JP2004256345A - Low-temperature fired porcelain, its composition and wiring board - Google Patents

Low-temperature fired porcelain, its composition and wiring board Download PDF

Info

Publication number
JP2004256345A
JP2004256345A JP2003048235A JP2003048235A JP2004256345A JP 2004256345 A JP2004256345 A JP 2004256345A JP 2003048235 A JP2003048235 A JP 2003048235A JP 2003048235 A JP2003048235 A JP 2003048235A JP 2004256345 A JP2004256345 A JP 2004256345A
Authority
JP
Japan
Prior art keywords
low
temperature fired
fired porcelain
porcelain
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003048235A
Other languages
Japanese (ja)
Other versions
JP4540297B2 (en
Inventor
Yoshihiro Nakao
吉宏 中尾
Yoshitake Terashi
吉健 寺師
Hiromi Yamada
裕美 山田
Tsutae Iryo
伝 井料
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003048235A priority Critical patent/JP4540297B2/en
Publication of JP2004256345A publication Critical patent/JP2004256345A/en
Application granted granted Critical
Publication of JP4540297B2 publication Critical patent/JP4540297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-temperature fired porcelain having a low dielectric constant, especially high mechanical strength, and a wiring board using the same. <P>SOLUTION: The composition for the low-temperature fired porcelain contains 15-70 vol.% glass component and 15-55 vol.% alumina, wherein the glass component contains 30-45 mol% SiO<SB>2</SB>, 1-20 mol% B<SB>2</SB>O<SB>3</SB>, 1-20 mol% Al<SB>2</SB>O<SB>3</SB>and 30-45 mol% MgO, provided that the total amount of SiO<SB>2</SB>, B<SB>2</SB>O<SB>3</SB>, Al<SB>2</SB>O<SB>3</SB>and MgO is ≥99%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低温焼成磁器組成物および低温焼成磁器並びに配線基板に関し、特に、低誘電率かつ高強度を有する低温焼成磁器と、それを絶縁層とする半導体素子収納用パッケージなどに使用される配線基板に関するものである。
【0002】
【従来技術】
近年、光通信や高速インターフェースといったGHzレベル以上の高周波信号を処理する電子機器として携帯電話やPDAなどモバイル機器が急速に発達している。このような電子機器等に使用される配線基板としては、誘電損失による伝送信号の減衰を抑制するために、より低い比誘電率を有することとともに、携帯時の不意な落下や衝撃にも耐え得る充分な機械的強度を有する絶縁基板が求められている。
【0003】
そして、従来より用いられてきたアルミナ質セラミックスからなる絶縁基板にかわり、アルミナよりも低誘電率化が可能なガラス成分とフィラー成分とを混合して形成された低温焼成磁器が開発されているが、例えば、下記に示す特許文献1によれば、SiO、Al、Bおよびアルカリ土類金属酸化物等を含有するガラス粉末とアルミナ粉末とを混合したものを焼成し、結晶相としてストロンチウム長石を析出させることにより、絶縁基板の低誘電率化および高強度化が図られている。
【0004】
【特許文献1】
特開平7−58454号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上述した特許文献1に記載された低温焼成磁器は、比誘電率は最低で5まで低くなっているものの、機械的強度が未だ低いという問題があった。他方、磁器を高強度化する試みも行われているが、この場合には依然として比誘電率が高いものであった。
【0006】
従って、本発明は、低誘電率化とともに、特に、機械的強度の高い低温焼成磁器とそれを用いた配線基板を提供することを目的とすることにある。
【0007】
【課題を解決するための手段】
本発明者らは、上記課題に対して検討を重ねた結果、SiOを30〜45モル%とBを1〜20モル%とAlを1〜20モル%とMgOを30〜45モル%とからなるガラス成分とアルミナとを含む組成物を焼成することによって、得られる低温焼成磁器の抗折強度を高めつつ、高周波領域における比誘電率を7.5よりも低くすることができることを見出し、本発明に至った。
【0008】
即ち、本発明の低温焼成磁器組成物は、SiOを30〜45モル%とBを1〜20モル%とAlを1〜20モル%とMgOを30〜45モル%とを総量で99モル%以上含むガラス成分を15〜70体積%と、アルミナを15〜55体積%の割合で含有することを特徴とする。
【0009】
そして、本発明の低温焼成磁器は上記の低温焼成磁器組成物を850〜1050℃で焼成してなることを特徴とする。
【0010】
このような構成によれば、低温焼成磁器の比誘電率を7.5よりも低くでき、また、このような低温焼成磁器を用いることにより携帯時の不意な落下や衝撃にも耐え得る充分な機械的強度を有する絶縁基板を得ることができる。
【0011】
上記低温焼成磁器では、磁器中に結晶相として、少なくともコーディライト及びサフィリンを含有してなることが望ましい。
【0012】
低温焼成磁器中に、結晶相として少なくともコーディライト及びサフィリンを含有させることにより、1GHzにおける比誘電率を低くでき、さらには磁器の機械的強度(抗折強度)をも高めることができる。
【0013】
上記低温焼成磁器では、前記低温焼成磁器のX線回折測定における前記コーディライトの(2 2 2)回折ピーク強度をC、前記サフィリンの(−2 5 2)回折ピーク強度をSとしたとき、S/Cで表されるピーク比が0.1以上であることが望ましい。
【0014】
低温焼成磁器中に形成されるコーディライトとサフィリンの関係において、サフィリンの生成比率を多くすることにより、磁器を低誘電率化できかつ機械的強度をさらに高めることができる。
【0015】
本発明の配線基板は、セラミック絶縁層が多層に積層された絶縁基板の表面及び/または内部にメタライズ配線層が配設されている配線基板において、前記セラミックス絶縁層のうち少なくとも1層が上記の低温焼成磁器からなることを特徴とする。本発明の低誘電率かつ高強度の低温焼成磁器を用いて配線基板を形成することにより伝送特性が高くかつ実装や製品の落下衝撃耐性に優れた配線基板を形成できる。
【0016】
【発明の実施の形態】
本発明の低温焼成磁器は、基本成分としてガラス成分とフィラー成分とから構成されるものである。
【0017】
ガラス成分は、そのガラス成分中にSiOを30〜45モル%とBを1〜20モル%とAlを1〜20モル%とMgOを30〜45モル%とを総量で99モル%以上含有することを特徴とするものである。
【0018】
また、ガラス成分自体の比誘電率を低くするという点で、SiOは35〜40モル%、Bは13〜18モル%、Alは7〜12モル%、MgOは33〜40モル%であることが望ましい。
【0019】
さらに、本発明の低温焼成磁器を構成するガラス成分中には、磁器の比誘電率や機械的強度を劣化させなければ上記のSiO、Al、MgO以外に、不可避不純物を含有してもよい。
【0020】
なお、ガラス成分中に含まれるSiO、B、AlおよびMgOの割合を上記範囲に限定したのは、SiOが45モル%より多いか、Bが20モル%より多いか、Alが1モル%より少ないか、MgOが30モル%より少ないと、ガラスのヤング率乃至は強度が低くなる傾向にあり、磁器の高強度化が困難となるためであり、また、SiOが30モル%より少ないか、Bが1モル%より少ないか、Alが20モル%より多いか、MgOが45モル%より多いと、ガラス成分の比誘電率が高くなる傾向にあり、磁器の比誘電率を7.5よりも低くすることが困難となるためである。また、後者の場合、ガラス化も困難となる傾向がある。
【0021】
また、ガラス成分を主として構成するSiO、B、AlおよびMgOの総量としては、比誘電率を低くしかつ機械的強度を高めるという本発明の低温焼成磁器の特性を向上させるという理由から99モル%以上、特に99.5モル%以上であることが望ましい。なお、本発明の低温焼成磁器を構成するガラス成分は、磁器の比誘電率および機械的強度に影響を与えない程度であれば製造工程中に混入してくる不可避不純物を含有しても差し支えない。
【0022】
また、前記ガラス以外のガラス成分としてはアルミナよりも比誘電率の低いガラスであることが望ましく、例えば、ホウ珪酸ガラス、クォーツ結晶化ガラス、コーディライト結晶化ガラス、エンスタタイト結晶化ガラス、フォルステライト結晶化ガラス、ムライト結晶化ガラス、ジオプサイド結晶化ガラス、アノーサイト結晶化ガラス等が挙げられる。
【0023】
また、本発明の低温焼成磁器中にはフィラー成分としてアルミナを含有することが重要である。これは本発明のガラス成分とともに、ガラス成分との濡れ性がよく比較的低誘電率で高ヤング率を示すアルミナを含有させることにより本発明の低温焼成磁器磁器の比誘電率を低く抑えかつ機械的強度を高めることができる。
【0024】
また、本発明の低温焼成磁器組成物中には、前記アルミナ以外に他のフィラーを含有してもよいが、この場合、アルミナより比誘電率の低い金属酸化物であることが望ましく、例えば、クオーツ(SiO )、コーディライト(2MgO・2Al・5SiO )、エンスタタイト(MgO・SiO )、フォルステライト(2MgO・SiO )、ムライト(3Al・2SiO )、ジオプサイド(CaO・MgO・2SiO )、アノーサイト(CaO・Al・2SiO)等の金属酸化物が挙げられる。これらの中でも、クオーツ、コーディライトが磁器の低誘電率化を図る上で望ましい。
【0025】
また、本発明の低温焼成磁器組成物においては、低誘電率及び高強度を得るという理由から前記ガラス成分が15〜70体積%、フィラー成分としてアルミナ15〜55体積%の割合で含有することが重要であり、特には、ガラス成分量が54〜59体積%、アルミナが30〜46体積%であることがより望ましい。ガラス成分が15体積%より少ないかまたはアルミナが55体積%より多い場合には焼結性が低下しボイドの多い磁器しか得られず比誘電率も高くなる。
【0026】
一方、ガラス成分が70体積%より多いかまたはアルミナが15体積%より少ない場合には過剰なガラス成分のために焼成時に溶融しやすくなり機械的強度も低下し実装工程などにおいてクラックが発生しやすくなる。
【0027】
上述したようにガラス成分とアルミナとを上記のような割合で構成した本発明の低温焼成磁器中には、結晶相として、少なくともコーディライト(2MgO・2Al・5SiO)及び/またはサフィリン(4MgO・5Al・2SiO)を含有していることが望ましく、特に、前記低温焼成磁器のX線回折測定における前記コーディライトの(2 2 2)回折ピーク強度をC、前記サフィリンの(−2 5 2)回折ピーク強度をSとしたとき、S/Cで表されるピーク比が0.1以上であることが望ましく、0.13以上、特に、0.17以上、0.21以上、さらには0.33以上であることがより望ましい。
【0028】
磁器中にコーディライトおよび/またはサフィリンを含有することによって比誘電率をさらに低くできかつ機械的強度を高めることができる。上述したように、本磁器中においては前記コーディライトおよびサフィリンが析出する際に、磁器の比誘電率を低下させることができるため、前記低温焼成磁器の平均抗折強度を従来使用されているアルミナ等の磁器と同等にできる。
【0029】
そして、本発明の低温焼成磁器では、1GHzにおける比誘電率は7.5よりも低くでき、機械的強度は240MPa以上に高めることができる。特に、本発明の低温焼成磁器では、同周波数において比誘電率が7.3以下、さらに7.1以下、一方、機械的強度が280MPa以上、300MPa以上、特に、310MPa以上がより望ましい。
【0030】
また、本発明の低温焼成磁器は、上記のように機械的強度を高めさらに配線基板としての耐湿性を向上させるという理由から、磁器の表面および/または内部に形成される気孔は最大径が10μm以下であることが望ましく、特に、5μm以下がより望ましい。本発明では、磁器中に結晶相としてコージエライトおよびサフィリンを含有させることにより緻密化した場合にも低い比誘電率が得られかつ高強度化できる。
【0031】
次に、本発明の低温焼成磁器を作製するための方法について説明する。
【0032】
まず、出発原料として、上記のガラス成分となるガラス粉末と、フィラー成分となるアルミナ粉末とを、焼成温度や熱膨張係数等の目的に応じて、前述した所定の比率で混合する。
【0033】
本発明では、かかる低温焼成磁器中のボイドの最大径を小さくし焼結性を高めるという理由から、この磁器にかかるガラス粉末の平均粒径は0.1〜5μm、特に、1〜3μm、一方、アルミナ粉末の平均粒径は0.1〜5μm、特に、1〜3μmであることが望ましい。
【0034】
また、本発明において用いられる上記ガラス粉末は、フィラー粉末であるアルミナを添加しない場合には、焼成収縮開始温度は800℃以下で900℃以上では溶融してしまいメタライズ配線層等を配設することができない。しかし、アルミナを混合することにより焼成過程において結晶の析出が起こり、アルミナを液相焼結させるための液相を適切な温度で形成させることができる。
【0035】
また、成形体全体の収縮開始温度を上昇させることができるため、かかるアルミナ粉末の含有量の調整により、用いる金属の種類によりメタライズ配線層との同時焼成条件のマッチングを図ることができる。
【0036】
また、アルミナ粉末の配合量は、上記ガラス粉末の屈伏点に応じ、その配合量を適宜調整することが望ましい。屈伏点とは、ガラスが急激に溶融して最も大きな体積変化を示す温度範囲の中心の温度をいい、通常、ガラス転移点よりも30〜60℃高い温度である。即ち、ガラス粉末の屈伏点が550〜700℃と低い場合には、低温での焼結性が高まるため、アルミナ量は40〜70体積%と比較的多く配合できる。これに対して、ガラス粉末の屈伏点が700〜850℃と高い場合には、焼結性が低下するためアルミナ量は20〜50体積%と比較的少量配合することが望ましい。ここで用いるアルミナはフィラー粉末の原料コストを低減するという理由から中実球であることが望ましい。
【0037】
また、本発明の低温焼成磁器は、着色成分として、酸化クロム、酸化コバルト、酸化マンガン、酸化ニッケル、酸化鉄および酸化銅の群から選ばれる少なくとも1種を、上記のガラス粉末とアルミナとの混合物100体積%に対して1体積%以下の割合で配合しても良い。
【0038】
本発明によれば、上記のように配合されたガラス粉末とアルミナ粉末との混合物に、適当な成形の有機バインダを添加した後、所望の成形手段、例えば、ドクターブレード、圧延法、金型プレス等により所定の形状に成形後、焼成する。
【0039】
焼成にあたっては、まず、成形のために配合した有機バインダ成分を除去する。有機バインダの除去は、700℃前後の大気雰囲気中または窒素雰囲気中で行われる。この時、成形体の収縮開始温度は700〜850℃程度であることが望ましく、かかる収縮開始温度がこれより低いと有機バインダの除去が困難となるため、成形体中のガラス成分の特性、特に、屈伏点を前述したように制御することが望ましい。
【0040】
焼成は、850℃〜1050℃の酸化性雰囲気中または非酸化性雰囲気中で行われる。この時の焼成温度が850℃より低いと緻密化することが難しく、さらに1050℃を越えると後述する配線基板を作製する場合に、銅や銀などのメタライズ配線層との同時焼成が難しくなる。特に、900〜1000℃、さらには、900〜975℃の温度範囲で焼成することが望ましい。
【0041】
即ち、本発明においては、上記の範囲の平均粒径を有するガラス粉末とアルミナ粉末とを混合したものを用いることにより磁器中の気孔を低減することができ、さらに磁器中にコージェライトおよび/またはサフィリンという特定の低誘電率の結晶相を析出させることにより、低誘電率かつ高強度の低温焼成磁器を得ることができる。
【0042】
図1は本発明の低温焼成磁器の応用例として、配線基板、とりわけ、BGA型の半導体素子収納用パッケージとその実装構造の一実施例を示す概略断面図である。このパッケージは、絶縁基板の表面あるいは内部にメタライズ配線層が配設された、いわゆる配線基板を基礎的構造とするものであり、Aは半導体素子収納用パッケージ、Bは外部回路基板をそれぞれ示す。
【0043】
半導体素子収納用パッケージAは、絶縁基板1と蓋体2とメタライズ配線層3と接続端子4により構成され、絶縁基板1及び蓋体2は半導体素子5を内部に気密に収容するためのキャビティ6を形成する。そして、キャビティ6内にて半導体素子5は、ガラス、樹脂等の接着材を介して絶縁基板1に接着固定される。
【0044】
また、絶縁基板1の表面および内部には、メタライズ配線層3が配設されており、半導体素子5と絶縁基板1の下面に形成された接続端子4と電気的に接続するように配設されている。図1のパッケージによれば、接続端子4は、接続パッド4aを介して高融点の半田(錫−鉛合金)から成るボール状端子4bがロウ材により取着されている。
【0045】
一方、外部回路基板Bは、絶縁体7と配線導体8により構成されており、絶縁体7は、少なくとも有機樹脂を含む絶縁材料からなり、具体的には、ガラス−エポキシ系複合材料などのように40〜400℃の線熱膨張係数が12〜16×10−6/℃の特性を有し、一般にはプリント基板等が用いられる。また、この基板Bの表面に形成される配線導体8は、絶縁体7との熱膨張係数の整合性と、良電気伝導性の点で、通常、Cu、Au、Ag、Al、Ni、Pb−Sn等の金属導体からなる。
【0046】
半導体素子収納用パッケージAを外部回路基板Bに実装するには、パッケージAの絶縁基板1下面のボール状端子4bを外部回路基板Bの配線導体8上に載置当接させ、しかる後、低融点の半田等のロウ材により約250〜400℃の温度で半田を溶融させて配線導体とボール状端子4bとを接合することにより、実装される。この時、配線導体8の表面にはボール状端子4bとのロウ材による接続を容易に行うために予めロウ材が被着形成されていることが望ましい。
【0047】
本発明によって、高強度、低誘電率を有する低温焼成磁器を用いて構成される多層配線基板は、従来使用されているアルミナ等の多層配線基板と同様、機械的特性に優れ、信頼性が高く有用であり、さらに、誘電特性に優れ、高周波信号を扱う上でも、誘電体損失による信号減衰を抑えることが可能である。
【0048】
【実施例】
以下、本発明の低温焼成磁器およびそれを用いた配線基板について実施例に基づき具体的に説明する。まず、ガラス粉末として、表1に示す2種類のガラス粉末と、フィラーとしてアルミナ粉末とクオーツとを用意し、表2に示す割合になるように秤量混合した。ガラス粉末の平均粒径は3μm、アルミナおよびクオーツの平均粒径は1μmとした。
【0049】
次に、この混合物を粉砕後、有機バインダ、有機溶剤を添加し十分混合してスラリーを作製しドクターブレード法により厚み300μmのグリーンシートを作製した。
【0050】
得られたグリーンシートを8枚及び15枚積層圧着した後、60mm×60mm×2.4mm及び5.5mm×60mm×4.5mmのサンプルを作製し、700℃の水蒸気を含有する窒素雰囲気中にて脱バインダ処理後、表2に示す焼成温度×1時間の窒素雰囲気中にて焼成を行った。
【0051】
次に、上記のようにして得られた低温焼成磁器に対して、1GHzにおける比誘電率及び三点曲げ抗折強度を測定した。また、この低温焼成磁器に対して、X線回折測定を行いX線回折パターンより結晶相の同定を行った。さらに、コーディライトおよびサフィリンが検出された試料に関しては、コーディライトの(22 2)回折ピークの強度Cとサフィリンの(−2 5 2)回折ピークの強度Sとの比S/Cを求めた。その結果を表2に示した。
【0052】
【表1】

Figure 2004256345
【0053】
【表2】
Figure 2004256345
【0054】
表2の結果から明らかなように、本発明の試料No.2〜8、11、12、14、15では、何れも1GHzにおける比誘電率が7.3と低くなり、かつ、抗折強度が240MPa以上と高かった。これに焼成温度を900〜975℃とした本発明の試料No.3〜8、および14では、何れもコーディライトおよびサフィリンが検出され、そのX線回折におけるピーク強度比S/Cが0.17以上となり、1GHzにおける比誘電率を7以下で抗折強度を285MPa以上にできた。特に、試料No.6、7では、X線回折におけるピーク強度比S/Cが0.33以上となり、比誘電率は6.9以下とさらに低くでき、かつ、機械的強度を315MPa以上にまで高めることができた。
【0055】
一方、磁器の組成範囲を本発明の範囲外とした試料No.1、9、10、13では、焼成後の磁器が未焼結かまたは過焼結となった。または比誘電率が高いかまたは低い抗折強度しか得られなかった。
【0056】
【発明の効果】
以上詳述したように、本発明の低温焼成磁器組成物及び低温焼成磁器では、SiO、B、AlおよびMgOを主成分として含むガラス成分とアルミナとを所定の割合で組み合わせることにより磁器の低誘電率化を図ることができる。特に、磁器中に少なくともコーディライト及び/またはサフィリンを含有させることにより、低誘電率かつ高強度化を図ることができる。
【0057】
また、このような低温焼成磁器を用いることにより、高周波信号を扱う上でも、誘電損失による信号減衰を抑えかつ落下試験等によるクラックの発生を防止できる配線基板を形成できる。
【図面の簡単な説明】
【図1】本発明の多層配線基板の一実施例を説明するための概略断面図である。
【符号の説明】
1 絶縁基板
2 蓋体
3 メタライズ配線層
4 接続端子
4a 電極パッド
4b ボール状端子
5 半導体素子
6 キャビティ
7 絶縁体
8 配線導体
9 電極層
10 ビアホール導体
A 半導体素子収納用パッケージ
B 外部電気回路基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-temperature fired porcelain composition, a low-temperature fired porcelain, and a wiring board, and more particularly, to a low-temperature fired porcelain having a low dielectric constant and high strength, and a wiring used for a semiconductor element housing package using the same as an insulating layer. It relates to a substrate.
[0002]
[Prior art]
2. Description of the Related Art In recent years, mobile devices such as mobile phones and PDAs have rapidly developed as electronic devices such as optical communication and high-speed interfaces that process high-frequency signals of GHz level or higher. Wiring boards used in such electronic devices, etc., have a lower relative dielectric constant to suppress attenuation of transmission signals due to dielectric loss, and can withstand unexpected drops and shocks when carrying. There is a need for an insulating substrate having sufficient mechanical strength.
[0003]
A low-temperature fired porcelain formed by mixing a glass component and a filler component, which can have a lower dielectric constant than alumina, has been developed in place of the insulating substrate made of alumina ceramics which has been conventionally used. For example, according to Patent Literature 1 shown below, a mixture of a glass powder containing SiO, Al 2 O 3 , B 2 O 3, an alkaline earth metal oxide and the like and an alumina powder is fired to crystallize. By depositing strontium feldspar as a phase, the dielectric constant and strength of the insulating substrate have been reduced.
[0004]
[Patent Document 1]
JP-A-7-58454 [0005]
[Problems to be solved by the invention]
However, the low-temperature fired porcelain described in Patent Document 1 described above has a problem that the relative dielectric constant is as low as 5 at the minimum, but the mechanical strength is still low. On the other hand, attempts have been made to increase the strength of the porcelain, but in this case, the relative dielectric constant was still high.
[0006]
Accordingly, an object of the present invention is to provide a low-temperature fired porcelain having high mechanical strength and a wiring board using the same, in addition to a low dielectric constant.
[0007]
[Means for Solving the Problems]
The present inventors have repeatedly studied the above problem, and found that 30 to 45 mol% of SiO 2 , 1 to 20 mol% of B 2 O 3 , 1 to 20 mol% of Al 2 O 3 , and MgO By firing a composition containing 30 to 45 mol% of a glass component and alumina, the relative dielectric constant in a high-frequency region is made lower than 7.5 while increasing the transverse rupture strength of the obtained low-temperature fired porcelain. The inventors have found that the present invention can be performed, and have reached the present invention.
[0008]
That is, the low-temperature fired ceramic composition of the present invention, the SiO 2 30-45 mole% and B 2 O 3 1 to 20 mol% and Al 2 O 3 20 mol% and MgO 30-45 mole% 15 to 70% by volume of a glass component containing 99 mol% or more in total, and 15 to 55% by volume of alumina.
[0009]
The low-temperature fired porcelain of the present invention is characterized by firing the above low-temperature fired porcelain composition at 850 to 1050 ° C.
[0010]
According to such a configuration, the relative dielectric constant of the low-temperature fired porcelain can be made lower than 7.5, and by using such low-temperature fired porcelain, it is possible to withstand an unexpected drop or impact when carrying. An insulating substrate having mechanical strength can be obtained.
[0011]
In the low-temperature fired porcelain, it is desirable that the porcelain contains at least cordierite and sapphirine as a crystal phase.
[0012]
By including at least cordierite and sapphirine as crystal phases in the low-temperature fired porcelain, the relative dielectric constant at 1 GHz can be reduced, and the mechanical strength (flexural strength) of the porcelain can also be increased.
[0013]
In the low-temperature fired porcelain, when the (22 2) diffraction peak intensity of the cordierite in the X-ray diffraction measurement of the low-temperature fired ceramic is C and the (−25 2) diffraction peak intensity of the sapphirine is S, It is desirable that the peak ratio represented by / C be 0.1 or more.
[0014]
Regarding the relationship between cordierite and sapphirine formed in low-temperature fired porcelain, the porcelain can be made to have a low dielectric constant and the mechanical strength can be further increased by increasing the production ratio of sapphirine.
[0015]
According to a wiring board of the present invention, in a wiring board in which a metallized wiring layer is disposed on a surface and / or inside of an insulating substrate in which ceramic insulating layers are stacked in multiple layers, at least one of the ceramic insulating layers is as described above. It is characterized by being made of low-temperature fired porcelain. By forming a wiring board using the low-permittivity and high-strength low-temperature fired porcelain of the present invention, it is possible to form a wiring board having high transmission characteristics and excellent resistance to mounting and drop impact of products.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The low-temperature fired porcelain of the present invention comprises a glass component and a filler component as basic components.
[0017]
The glass component is a total of 30 to 45 mol% of SiO 2 , 1 to 20 mol% of B 2 O 3 , 1 to 20 mol% of Al 2 O 3 , and 30 to 45 mol% of MgO in the glass component. And at least 99 mol%.
[0018]
Further, in terms of lowering the relative dielectric constant of the glass component itself, SiO 2 is 35 to 40 mol%, B 2 O 3 is 13 to 18 mol%, Al 2 O 3 is 7 to 12 mol%, and MgO is 33 to 33 mol%. Desirably, it is about 40 mol%.
[0019]
Further, in the glass component constituting the low-temperature fired porcelain of the present invention, in addition to the above-mentioned SiO 2 B 2 O 3 , Al 2 O 3 and MgO, unless the relative dielectric constant and mechanical strength of the porcelain are deteriorated, inevitable. It may contain impurities.
[0020]
The ratio of SiO 2 , B 2 O 3 , Al 2 O 3 and MgO contained in the glass component was limited to the above range because SiO 2 was more than 45 mol% or B 2 O 3 was 20 mol. %, Al 2 O 3 is less than 1 mol%, or MgO is less than 30 mol%, the Young's modulus or strength of the glass tends to be low, and it is difficult to increase the strength of the porcelain. If the content of SiO 2 is less than 30 mol%, the content of B 2 O 3 is less than 1 mol%, the content of Al 2 O 3 is more than 20 mol%, or the content of MgO is more than 45 mol%, the glass component This is because the relative permittivity of the porcelain tends to increase, and it is difficult to make the relative permittivity of the porcelain lower than 7.5. In the latter case, vitrification tends to be difficult.
[0021]
Further, the total amount of SiO 2 , B 2 O 3 , Al 2 O 3 and MgO, which mainly constitute the glass component, improves the characteristics of the low-temperature fired porcelain of the present invention in that the relative dielectric constant is reduced and the mechanical strength is increased. For this reason, the content is desirably 99 mol% or more, particularly preferably 99.5 mol% or more. The glass component constituting the low-temperature fired porcelain of the present invention may contain unavoidable impurities that are mixed during the manufacturing process as long as it does not affect the relative dielectric constant and mechanical strength of the porcelain. .
[0022]
Further, it is desirable that the glass component other than the glass be a glass having a lower dielectric constant than alumina, such as borosilicate glass, quartz crystallized glass, cordierite crystallized glass, enstatite crystallized glass, and forsterite. Crystallized glass, mullite crystallized glass, diopside crystallized glass, anorthite crystallized glass, and the like.
[0023]
It is important that the low-temperature fired porcelain of the present invention contains alumina as a filler component. This is because, together with the glass component of the present invention, alumina having good wettability with the glass component and having a relatively low dielectric constant and a high Young's modulus is contained, thereby lowering the relative dielectric constant of the low-temperature fired porcelain porcelain of the present invention and reducing mechanical properties. Target strength can be increased.
[0024]
Further, the low-temperature fired porcelain composition of the present invention may contain other fillers in addition to the alumina, but in this case, a metal oxide having a lower relative dielectric constant than alumina is desirable, for example, quartz (SiO 2), cordierite (2MgO · 2Al 2 O 3 · 5SiO 2), enstatite (MgO · SiO 2), forsterite (2MgO · SiO 2), mullite (3Al 2 O 3 · 2SiO 2 ), Jiopusaido (CaO · MgO · 2SiO 2) , a metal oxide such as anorthite (CaO · Al 2 O 3 · 2SiO 2) and the like. Among these, quartz and cordierite are desirable for lowering the dielectric constant of porcelain.
[0025]
Further, in the low-temperature fired porcelain composition of the present invention, the glass component may be contained at a ratio of 15 to 70% by volume and alumina as a filler component at a ratio of 15 to 55% by volume for obtaining a low dielectric constant and high strength. This is important, and in particular, it is more preferable that the amount of the glass component is 54 to 59% by volume and that of the alumina is 30 to 46% by volume. When the glass component is less than 15% by volume or the alumina is more than 55% by volume, the sinterability is reduced, only a porcelain with a large number of voids is obtained, and the relative dielectric constant is increased.
[0026]
On the other hand, when the glass component is more than 70% by volume or the alumina is less than 15% by volume, the glass is excessively melted and easily melted at the time of firing, so that the mechanical strength is reduced and cracks are easily generated in a mounting process or the like. Become.
[0027]
A glass component and alumina as described above in a low temperature firing in ceramic of the present invention constructed in the above amount is, as a crystal phase, at least cordierite (2MgO · 2Al 2 O 3 · 5SiO 2) and / or sapphirine (4MgO.5Al 2 O 3 .2SiO 2 ) is desirable, and in particular, the X-ray diffraction measurement of the cordierite in the low-temperature fired porcelain has a (2 2 2) diffraction peak intensity of C, (−25 2) When the diffraction peak intensity is S, the peak ratio represented by S / C is desirably 0.1 or more, preferably 0.13 or more, particularly 0.17 or more, and 0.21 or more. More preferably, it is more preferably 0.33 or more.
[0028]
By containing cordierite and / or sapphirine in the porcelain, the relative dielectric constant can be further reduced and the mechanical strength can be increased. As described above, in the present porcelain, when the cordierite and sapphirine are precipitated, the relative dielectric constant of the porcelain can be reduced. And so on.
[0029]
In the low-temperature fired porcelain of the present invention, the relative dielectric constant at 1 GHz can be lower than 7.5, and the mechanical strength can be increased to 240 MPa or more. In particular, in the low-temperature fired porcelain of the present invention, at the same frequency, the relative dielectric constant is preferably 7.3 or less, more preferably 7.1 or less, while the mechanical strength is more preferably 280 MPa or more, 300 MPa or more, and particularly 310 MPa or more.
[0030]
Further, in the low-temperature fired porcelain of the present invention, the pores formed on the surface and / or inside of the porcelain have a maximum diameter of 10 μm because the mechanical strength is increased as described above and the moisture resistance as a wiring board is improved. Or less, particularly preferably 5 μm or less. In the present invention, a low relative dielectric constant can be obtained and the strength can be increased even when densification is achieved by including cordierite and sapphirine as crystal phases in the porcelain.
[0031]
Next, a method for producing the low-temperature fired porcelain of the present invention will be described.
[0032]
First, as a starting material, the above-mentioned glass powder serving as a glass component and alumina powder serving as a filler component are mixed at the above-described predetermined ratio in accordance with the purpose such as a firing temperature and a coefficient of thermal expansion.
[0033]
In the present invention, the average particle size of the glass powder according to this porcelain is 0.1 to 5 μm, particularly 1 to 3 μm, because the maximum diameter of the voids in the low-temperature fired porcelain is reduced and the sinterability is enhanced. The average particle size of the alumina powder is preferably 0.1 to 5 μm, and more preferably 1 to 3 μm.
[0034]
Also, when the glass powder used in the present invention does not contain alumina as a filler powder, the firing shrinkage starting temperature is 800 ° C. or less and melts at 900 ° C. or more, so that a metallized wiring layer or the like is provided. Can not. However, by mixing alumina, precipitation of crystals occurs during the firing process, and a liquid phase for liquid phase sintering of alumina can be formed at an appropriate temperature.
[0035]
In addition, since the shrinkage start temperature of the entire molded body can be increased, by adjusting the content of the alumina powder, it is possible to match the simultaneous firing conditions with the metallized wiring layer depending on the type of metal used.
[0036]
It is desirable that the amount of the alumina powder is appropriately adjusted according to the yield point of the glass powder. The yield point is the temperature at the center of the temperature range in which the glass rapidly melts and shows the largest volume change, and is usually a temperature 30 to 60 ° C. higher than the glass transition point. That is, when the yield point of the glass powder is as low as 550 to 700 ° C., the sinterability at a low temperature is enhanced, so that the alumina amount can be relatively large as 40 to 70% by volume. On the other hand, when the yield point of the glass powder is as high as 700 to 850 ° C., the sinterability is reduced. Therefore, it is desirable to mix the alumina in a relatively small amount of 20 to 50% by volume. The alumina used here is desirably a solid sphere because it reduces the raw material cost of the filler powder.
[0037]
Further, the low-temperature fired porcelain of the present invention is characterized in that at least one selected from the group consisting of chromium oxide, cobalt oxide, manganese oxide, nickel oxide, iron oxide and copper oxide is used as a coloring component, and a mixture of the above glass powder and alumina. You may mix | blend in the ratio of 1 volume% or less with respect to 100 volume%.
[0038]
According to the present invention, after adding an organic binder of appropriate molding to a mixture of the glass powder and the alumina powder blended as described above, desired molding means, for example, a doctor blade, a rolling method, a mold press After being formed into a predetermined shape by, for example, baking.
[0039]
In firing, first, the organic binder component blended for molding is removed. The removal of the organic binder is performed in an air atmosphere at about 700 ° C. or in a nitrogen atmosphere. At this time, the shrinkage start temperature of the molded body is desirably about 700 to 850 ° C. If the shrinkage start temperature is lower than this, it becomes difficult to remove the organic binder. It is desirable to control the yield point as described above.
[0040]
The firing is performed in an oxidizing atmosphere at 850 ° C. to 1050 ° C. or in a non-oxidizing atmosphere. If the firing temperature at this time is lower than 850 ° C., it is difficult to achieve densification, and if it exceeds 1050 ° C., it becomes difficult to simultaneously fire with a metallized wiring layer of copper, silver, or the like when manufacturing a wiring board described later. In particular, firing at a temperature in the range of 900 to 1000 ° C, and more preferably 900 to 975 ° C is desirable.
[0041]
That is, in the present invention, pores in porcelain can be reduced by using a mixture of glass powder and alumina powder having an average particle diameter in the above range, and cordierite and / or By depositing a specific low dielectric constant crystal phase called saphirin, a low-temperature fired porcelain with low dielectric constant and high strength can be obtained.
[0042]
FIG. 1 is a schematic sectional view showing an embodiment of a wiring board, in particular, a BGA type semiconductor element housing package and its mounting structure as an application example of the low-temperature fired porcelain of the present invention. This package has a basic structure of a so-called wiring board in which a metallized wiring layer is disposed on the surface or inside of an insulating substrate. A indicates a semiconductor element storage package, and B indicates an external circuit board.
[0043]
The package A for housing a semiconductor element includes an insulating substrate 1, a lid 2, a metallized wiring layer 3, and a connection terminal 4. The insulating substrate 1 and the lid 2 are cavities 6 for hermetically housing the semiconductor element 5 therein. To form Then, the semiconductor element 5 is bonded and fixed to the insulating substrate 1 via an adhesive such as glass or resin in the cavity 6.
[0044]
A metallized wiring layer 3 is provided on the surface and inside of the insulating substrate 1 so as to be electrically connected to the semiconductor element 5 and the connection terminals 4 formed on the lower surface of the insulating substrate 1. ing. According to the package of FIG. 1, the connection terminal 4 has a ball-shaped terminal 4b made of a high-melting-point solder (tin-lead alloy) attached to the connection terminal 4a with a brazing material via a connection pad 4a.
[0045]
On the other hand, the external circuit board B is composed of an insulator 7 and a wiring conductor 8, and the insulator 7 is made of an insulating material containing at least an organic resin, and more specifically, a glass-epoxy composite material or the like. Has a coefficient of linear thermal expansion of 12 to 16 × 10 −6 / ° C. at 40 to 400 ° C., and a printed circuit board or the like is generally used. The wiring conductor 8 formed on the surface of the substrate B is usually made of Cu, Au, Ag, Al, Ni, Pb in terms of matching of the thermal expansion coefficient with the insulator 7 and good electric conductivity. -It is made of a metal conductor such as Sn.
[0046]
In order to mount the package A for storing semiconductor elements on the external circuit board B, the ball-shaped terminals 4b on the lower surface of the insulating substrate 1 of the package A are placed and abutted on the wiring conductors 8 of the external circuit board B. It is mounted by melting the solder at a temperature of about 250 to 400 ° C. with a brazing material such as a solder having a melting point and joining the wiring conductor and the ball-shaped terminal 4b. At this time, it is desirable that a brazing material is previously formed on the surface of the wiring conductor 8 in order to facilitate connection with the ball-shaped terminal 4b using the brazing material.
[0047]
According to the present invention, a multilayer wiring board configured using a low-strength sintered ceramic having a high strength and a low dielectric constant has excellent mechanical characteristics and high reliability, similarly to a multilayer wiring board such as a conventionally used alumina. It is useful, has excellent dielectric properties, and can suppress signal attenuation due to dielectric loss even when handling high-frequency signals.
[0048]
【Example】
Hereinafter, the low-temperature fired porcelain of the present invention and a wiring board using the same will be specifically described based on examples. First, two types of glass powders shown in Table 1 were prepared as glass powders, and alumina powder and quartz were prepared as fillers, and were weighed and mixed so as to have a ratio shown in Table 2. The average particle size of the glass powder was 3 μm, and the average particle size of alumina and quartz was 1 μm.
[0049]
Next, after pulverizing this mixture, an organic binder and an organic solvent were added and mixed well to prepare a slurry, and a green sheet having a thickness of 300 μm was prepared by a doctor blade method.
[0050]
After stacking and pressing 8 and 15 sheets of the obtained green sheets, samples of 60 mm × 60 mm × 2.4 mm and 5.5 mm × 60 mm × 4.5 mm were prepared and placed in a nitrogen atmosphere containing water vapor at 700 ° C. After the binder removal treatment, firing was performed in a nitrogen atmosphere at a firing temperature shown in Table 2 × 1 hour.
[0051]
Next, the relative permittivity and the three-point bending strength at 1 GHz of the low-temperature fired porcelain obtained as described above were measured. Further, X-ray diffraction measurement was performed on the low-temperature fired porcelain, and the crystal phase was identified from the X-ray diffraction pattern. Further, with respect to the sample in which cordierite and sapphirine were detected, the ratio S / C of the intensity C of the (222) diffraction peak of cordierite and the intensity S of the (−25 2) diffraction peak of sapphirine was determined. The results are shown in Table 2.
[0052]
[Table 1]
Figure 2004256345
[0053]
[Table 2]
Figure 2004256345
[0054]
As is clear from the results in Table 2, the sample No. of the present invention. In each of 2 to 8, 11, 12, 14, and 15, the relative dielectric constant at 1 GHz was as low as 7.3, and the transverse rupture strength was as high as 240 MPa or more. In addition, the sample No. of the present invention in which the firing temperature was 900 to 975 ° C. In each of 3 to 8, and 14, cordierite and sapphirine were detected, and the peak intensity ratio S / C in X-ray diffraction was 0.17 or more, the relative dielectric constant at 1 GHz was 7 or less, and the transverse rupture strength was 285 MPa. That's it. In particular, the sample No. In Examples 6 and 7, the peak intensity ratio S / C in X-ray diffraction was 0.33 or more, the relative dielectric constant could be further reduced to 6.9 or less, and the mechanical strength could be increased to 315 MPa or more. .
[0055]
On the other hand, the sample No. in which the composition range of the porcelain was outside the range of the present invention. In 1, 9, 10, and 13, the sintered porcelain was unsintered or over-sintered. Alternatively, only a high or low transverse rupture strength was obtained.
[0056]
【The invention's effect】
As described in detail above, in the low-temperature fired porcelain composition and low-temperature fired porcelain of the present invention, the glass component containing SiO 2 , B 2 O 3 , Al 2 O 3, and MgO as main components and alumina at a predetermined ratio. The combination can reduce the dielectric constant of the porcelain. In particular, by including at least cordierite and / or sapphirine in the porcelain, a low dielectric constant and high strength can be achieved.
[0057]
Further, by using such a low-temperature fired porcelain, it is possible to form a wiring board that can suppress signal attenuation due to dielectric loss and prevent cracks due to a drop test or the like even when handling high-frequency signals.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view for explaining one embodiment of a multilayer wiring board of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 insulating substrate 2 lid 3 metallized wiring layer 4 connection terminal 4 a electrode pad 4 b ball-shaped terminal 5 semiconductor element 6 cavity 7 insulator 8 wiring conductor 9 electrode layer 10 via-hole conductor A semiconductor element storage package B external electric circuit board

Claims (5)

SiOを30〜45モル%とBを1〜20モル%とAlを1〜20モル%とMgOを30〜45モル%とを総量で99モル%以上含むガラス成分を15〜70体積%と、アルミナを15〜55体積%の割合で含有することを特徴とする低温焼成磁器組成物。A glass component comprising SiO 2 30-45 mole% and B 2 O 3 1 to 20 mol% and Al 2 O 3 of 20 mol% and MgO 99 mole% or more in total and 30 to 45 mole% A low-temperature fired porcelain composition comprising 15 to 70% by volume and 15 to 55% by volume of alumina. 請求項1に記載の前記低温焼成磁器組成物を850〜1050℃で焼成してなることを特徴とする請求項1に記載の低温焼成磁器。The low-temperature fired porcelain according to claim 1, wherein the low-temperature fired porcelain composition according to claim 1 is fired at 850 to 1050C. 前記低温焼成磁器中に結晶相として、少なくともコーディライト及びサフィリンを含有してなることを特徴とする請求項2に記載の低温焼成磁器。The low-temperature fired porcelain according to claim 2, wherein the low-temperature fired porcelain contains at least cordierite and sapphirine as a crystal phase. 前記低温焼成磁器のX線回折測定における前記コーディライトの(2 2 2)回折ピーク強度をC、前記サフィリンの(−2 5 2)回折ピーク強度をSとしたとき、S/Cで表されるピーク比が0.1以上であることを特徴とする請求項2または請求項3に記載の低温焼成磁器。When the (22 2) diffraction peak intensity of the cordierite in the X-ray diffraction measurement of the low-temperature fired porcelain is C and the (−25 2) diffraction peak intensity of the sapphirine is S, it is expressed by S / C. The low-temperature fired porcelain according to claim 2 or 3, wherein a peak ratio is 0.1 or more. セラミック絶縁層が多層に積層された絶縁基板の表面及び/または内部にメタライズ配線層が配設されている配線基板において、前記セラミック絶縁層のうち少なくとも1層が請求項2乃至4のうちいずれか記載の低温焼成磁器からなることを特徴とする配線基板。5. A wiring board in which a metallized wiring layer is provided on a surface and / or inside of an insulating substrate in which ceramic insulating layers are stacked in multiple layers, wherein at least one of the ceramic insulating layers is any one of claims 2 to 4. A wiring substrate comprising the low-temperature fired porcelain according to any one of the preceding claims.
JP2003048235A 2003-02-25 2003-02-25 Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board Expired - Fee Related JP4540297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003048235A JP4540297B2 (en) 2003-02-25 2003-02-25 Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003048235A JP4540297B2 (en) 2003-02-25 2003-02-25 Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board

Publications (2)

Publication Number Publication Date
JP2004256345A true JP2004256345A (en) 2004-09-16
JP4540297B2 JP4540297B2 (en) 2010-09-08

Family

ID=33114231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003048235A Expired - Fee Related JP4540297B2 (en) 2003-02-25 2003-02-25 Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board

Country Status (1)

Country Link
JP (1) JP4540297B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168928A1 (en) 2008-09-26 2010-03-31 TDK Corporation Glass Ceramic Substrate
JP2013043797A (en) * 2011-08-23 2013-03-04 Noritake Co Ltd Insulating film composition
WO2019035212A1 (en) * 2017-08-18 2019-02-21 日本碍子株式会社 Sintered body, circuit component, and method for manufacturing sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582963A (en) * 1985-05-30 1993-04-02 Narumi China Corp Manufacture of ceramic substrate baked at low temperature
JPH0616470A (en) * 1992-03-30 1994-01-25 Sumitomo Metal Ind Ltd Ceramic substrate and its production
JPH10209334A (en) * 1996-12-11 1998-08-07 Toray Ind Inc Ceramic substrate and its manufacture
JP2002111210A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board and its manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0582963A (en) * 1985-05-30 1993-04-02 Narumi China Corp Manufacture of ceramic substrate baked at low temperature
JPH0616470A (en) * 1992-03-30 1994-01-25 Sumitomo Metal Ind Ltd Ceramic substrate and its production
JPH10209334A (en) * 1996-12-11 1998-08-07 Toray Ind Inc Ceramic substrate and its manufacture
JP2002111210A (en) * 2000-09-28 2002-04-12 Kyocera Corp Wiring board and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2168928A1 (en) 2008-09-26 2010-03-31 TDK Corporation Glass Ceramic Substrate
JP2013043797A (en) * 2011-08-23 2013-03-04 Noritake Co Ltd Insulating film composition
WO2019035212A1 (en) * 2017-08-18 2019-02-21 日本碍子株式会社 Sintered body, circuit component, and method for manufacturing sintered body
CN110997597A (en) * 2017-08-18 2020-04-10 日本碍子株式会社 Sintered body, circuit element, and method for producing sintered body
US11332410B2 (en) 2017-08-18 2022-05-17 Ngk Insulators, Ltd. Sintered compact, circuit component, and method of producing sintered compact
CN110997597B (en) * 2017-08-18 2023-06-20 日本碍子株式会社 Sintered body, circuit element, and method for manufacturing sintered body

Also Published As

Publication number Publication date
JP4540297B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
JP5056528B2 (en) Insulator ceramic composition and insulator ceramic using the same
JP3793560B2 (en) Low-temperature fired porcelain and manufacturing method thereof
JP2001114554A (en) Low-temperature burnable ceramic composition and ceramic multilayer substrate
JP2006282474A (en) Glass ceramic sintered compact, its production method, and wiring board using the same
JP4540297B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3377898B2 (en) Low temperature firing porcelain composition
JP3559407B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
JP2001261432A (en) Porcelain composition for high-frequency and porcelain for high-frequency
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP4395320B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain, and wiring board
JP3523590B2 (en) Low temperature fired porcelain composition, low temperature fired porcelain, and wiring board using the same
JP3865967B2 (en) Porcelain and wiring board using the same
JP3441924B2 (en) Wiring board and its mounting structure
JP3363299B2 (en) Low temperature firing porcelain composition
JP3827491B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing high frequency porcelain
JP2003040670A (en) High thermal expansion ceramic composition, high thermal expansion ceramic and its manufacturing method, and multilayer wiring substrate and its mounting structure
JP3556475B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP2004231454A (en) Low temperature fired porcelain and wiring board
JP2005015284A (en) Low temperature-fired porcelain, its production method, and wiring board
JP3441950B2 (en) Wiring board and its mounting structure
JP2002020162A (en) Glass ceramic sintered body and wiring board using the same
JP2005101095A (en) Porcelain composition, porcelain, and its manufacturing method
JP4044752B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP2008105916A (en) Low temperature fired porcelain, its manufacturing method and wiring board using the same
JP4632472B2 (en) Copper conductor composition and wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4540297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees