、皮膜の密着性の向上、溶射補修の信頼性向上を図ることができる。
【0038】
逆に、コーナ部の仕上げ角度を45°を超えるようにすると、欠陥発生率が80%以上となり、コーナ部にかなりの欠陥が発生することが分る。
【0039】
また、用いる溶射材料7としては、補修するロータ1の化学組成と同等および材料特性を有する被覆材料であり、被溶射体であるロータ1の補修10に0.020mmから8.0mmの範囲で溶射皮膜8を形成し、皮膜表面を機械加工あるいは研磨加工により6.5S以下(0Sを含まず、Sは仕上げ粗さを表している)の表面粗さで、所定の厚さに仕上げする。
【0040】
補修するロータ1の化学組成と同等および材料特性を有する溶射材料7を用いるのは、起動停止時や運転時、異常運転時において、ロータ1補修部9に発生する応力や熱による変形を防止するためである。また、摺動特性についてもロータ1基材と同等の性能を有することができる。すなわち、ロータ1の基材と異なった材料を補修部9に用いた場合には、熱膨張係数や熱伝導率の差による変形や熱応力が発生し、ロータ1回転時の振動発生に繋がり、機器の信頼性が著しく低下すこととなる。高速フレーム溶射により厚膜形成ができれば、肉盛溶接と同等の整形機能を有し、ロータ1基材にダメージを与えないで、簡単に損傷部4や誤加工部5の補修を行うことができる。
【0041】
前述の第3の工程S3で形成した溶射皮膜8を、第4の工程S4で機械加工あるいは研磨加工にて仕上げ処理を実施するのは、機械仕上げを考慮し、高速フレーム溶射にて、図7及び図8に示すように、予め元のロータ径1fよりも大きくなるように溶射皮膜8を形成するため、溶射による補修部位9の径を元のロータ径1fに戻すためであると共に、ロータ1の設計数値6S以下の表面粗さに戻すためである。この時、補修部位9と元のロータ1基材表面との境界部4cに段差がつかないように仕上げる必要がある。
【0042】
補修時の皮膜厚さについては、図4に示す皮膜に発生するX線残留応力測定結果のように、8.0mmまでは皮膜が圧縮残留応力11bを呈するが、8.0mm以上では皮膜の残留応力11が引張残留応力11a側に移行する。このため、引張側では皮膜の剥離や割れが発生し厚膜形成ができないことが分る。現状、最大8.0mmであり、本範囲内では厚膜化が可能である。
【0043】
図5は、本発明の第2の実施の形態を説明するための図である。前述した第3の工程S3である、高速フレーム溶射装置6によるロータ1の補修方法10を、現地(補修対象であるロータが設置されているタービン発電機)の発電プラントあるいは補修工場のいずれか1か所、またはこれらの複合した場所にて補修する方法を説明するための図である。図5(a)はその正面図であり、図5(b)は図5(a)の左側面図であり、図5(c)は図5(a)の右側面図であり、現地補修対象であるロータ1、ロータ回転装置14、溶射皮膜8形成のための溶射ガン6bを備えた高速フレーム溶射装置6、溶射ガン6bをロータ1の回転軸に対して水平方向に移動させる水平方向溶射ガン移動装置15、溶射ガン6bをロータ1の回転軸に対して垂直方向に移動させる垂直方向溶射ガン移動装置16で構成したことを示したものである。なお、用途等によっては、水平方向溶射ガン移動装置15、垂直方向溶射ガン移動装置16のうち、垂直方向溶射ガン移動装置16を備えていない高速フレーム溶射装置6であってもよい。
【0044】
ロータ1の補修方法10については、通常、組み立て工場にて施工するが、補修対象の機器が設置された現地発電プラントにて補修することで、補修の工期短縮、補修コスト低減が可能である。
【0045】
通常、組み立て工場にて施工する場合には、発電プラントより補修する対象物を梱包し、輸送を行う。国内でも大きな問題となっているが、特に海外からの工場搬入においては、梱包、輸送、通関等により工場にて補修を開始するまで最大で例えば2ヶ月以上の日数を要し、プラント運転停止による稼働率低下が発生する。現地プラントにて可能な補修については、現地発電プラントにて補修するのが効果的であり、補修工場あるいは組み立て工場では、必要不可欠な補修事項のみ対応することで、現地補修では最大2週間で補修が完了することができる。
【0046】
また、ロータ1の補修を組み立て工場にて施工した場合、工場設備として設置してある溶射設備を用いることができる。工場設置溶射設備とは、防音室、溶射ロボットおよび制御装置、集塵装置、冷却水チラー、クレーン、ロータ回転装置等である。
【0047】
ところが、現地発電プラントでは、補修のための溶射設備を設置してある発電プラントはほとんど無く、このため、現地発電プラントでのロータ1補修においては、防音室、溶射ロボットおよび制御装置、集塵装置、冷却水チラー、クレーン、ロータ回転装置等を現地発電プラントへ輸送し、現地組み立てを行う必要がある。
【0048】
しかしながら、溶射のための防音室や溶射ロボット、制御装置、防塵装置、ロータ回転装置等は大型で、工場据付型のため、現地発電プラントへの搬入には限界があり、困難な場合が多いのが現状である。
【0049】
このため、現地発電プラントにてロータ1補修可能な溶射設備、特に溶射ロボットに替わる装置が必要である。
【0050】
図5中には、溶射皮膜8を形成して補修する場合、工場設置溶射ロボットに替わって、ロータ1の回転軸に対して溶射ガン6bを水平方向15aおよび垂直方向16aに任意に移動可能な溶射ガン移動装置15、16に固定して補修することを示したものである。
【0051】
溶射ガンを水平方向15aおよび垂直方向16aに任意に移動可能な装置として、現地発電プラントへ搬入可能であればロボットを、不可能であればボールネジとステッピングモータを有する駆動機構を用いた溶射ガン移動装置15、16を用いる。
【0052】
このとき、ロータ1の回転軸に対して溶射ガン6bを水平方向15aおよび垂直方向16aに移動する溶射ガン移動テーブル17を具備し、溶射ガン移動速度を0.1mm/secピッチで制御できる装置とする。さらに、溶射補修時、ロータ1を図5(b)に示す矢印14aの方向に回転させながら溶射ガン6bを水平方向15aに移動して溶射にて補修する。
【0053】
現地発電プラントにてロータ1補修する場合、回転軸に対して溶射ガン6bを水平方向15aおよび垂直方向16aに任意に移動可能な溶射ガン移動装置15、16に固定して補修するのは、ロータ1の補修部9が限定されていない場合でも任意の位置に溶射ガン6bを移動することができると共に、最適な補修範囲を任意に設定できることにある。特に、垂直方向16aに移動する場合、ロータ径1fの中心に溶射ガン6bを設定する必要があるため、mm単位で調整が可能となり精度の高い溶射補修ができる優れた効果がある。
【0054】
溶射補修時、ロータ1を回転14aさせながら溶射ガン6bを水平方向15aに移動して溶射補修するのは、ロータ1外周表面に均一に溶射皮膜8を形成するためである。
【0055】
通常、平面状の溶射はロボットアームに溶射ガン6bを固定し、ロボットのアームを移動させて溶射するのが一般的である。しかしながら、円筒状の表面に溶射する場合には、ロボットのアームを矢印14aの方向に回転させて溶射することが困難なため、円筒状の溶射対象物自体を矢印14aの方向に回転させて溶射させる必要がある。このため、現地発電プラントでの補修においては、ロータ1を矢印14aの方向に回転させることが可能な装置、例えば旋盤のような回転機構を有した回転装置にてロータ1を矢印14aの方向に回転させ、ロータ1補修部9表面を補修する。これにより、ロータ1外周表面に目的とする溶射皮膜を均一に形成することができ、補修の信頼性を向上させることができる。
【0056】
ボールネジとステッピングモータを有する駆動機構を用いた溶射ガン移動装置15、16を用いるのは、溶射ガン移動速度を0.1mm/secピッチで制御できるためであり、溶射ガン6b移動時のぶれ、振動を防止し、連続で安定した移動を溶射ガン6bに与えることができる。
【0057】
また、溶射ガン移動速度を通常使用される250〜400mm/sec.の範囲に設定するためには、補修対象とするロータ径1fの変化によってその都度、補修対象とするロータ1回転数、溶射ガン移動速度を変える必要がある。このとき、溶射ガン移動速度を1mm/secピッチで制御することで、ほとんどのロータ径1fに対応することが可能となる。
【0058】
図6は、本発明の第3の実施の形態の現地発電プラント補修用に、溶射ガン6b、溶射ガン移動装置15、16、簡易防音室19、冷却水チラー20、集塵装置21、発電機22、ブラスト装置23にて構成した溶射補修システム24を移動可能な自動車25に搭載し、現地で簡便に補修10することを示した図である。
【0059】
これによって、自動車25に搭載した溶射補修システム24を輸送するだけで、国内で輸送機関の不便な地域や、海外現地における交通手段や輸送手段の手配に労力を費やすことが不要で、短期間で現地発電プラントを対象とした補修工事が可能となる。
【0060】
【発明の効果】
以上述べた本発明によれば、ロータの損傷を、ロータ基材への熱的ダメージが少なく、定期点検工期の短縮や補修コスト低減および機器の信頼性向上を図ることができるロータの補修方法及びロータ補修装置を提供できる。
【図面の簡単な説明】
【図1】本発明の高速フレーム溶射によるロータの補修方法を説明するためのフローチャート。
【図2】図1のロータの損傷部を高速フレーム溶射工程にて補修した状態を示す構成図。
【図3】図1のロータの損傷部を高速フレーム溶射工程による皮膜形成時に発生する境界部の欠陥発生率を示す実験結果の図。
【図4】本発明の皮膜に発生するX線残留応力測定結果を示す図。
【図5】本発明の高速フレーム溶射によるロータの補修を現地発電プラントにて補修することを示した模式図。
【図6】本発明の他の実施の形態の現地発電プラント補修用に構成した溶射補修システムを移動可能な自動車に搭載したことを示す模式図。
【図7】従来のタービン発電機の構造を示す模式図。
【図8】従来のジャーナル軸受により支持されるロータジャーナル部に発生する損傷を示した模式図。
【図9】従来のロータ製造時の機械加工工程で誤加工部が生じた状態を示す模式図。
【符号の説明】
1…ロータ、1a…ロータコイル、1b…エンドリング、1c…ファン、1d…ロータカップリング、1e…ジャーナル部、2…ステータ、2a…ステータ鉄心、2b…ステータコイル、3…ジャーナル軸受、4…損傷部、4a…除去部、4b…健全部、4c…境界部、4d…勾配或いは円弧、5…誤加工部、6a…フレーム速度、6b…溶射ガン、6…高速フレーム溶射装置、7…溶射材料、8…溶射皮膜、9…補修部位、10…補修方法、11b…圧縮残留応力、11a…引張残留応力、14…ロータ回転装置、15…水平方向溶射ガン移動装置、16…垂直方向溶射ガン移動装置、17…溶射ガン移動テーブル、19…簡易防音室、20…冷却水チラー、21…集塵装置、22…発電機、23…ブラスト装置、24…溶射補修システム、25…自動車。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotor repairing method and a rotor repairing apparatus for repairing a damaged portion to be repaired by forming a thermal spray coating on the damaged portion to be repaired, for example, a rotor used in a turbine generator.
[0002]
[Prior art]
FIG. 7 is a schematic configuration diagram showing the structure of a conventional turbine generator. The turbine generator includes a stator 2 on a stationary side, a rotor 1 on a rotating side, and a bearing 3 rotatably supporting the rotor 1.
[0003]
A stator coil 2b is inserted into a stator core 2a of the stator 2, and a rotor 1 is provided with a rotor coil 1a, an end ring 1b for fixing the rotor coil 1a, and a fan 1c for cooling. Each end of the rotor 1 is connected to a gas turbine or a steam turbine by a rotor coupling 1d, and functions to generate electric power.
[0004]
Further, the journal portion 1e of the rotor 1 is rotatably supported by the journal bearing 3 and can smoothly rotate.
[0005]
These large-sized rotors 1 such as water turbines, gas turbines, and steam turbines, and rotors 1 such as power generators are damaged during transportation and operation, damage due to operation, and the like. The company is struggling with repair measures such as improving peripheral equipment.
[0006]
In particular, as shown in FIG. 8A, a foreign material, an abnormality during operation, and a damaged portion 4 due to a component life may occur in the journal portion 1e of the rotor 1 supported by the journal bearing 3.
[0007]
In this case, in order to remove the damaged portion 4 generated in the journal portion 1e of the rotor, the rotor diameter 1f is reduced to 1g by machining or the like as shown in FIG.
[0008]
For this reason, it is necessary to re-manufacture the journal bearing 3 again in accordance with the rotor diameter 1f whose size has been reduced by 1 g, which has led to a reduction in the operating rate due to a long operation stoppage and an increase in the manufacturing cost.
[0009]
Further, as shown in FIG. 9 (a), when an erroneously machined portion 5 occurs in the machining process at the time of manufacturing, the design of the rotor 1 is changed each time, and as shown in FIG. 9 (b). In addition, the abnormality of the erroneously processed portion 5 was removed by machining or the like. As a result, there is a possibility that the performance of the device may be reduced or the reliability may be reduced.
[0010]
It is conceivable to repair the damaged portion 4 or the erroneously processed portion 5 by a high heat input process such as overlay welding, but since the rotor 1 is a rotating shaft that rotates at a high speed, a repair process that damages the base material is used. I can't. In addition, high heat input causes deformation and the like, and heat treatment such as heat treatment is required, which is a major problem from the viewpoint of shortening repair time and reducing repair cost.
[0011]
Conventionally, there are first and second known examples described below as a method of manufacturing a rotating body. The manufacturing method of the first known example causes problems such as generation of a gap due to a difference in thermal expansion or generation of seizure in a sliding portion that contacts a casing and a rotating body in an oil pump or other rotating machine. Instead, it is an object of the present invention to provide a lightweight and simple rotating machine or a method for manufacturing the same, which has improved wear resistance. In the first known example, a metal material having wear resistance, for example, steel is sprayed on a contact portion with a light alloy rotating body housed in a light alloy casing, using a thermal spraying device. Thereafter, pressure processing, for example, shot peening is performed on at least the edge portion of the rotating body (see Patent Document 1).
[0012]
The production method of the second known example aims at providing a thermal spraying roll which is coated with an excellent functional thermal spray coating and can be used as an iron making process roll without fear of peeling. In the second known example, a thermal spray coating having a composition of tungsten carbide (WC) and cobalt (Co) is formed on the surface of a roll substrate in a thickness of 20 to 200 μm, and Mo, Ni, Cr, and the like are further formed on the coating. Co, Al, Y, Al 2 O 3 , Cr 3 C 2 , and TiO 2 are coated with a functional film of a metal, a metal compound, a ceramic or a cermet mainly containing at least one of them. Patent Document 2).
[0013]
[Patent Document 1]
JP-A-4-232244
[Patent Document 2]
JP-A-9-20975
[Problems to be solved by the invention]
The manufacturing method of the first known example is a method in which a wear resistance function is added to the surface of a rotating rotor made of a light alloy, and the manufacturing method of the second known example has a function such as peeling resistance by spraying on the roll surface. This is a method used to give higher performance in material properties than the original rotor base material or roll base material and to provide higher performance.
[0016]
The thermal spray coating having a composition of tungsten carbide or cobalt has a high coating hardness and is used mainly for obtaining abrasion resistance.
[0017]
However, in any case, the function of the sprayed part also deteriorates or it may be damaged, but these are all made to have a surface function by spraying at the time of manufacture, and are not intended for repair and regeneration by spraying, However, there is a problem that repair cannot be performed when the thermal spraying section or other rotors and rolls are damaged.
[0018]
The present invention has been made in order to solve such problems, and has been made to reduce the damage to the rotor, reduce the thermal damage to the rotor base material, shorten the period for periodic inspections, reduce repair costs, and improve the reliability of equipment. A rotor repair method and a rotor repair device for the purpose of achieving the object are provided.
[0019]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 provides a rotor having a frame speed of 600 m / sec to 3000 m / sec and a particle speed of a damaged portion to be repaired of a rotor rotatably supported by a bearing. A method for repairing a rotor, characterized in that the damaged portion is repaired by forming a sprayed coating with a high-speed flame spraying device having a speed of 500 m / sec to 2000 m / sec.
[0020]
In order to achieve the above object, the invention corresponding to claim 12 is a spraying apparatus having a spraying gun for forming a sprayed coating on a portion of the rotor to be repaired while rotating a rotor to be repaired, A moving device for moving the thermal spray gun in a horizontal direction or a vertical direction with respect to the rotation axis of the rotor at a moving speed of a pitch of 0.1 mm / sec.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a flowchart for explaining a rotor repair method according to the first embodiment of the present invention, which will be specifically described below. In a first step S1, a damaged portion to be repaired in the rotor 1 is removed and shaped by machining or grinder processing. Thereafter, in a second step S2, the damaged portion to be repaired in the first step S1 by machining or grinder processing is removed, and the shaped surface is roughened by blasting. In the third step S3, a film is formed on the surface roughened in the second step S2 by a high-speed flame spraying (HP / HVOF: High Pressure / High Velocity Oxygen Fuel) apparatus described later. In a fourth step S4, the film formed in the third step S3 is subjected to a finishing process by machining or polishing. In a fifth step S5, a defect inspection for inspecting for a defect or the like is performed. In the sixth step S6, the dimensions and quality of the part repaired in the fifth step S5 are inspected. The damaged portion of the rotor 1 to be repaired is, for example, a result of visual observation by a repair staff.
[0022]
In the first step S1, a damaged portion to be repaired generated in the rotor 1 is removed or shaped by machining or grinder processing because the repair is performed after the damaged portion is completely removed, so that the defect due to the damage is obtained. This is to prevent the progress and expansion of the device and improve the reliability of the device. It is necessary to determine the removal amount and removal range of the damaged part based on the depth and width of the damage that has occurred in the damaged part. Desirable.
[0023]
In the above-mentioned first step S1, when removing or shaping a damaged part to be repaired by machining or grinder processing, as shown in FIG. 2, the processing shape of the boundary part 4c between the damaged removing part 4a and the sound part 4b. Is formed at an angle of 45 ° or less (not including 0 °) to form a gradient or an arc 4d.
[0024]
By performing the blasting in the second step S2, the surface of the base material of the rotor 1 can be uniformly roughened, and the boundary 4c generated during the film formation by high-speed flame spraying in the third step S3. Defects can be reduced, the adhesion of the coating can be improved, and the reliability of thermal spray repair can be improved.
[0025]
These effects are further enhanced by forming the slope 4d at a low angle of 30 ° or 15 ° in the processed shape of the boundary portion 4c between the damaged removal portion 4a and the sound portion 4b.
[0026]
The removal of the damaged portion treated in the first step S1 and the roughening of the shaped surface by the blast treatment in the second step S2 are performed by spraying a material sprayed by the high-speed flame spraying in the third step S3. Is to adhere firmly to the surface of the rotor 1 to improve the adhesion of the formed film.
[0027]
Particles such as alumina, silica, glass beads, light alloy materials, cork, and rubber can be used as the blast material at the time of the blast treatment in the second step S2 described above.
[0028]
The pressure at the time of blasting by using air or gas pressure of 2kg / cm 2 ~6kg / cm 2 (0.2~0.6MPa), the deformation of the rotor 1 surface can roughened was prevented. When performing this roughening, the surface of the rotor 1 can be three-dimensionally roughened by blasting the surface of the rotor 1 at a blast angle of 45 ° to 90 °. Adhesion can be improved.
[0029]
In the third step S3, the film is formed by using a high-speed flame spraying apparatus because the sprayed material is sprayed at a speed of two to three times the speed of sound and collides with the base material surface of the rotor 1 at a high speed. Is formed. By using a high-speed flame spraying device, the coating formed has a small number of pores, is dense, has high adhesion, and has excellent bonding strength between particles. Can be improved. Further, when a sprayed material is sprayed at a speed of two to three times the sound speed and collides with the base material surface of the rotor 1 at a high speed to form a film, a compressive residual stress is generated in the film due to a peening effect, and the film is cracked and peeled. Can be reduced, and a maximum thickness of 8.0 mm or more can be formed.
[0030]
When the third step S3 is performed, high-speed flame spraying at a spraying angle of 45 ° to 90 ° with respect to the surface of the base material of the rotor 1 further improves the film adhesion to the base material of the rotor 1. At the same time, it is possible to obtain a film having fewer pores, being denser, and having an excellent interparticle bonding force.
[0031]
In the fourth step S4, the finish of the thermal spray coating formed in the third step S3 by mechanical processing or polishing is performed by the high-speed flame spraying of the third step S3. In order to form the thermal spray coating so as to be larger than the diameter, for example, 1f in FIGS. 8 and 9, the diameter of the repaired portion by thermal spraying is returned to the original rotor diameter 1f, and the surface roughness of the design value of the rotor 1 is set. It is to return to. At this time, the reliability can be greatly improved by finishing such that no step is formed at the boundary between the repaired portion and the original rotor 1 base material surface.
[0032]
The defect inspection for inspecting the presence or absence of a defect or the like in the fifth step S5 and the dimension and quality inspection of the repaired part in the sixth step S6 are steps necessary for providing a sound product. It promotes peeling and crack propagation, and is one of the factors that lowers the performance of the repaired part. Eliminating such defects at the site improves the reliability of the repaired product.
[0033]
FIG. 2 shows a damaged portion 4 of the rotor 1 rotatably supported by the journal bearing 3 shown in FIG. 7 or a thrust bearing (not shown) according to the high-speed flame spraying process, which is the third process S3 in FIG. FIG. 4 is a configuration diagram showing a state in which repair is performed by a high-speed flame spraying apparatus provided with a spray gun having a flame speed of 600 m / sec to 3000 m / sec and a particle speed of 500 m / sec to 2000 m / sec;
[0034]
The execution conditions of the high-speed flame spraying execution step, which is the third step S3 used in the repair method 10, are as follows. As an example, a thermal spraying device 6 manufactured by JP5000TAFA is used, the base material of the rotor is NiCrMoV steel, the coating, that is, the sprayed powder is NiCrMoV steel, and the fuel is kerosene and oxygen, a 4-inch gun barrel, and the oxygen flow rate is 1850 scfh ( 870 l / min), kerosene fuel supply 5.7 gph (22 l / hr), combustion pressure 97 psi (0.7 MPa), gun moving speed 350 mm / sec, powder supply 40 g / min, spraying distance 380 mm did.
[0035]
In the case of repairing the rotor under such construction conditions, when removing or shaping a damaged portion by machining or grinder processing, which is the first step, the boundary between the damaged removing portion 4a and the healthy portion 4b. By forming the gradient 4d at an angle of 45 ° or less (not including 0 °) in the processed shape of the portion 4c, as shown in FIG. 3, the defect generation rate of the boundary portion 4c generated at the time of film formation by high-speed flame spraying ( It is possible to reduce the defect occurrence rate at the five measurement points at the corners of the repairing section 9 described later.
[0036]
Specifically, FIG. 3A shows the defect occurrence rate at the boundary portion 4c (the defect occurrence rate at five measurement points in the corner portion of the repairing section 9) generated when the film is formed by the high-speed flame spraying device 6. I have. On the other hand, FIG. 3B shows the boundary portion 4c when the finishing angle of the corner portion at the boundary portion 4c between the damaged portion 4a and the sound portion 4b is 45 ° or less (not including 0 °). It is sectional drawing. FIG. 3C is a cross-sectional view of the boundary 4c when the finishing angle of the corner at the boundary 4c between the removed part 4a of the damaged part and the healthy part 4b exceeds 45 °.
[0037]
As is clear from FIG. 3, by setting the finishing angle of the corner portion of the repaired portion 9 to 45 ° or less (excluding 0 °), the defect occurrence rate is 10% or less, and almost no defects are generated. . As a result, the defect occurrence rate can be reduced, and the adhesion of the film can be improved, and the reliability of the thermal spray repair can be improved.
[0038]
Conversely, when the finishing angle of the corner portion exceeds 45 °, the defect occurrence rate becomes 80% or more, and it can be seen that considerable defects occur in the corner portion.
[0039]
The thermal spray material 7 used is a coating material having the same chemical composition and material properties as the rotor 1 to be repaired. The thermal spray material 7 is sprayed on the repair 10 of the rotor 1 to be sprayed in a range of 0.020 mm to 8.0 mm. The film 8 is formed, and the surface of the film is finished to a predetermined thickness with a surface roughness of 6.5S or less (excluding 0S, S represents finishing roughness) by machining or polishing.
[0040]
The use of the thermal spray material 7 having the same chemical composition and material characteristics as the rotor 1 to be repaired prevents deformation caused by stress or heat generated in the repair portion 9 of the rotor 1 at the time of start-up stop, operation, or abnormal operation. That's why. In addition, the same sliding performance as the rotor 1 base material can be obtained. That is, when a material different from the base material of the rotor 1 is used for the repair part 9, deformation and thermal stress are generated due to a difference in thermal expansion coefficient and thermal conductivity, which leads to generation of vibration during rotation of the rotor 1, The reliability of the equipment will be significantly reduced. If a thick film can be formed by high-speed flame spraying, it has a shaping function equivalent to overlay welding and can easily repair the damaged portion 4 or the erroneously processed portion 5 without damaging the rotor 1 base material. .
[0041]
The finishing treatment of the thermal spray coating 8 formed in the above-described third step S3 by machining or polishing in the fourth step S4 is performed by high-speed flame spraying in consideration of mechanical finishing. As shown in FIG. 8 and FIG. 8, in order to previously form the thermal spray coating 8 so as to be larger than the original rotor diameter 1f, it is necessary to return the diameter of the repaired portion 9 by thermal spraying to the original rotor diameter 1f, This is to return the surface roughness to the design numerical value 6S or less. At this time, it is necessary to finish the boundary 4c between the repair site 9 and the original rotor 1 base material surface so that no step is formed.
[0042]
Regarding the thickness of the coating at the time of repair, as shown in the measurement result of the X-ray residual stress generated in the coating shown in FIG. 4, the coating exhibits a compressive residual stress 11b up to 8.0 mm, but the residual coating remains at 8.0 mm or more. The stress 11 shifts to the tensile residual stress 11a side. For this reason, it turns out that peeling and cracking of the film occur on the tensile side, and a thick film cannot be formed. At present, the maximum thickness is 8.0 mm, and a thick film can be formed within this range.
[0043]
FIG. 5 is a diagram for explaining the second embodiment of the present invention. The repair method 10 of the rotor 1 by the high-speed flame spraying device 6 which is the third step S3 described above is performed by using any one of a power plant or a repair plant on site (a turbine generator in which the rotor to be repaired is installed). It is a figure for explaining a repair method in a place or these combined places. 5 (a) is a front view, FIG. 5 (b) is a left side view of FIG. 5 (a), and FIG. 5 (c) is a right side view of FIG. 5 (a). The target rotor 1, the rotor rotating device 14, the high-speed flame spraying device 6 including the spraying gun 6 b for forming the sprayed coating 8, and the horizontal spraying in which the spraying gun 6 b is moved in the horizontal direction with respect to the rotation axis of the rotor 1. This shows that the gun moving device 15 and the vertical spray gun moving device 16 for moving the spray gun 6b in the direction perpendicular to the rotation axis of the rotor 1 are shown. Depending on the application, the high-speed flame spraying device 6 that does not include the vertical spraying gun moving device 16 among the horizontal spraying gun moving device 15 and the vertical spraying gun moving device 16 may be used.
[0044]
The repair method 10 for the rotor 1 is usually performed at an assembly plant, but by repairing at a local power plant where the equipment to be repaired is installed, it is possible to shorten the repair period and reduce the repair cost.
[0045]
Normally, in the case of construction at an assembly factory, objects to be repaired from a power plant are packed and transported. Although it is a major problem in Japan, it takes a maximum of 2 months or more for repairs to be started at the factory for packing, transportation, customs clearance, etc. The operation rate decreases. For repairs that can be performed at the local plant, it is effective to repair at the local power plant. At the repair plant or assembly plant, only indispensable repair items are handled. Can be completed.
[0046]
Further, when the repair of the rotor 1 is performed in the assembly factory, the thermal spray equipment installed as the factory equipment can be used. The factory-installed thermal spray equipment includes a soundproof room, a thermal spray robot and a control device, a dust collector, a cooling water chiller, a crane, a rotor rotating device, and the like.
[0047]
However, in a local power plant, there is hardly any power plant equipped with thermal spraying equipment for repair. Therefore, in the repair of the rotor 1 at the local power plant, a soundproof room, a thermal spraying robot and a control device, and a dust collector are required. It is necessary to transport cooling water chillers, cranes, rotor rotating devices, etc. to the on-site power plant for on-site assembly.
[0048]
However, soundproofing chambers for thermal spraying, thermal spraying robots, control equipment, dustproofing equipment, rotor rotating equipment, etc. are large and factory-installed, so there are limits to carrying them into the on-site power plant, which is often difficult. Is the current situation.
[0049]
For this reason, a thermal spraying equipment capable of repairing the rotor 1 at the on-site power generation plant, particularly a device replacing the thermal spraying robot is required.
[0050]
In FIG. 5, when the thermal spray coating 8 is formed and repaired, the thermal spray gun 6b can be arbitrarily moved in the horizontal direction 15a and the vertical direction 16a with respect to the rotation axis of the rotor 1 instead of the factory-installed thermal spray robot. It is shown that repair is performed by fixing to the spray gun moving devices 15 and 16.
[0051]
As a device capable of arbitrarily moving the spraying gun in the horizontal direction 15a and the vertical direction 16a, a robot is used if it can be carried into the on-site power plant, or a gun moving device using a drive mechanism having a ball screw and a stepping motor if impossible. Devices 15 and 16 are used.
[0052]
At this time, there is provided a spray gun moving table 17 for moving the spray gun 6b in the horizontal direction 15a and the vertical direction 16a with respect to the rotation axis of the rotor 1, and a device capable of controlling the spray gun moving speed at a pitch of 0.1 mm / sec. I do. Further, at the time of thermal spray repair, the thermal spray gun 6b is moved in the horizontal direction 15a while rotating the rotor 1 in the direction of the arrow 14a shown in FIG.
[0053]
When repairing the rotor 1 at a local power plant, the repair is performed by fixing the spraying gun 6b to the spraying gun moving devices 15, 16 which can be arbitrarily moved in the horizontal direction 15a and the vertical direction 16a with respect to the rotation axis. Even when the one repair part 9 is not limited, the spray gun 6b can be moved to an arbitrary position, and the optimum repair range can be arbitrarily set. In particular, when moving in the vertical direction 16a, it is necessary to set the spraying gun 6b at the center of the rotor diameter 1f, so that the adjustment can be made in units of mm, and there is an excellent effect that the spraying repair can be performed with high accuracy.
[0054]
The reason for performing the spray repair by moving the spray gun 6b in the horizontal direction 15a while rotating the rotor 1 during the spray repair is to form the spray coating 8 uniformly on the outer peripheral surface of the rotor 1.
[0055]
Normally, in the case of planar spraying, spraying is generally performed by fixing the spray gun 6b to a robot arm and moving the robot arm. However, when spraying on a cylindrical surface, it is difficult to perform the thermal spraying by rotating the robot arm in the direction of arrow 14a. Therefore, the cylindrical object to be sprayed is rotated in the direction of arrow 14a to perform thermal spraying. Need to be done. Therefore, in the repair at the on-site power plant, the rotor 1 is rotated in the direction of the arrow 14a by a device capable of rotating the rotor 1 in the direction of the arrow 14a, for example, a rotating device having a rotating mechanism such as a lathe. The rotor 1 is rotated to repair the surface of the repair section 9 of the rotor 1. As a result, the target sprayed coating can be uniformly formed on the outer peripheral surface of the rotor 1, and the reliability of the repair can be improved.
[0056]
The reason why the spray gun moving devices 15 and 16 using the driving mechanism having the ball screw and the stepping motor are used is that the moving speed of the spray gun can be controlled at a pitch of 0.1 mm / sec. Is prevented, and continuous and stable movement can be given to the spray gun 6b.
[0057]
Further, the moving speed of the spraying gun is set to 250 to 400 mm / sec. In this case, it is necessary to change the number of rotations of the rotor to be repaired and the moving speed of the spray gun each time the rotor diameter 1f to be repaired changes each time. At this time, by controlling the spraying gun moving speed at a pitch of 1 mm / sec, it is possible to correspond to almost the rotor diameter 1f.
[0058]
FIG. 6 shows a thermal spray gun 6b, thermal spray gun moving devices 15 and 16, a simple soundproof room 19, a cooling water chiller 20, a dust collector 21, a generator for repairing an on-site power plant according to the third embodiment of the present invention. 22 is a view showing that a thermal spray repair system 24 constituted by a blast device 23 is mounted on a movable automobile 25 and repair 10 is easily performed on site.
[0059]
As a result, only by transporting the thermal spray repair system 24 mounted on the automobile 25, there is no need to spend labor in areas where transportation is inconvenient in Japan or in arranging transportation means and transportation means overseas, and in a short time. Repair work for on-site power plants will be possible.
[0060]
【The invention's effect】
According to the present invention described above, a rotor repair method and a rotor repair method capable of reducing the thermal damage to the rotor base material, shortening the period of periodic inspection work, reducing repair costs, and improving the reliability of equipment. A rotor repair device can be provided.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating a method for repairing a rotor by high-speed flame spraying according to the present invention.
FIG. 2 is a configuration diagram showing a state where a damaged portion of the rotor of FIG. 1 is repaired in a high-speed flame spraying process.
FIG. 3 is a diagram of an experimental result showing a defect generation rate at a boundary portion generated when a damaged portion of the rotor shown in FIG. 1 is formed by a high-speed flame spraying process.
FIG. 4 is a view showing a measurement result of X-ray residual stress generated in a film of the present invention.
FIG. 5 is a schematic view showing repair of a rotor by high-speed flame spraying of the present invention at a local power plant.
FIG. 6 is a schematic view showing that a thermal spray repair system configured for repairing a local power plant according to another embodiment of the present invention is mounted on a movable vehicle.
FIG. 7 is a schematic view showing the structure of a conventional turbine generator.
FIG. 8 is a schematic view showing damage occurring in a rotor journal portion supported by a conventional journal bearing.
FIG. 9 is a schematic diagram showing a state in which an erroneously processed portion has occurred in a conventional machining process at the time of manufacturing a rotor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... rotor, 1a ... rotor coil, 1b ... end ring, 1c ... fan, 1d ... rotor coupling, 1e ... journal part, 2 ... stator, 2a ... stator core, 2b ... stator coil, 3 ... journal bearing, 4 ... Damaged part, 4a: removed part, 4b: sound part, 4c: boundary part, 4d: gradient or arc, 5: erroneously processed part, 6a: frame speed, 6b: thermal spray gun, 6: high-speed flame spraying device, 7: thermal spraying Material, 8: thermal spray coating, 9: repair site, 10: repair method, 11b: compressive residual stress, 11a: tensile residual stress, 14: rotor rotating device, 15: horizontal spray gun moving device, 16: vertical spray gun Moving device, 17: Thermal spray gun moving table, 19: Simple soundproof room, 20: Cooling water chiller, 21: Dust collector, 22: Generator, 23: Blast device, 24: Thermal spray repair system 25 ... automobile.

Claims (12)

軸受にて回転自在に支承されたロータの補修すべき損傷部に対して、フレーム速度が600m/sec〜3000m/sec、粒子速度が500m/sec〜2000m/secを有する高速フレーム溶射装置にて溶射皮膜を形成して前記損傷部を補修することを特徴とするロータの補修方法。A high-speed flame spraying apparatus having a frame speed of 600 m / sec to 3000 m / sec and a particle speed of 500 m / sec to 2000 m / sec for a damaged portion to be repaired of a rotor rotatably supported by a bearing. A method for repairing a rotor, comprising repairing the damaged portion by forming a film. 前記ロータの損傷部を溶射皮膜を形成して補修する場合、前記ロータの損傷部の化学組成と同等および材料特性を有する溶射補修材料を用いることを特徴とする請求項1記載のロータの補修方法。2. The repair method for a rotor according to claim 1, wherein when repairing the damaged portion of the rotor by forming a thermal spray coating, a sprayed repair material having the same chemical composition and material properties as the damaged portion of the rotor is used. . 前記ロータの損傷部を溶射皮膜を形成して補修する場合、前記ロータの損傷部に0.05mmから8.0mmの範囲で溶射皮膜を形成することを特徴とする請求項1記載のロータの補修方法。2. The repair of the rotor according to claim 1, wherein when repairing the damaged portion of the rotor by forming a sprayed coating, the sprayed coating is formed in a range of 0.05 mm to 8.0 mm on the damaged portion of the rotor. Method. 前記ロータの損傷部を溶射皮膜を形成して補修する場合、予め前記補修すべき部位を機械加工あるいはグラインダー加工にて下地整形後、ブラスト処理にて粗面化することを特徴とする請求項1記載のロータの補修方法。2. When repairing a damaged portion of the rotor by forming a thermal spray coating, the portion to be repaired is preliminarily shaped by machining or grinder processing, and then roughened by blasting. Repair method of the rotor described. 前記機械加工あるいは前記グラインダー加工にて補修する部位を下地整形する場合、前記補修部の両端溝形状を45°以下(0°を含まず)の角度で勾配あるいは円弧を形成することを特徴とする請求項4記載のロータの補修方法。In the case where the portion to be repaired by the mechanical processing or the grinder processing is ground-formed, the shape of the groove at both ends of the repaired portion is formed with a slope or an arc at an angle of 45 ° or less (not including 0 °). The method for repairing a rotor according to claim 4. 前記ロータの損傷部を溶射皮膜を形成して補修する場合、予め前記皮膜形成後に皮膜表面を機械加工あるいは研磨加工により6.5S以下(0Sを含まず)に仕上げすることを特徴とする請求項1記載のロータの補修方法。When the damaged portion of the rotor is repaired by forming a sprayed coating, the coating surface is finished to 6.5S or less (excluding 0S) by machining or polishing after forming the coating in advance. 2. The method for repairing a rotor according to 1. 前記ロータの損傷部に溶射皮膜を形成して補修する場合、前記ロータが設置されている発電プラントあるいは補修工場の少なくとも1か所、またはこれらの複合した場所にて補修することを特徴とする請求項1記載のロータの補修方法。When repairing by forming a sprayed coating on a damaged portion of the rotor, the repair is performed in at least one of a power plant or a repair shop where the rotor is installed, or a combination thereof. Item 6. The method for repairing a rotor according to Item 1. 前記ロータの損傷部に溶射皮膜を形成して補修する場合、前記ロータを回転させながら前記高速フレーム溶射装置に有する溶射ガンを水平方向に移動して溶射することを特徴とする請求項1記載のロータの補修方法。2. The spraying method according to claim 1, wherein, when forming and repairing a sprayed coating on a damaged portion of the rotor, the spraying gun included in the high-speed flame spraying apparatus is moved in a horizontal direction while spraying while rotating the rotor. How to repair the rotor. 前記ロータの損傷部に溶射皮膜を形成して補修する場合、前記ロータの回転軸に対して前記高速フレーム溶射装置に有する溶射ガンを水平方向および垂直方向に任意に移動可能な装置に固定して補修することを特徴とする請求項1記載のロータの補修方法。When repairing by forming a sprayed coating on the damaged portion of the rotor, the spraying gun having the high-speed flame spraying device with respect to the rotation axis of the rotor is fixed to a device arbitrarily movable in the horizontal and vertical directions. The method for repairing a rotor according to claim 1, wherein the rotor is repaired. 前記高速フレーム溶射装置に有する溶射ガンを水平方向および垂直方向に任意に移動可能な装置として、ロボットあるいはボールネジおよびステッピングモータを有する駆動機構を用いることを特徴とする請求項9記載のロータの補修方法。10. The rotor repair method according to claim 9, wherein a robot or a drive mechanism having a ball screw and a stepping motor is used as a device capable of arbitrarily moving the spraying gun of the high-speed flame spraying device in a horizontal direction and a vertical direction. . 前記ロータの回転軸に対して溶射ガンを水平方向および垂直方向に移動する場合、0.1mm/secピッチの移動速度にて制御することを特徴とする請求項10記載のロータの補修方法。11. The rotor repair method according to claim 10, wherein when the spraying gun is moved in a horizontal direction and a vertical direction with respect to the rotation axis of the rotor, the spray gun is controlled at a moving speed of a pitch of 0.1 mm / sec. 補修対象であるロータを回転させながら、前記ロータの補修すべき部位に溶射皮膜を形成するための溶射ガンを備えた溶射装置と、
前記溶射ガンを前記ロータの回転軸に対して水平方向、又は及び垂直方向に0.1mm/secピッチの移動速度にて移動させる移動装置と、
を具備したロータ補修装置。
A thermal spraying apparatus having a thermal spray gun for forming a thermal spray coating on a portion of the rotor to be repaired while rotating a rotor to be repaired,
A moving device that moves the spraying gun horizontally or vertically with respect to the rotation axis of the rotor at a moving speed of 0.1 mm / sec pitch;
A rotor repair device comprising:
JP2003051873A 2003-02-27 2003-02-27 Rotor repair method Expired - Fee Related JP4000075B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003051873A JP4000075B2 (en) 2003-02-27 2003-02-27 Rotor repair method
US11/678,072 US20070269608A1 (en) 2003-02-27 2007-02-23 Rotor repair method and rotor repair apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003051873A JP4000075B2 (en) 2003-02-27 2003-02-27 Rotor repair method

Publications (2)

Publication Number Publication Date
JP2004256903A true JP2004256903A (en) 2004-09-16
JP4000075B2 JP4000075B2 (en) 2007-10-31

Family

ID=33116912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003051873A Expired - Fee Related JP4000075B2 (en) 2003-02-27 2003-02-27 Rotor repair method

Country Status (2)

Country Link
US (1) US20070269608A1 (en)
JP (1) JP4000075B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134831A1 (en) * 2005-06-17 2006-12-21 Hitachi, Ltd. Rotor for steam turbine and process for producing the same
JP2008024957A (en) * 2006-07-18 2008-02-07 Mitsui Eng & Shipbuild Co Ltd Method for correcting shape of steel structure and steel product
KR100810433B1 (en) 2007-03-20 2008-03-04 주식회사 삼한텍 Reproduction process of brush shaft for washing
JP2009528939A (en) * 2006-03-02 2009-08-13 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド DYNAMIC STRESS AIRCRAFT COMPONENT PARTS COMPOSITION AND REPAIR METHODS WITH ALUMINUM ALLOY
JP2011085065A (en) * 2009-10-15 2011-04-28 Toshiba Corp Turbine device repairing method
JPWO2011148515A1 (en) * 2010-05-24 2013-07-25 日鉄住金ハード株式会社 Sprayed body and spraying method of sprayed body
WO2014021160A1 (en) * 2012-08-01 2014-02-06 エドワーズ株式会社 Part for vacuum pumps and vacuum pump
JP2015052158A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Coating film repair method
JP2015052157A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Coating film repair method, and member whose coating is repaired by using the method
CN110936099A (en) * 2019-11-19 2020-03-31 中国航发沈阳黎明航空发动机有限责任公司 Process method for maintaining high-pressure turbine guide pipe
JP2021042453A (en) * 2019-09-13 2021-03-18 株式会社東芝 Coating method and coating structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080145688A1 (en) 2006-12-13 2008-06-19 H.C. Starck Inc. Method of joining tantalum clade steel structures
US8197894B2 (en) 2007-05-04 2012-06-12 H.C. Starck Gmbh Methods of forming sputtering targets
DE102008018539A1 (en) * 2008-04-12 2009-10-15 Berthold, Jürgen Metal body with metallic protective layer
US8246903B2 (en) 2008-09-09 2012-08-21 H.C. Starck Inc. Dynamic dehydriding of refractory metal powders
GB2491397B (en) * 2011-06-03 2013-11-27 Rolls Royce Plc An apparatus and a method of shaping an edge of an aerofoil
WO2013049274A2 (en) 2011-09-29 2013-04-04 H.C. Starck, Inc. Large-area sputtering targets and methods of manufacturing large-area sputtering targets
US8959738B2 (en) * 2012-03-21 2015-02-24 General Electric Company Process of repairing a component, a repair tool for a component, and a component
US8826520B1 (en) 2012-07-26 2014-09-09 General Electric Company Apparatus for extracting a rotor from a generator
US10077499B2 (en) 2013-11-06 2018-09-18 Sikorsky Aircraft Corporation Corrosion mitigation for gearbox
US9599210B2 (en) 2013-11-06 2017-03-21 Sikorsky Aircraft Corporation Damage mitigation for gearbox
CN103991014B (en) * 2013-12-02 2016-08-31 沪东重机有限公司 A kind of repair method of the side plane of diesel engine main bearing cover
US10103608B2 (en) 2015-04-17 2018-10-16 General Electric Company Generator rotor fretting fatigue crack repair method
FR3061053A1 (en) 2016-12-23 2018-06-29 9349 3039 Quebec Inc HEAVY WORK RECONDITIONING APPARATUS AND METHOD
CN107630724B (en) * 2017-10-31 2024-06-14 江苏永钢集团有限公司 Maintenance method based on offline maintenance device of thrust bearing in steam turbine
CN108220955A (en) * 2018-01-09 2018-06-29 中国长江电力股份有限公司 A kind of material and renovation technique for the laser melting coating reparation of Rotator in Hydropower Station room
CN115415734B (en) * 2022-09-29 2023-09-26 中国航发动力股份有限公司 Blisk repairing method with deviation diameter size

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334495A (en) * 1978-07-11 1982-06-15 Trw Inc. Method and apparatus for use in making an object
AU553176B2 (en) * 1982-01-29 1986-07-03 A.I. Engineering Corporation Limited Apparatus for coating internal surfaces of curved conduits
US4705203A (en) * 1986-08-04 1987-11-10 United Technologies Corporation Repair of surface defects in superalloy articles
US20030088980A1 (en) * 1993-11-01 2003-05-15 Arnold James E. Method for correcting defects in a workpiece
JPH0859559A (en) * 1994-08-23 1996-03-05 Mitsubishi Chem Corp Production of dialkyl carbonate
EP0935265A3 (en) * 1998-02-09 2002-06-12 Wilson Greatbatch Ltd. Thermal spray coated substrate for use in an electrical energy storage device and method
GB9803561D0 (en) * 1998-02-19 1998-04-15 Monitor Coatings & Eng Surface treatment of rotors
US6575349B2 (en) * 2001-02-22 2003-06-10 Hickham Industries, Inc. Method of applying braze materials to a substrate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8485788B2 (en) 2005-06-17 2013-07-16 Hitachi, Ltd. Rotor for steam turbine and method of manufacturing the same
JPWO2006134831A1 (en) * 2005-06-17 2009-01-08 株式会社日立製作所 Rotor for steam turbine and manufacturing method thereof
JP4584999B2 (en) * 2005-06-17 2010-11-24 株式会社日立製作所 Rotor for steam turbine and manufacturing method thereof
WO2006134831A1 (en) * 2005-06-17 2006-12-21 Hitachi, Ltd. Rotor for steam turbine and process for producing the same
JP2009528939A (en) * 2006-03-02 2009-08-13 プラックセアー エス.ティ.テクノロジー、 インコーポレイテッド DYNAMIC STRESS AIRCRAFT COMPONENT PARTS COMPOSITION AND REPAIR METHODS WITH ALUMINUM ALLOY
JP2008024957A (en) * 2006-07-18 2008-02-07 Mitsui Eng & Shipbuild Co Ltd Method for correcting shape of steel structure and steel product
KR100810433B1 (en) 2007-03-20 2008-03-04 주식회사 삼한텍 Reproduction process of brush shaft for washing
JP2011085065A (en) * 2009-10-15 2011-04-28 Toshiba Corp Turbine device repairing method
JPWO2011148515A1 (en) * 2010-05-24 2013-07-25 日鉄住金ハード株式会社 Sprayed body and spraying method of sprayed body
WO2014021160A1 (en) * 2012-08-01 2014-02-06 エドワーズ株式会社 Part for vacuum pumps and vacuum pump
JP2015052158A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Coating film repair method
JP2015052157A (en) * 2013-09-09 2015-03-19 三菱重工業株式会社 Coating film repair method, and member whose coating is repaired by using the method
JP2021042453A (en) * 2019-09-13 2021-03-18 株式会社東芝 Coating method and coating structure
JP7309544B2 (en) 2019-09-13 2023-07-18 株式会社東芝 Coating method and coating structure
CN110936099A (en) * 2019-11-19 2020-03-31 中国航发沈阳黎明航空发动机有限责任公司 Process method for maintaining high-pressure turbine guide pipe

Also Published As

Publication number Publication date
US20070269608A1 (en) 2007-11-22
JP4000075B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
JP4000075B2 (en) Rotor repair method
Yin et al. Cold spray additive manufacturing and repair: Fundamentals and applications
US20080028605A1 (en) Weld repair of metallic components
US8240042B2 (en) Methods of maintaining turbine discs to avert critical bucket attachment dovetail cracks
EP2688708B1 (en) Method for repairing an aluminium alloy component
CN111304649B (en) Preparation method of QT800 nodular cast iron bearing bush wear-resistant layer
Tucker Jr Introduction to coating design and processing
CN108620809B (en) Online repair method for steam seal shaft neck of steam turbine rotor of 1000MW generator set
JPWO2006134831A1 (en) Rotor for steam turbine and manufacturing method thereof
CN101629289A (en) Laser anti-corrosion and wear-resistant process for trunnion of movable guide vanes of turbines
CN111139465A (en) Manufacturing method for manufacturing composite steel pipe by laser
CN106435567A (en) Laser cladding restoration method for compressor bearing shell
CN111074266A (en) Rapid forming and repairing method for damage of airplane electromagnetic pure iron part accessory
WO2006021983A1 (en) Method and equipment for repairing rotor
CN106048597A (en) Method for repairing damaged surface of stator blade of large fan casing weld assembly
CN107805809A (en) A kind of automobile die surface coating renovation technique
CN115044762A (en) Silicon steel furnace roller and processing method thereof
CN105349992A (en) Laser cladding repairing method for airplane normal pin and bolt part surfaces
CN111926325B (en) Repair and adjustment method for fit clearance between aeroengine bearing casing and bushing
EP2256226A1 (en) Rotor repair method and rotor repair apparatus
RU2725469C1 (en) Method for restoration and strengthening of antivibration shelves of titanium blades of gte compressor
CN108202202B (en) Steam seal tooth repairing system and method for steam turbine rotor
Bagade et al. Effect of laser surface texturing on coating adherence and tribological properties of CuNiIn and MoS 2 coating
CN114672759A (en) Aluminum alloy wear surface size repairing method
CN111926326B (en) Laser repairing method for eliminating axial stress of bearing position of precision gear shaft

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110817

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120817

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees