JP2004255481A - Carbon nanotube/polymer compound material, and manufacturing method thereof - Google Patents

Carbon nanotube/polymer compound material, and manufacturing method thereof Download PDF

Info

Publication number
JP2004255481A
JP2004255481A JP2003046646A JP2003046646A JP2004255481A JP 2004255481 A JP2004255481 A JP 2004255481A JP 2003046646 A JP2003046646 A JP 2003046646A JP 2003046646 A JP2003046646 A JP 2003046646A JP 2004255481 A JP2004255481 A JP 2004255481A
Authority
JP
Japan
Prior art keywords
carbon nanotube
ionic liquid
polymer
gel composition
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003046646A
Other languages
Japanese (ja)
Other versions
JP4134306B2 (en
Inventor
Takanori Fukushima
孝典 福島
Atsuko Ogawa
敦子 小川
Takuzo Aida
卓三 相田
Akihiro Okabe
晃博 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003046646A priority Critical patent/JP4134306B2/en
Publication of JP2004255481A publication Critical patent/JP2004255481A/en
Application granted granted Critical
Publication of JP4134306B2 publication Critical patent/JP4134306B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a compound material utilizing characteristics of carbon nanotube. <P>SOLUTION: This carbon nanotube/polymer complex is structured of the ionic liquid polymerized through a polymerizable part and carbon nanotube. In the condition that the ionic liquid having the polymerizable part exists, shearing force is applied to the carbon nanotube to divide it for subdivision to prepare the gel composition composed of the carbon nanotube and the ioninc liquid, and thereafter, the ionic liquid in the gel composition is polymerized through the polymerizable part to manufacture the compound material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ナノテクノロジーおよび材料科学の技術分野に属し、特に、カーボンナノチューブを利用する新規な複合材料に関する。
【0002】
【従来の技術】
カーボンナノチューブは、金属的な性質から半導体としての性質を含む多様で優れた電気的特性を有し、また、大きな表面積や機械強度特性などから、電気電子材料から高性能樹脂補強材などに至る各種の分野において、次世代先端材料として注目が集まり、世界的な規模で実用化研究が進行中である。
【0003】
カーボンナノチューブを実用化するための1つの手段は、その特性を活かしながら、他の物質と複合化することであるが、カーボンナノチューブは各種のポリマー(有機高分子)などとの親和性が低く、このことがカーボンナノチューブに由来する新しい材料の開発の障壁となっている。カーボンナノチューブの表面を化学処理して、他の物質との親和性を改良する試みも提案されているが、その処理によりカーボンナノチューブの特性が損なわれる問題がある。
【0004】
【発明が解決しようとする課題】
本発明の目的は、カーボンナノチューブの特性を活かした複合材料を製造する新しい技術を提供することにある。
【0005】
【課題を解決するための手段】
本発明者は、研究を重ねた結果、重合性のイオン性液体を調製し、これを利用することにより、電気的特性や機械的特性に優れたカーボンナノチューブ由来の複合材料が得られることを発見し、本発明を導き出した。
【0006】
かくして、本発明は、重合性部位を介して重合したイオン性液体と、カーボンナノチューブとから構成されることを特徴とするカーボンナノチューブ/ポリマー複合体を提供するものである。
【0007】
本発明に従えば、さらに、上記のカーボンナノチューブ/ポリマー複合体を製造する方法であって、重合性部位を有するイオン性液体の存在下にカーボンナノチューブをせん断力を加えて細分化することにより、カーボンナノチューブと重合性部位を有するイオン性液体とから成るゲル状組成物を調製する工程、および、該ゲル状組成物中のイオン性液体をその重合性部位を介して重合させる工程、を含むことを特徴とする方法が提供される。
【0008】
【発明の実施の形態】
本発明に従えば、イオン性液体に重合性部位を導入し、この重合性部位を有するイオン性液体を用いてカーボンナノチューブとゲル状組成物を調製した後、in situでイオン性液体成分を重合させて、カーボンナノチューブとポリマーとから成る複合材料が得られる。
【0009】
ここで、イオン性液体(ionic liquid)とは、よく知られているように、常温溶融塩または単に溶融塩などとも称されるものであり、常温(室温)を含む幅広い温度領域で溶融状態を呈する塩である。
本発明において用いられる重合性部位を有するイオン性液体としては、イオン性液体として従来より知られた塩に重合性部位を導入した各種の化合物が使用可能であるが、好ましい例として、下記の一般式(I)〜(IV)で表わされるカチオン(Q)(好ましくは、第4級アンモニウムイオン)と、アニオン(X)より成るものを挙げることができる。
【0010】
【化1】

Figure 2004255481
【0011】
【化2】
Figure 2004255481
【0012】
【化3】
Figure 2004255481
【0013】
【化4】
Figure 2004255481
【0014】
上記の式(I)〜(IV)において、Rは、重合性官能基(後述)を有する炭素数10以下のアルキル基(エーテル結合を含んでいてもよい)を表わす。上記の式(I)、(III)および(IV)において、Rは、一般に、炭素数1〜6のアルキル基または水素原子を表わし、式(I)において好ましいアルキル基はメチル基である。式(I)において、Rで表わされるアルキル基の炭素数は、Rの炭素数と異なっていることが好ましい。式(III)および(IV)において、mは1から4の整数である。
【0015】
アニオン(X)としては、ヘキサフルオロリン酸、テトラフルオロホウ酸、ビス(トリフルオロメチルスルホニル)イミド酸、トリフルオロメタンスルホン酸、トリフルオロ酢酸、トリス(トリフルオロメチルスルホニル)炭素酸のイオンより選ばれた少なくとも1種が例示できる。
【0016】
上記の式(I)〜(IV)のRに含まれるような重合性官能基とは、光照射または加熱、重合開始剤や触媒等の公知方法により活性化されて重合反応を呈する光重合性官能基または熱重合性官能基あるいは重付加官能基であり、好ましいものとして、例えば、アクリル基、メタクリル基、ビニル基、アクリルアミド基、エポキシ基、イソシアナート基などが挙げられるが、これらに限定されるものではない。
【0017】
以上に述べたような重合性部位を有するイオン性液体は、既知の反応を工夫することによって合成することができる。すなわち、一般的には、イオン性液体の基本構造(例えば、イミダゾール構造やピリジン構造)を有する化合物にRZで表わされる試薬を反応させることにより、重合性部位を有するイオン性液体のカチオン(Q)部分を含む中間化合物をZの塩として合成した後、アニオン(X)部分を含む試薬を用いて、ZとXとのアニオン交換反応を行えばよい(後述の実施例参照)。ここで、反応試薬RZにおけるRは、式(I)〜(IV)に関連して既述したのと同じであり、重合性官能基を有する炭素数10以下のアルキル基(エーテル結合を含んでいてもよい)を表わし、また、Zは、例えば、ハロゲン原子、トリフルオロメタンスルホニルオキシ基、トリフルオロアセトキシ基等を表わす。ただし、トリフルオロメタンスルホニルオキシ基やトリフルオロアセトキシ基の場合は、直接イオン性液体が得られる。
【0018】
本発明に従い、カーボンナノチューブとイオン性液体に由来するポリマーとから成るカーボンナノチューブ/ポリマー複合体を製造するには、先ず、上述したような重合性部位を有するイオン性液体の存在下にカーボンナノチューブをせん断力を加えながら細分化する。
この細分化工程において、せん断力を付与する手段は特に限定されるものではなく、例えば、実験室におけるような小規模の製造の場合は手動または自動の乳鉢ですり潰すことによってもよく、また、多量の製造を目的とする場合には、ボールミル、ローラーミル、振動ミルなどの高せん断力を付与することができる湿式粉砕装置を使用することができる。さらに、ニーダータイプの混練機も使用可能である。細分化に要する時間も特に限定されるものではなく、用途に応じて必要な細分化に応じて適宜変更できるが、一般的には5分間〜1時間程度である。このような細分化工程により、カーボンナノチューブとイオン性液体とから成る黒色のゲル状組成物が得られる。このゲル状組成物はそのまま重合工程に供してもよいが、必要に応じて遠心分離にかける。この遠心分離操作により、ゲル状組成物の形成に関与しない余剰のイオン性液体が除去される。
【0019】
以上のようなゲル状組成物を得るには、1.カーボンナノチューブと、2.イオン性液体とを、3.せん(剪)断力下に細分化する、という3要素が必須であり、そのうちの1要素が欠けても所望のゲル状組成物を得ることはできない。すなわち、(1)カーボンナノチューブとイオン性液体をせん断力を加えることなく、単に攪拌混合するだけではゲル状組成物は生成しない。(2)また、同じ炭素系材料でも、カーボンナノチューブではなく、グラファイト、C60、活性炭などではゲル状組成物は生成しない。(3)さらに、通常の有機溶媒やイオン性液体の前駆体を用いてカーボンナノチューブをせん断力下に細分化してもゲル状組成物は得られない。
【0020】
本発明に従いカーボンナノチューブ/ポリマー複合体を製造するには、以上のようにして得られたカーボンナノチューブと重合性部位を有するイオン性液体とから成るゲル状組成物を重合工程に供する。すなわち、イオン性液体の重合性部位が熱重合性官能基から成る場合はゲル状組成物を加熱し、また、イオン性液体の重合性部位が光重合性官能基から成る場合にはゲル状組成物に光照射するか、あるいは、重合性官能基の種類に応じて加熱と光照射の両方を行なうことにより、重合性部位を介してイオン性液体を重合させる。重合はバルク重合(塊状重合)、すなわち、カーボンナノチューブとイオン性液体とから成るゲル状組成物をそのまま加熱および/または光照射することによって実施することができる。また、重合は、一般に、当該分野でよく知られた各種の重合開始剤〔例えば、AIBN(アゾビスイソブチロニトリル)など〕の存在下に行なう。
【0021】
本発明が適用されるカーボンナノチューブは、よく知られているように、グラフェンシートが筒形に巻いた形状から成る炭素系材料であり、その周壁の構成数から単層ナノチューブ(SWCNT)と多層ナノチューブ(MWCNT)とに大別され、また、グラフェンシートの構造の違いからカイラル(らせん)型、ジグザグ型、およびアームチェア型に分けられるなど各種のものが知られている。本発明は、このような所謂カーボンナノチューブと称されるものであれば、いずれのタイプのカーボンナノチューブにも適用することができるが、一般的には、アスペクト比が大きい(すなわち、細くて長い)単層ナノチューブがゲルを形成し易く、したがって、本発明はSWCNTからゲル状組成物を得るのに特に適している。実用に供されるカーボンナノチューブの好適な例として、一酸化炭素を原料とし比較的量産が可能なHiPco SWCNT(Carbon Nanotechnologies社から入手できる)が挙げられるが、勿論、これに限定されるものではない。
【0022】
カーボンナノチューブとイオン性液体の比率は、簡単な試験により知ることができ、細分化工程後、遠心分離に供したときに黒色のゲル状組成物から透明なイオン性液体が分離されるような充分量のイオン性液体をカーボンナノチューブに対して用いる。カーボンナノチューブとイオン性液体の種類にもよるが、一般的には、重量比で、カーボンナノチューブに対して20倍以上のイオン性液体を使用する。
【0023】
また、カーボンナノチューブの純度が悪くなる程、ゲル形成能が低下するので、使用するカーボンナノチューブは合成時の触媒残存物のような不純物が可及的に少ないものが好ましい。一般的には、純度70%程度以上のカーボンナノチューブを用いるとゲル形成が効率的に行なわれるので好ましいが、カーボンナノチューブの純度は用途に応じて高純度のものから比較的低い純度のものまで適宜選択することができる。
以上のようにして得られる本発明のカーボンナノチューブ/ポリマー複合体は、例えば、電気伝導度が高く、また、動的硬度においても優れており(後述の実施例参照)、カーボンナノチューブの特性が活かされた複合材料である。
【0024】
このように本発明に従えば電気的特性や機械的特性に優れた複合材料が得られるメカニズムについては未だ不明の点もあるが、各種の分析結果も考慮すると、次のように理解される。
(1)せん断力下における細分化処理は、カーボンナノチューブの化学的変性を引き起こすことはなく、カーボンナノチューブの相互のからみ合いを減少させて、その束を細くする物理的形状変化をもたらす。
(2)ゲルの形成は、カーボンナノチューブのからみ合いに因るものではなく、からみ合いの減少したカーボンナノチューブの表面に「カチオン−π」相互作用により結合したイオン性液体の分子がイオン結合を介して配列し、カーボンナノチューブの束どうしを結びつけることにより、形成される架橋構造(三次元網目構造)に起因するものと推測される。
そして、重合性部位を介してイオン性液体が重合すると、この架橋構造が強化されるとともに、イオン性液体のポリマーがカーボンナノチューブの表面を緊密にコーティング(被覆)する。
【0025】
かくして、重合性部位を介して重合されたイオン性液体のポリマーと、カーボンナノチューブとから構成される本発明のカーボンナノチューブ/ポリマー複合体は、電気伝導度が高く硬度などの機械的特性も優れているので、そのまま、例えば、各種の電気・電子製品素材、建築素材、医療材料などへの応用展開が期待される。
【0026】
さらに、本発明の複合材料の顕著な特徴の一つは、カーボンナノチューブ自体に対しては親和性の乏しい他のポリマー(例えばポリメチルメタクリレート)と併用することにより他のポリマーを補強したり、あるいは、他のポリマーと複合化して使用することもできる。これは、カーボンナノチューブを覆うイオン性液体のポリマーがカーボンナノチューブと他のポリマーとのバインダーとして機能するためと考えられる。かくして、そのような他のポリマーと併用される本発明の複合体は、カーボンナノチューブと他のポリマーの双方の特性を活かした新しいタイプの素材として多くの分野における応用が期待される。
【0027】
他のポリマーと併用する方法としては、重合性部位を介してイオン性液体を重合するに際して、イオン性官能基を有しない通常の重合性官能基を有する化合物を共存させて共重合する方法、或は重合性部位を介して重合したイオン性液体とカーボンナノチューブから構成されるカーボンナノチューブ/ポリマー複合体中でイオン性官能基を有しない通常の重合性官能基を有する化合物を重合させる方法、または通常のポリマーと混合する等種々の方法が挙げられる。
【0028】
【実施例】
以下に、本発明の特徴をさらに具体的に示すために実施例を記すが、本発明はこれらの実施例によって制限されるものではない。
なお、以下の記述において、Meとはメチル基、Etとはエチル基を表わす。また、以下の実施例に関連して図に示す化学構造式においては、慣用的な表現に従い炭素原子や水素原子を省略して示していることがある。
【0029】
実施例1:重合性部位を有するイオン性液体の合成
本発明のカーボンナノチューブ/ポリマー複合体の原料となる重合性部位を有するイオン性液体を次のように合成した。
4−ブロモブチルアクリレート 重合性部位を導入する反応試薬となる4−ブロモブチルアクリレートを以下のように合成した〔図1の反応式(I)参照〕:4−ブロモ−1−ブタノール(8.45 g, 55.2 mmol)とアクリロイルクロリド(5.24g,57.9 mmol)を溶かした無水ジクロロメタン溶液(50 mL)に、アルゴン雰囲気下0℃で、トリエチルアミン(12.0 mL, 86.1 mmol)を添加し、0℃において4時間攪拌した後、反応混合物を濾過した。濾液をジクロロメタンで稀釈し、水および塩水で洗い、さらに無水硫酸マグネシウムで乾燥した後、室温で減圧下に溶媒を留去した。残渣を真空蒸留(1.1 Torr,54〜57 ℃)に供して、無色液体として4−ブロモブチルアクリレート(6.28g,収率55%)を得た。
H NMR (500 MHz, CDCl) δ= 6.41(dd, J = 17.5, 1.5 Hz, 1H), 6.12(dd, J = 17.5, 10.5 Hz, 1H), 5.84(dd, J = 10.5, 1.5 Hz, 1H), 4.20(t, J = 6.5 Hz, 2H), 3.45(t, J = 6.5 Hz, 2H), 2.00−1.94(m, 2H), 1.88−1.82(m, 2H)
【0030】
1−(4−アクリロイルオキシブチル)−3−メチルイミダゾリウムヘキサフルオロホスフェート 重合性部位を有するイオン性液体として標記化合物(以下、ABMIPFと略記する)を以下のように合成した〔図1の反応式(II)および(III)参照〕:1−メチルイミダゾール(1.55 g, 18.9 mmol)と4−ブロモブチルアクリレート(3.91 g, 18.9 mmol)を溶かした無水アセトニトリル(28 mL)をアルゴン雰囲気下85 ℃に加熱した。16時間後、反応溶媒を室温で減圧下に留去し、残渣を脱イオン水(300 mL)に溶かした。
得られた溶液に、ヘキサフルオロリン酸カリウム(4.01g, 21.57 mmol)の水溶液を0 ℃で滴下添加し、混合液を0 ℃で攪拌した。2.5時間後、反応混合物を室温まで加温した後、ジクロロメタンで数回抽出した。抽出液をまとめて、水および塩水で洗い、無水硫酸マグネシウムで乾燥した後、室温で減圧下に蒸発させたところ、オイル状の残渣が得られた。この残渣を減圧下に70 ℃で24時間さらに乾燥することによって、黄色の粘性液体としてABMIPF〔図1(III)の1の化合物〕を得た(4.38 g, 収率66%)。
H NMR (500 MHz, DMSO) δ= 9.08(s, 1H), 7.75(dd, J = 1.5, 1.5 Hz, 1H), 7.68(dd, J = 1.5, 1.5 Hz, 1H), 6.32(dd, J = 17.5, 1.5 Hz, 1H), 6.16(dd, J = 17.5, 10.5 Hz, 1H), 5.94(dd, J = 10.5, 1.5 Hz, 1H), 4.19(t, J = 7.5 Hz, 2H), 4.12(t, J = 6.5 Hz, 2H), 3.83(s, 3H), 1.88−1.82(m, 2H), 1.63−1.57(m, 2H); 13C NMR (125 MHz, DMSO) δ= 165.25, 136.40, 131.34, 128.09, 123.48, 122.04, 63.29, 48.33, 35.71, 26.11, 24.81; IR (KBr) 3170, 2965, 1718, 1576, 1412, 1298, 1279, 1204, 1169, 841, 558 cm−1; MALDI−TOF−MS:m/z実測値 209.23 ([M]計算値、C1117として:209.27).
ヘキサフルオロリン酸カリウムの代わりに、テトラフルオロホウ酸ナトリウムを用いて同様の操作を行なうことにより、イオン性液体1−(4−アクリロイルオキシブチル)−3−メチルイミダゾリウムテトラフルオロボレート〔図1(III)の2の化合物〕が得られる。
【0031】
実施例2:ゲルの調製と重合
実施例1で合成したイオン性液体からゲル調製工程と重合工程を経て次のようにカーボンナノチューブ/ポリマー複合体を製造した〔図1の反応式(IV)参照〕:単層カーボンナノチューブ(HiPco:Carbon Nanotechnologies社製, 純度95%以上)102 mgと、重合性部位を有するイオン性液体ABMIPF (2.56 g, 7.23 mmol)を自動乳鉢に加えて、室温で30分間磨り潰して黒色のゲル状組成物を得た。
このゲル状組成物とAIBN(アゾビスイソブチロニトリル)(15 mg, 0.091 mmol)とをテフロン(登録商標)容器に入れ、アルゴン雰囲気下で75 ℃に加熱することにより重合反応を行わせたところ、反応時間10時間で転化率90% に達し、黒色塊状のカーボンナノチューブ(SWCNT)/ポリマー(ABMIPFポリマー)複合体を得た。
H NMR (500 MHz, DMSO) δ= 8.96(br s, 1H), 7.64(br, 2H), 4.12(br, 2H), 3.83 (br, 5H), 2.13(br, 1H), 1.78(br, 3H), 1.49(br, 3H); IR (KBr) 3173, 2966, 1734, 1577, 1169, 842, 557 cm−1
【0032】
実施例3:複合体の電気伝導度測定
実施例2の方法で作製されSWCNTが3.8重量%混合されたカーボンナノチューブ/ポリマー複合体を用いて1.8 cm×1.8 cm、厚さ0.68 mmに圧縮成形(下記の実施例4の動的硬度測定に用いた試料と同様に加工)した試料を用い二端子法で電気伝導度(絶縁抵抗)を測定した。測定の詳細は下記のとおりである。
測定装置:ULTRA−HIGH RESISTANCE METER R8340A型, (株) アドバンテスト社製。
印加電圧:DC1,2,3 V.
試験雰囲気:23±2 ℃, 50±5% RH.
測定方法:厚み方向(体積)で測定.
荷重:20, 100 g使用.
主電極径:荷重20 gの場合14.8 mm, 荷重100 gの場合24.5 mm.
結果を下記の表1に示す。表に示されるように電気伝導度の高い材料が得られている。
【0033】
【表1】
Figure 2004255481
【0034】
実施例4:複合体の動的硬度測定
実施例2で作製されたカーボンナノチューブ/ポリマー複合体(SWCNT含有量3.8重量%)について動的硬度(押込硬度)を測定した。対照試料として、実施例1で調製された重合性部位を有するイオン性液体(ABMIPF)を本発明に従いカーボンナノチューブと複合化することなく、下記の参考例のように単に重合化して得られたポリマー(以下、単に対照ポリマーという)についても同様に動的硬度を測定した。
測定方法の詳細は以下のとおりである:テフロン(登録商標) 製成形機を用い、200 ℃で2分間、カーボンナノチューブ/ポリマー複合体および対照ポリマーを圧縮成形することによりシート(厚さ0.6 mm, 面積1 cm)にした後、小片に切断した。各試料について、115°のダイアモンド四角錐圧子を備えるSimadzu Dynamic Ultra Micro Hardnes TesterモデルDUH−201Sを用いて23±2 ℃における動的硬度を測定した。
動的硬度の値(DHT115)は、式DHT115=3.8584P/hにより算出し、各試料について3つの異なる測定点に基づく値の平均を[DHT115aveとした。Pは押込荷重(mN)であり、hは押込深さ(μm)である。結果を図2に示している。重合化したイオン性液体とカーボンナノチューブとが複合化した本発明の複合体は、対照ポリマーに比べて動的硬度が著しく向上する(約4倍)ことが理解される。
【0035】
参考例:対照ポリマーの合成
実施例4で用いた対照ポリマーは、次のように合成した〔図1の反応式(V)参照〕:テフロン(登録商標) 製容器にABMIPF(1.51g, 4.26 mmol)および AIBN(10 mg, 0.061 mmol)を入れ、アルゴン雰囲気下に70〜75 ℃に加熱することにより重合反応を行わせたところ、反応時間10時間で転化率93%に達し、透明な粘性体が得られた。
H NMR (500 MHz, DMSO)δ=8.96(s, 1H), 7.65(s, 1H), 7.61(s, 1H), 4.12(br t, 2H), 3.91(br, 2H), 3.83(br s, 3H),2.13(br, 1H), 1.78(br, 3H), 1.49(br, 3H); IR (KBr) 3173, 2966, 1735, 1577, 1170, 839, 557 cm−1
【0036】
実施例 :他のポリマーと併用されたカーボンナノチューブ/ポリマー複合体の製造‐その
実施例1と同一条件で調整されたゲル状組成物にメチルメタクリレート (MMA)(0.72 g, 7.2 mmol) を混合し、その上にAIBN (25 mg, 0.15 mmol)を使用する以外は実施例2と同一条件で重合反応をおこさせたところ、転化率93%で黒色塊状のカーボンナノチューブ(SWCNT)/ポリマー(ABMIPFとMMAとの併用コポリマー)複合体を得た。得られた複合体を圧縮成型したところSWCNTが分散した強靭な成型体が得られた。
【0037】
実施例6:他のポリマーと併用されたカーボンナノチューブ/ポリマー複合体の製造‐その2
実施例2と同一条件で調整された黒色塊状のカーボンナノチューブ(SWCNT)/ポリマー(ABMIPF)複合体にMMA (0.72 g, 7.2 mmol)およびAIBN (18 mg, 0.11 mmol)を加えてよく混合し、テフロン(登録商標)容器にいれ、アルゴン雰囲気下で75℃に加熱することによりMMAの重合反応を行わせたところ、反応時間8時間で転化率92%に達し、黒色塊状のポリメチルメタクリレートと併用されたカーボンナノチューブ/ポリマー(ABMIPF)複合体を得た。得られた複合体を圧縮成型したところSWCNTが分散した強靭な成型体が得られた。
【0038】
【発明の効果】
以上の記述から明らかなように、本発明に従えば、イオン性液体とその重合化を利用することにより簡便な手法で、電気的特性や機械的特性に優れたカーボンナノチューブ由来の新しい複合材料を得ることができる。
【図面の簡単な説明】
【図1】本発明のカーボンナノチューブ/ポリマー複合体を製造する各工程における反応式を示す。
【図2】本発明のカーボンナノチューブ/ポリマー複合体について実施した動的硬度の測定結果を示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of nanotechnology and material science, and particularly relates to a novel composite material utilizing carbon nanotubes.
[0002]
[Prior art]
Carbon nanotubes have a variety of excellent electrical properties, including their properties as semiconductors from metallic properties, and have a wide surface area and mechanical strength properties. In this field, attention has been focused on next-generation advanced materials, and research on practical application is ongoing on a global scale.
[0003]
One means for putting carbon nanotubes into practical use is to combine them with other substances while utilizing their properties. However, carbon nanotubes have low affinity with various polymers (organic polymers), etc. This is a barrier to the development of new materials derived from carbon nanotubes. Attempts have been made to improve the affinity with other substances by chemically treating the surface of the carbon nanotube, but there is a problem in that the properties of the carbon nanotube are impaired by the treatment.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a new technique for manufacturing a composite material utilizing characteristics of carbon nanotubes.
[0005]
[Means for Solving the Problems]
As a result of repeated studies, the present inventors have found that a polymerizable ionic liquid can be prepared and used to obtain a composite material derived from carbon nanotubes having excellent electrical and mechanical properties. Then, the present invention was derived.
[0006]
Thus, the present invention provides a carbon nanotube / polymer composite comprising a carbon nanotube and an ionic liquid polymerized via a polymerizable site.
[0007]
According to the present invention, there is further provided a method for producing the above-described carbon nanotube / polymer composite, wherein the carbon nanotube is subjected to shearing force in the presence of an ionic liquid having a polymerizable site, and thereby fragmented, A step of preparing a gel composition comprising a carbon nanotube and an ionic liquid having a polymerizable site; and a step of polymerizing the ionic liquid in the gel composition through the polymerizable site. Is provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, a polymerizable site is introduced into an ionic liquid, a carbon nanotube and a gel composition are prepared using the ionic liquid having the polymerizable site, and then the ionic liquid component is polymerized in situ. Thus, a composite material including the carbon nanotubes and the polymer is obtained.
[0009]
Here, as is well known, the ionic liquid (ionic liquid) is also referred to as a normal temperature molten salt or simply a molten salt or the like, and changes a molten state in a wide temperature range including a normal temperature (room temperature). It is a salt that presents.
As the ionic liquid having a polymerizable site used in the present invention, various compounds obtained by introducing a polymerizable site into a salt conventionally known as an ionic liquid can be used. Examples include a cation (Q + ) represented by the formulas (I) to (IV) (preferably a quaternary ammonium ion) and an anion (X ).
[0010]
Embedded image
Figure 2004255481
[0011]
Embedded image
Figure 2004255481
[0012]
Embedded image
Figure 2004255481
[0013]
Embedded image
Figure 2004255481
[0014]
In the above formulas (I) to (IV), R 1 represents an alkyl group having a polymerizable functional group (described later) and having 10 or less carbon atoms (which may contain an ether bond). In the above formulas (I), (III) and (IV), R generally represents an alkyl group having 1 to 6 carbon atoms or a hydrogen atom, and a preferred alkyl group in the formula (I) is a methyl group. In the formula (I), the number of carbon atoms of the alkyl group represented by R is preferably different from the number of carbon atoms of R 1 . In the formulas (III) and (IV), m is an integer of 1 to 4.
[0015]
The anion (X ) is selected from ions of hexafluorophosphoric acid, tetrafluoroboric acid, bis (trifluoromethylsulfonyl) imidic acid, trifluoromethanesulfonic acid, trifluoroacetic acid, and tris (trifluoromethylsulfonyl) carbonic acid. At least one type can be exemplified.
[0016]
The polymerizable functional group contained in R 1 in the above formulas (I) to (IV) is a photopolymerization which is activated by a known method such as light irradiation or heating, a polymerization initiator or a catalyst to exhibit a polymerization reaction. Functional groups or thermopolymerizable functional groups or polyaddition functional groups, and preferred examples include, but are not limited to, acryl groups, methacryl groups, vinyl groups, acrylamide groups, epoxy groups, isocyanate groups, and the like. It is not done.
[0017]
The ionic liquid having a polymerizable site as described above can be synthesized by devising a known reaction. That is, in general, a compound having a basic structure of an ionic liquid (for example, an imidazole structure or a pyridine structure) is reacted with a reagent represented by R 1 Z to thereby form a cation of the ionic liquid having a polymerizable site ( after synthesized as a salt, the anion (X - - an intermediate compound comprising Q +) portion Z) by using a reagent containing a moiety, Z - and X - an anion-exchange reaction may be performed (described below embodiments of the reference). Wherein, R 1 is in the reaction reagent R 1 Z, the same as that described above in relation to formula (I) ~ (IV), the alkyl group (ether bond having 10 or less carbon atoms having a polymerizable functional group May be included), and Z represents, for example, a halogen atom, a trifluoromethanesulfonyloxy group, a trifluoroacetoxy group, or the like. However, in the case of a trifluoromethanesulfonyloxy group or a trifluoroacetoxy group, an ionic liquid can be obtained directly.
[0018]
In order to produce a carbon nanotube / polymer composite comprising a carbon nanotube and a polymer derived from an ionic liquid according to the present invention, first, a carbon nanotube is prepared in the presence of an ionic liquid having a polymerizable site as described above. Subdivide while applying shearing force.
In this subdivision step, the means for imparting a shear force is not particularly limited, for example, in the case of small-scale production such as in a laboratory, may be by grinding with a manual or automatic mortar, In the case of mass production, a wet pulverizer capable of imparting a high shearing force such as a ball mill, a roller mill, and a vibration mill can be used. Further, a kneader type kneader can be used. The time required for the subdivision is not particularly limited, and can be appropriately changed according to the required subdivision depending on the application, but is generally about 5 minutes to 1 hour. By such a subdivision step, a black gel composition comprising the carbon nanotubes and the ionic liquid is obtained. This gel composition may be subjected to the polymerization step as it is, but if necessary, is subjected to centrifugation. By this centrifugation operation, excess ionic liquid not involved in the formation of the gel composition is removed.
[0019]
In order to obtain the gel composition as described above, 1. 1. carbon nanotubes; 2. an ionic liquid; It is essential to have three elements, namely, fragmentation under shearing force, and even if one element is missing, a desired gel composition cannot be obtained. That is, (1) a gel composition is not generated simply by stirring and mixing the carbon nanotube and the ionic liquid without applying a shearing force. (2) Even with the same carbon-based material, a gel composition is not formed with graphite, C 60 , activated carbon, or the like, instead of carbon nanotubes. (3) Further, even if the carbon nanotubes are subdivided under a shearing force using a normal organic solvent or a precursor of an ionic liquid, a gel composition cannot be obtained.
[0020]
In order to produce a carbon nanotube / polymer composite according to the present invention, a gel composition comprising the carbon nanotubes obtained as described above and an ionic liquid having a polymerizable site is subjected to a polymerization step. That is, when the polymerizable site of the ionic liquid is composed of a thermopolymerizable functional group, the gel composition is heated, and when the polymerizable site of the ionic liquid is a photopolymerizable functional group, the gel composition is heated. The ionic liquid is polymerized through the polymerizable site by irradiating the object with light or performing both heating and light irradiation according to the type of the polymerizable functional group. The polymerization can be carried out by bulk polymerization (bulk polymerization), that is, by directly heating and / or irradiating a gel composition composed of carbon nanotubes and an ionic liquid. The polymerization is generally carried out in the presence of various polymerization initiators well known in the art, such as AIBN (azobisisobutyronitrile).
[0021]
As is well known, the carbon nanotube to which the present invention is applied is a carbon-based material having a shape obtained by winding a graphene sheet into a cylindrical shape, and a single-walled nanotube (SWCNT) and a multi-walled nanotube are determined based on the number of peripheral walls. (MWCNT), and various types such as a chiral (spiral) type, a zigzag type, and an armchair type are known from the difference in the structure of the graphene sheet. The present invention can be applied to any type of carbon nanotube as long as it is a so-called carbon nanotube, but in general, the aspect ratio is large (that is, thin and long). Single-walled nanotubes tend to form gels and, therefore, the present invention is particularly suitable for obtaining gel-like compositions from SWCNTs. Preferable examples of practically used carbon nanotubes include, but are not limited to, HiPco SWCNT (available from Carbon Nanotechnologies), which can be relatively mass-produced from carbon monoxide as a raw material. .
[0022]
The ratio between the carbon nanotubes and the ionic liquid can be known by a simple test, and after the fragmentation step, a sufficient amount such that the transparent ionic liquid is separated from the black gel composition when subjected to centrifugation. An amount of ionic liquid is used for carbon nanotubes. Although it depends on the types of the carbon nanotube and the ionic liquid, generally, the ionic liquid is used in a weight ratio of 20 times or more of the carbon nanotube.
[0023]
In addition, since the gel forming ability decreases as the purity of the carbon nanotubes deteriorates, it is preferable that the carbon nanotubes used have as little impurities as possible, such as residual catalyst during synthesis. Generally, it is preferable to use carbon nanotubes having a purity of about 70% or more because gel formation is efficiently performed. However, the purity of carbon nanotubes is appropriately selected from high-purity to relatively low-purity depending on the application. You can choose.
The carbon nanotube / polymer composite of the present invention obtained as described above has, for example, a high electric conductivity and an excellent dynamic hardness (see Examples described later), and makes use of the properties of the carbon nanotube. Composite material.
[0024]
As described above, the mechanism by which a composite material having excellent electrical and mechanical properties can be obtained according to the present invention is still unknown, but is understood as follows in consideration of various analysis results.
(1) The shredding treatment under the shearing force does not cause the chemical modification of the carbon nanotubes, but reduces the entanglement of the carbon nanotubes and causes a physical shape change that makes the bundle thin.
(2) The formation of the gel is not due to the entanglement of the carbon nanotubes, and the molecules of the ionic liquid bonded by the “cation-π” interaction to the surface of the entangled carbon nanotubes via the ionic bond. It is presumed that this is caused by the cross-linking structure (three-dimensional network structure) formed by arranging and linking the bundles of carbon nanotubes.
Then, when the ionic liquid is polymerized via the polymerizable site, the crosslinked structure is strengthened and the polymer of the ionic liquid tightly coats (covers) the surface of the carbon nanotube.
[0025]
Thus, the carbon nanotube / polymer composite of the present invention composed of the ionic liquid polymer polymerized through the polymerizable site and the carbon nanotube has high electrical conductivity and excellent mechanical properties such as hardness. Therefore, application development to various electric and electronic product materials, building materials, medical materials, etc. is expected as it is.
[0026]
Further, one of the salient features of the composite material of the present invention is that it is used in combination with another polymer having low affinity for the carbon nanotube itself (for example, polymethyl methacrylate) to reinforce the other polymer, or Can be used in combination with other polymers. This is considered because the ionic liquid polymer covering the carbon nanotube functions as a binder between the carbon nanotube and another polymer. Thus, the composite of the present invention used in combination with such other polymers is expected to be applied in many fields as a new type of material utilizing the properties of both carbon nanotubes and other polymers.
[0027]
As a method used in combination with another polymer, when polymerizing an ionic liquid through a polymerizable site, a method of coexisting with a compound having a normal polymerizable functional group having no ionic functional group, or Is a method of polymerizing a compound having an ordinary polymerizable functional group having no ionic functional group in a carbon nanotube / polymer composite composed of an ionic liquid polymerized through a polymerizable site and a carbon nanotube, or And various methods such as mixing with a polymer of the formula (1).
[0028]
【Example】
Hereinafter, examples will be described in order to more specifically show the features of the present invention, but the present invention is not limited to these examples.
In the following description, Me represents a methyl group, and Et represents an ethyl group. Further, in the chemical structural formulas shown in the drawings in connection with the following examples, carbon atoms and hydrogen atoms may be omitted according to conventional expressions.
[0029]
Example 1: Synthesis of ionic liquid having polymerizable site An ionic liquid having a polymerizable site as a raw material of the carbon nanotube / polymer composite of the present invention was synthesized as follows.
4-Bromobutyl acrylate , which is a reaction reagent for introducing a 4-bromobutyl acrylate polymerizable site, was synthesized as follows [see reaction formula (I) in FIG. 1]: 4-bromo-1-butanol (8.45) g, 55.2 mmol) and acryloyl chloride (5.24 g, 57.9 mmol) in an anhydrous dichloromethane solution (50 mL) at 0 ° C. under an argon atmosphere at 0 ° C. with triethylamine (12.0 mL, 86.1 mmol). ) Was added and stirred at 0 ° C. for 4 hours, then the reaction mixture was filtered. The filtrate was diluted with dichloromethane, washed with water and brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off at room temperature under reduced pressure. The residue was subjected to vacuum distillation (1.1 Torr, 54-57 ° C) to give 4-bromobutyl acrylate (6.28 g, 55% yield) as a colorless liquid.
1 H NMR (500 MHz, CDCl 3 ) δ = 6.41 (dd, J = 17.5, 1.5 Hz, 1H), 6.12 (dd, J = 17.5, 10.5 Hz, 1H) ), 5.84 (dd, J = 10.5, 1.5 Hz, 1H), 4.20 (t, J = 6.5 Hz, 2H), 3.45 (t, J = 6.5 Hz). , 2H), 2.00-1.94 (m, 2H), 1.88-1.82 (m, 2H)
[0030]
The title compound (hereinafter abbreviated as ABMIPF 6 ) was synthesized as an ionic liquid having a 1- (4-acryloyloxybutyl) -3-methylimidazolium hexafluorophosphate polymerizable site as follows [reaction in FIG. Formulas (II) and (III)]: anhydrous acetonitrile (28) in which 1-methylimidazole (1.55 g, 18.9 mmol) and 4-bromobutyl acrylate (3.91 g, 18.9 mmol) are dissolved. mL) was heated to 85 ° C. under an argon atmosphere. After 16 hours, the reaction solvent was distilled off at room temperature under reduced pressure, and the residue was dissolved in deionized water (300 mL).
To the resulting solution, an aqueous solution of potassium hexafluorophosphate (4.01 g, 21.57 mmol) was added dropwise at 0 ° C, and the mixture was stirred at 0 ° C. After 2.5 hours, the reaction mixture was warmed to room temperature and extracted several times with dichloromethane. The extracts were combined, washed with water and brine, dried over anhydrous magnesium sulfate, and evaporated at room temperature under reduced pressure to give an oily residue. The residue was further dried under reduced pressure at 70 ° C. for 24 hours to obtain ABMIPF 6 [1 compound of FIG. 1 (III)] as a yellow viscous liquid (4.38 g, yield 66%).
1 H NMR (500 MHz, DMSO) δ = 9.08 (s, 1H), 7.75 (dd, J = 1.5, 1.5 Hz, 1H), 7.68 (dd, J = 1. 5, 1.5 Hz, 1H), 6.32 (dd, J = 17.5, 1.5 Hz, 1H), 6.16 (dd, J = 17.5, 10.5 Hz, 1H), 5.94 (dd, J = 10.5, 1.5 Hz, 1H), 4.19 (t, J = 7.5 Hz, 2H), 4.12 (t, J = 6.5 Hz, 2H) ), 3.83 (s, 3H), 1.88-1.82 (m, 2H), 1.63-1.57 (m, 2H); 13 C NMR (125 MHz, DMSO) δ = 165. 25, 136.40, 131.34, 128.09, 123.48, 122.04, 63.29, 48. 3, 35.71, 26.11, 24.81; IR (KBr) 3170, 2965, 1718, 1576, 1412, 1298, 1279, 1204, 1169, 841, 558 cm -1; MALDI-TOF-MS: m / z Found 209.23 ([M +] calcd as C 11 H 17 O 2 N 2 : 209.27).
By performing the same operation using sodium tetrafluoroborate instead of potassium hexafluorophosphate, the ionic liquid 1- (4-acryloyloxybutyl) -3-methylimidazolium tetrafluoroborate [FIG. III) 2) is obtained.
[0031]
Example 2: Preparation of gel and polymerization A carbon nanotube / polymer composite was produced from the ionic liquid synthesized in Example 1 through a gel preparation step and a polymerization step as follows [reaction formula of FIG. (See (IV)): 102 mg of single-walled carbon nanotubes (HiPco: manufactured by Carbon Nanotechnologies, purity: 95% or more) and ionic liquid ABMIPF 6 (2.56 g, 7.23 mmol) having a polymerizable site were automatically obtained. The mixture was added to a mortar and ground at room temperature for 30 minutes to obtain a black gel composition.
The polymerization reaction was carried out by placing this gel composition and AIBN (azobisisobutyronitrile) (15 mg, 0.091 mmol) in a Teflon (registered trademark) container and heating the mixture to 75 ° C. under an argon atmosphere. As a result, the conversion reached 90% in a reaction time of 10 hours, and a black massive carbon nanotube (SWCNT) / polymer (ABMIPF 6 polymer) composite was obtained.
1 H NMR (500 MHz, DMSO ) δ = 8.96 (br s, 1H), 7.64 (br, 2H), 4.12 (br, 2H), 3.83 (br, 5H), 2. 13 (br, 1H), 1.78 (br, 3H), 1.49 (br, 3H); IR (KBr) 3173, 2966, 1734, 1577, 1169, 842, 557 cm- 1 .
[0032]
Example 3: Measurement of electric conductivity of composite Using a carbon nanotube / polymer composite prepared by the method of Example 2 and mixed with 3.8% by weight of SWCNT, 1.8 cm x 1.8. The electrical conductivity (insulation resistance) was measured by a two-terminal method using a sample that had been compression-molded (processed in the same manner as the sample used for dynamic hardness measurement in Example 4 below) to a thickness of 0.68 mm in cm. The details of the measurement are as follows.
Measuring device: ULTRA-HIGH RESISTANCE METER R8340A, manufactured by Advantest Corporation.
Applied voltage: DC1,2,3V.
Test atmosphere: 23 ± 2 ° C, 50 ± 5% RH.
Measurement method: Measured in the thickness direction (volume).
Load: 20, 100 g used.
Main electrode diameter: 14.8 mm for a load of 20 g, 24.5 mm for a load of 100 g.
The results are shown in Table 1 below. As shown in the table, a material having high electric conductivity was obtained.
[0033]
[Table 1]
Figure 2004255481
[0034]
Example 4: Measurement of dynamic hardness of composite The dynamic hardness (indentation hardness) of the carbon nanotube / polymer composite (SWCNT content: 3.8% by weight) produced in Example 2 was measured. As a control sample, the ionic liquid (ABMIPF 6 ) having a polymerizable site prepared in Example 1 was obtained by simply polymerizing as in the following Reference Example without complexing with the carbon nanotube according to the present invention. The dynamic hardness of a polymer (hereinafter simply referred to as a control polymer) was measured in the same manner.
Details of the measurement method are as follows: Teflon (registered trademark) Using a molding machine, the carbon nanotube / polymer composite and the control polymer were compression molded at 200 ° C. for 2 minutes to form a sheet (thickness: 0.6 mm, area: 1 cm 2 ), and then cut into small pieces. For each sample, the dynamic hardness at 23 ± 2 ° C. was measured using a Simadzu Dynamic Ultra Micro Hardnes Tester model DUH-201S equipped with a 115 ° diamond square pyramid indenter.
The value of the dynamic hardness (DHT 115 ) was calculated by the formula DHT 115 = 3.8584 P / h 2 , and the average of the values based on three different measurement points for each sample was [DHT 115 ] ave . P is the indentation load (mN), and h is the indentation depth (μm). The results are shown in FIG. It is understood that the composite of the present invention in which the polymerized ionic liquid and the carbon nanotube are composited has a remarkably improved dynamic hardness (about 4 times) as compared with the control polymer.
[0035]
Reference example: Synthesis of control polymer The control polymer used in Example 4 was synthesized as follows [see the reaction formula (V) in FIG. 1]: ABMIPF 6 (Teflon (registered trademark) container) 1.51 g, 4.26 mmol) and AIBN (10 mg, 0.061 mmol) were added, and the mixture was heated to 70 to 75 ° C. under an argon atmosphere to perform a polymerization reaction. The reaction time was 10 hours. The ratio reached 93%, and a transparent viscous material was obtained.
1 H NMR (500 MHz, DMSO ) δ = 8.96 (s, 1H), 7.65 (s, 1H), 7.61 (s, 1H), 4.12 (br t, 2H), 3. IR (KBr) 3173, 91 (br, 2H), 3.83 (brs, 3H), 2.13 (br, 1H), 1.78 (br, 3H), 1.49 (br, 3H); 2966, 1735, 1577, 1170, 839, 557 cm- 1 .
[0036]
Example 5 : Production of carbon nanotube / polymer composite used in combination with other polymer-Part 1
Methyl methacrylate (MMA) (0.72 g, 7.2 mmol) was mixed with the gel composition prepared under the same conditions as in Example 1, and AIBN (25 mg, 0.15 mmol) was used thereon. The polymerization reaction was carried out under the same conditions as in Example 2 except that the reaction was carried out. As a result, a black massive carbon nanotube (SWCNT) / polymer (combined copolymer of ABMIPF 6 and MMA) was obtained at a conversion of 93%. When the obtained composite was compression-molded, a tough molded body in which SWCNTs were dispersed was obtained.
[0037]
Example 6: Production of carbon nanotube / polymer composite used in combination with other polymer-Part 2
MMA (0.72 g, 7.2 mmol) and AIBN (18 mg, 0.11 mmol) were added to the black massive carbon nanotube (SWCNT) / polymer (ABMIPF 6 ) composite prepared under the same conditions as in Example 2. Was added and mixed well. The mixture was placed in a Teflon (registered trademark) container, and heated at 75 ° C. under an argon atmosphere to carry out a polymerization reaction of MMA. A carbon nanotube / polymer (ABMIPF 6 ) composite used in combination with massive polymethyl methacrylate was obtained. When the obtained composite was compression-molded, a tough molded body in which SWCNTs were dispersed was obtained.
[0038]
【The invention's effect】
As is apparent from the above description, according to the present invention, a new composite material derived from carbon nanotubes having excellent electrical and mechanical properties can be obtained by a simple method by utilizing an ionic liquid and its polymerization. Obtainable.
[Brief description of the drawings]
FIG. 1 shows a reaction formula in each step of producing a carbon nanotube / polymer composite of the present invention.
FIG. 2 shows the results of dynamic hardness measurements performed on the carbon nanotube / polymer composite of the present invention.

Claims (4)

重合性部位を介して重合したイオン性液体と、カーボンナノチューブとから構成されることを特徴とするカーボンナノチューブ/ポリマー複合体。A carbon nanotube / polymer composite comprising an ionic liquid polymerized via a polymerizable site and a carbon nanotube. カーボンナノチューブが単層カーボンナノチューブであることを特徴とする請求項1に記載のカーボンナノチューブ/ポリマー複合体。The carbon nanotube / polymer composite according to claim 1, wherein the carbon nanotube is a single-wall carbon nanotube. 他のポリマーと併用されることを特徴とする請求項1または2に記載のカーボンナノチューブ/ポリマー複合体。3. The carbon nanotube / polymer composite according to claim 1, which is used in combination with another polymer. 請求項1のカーボンナノチューブ/ポリマー複合体を製造する方法であって、重合性部位を有するイオン性液体の存在下にカーボンナノチューブをせん断力を加えて細分化することにより、カーボンナノチューブと重合性部位を有するイオン性液体とから成るゲル状組成物を調製する工程、および、該ゲル状組成物中のイオン性液体をその重合性部位を介して重合させる工程、を含むことを特徴とする方法。The method for producing a carbon nanotube / polymer composite according to claim 1, wherein the carbon nanotube and the polymerizable site are fragmented by applying a shearing force in the presence of an ionic liquid having a polymerizable site. And a step of preparing a gel composition comprising an ionic liquid having the formula: and a step of polymerizing the ionic liquid in the gel composition via the polymerizable site.
JP2003046646A 2003-02-25 2003-02-25 Carbon nanotube / polymer composite and production method thereof Expired - Fee Related JP4134306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046646A JP4134306B2 (en) 2003-02-25 2003-02-25 Carbon nanotube / polymer composite and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046646A JP4134306B2 (en) 2003-02-25 2003-02-25 Carbon nanotube / polymer composite and production method thereof

Publications (2)

Publication Number Publication Date
JP2004255481A true JP2004255481A (en) 2004-09-16
JP4134306B2 JP4134306B2 (en) 2008-08-20

Family

ID=33113093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046646A Expired - Fee Related JP4134306B2 (en) 2003-02-25 2003-02-25 Carbon nanotube / polymer composite and production method thereof

Country Status (1)

Country Link
JP (1) JP4134306B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112162A1 (en) * 2005-03-31 2006-10-26 Nisshinbo Industries, Inc. Gel-form composition and process for producing the same
JP2007126624A (en) * 2005-03-31 2007-05-24 National Institute Of Advanced Industrial & Technology Electrically conductive thin film, actuator element and method for producing the same
JP2008285670A (en) * 2007-04-20 2008-11-27 Nippon Synthetic Chem Ind Co Ltd:The Acrylic resin and method for producing the same, pressure-sensitive adhesive composition using the same, pressure-sensitive adhesive, and pressure-sensitive adhesive sheet
JP2009049397A (en) * 2007-07-24 2009-03-05 Sumitomo Chemical Co Ltd Composition for organic transistor insulating film
JP2009155436A (en) * 2007-12-26 2009-07-16 Toyo Ink Mfg Co Ltd Carbon nanotube dispersion and resin composition and molded article using the same
KR100935365B1 (en) 2007-11-20 2010-01-06 김도형 Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses
JP2010160952A (en) * 2009-01-08 2010-07-22 National Institute Of Advanced Industrial Science & Technology Conductive thin film including carbon nanotube, polymerizable ion liquid and ion liquid, and actuator element
KR101099830B1 (en) * 2009-06-03 2011-12-27 장관식 Antistatic composition for inside addition and products comprising thereof
KR101136027B1 (en) 2009-11-06 2012-04-18 단국대학교 산학협력단 Polymer/carbon nanotube composite and preparing method thereof
US8552130B2 (en) 2010-05-18 2013-10-08 3M Innovative Properties Company Polymerizable ionic liquid comprising aromatic carboxylate anion
US8742047B2 (en) 2009-08-28 2014-06-03 3M Innovative Properties Company Polymerizable ionic liquid comprising multifunctional cation and antistatic coatings
US8816029B2 (en) 2009-08-28 2014-08-26 3M Innovative Properties Company Compositions and articles comprising polymerizable ionic liquid mixture, and methods of curing
US8853338B2 (en) 2009-12-22 2014-10-07 3M Innovative Properties Company Curable dental compositions and articles comprising polymerizable ionic liquids
JP2015147718A (en) * 2014-01-10 2015-08-20 国立研究開発法人産業技術総合研究所 Production method of nanocarbon polymer composite, and nanocarbon polymer composite produced by method
US9165701B2 (en) 2013-01-18 2015-10-20 Samsung Electronics Co., Ltd. Resistance heating element and heating member and fusing device employing the same
KR20180020901A (en) 2016-08-19 2018-02-28 토요잉크Sc홀딩스주식회사 Conductive resin composition, molded article and manufacturing method thereof
JP2018075719A (en) * 2016-11-07 2018-05-17 東洋インキScホールディングス株式会社 Method of manufacturing conductive resin composition and method of manufacturing molded object

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150224210A1 (en) * 2012-08-23 2015-08-13 Japan Science And Technology Agency Carbon nanomaterial, composition, conductive material, and method of producing the same
US10295367B2 (en) 2012-10-02 2019-05-21 Japan Science And Technology Agency Signal detection device and signal detection method

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006112162A1 (en) * 2005-03-31 2006-10-26 Nisshinbo Industries, Inc. Gel-form composition and process for producing the same
JP2007126624A (en) * 2005-03-31 2007-05-24 National Institute Of Advanced Industrial & Technology Electrically conductive thin film, actuator element and method for producing the same
JP2008285670A (en) * 2007-04-20 2008-11-27 Nippon Synthetic Chem Ind Co Ltd:The Acrylic resin and method for producing the same, pressure-sensitive adhesive composition using the same, pressure-sensitive adhesive, and pressure-sensitive adhesive sheet
JP2009049397A (en) * 2007-07-24 2009-03-05 Sumitomo Chemical Co Ltd Composition for organic transistor insulating film
KR100935365B1 (en) 2007-11-20 2010-01-06 김도형 Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses
JP2009155436A (en) * 2007-12-26 2009-07-16 Toyo Ink Mfg Co Ltd Carbon nanotube dispersion and resin composition and molded article using the same
JP2010160952A (en) * 2009-01-08 2010-07-22 National Institute Of Advanced Industrial Science & Technology Conductive thin film including carbon nanotube, polymerizable ion liquid and ion liquid, and actuator element
KR101099830B1 (en) * 2009-06-03 2011-12-27 장관식 Antistatic composition for inside addition and products comprising thereof
US8742047B2 (en) 2009-08-28 2014-06-03 3M Innovative Properties Company Polymerizable ionic liquid comprising multifunctional cation and antistatic coatings
US8816029B2 (en) 2009-08-28 2014-08-26 3M Innovative Properties Company Compositions and articles comprising polymerizable ionic liquid mixture, and methods of curing
US9127101B2 (en) 2009-08-28 2015-09-08 3M Innovative Properties Company Compositions and articles comprising polymerizable ionic liquid mixture, and methods of curing
US9458327B2 (en) 2009-08-28 2016-10-04 3M Innovative Properties Company Polymerizable ionic liquid comprising multifunctional cation and antistatic coatings
KR101136027B1 (en) 2009-11-06 2012-04-18 단국대학교 산학협력단 Polymer/carbon nanotube composite and preparing method thereof
US8853338B2 (en) 2009-12-22 2014-10-07 3M Innovative Properties Company Curable dental compositions and articles comprising polymerizable ionic liquids
US9168206B2 (en) 2009-12-22 2015-10-27 3M Innovative Properties Company Curable dental compositions and articles comprising polymerizable ionic liquids
US8552130B2 (en) 2010-05-18 2013-10-08 3M Innovative Properties Company Polymerizable ionic liquid comprising aromatic carboxylate anion
US9165701B2 (en) 2013-01-18 2015-10-20 Samsung Electronics Co., Ltd. Resistance heating element and heating member and fusing device employing the same
JP2015147718A (en) * 2014-01-10 2015-08-20 国立研究開発法人産業技術総合研究所 Production method of nanocarbon polymer composite, and nanocarbon polymer composite produced by method
KR20180020901A (en) 2016-08-19 2018-02-28 토요잉크Sc홀딩스주식회사 Conductive resin composition, molded article and manufacturing method thereof
JP2018075719A (en) * 2016-11-07 2018-05-17 東洋インキScホールディングス株式会社 Method of manufacturing conductive resin composition and method of manufacturing molded object

Also Published As

Publication number Publication date
JP4134306B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4134306B2 (en) Carbon nanotube / polymer composite and production method thereof
Luo et al. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery
Wang et al. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes
Chan et al. First principles simulations of the electrochemical lithiation and delithiation of faceted crystalline silicon
Balazs et al. Modeling the interactions between polymers and clay surfaces through self-consistent field theory
KR100627184B1 (en) Composition in gel form comprising carbon nanotube and ionic liquid and method for production thereof
Choi et al. Effect of monomers on the basal spacing of sodium montmorillonite and the structures of polymer− clay nanocomposites
Zhao et al. A conductive binder for high-performance Sn electrodes in lithium-ion batteries
Liu et al. Cracks of silicon nanoparticles in anodes: Mechanics–electrochemical-coupled modeling framework based on the phase-field method
Lv et al. Understanding the effect of pore size on electrochemical capacitive performance of MXene foams
CN113462169B (en) MXene-based conductive organic silicon elastomer and preparation method and application thereof
Wu et al. Starch‐based nanocomposites reinforced with layered zirconium phosphonate
JPWO2003062286A1 (en) Polymerizable ion-conducting liquid crystal composite, anisotropic ion-conducting polymer liquid crystal composite, and method for producing the same
Lai et al. In situ radical polymerization and grafting reaction simultaneously initiated by fluorinated graphene
Ma et al. Diversifying composition leads to hierarchical composites with design flexibility and structural fidelity
JP5446699B2 (en) Silicon nanosheet, method for producing the same, and lithium ion secondary battery
JP5245041B2 (en) Bicontinuous cubic liquid crystal and electrochemical device
Lu et al. Polyelectrolytes of inorganic polyoxometalates: acids, salts, and complexes
Ghosh et al. Synthesis of a new family of hexakisferrocenyl hexagons and their electrochemical behavior
Gettler et al. Effects of interchain crosslinking by alkyl dihalides on the electrochemical performance of nanoscale polypyrrole films
JP2015516994A5 (en)
JP4297831B2 (en) Manufacturing method of micro phase separation structure membrane with controlled orientation
Fukushi et al. Polyguanamine derivative-based supramolecular assemblies with multiple hydrogen bonding and their metal-scavenging abilities
Olad et al. Preparation of polyaniline nanocomposite with natural clinoptilolite and investigation of its special properties
JP5552667B2 (en) Compound having polymerizable property capable of taking bicontinuous cubic liquid crystal structure and ion conductive polymer having bicontinuous cubic liquid crystal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080502

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080502

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees