KR100935365B1 - Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses - Google Patents

Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses Download PDF

Info

Publication number
KR100935365B1
KR100935365B1 KR1020070118443A KR20070118443A KR100935365B1 KR 100935365 B1 KR100935365 B1 KR 100935365B1 KR 1020070118443 A KR1020070118443 A KR 1020070118443A KR 20070118443 A KR20070118443 A KR 20070118443A KR 100935365 B1 KR100935365 B1 KR 100935365B1
Authority
KR
South Korea
Prior art keywords
carbon nanotubes
polymer
carbon nanotube
plastic
composite
Prior art date
Application number
KR1020070118443A
Other languages
Korean (ko)
Other versions
KR20090051962A (en
Inventor
김도형
김옥희
Original Assignee
김도형
김옥희
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김도형, 김옥희 filed Critical 김도형
Priority to KR1020070118443A priority Critical patent/KR100935365B1/en
Publication of KR20090051962A publication Critical patent/KR20090051962A/en
Application granted granted Critical
Publication of KR100935365B1 publication Critical patent/KR100935365B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/04Polysulfides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

본 발명은 전도성, 내마모성, 내열성, 내화학성, 강도 등이 향상된 탄소나노튜브를 포함하는 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 및 그 제조방법과 이용 방법에 관한 것이다. The present invention relates to a plastic / carbon nanotube, a polymer / carbon nanotube composite including carbon nanotubes having improved conductivity, abrasion resistance, heat resistance, chemical resistance, strength, and the like, and to a method of manufacturing and using the same.

본 발명은 (A) 플라스틱 또는 폴리머를 0.1 마이크로미터에서 50 mm 사이의 크기를 가지는 입자로 만드는 단계; (B) 상기 플라스틱 또는 폴리머 입자들을 탄소나노튜브 및 하나 이상의 첨가제를 혼합하는 단계; (C) 상기 혼합물을 가열하여 용융시키는 단계; (D) 상기 용융된 혼합물들을 펠렛을 만드는 단계; (E) 상기 펠렛을 이용하여 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 소재, 부품, 완제품등의 성형품을 만드는 단계로 구성된다.The present invention comprises the steps of (A) making a plastic or polymer into particles having a size between 0.1 micrometers and 50 mm; (B) mixing the plastic or polymer particles with carbon nanotubes and one or more additives; (C) heating and melting the mixture; (D) pelleting the molten mixtures; (E) forming the plastics, carbon nanotubes, polymer / carbon nanotube composite material, parts, finished products and the like using the pellets.

탄소나노튜브, 플라스틱 또는 폴리머, 복합체, 전도성, 내열성, 내마모성 Carbon nanotubes, plastics or polymers, composites, conductive, heat resistant, wear resistant

Description

탄소나노튜브를 포함하는 복합체, 그 제조 방법 및 이용방법{Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses}Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses

본 발명은 전도성, 내마모성, 내열성, 내화학성, 강도 등이 향상된 탄소나노튜브를 포함하는 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 및 그 제조방법과 이용 방법에 관한 것이다.The present invention relates to a plastic / carbon nanotube, a polymer / carbon nanotube composite including carbon nanotubes having improved conductivity, abrasion resistance, heat resistance, chemical resistance, strength, and the like, and to a method of manufacturing and using the same.

플라스틱 또는 폴리머는 대전발생, 열변형, 마모, 부식, 균열, 파손 등 상기 기술된 문제들이 빈번히 발생하기 때문에 플라스틱 또는 폴리머의 특성을 향상시키기 위해 첨가물을 혼합하여 플라스틱 또는 폴리머 복합체를 만들어 이용되어져 왔다. Plastics or polymers have been used to make plastic or polymer composites by mixing additives to improve the properties of plastics or polymers because of the frequent problems described above such as charging, heat deformation, wear, corrosion, cracking, breakage, and the like.

대표적으로 탄소분말을 플라스틱 또는 폴리머와 혼합하여 복합체를 만들어 왔다. 소량의 탄소입자를 혼합하는 경우 부도체, 도체, 반도체와의 마찰시 탄소분말이 발생하고 마모에 의한 불순물 발생되며 대전방지가 어려운 문제가 있다. 다량의 탄소입자를 첨가하는 경우 플라스틱 또는 폴리머 복합체의 성형이 어렵고, 완제품의 균열 발생, 강도저하 및 미세 입자 발생이 더욱 심해진다. Typically, carbon powders have been mixed with plastics or polymers to form composites. When a small amount of carbon particles are mixed, carbon powder is generated during friction with a non-conductor, a conductor, and a semiconductor, impurities are generated by abrasion, and antistatic is difficult. When a large amount of carbon particles are added, it is difficult to form a plastic or polymer composite, and cracking, deterioration of strength and generation of fine particles are more severe in the finished product.

플라스틱 또는 폴리머에 나노크기의 입자를 첨가한 나노 복합체의 경우에도 나노입자의 분산 및 적합한 제조방법을 적용하지 않았을 경우 제품 제작 시 균열이 발생하고 표면이 거칠어지며 원하는 전도성, 내마모성, 내열성, 내화학성, 강도를 얻기 어렵다. 탄소나노튜브를 유기용매에 분산하여 플라스틱 또는 폴리머에 혼합한 복합체를 만드는 경우에도 강도 및 내마모성 특성이 우수하지 못하며 완제품의 모양이 제한된 형태만 제조가 가능하다. Even in the case of nanocomposites in which nano-sized particles are added to plastics or polymers, if the nanoparticles are dispersed and a suitable manufacturing method is not applied, cracks and rough surfaces may occur during product manufacturing, and the desired conductivity, abrasion resistance, heat resistance, chemical resistance, Hard to get strength Even when carbon nanotubes are dispersed in an organic solvent to make a composite mixed with plastics or polymers, they are not excellent in strength and wear resistance, and only a limited form of the finished product can be manufactured.

유리, 플라스틱, 폴리머 등의 부도체, 도체 또는 반도체와 접촉하는 소재, 부품, 장치 또는 이송장치 등에 이용되는 플라스틱 또는 폴리머는 가격이 비싸거나, 대전방지, 내마모성, 내열성, 내화학성 및 강도 등이 우수하지 못하여 공정 도중 마찰에 의한 정전기 발생, 마모에 의한 변형, 스파크 발생으로 인한 생산품의 결함이 발생하거나, 열변형, 부식, 균열 및 파손 등의 문제들을 유발 시킨다. Plastics or polymers used in contact with non-conductors, conductors or semiconductors such as glass, plastics and polymers, materials, parts, devices or transfer devices are not expensive, or have excellent antistatic, wear resistance, heat resistance, chemical resistance and strength. Failure to do so may cause product defects due to static electricity due to friction, deformation due to abrasion, spark generation, or problems such as thermal deformation, corrosion, cracking and breakage.

따라서 본 발명은 상기 단점을 보완하기 위해 플라스틱 또는 폴리머 등의 전도성, 내마모성, 내열성, 내화학성, 강도, 대전방지 등의 특성을 향상시키기 위한 탄소나노튜브를 포함하는 새로운 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 및 그 제조방법 및 이용 방법에 관한 것이다. Therefore, the present invention is a new plastic / carbon nanotube, polymer / including carbon nanotubes for improving the properties of the conductivity, wear resistance, heat resistance, chemical resistance, strength, antistatic, etc. of the plastic or polymer, etc. It relates to a carbon nanotube composite and a method of manufacturing and using the same.

본 발명품은 상기 상술한 문제점들을 개선하기 위해 안출된 것으로 부도체, 도체, 반도체 물질과 접촉하는 소재, 부품 및 장치에 발생하는 대전을 방지하고, 열변형이 적으며, 내마모성, 내화학성, 강도 등을 향상시키기 위한 탄소나노튜브를 포함하는 새로운 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 및 그 제조방법 및 이용 방법을 제공함에 있다. The present invention has been devised to improve the above-mentioned problems, to prevent the electrical charge generated in the materials, parts and devices in contact with the insulators, conductors, semiconductor materials, low thermal deformation, wear resistance, chemical resistance, strength and the like The present invention provides a new plastic / carbon nanotube, a polymer / carbon nanotube composite including carbon nanotubes, and a method of manufacturing and using the same.

본 발명의 또 다른 목적은 상기 복합체를 제조하는 신규한 제조방법을 제공하는 것이며 또한 이를 이용하는 성형품을 제공하는 것이다. Still another object of the present invention is to provide a novel manufacturing method for producing the composite and to provide a molded article using the same.

본 발명의 또 다른 목적은 상기의 복합체를 제조하기 위하여 분산성이 양호하고 물성이 우수한 탄소나노튜브를 포함하는 플라스틱 복합체를 제조하는 신규한 방법을 제공하는 것이다. Still another object of the present invention is to provide a novel method for producing a plastic composite including carbon nanotubes having good dispersibility and excellent physical properties in order to prepare the composite.

본 발명은 (A) 플라스틱 또는 폴리머를 0.1 마이크로미터에서 50 mm 사이의 크기를 가지는 입자로 만드는 단계; (B) 상기 플라스틱 또는 폴리머 입자들을 탄소나노튜브 및 하나 이상의 첨가제를 혼합하는 단계; (C) 상기 혼합된 플라스틱 또는 폴리머와 탄소나노튜브 및 첨가제를 가열하여 용융시키는 단계; (D) 상기 용융된 혼합물들을 이용하여 원통 또는 다각형 모양의 길이가 100 mm 이하의 펠렛을 만드는 단계; (E) 상기 (D)항의 을 펠렛을 이용하여 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 소재, 부품, 완제품등의 성형품을 제조하는 단계로 구성된다. The present invention comprises the steps of (A) making a plastic or polymer into particles having a size between 0.1 micrometers and 50 mm; (B) mixing the plastic or polymer particles with carbon nanotubes and one or more additives; (C) heating and melting the mixed plastics or polymers and carbon nanotubes and additives; (D) using the melted mixtures to make pellets of cylindrical or polygonal shape up to 100 mm in length; (E) using the pellet of (D) above to produce a molded article, such as plastic / carbon nanotubes, polymer / carbon nanotube composite material, parts, finished products.

구체적으로 살피면, (A) 플라스틱 또는 폴리머를 0.1 마이크로미터에서 50 mm 사이의 크기를 가지는 입자로 만드는 단계; (B) 상기 플라스틱 또는 폴리머 입자들을 탄소나노튜브 및 하나 이상의 첨가제를 혼합하는 단계; (C) 상기 혼합된 플라스틱 또는 폴리머와 탄소나노튜브 및 첨가제를 가열하여 용융시키는 단계; (D) 상기 용융된 혼합물들을 이용하여 원통 또는 다각형 모양의 길이가 100 mm 이하의 펠렛을 만드는 단계; (E) 상기 (D)항의 을 펠렛을 이용하여 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 소재, 부품, 완제품 등의 성형품으로 제조하는 단계로 구성된다.Specifically, (A) making a plastic or polymer into particles having a size between 0.1 micrometers and 50 mm; (B) mixing the plastic or polymer particles with carbon nanotubes and one or more additives; (C) heating and melting the mixed plastics or polymers and carbon nanotubes and additives; (D) using the melted mixtures to make pellets of cylindrical or polygonal shape up to 100 mm in length; (E) using the pellet of (D) above is made of a molded article, such as plastic / carbon nanotubes, polymer / carbon nanotube composite material, parts, finished products.

또한 본 발명의 상기 제조방법으로 제조한 복합체는 표면저항이 1×102Ω/□ ~ 9×1010Ω/□ 범위이고 더욱 좋게는 1×102Ω/□ ~ 9×106Ω/□의 표면저항을 가지는 것이다.In addition, the composite prepared by the above production method of the present invention has a surface resistance of 1 × 10 2 Ω / □ to 9 × 10 10 Ω / □ and more preferably 1 × 10 2 Ω / □ to 9 × 10 6 Ω / □ It has a surface resistance of.

본 발명에서 탄소나노튜브는 나노사이즈를 가지는 탄소튜브라면 제한하지 않으며, 표면처리 하거나 하지 않은 탄소나노튜브를 사용할 수 있으며, 본 발명에서 사용하는 양으로는 0.1~20중량%, 좋게는 0.5~10중량%사용할 수 있으며, 본 발명의 조성하에서는 0.5~5중량%의 이하의 소량의 함량만을 사용하여도 충분히 대전방지 성능효과를 보여주게 되는 놀라운 특성을 가진다. 기계적 물성의 저하 없이 탄소나노튜브의 분산성을 향상시키는 효과가 있으므로, 상기의 범위에서 본 발명이 요구하는 목적에 더욱 잘 부합할 수 있다. 즉, 본 발명의 특성중의 중요한 하나로서 낮은 탄소나노튜브를 사용하여도 전체 성형품에서 충분히 우수한 대전방지성능을 보이게 되는데 이는 본 발명의 조성물에 따른 분산성 증대효과에 기인하는 것으로 보여진다.Carbon nanotubes in the present invention is not limited as long as the carbon tube having a nano-size, can be used without carbon nanotubes surface treatment, the amount used in the present invention is 0.1 to 20% by weight, preferably 0.5 to 10 It can be used by weight, and under the composition of the present invention has a surprising property that the use of only a small amount of 0.5 to 5% by weight or less shows sufficient antistatic performance effect. Since there is an effect of improving the dispersibility of the carbon nanotubes without deterioration of mechanical properties, it can be better met the object required by the present invention in the above range. That is, the use of low carbon nanotubes as an important one of the characteristics of the present invention shows a sufficiently good antistatic performance in the overall molded article, which is believed to be due to the effect of increasing the dispersibility according to the composition of the present invention.

또한 본 발명에서는 탄소나노튜브와 플라스틱 또는 폴리머와의 결합성, 분산성, 압출성, 사출성등의 기능성을 향상시키기 위해 첨가되는 첨가제를 1종 이상 사용할 수 있는데, 플라스틱 또는 폴리머 총 질량의 0.1% 이상 포함할 수도 있으며, 좋게는 0.1~25중량%의 범위에서 사용할 수 있으며, 더욱 좋게는 0.1~10중량% 의 함량으로 사용할 수 있다. 이는 폴리머/탄소나노튜브의 복합체의 제조에 가장 큰 장애는 탄소나노튜브의 분산 정도에 따라 크게 좌우되는데, 이는 탄소나노튜브들이 반데발스힘에 의해 근접한 탄소나노튜브와 뭉치는 특성이 있기 때문에 물성을 발현 하는데 많은 장애를 나타낸다는 것이다. 따라서 본 발명에스는 종래의 기술과는 달리 표면 처리 또는 표면처리하지 않은 탄소나노튜브에 하기 화학식으로 나타내는 1,2-디메틸-헥사데실이미다졸륨 테트라플루오로보레이트(1,2-dimethyl-3-hexadecylimidazolium tetrafluoroborate) 또는 1-데실-2,3-디메틸이미다졸륨클로라이드(1-decyl-2,3-dimethylimidazolium chloride)를 첨가함으로써, 용융 혼합 과정 시 탄소나노튜브와 이미다졸리움 솔트사이의 π-양이온(π-cation) 상호작용이 일어나게 하고 이들이 즉, 하기 화학식의 화합물과 같은 화합물, 예를 들면 1,2-디메틸-3-헥사데실이미다졸륨 테트라플루오로보레이트(1,2-dimethyl-3-hexadecylimidazolium tetrafluoroborate)가 탄소나노튜브와 폴리머 사이의 경계 역할을 하여, 탄소나노튜브가 폴리머에 용해 및 분산되는 정도를 향상시킬 수 있도록 하여 폴리머 또는 플라스틱들과의 복합체를 만들 때 분산 및 결합성을 향상시키도록 한 것이다.In addition, in the present invention, one or more additives added to improve the functionality of carbon nanotubes and plastics or polymers, such as bonding, dispersibility, extrusion properties, injection properties, etc. can be used, 0.1% of the total mass of plastics or polymers It may be included above, preferably used in the range of 0.1 to 25% by weight, and more preferably in the amount of 0.1 to 10% by weight. The biggest obstacle to the production of polymer / carbon nanotube composites is largely dependent on the degree of dispersion of the carbon nanotubes, which is a property of carbon nanotubes being agglomerated with adjacent carbon nanotubes by van der Waals forces. It is a manifestation of many disorders in expression. Therefore, according to the present invention, unlike the prior art, 1,2-dimethyl-hexadecylimidazolium tetrafluoroborate represented by the following chemical formula on a surface-treated or untreated carbon nanotube (1,2-dimethyl-3- By adding hexadecylimidazolium tetrafluoroborate) or 1-decyl-2,3-dimethylimidazolium chloride, π-cations between carbon nanotubes and imidazolium salts during melt mixing (π-cation) interactions and they occur, i.e. compounds such as compounds of the formulae, for example 1,2-dimethyl-3-hexadecylimidazolium tetrafluoroborate (1,2-dimethyl-3- Hexadecylimidazolium tetrafluoroborate) acts as a boundary between carbon nanotubes and polymers, allowing them to improve the degree of dissolution and dispersion of carbon nanotubes in polymers. It will have to improve the dispersion and bonding properties to create.

[화학식 1][Formula 1]

Figure 112007083277200-pat00001
Figure 112007083277200-pat00001

(상기 식에서 R1은 C1~C24의 선형 또는 분지형 알킬이거나 치환된 알킬기로부터 선택되고, R2는 메틸기 또는 C2~C5의 선형 또는 분지형 알킬기로부터 선택된다.)(Wherein R 1 is selected from C 1 to C 24 linear or branched alkyl or substituted alkyl groups, and R 2 is selected from methyl groups or C 2 to C 5 linear or branched alkyl groups.)

본 발명에 사용하는 하기의 이미다조리움염의 사용량은 20중량% 이하, 더욱 좋게는 0.1~5중량%의 범위에 사용하는 경우 수지 조성물에 의해 제조되는 성형품의 기계적 물성을 저하시키지 않고 우수한 탄소나노튜브의 분산효과를 가지게되고, 또한 대전방지효과가 우수하고 내약품성에서도 우수한 특성을 가지게 된다.The amount of imidazolium salt used in the present invention is 20% by weight or less, more preferably 0.1 to 5% by weight when used in the range of excellent carbon nanotubes without lowering the mechanical properties of the molded article produced by the resin composition It has a dispersion effect of, and also has an excellent antistatic effect and excellent properties in chemical resistance.

또한 본 발명은 기능성 및 성형특성 향상을 위해 기능성첨가제로 티오비스페놀(Thiobisphenol), 아민(Amines), 부틸히드록시톨루엔(Butylated hydroxytoluene), 디라우릴 티오디프로피오네이트, 디스테아릴 티오디프로피오네이트, 베타-티오디프로피온산(β-Thiodipropionic acid), 테트라키스(메틸렌-3,5-디-t-부틸-4-하이드록시히드로시나메이트)메탄(tetrakis(methylene-3.5-di-t-butyl-4-hydroxyhydrocinnamate)methane), 고분자량 페놀릭스(phenolics), 티오에스테르(Thioester), 유기포스파이트(Organophosphite) 등을 첨가 할 수 있으며, 그 경우 전체 조성물에 대하여 0.1~20중량%의 함량으로, 더욱 좋게는 0.2~5중량%의 함량으로 사용하는 경우 기계적 물성을 희생하지 않고 충분히 본 발명의 목적을 얻을 수 있다.In addition, the present invention is a functional additive to improve the functionality and molding properties of thiobisphenol (Thiobisphenol), amines (Amines), butyl hydroxytoluene (Butylated hydroxytoluene), dilauryl thiodipropionate, distearyl thiodipropionate , Beta-thiodipropionic acid (β-Thiodipropionic acid), tetrakis (methylene-3,5-di-t-butyl-4-hydroxyhydrocinnamate) methane (tetrakis (methylene-3.5-di-t-butyl-) 4-hydroxyhydrocinnamate (methane), high molecular weight phenolics, thioesters, organic phosphites, etc. can be added, in which case the content of 0.1-20% by weight based on the total composition, Preferably, when used in an amount of 0.2 to 5% by weight, the object of the present invention can be sufficiently obtained without sacrificing mechanical properties.

기존의 기술에서 사용하는 방법으로는 알콕시실란-터미네이티드 아마이드 산(alkoxysilane-teminated amide acid) 폴리머와 반응 시키거나 카르복실화된 탄소나노튜브를 반응물로 에스터(ester)가 형성되는 에스테르화(Esterification)를 이용하여 복합체 제조에 응용하여 왔지만 공유기능화(covalent functionalism)를 이용하는 경우 탄소나노튜브의 옆벽에 공유기능화를 시키는 공정에 의해 탄소나노튜브 표면에 생성되는 확장된 π-네트워크 형성을 방해한다. 결국 기계적, 전기적 특성의 저하를 초래하므로 본 발명은 기존 기술과 차별화되는 우수한 분산성효과를 가진다.Conventional techniques include esterification in which an ester is formed by reacting an alkoxysilane-teminated amide acid polymer or a carboxylated carbon nanotube with a reactant. Has been applied to the production of composites, but covalent functionalism prevents the formation of expanded π-network on the surface of carbon nanotubes by covalent functionalization on the sidewalls of the carbon nanotubes. Eventually, the present invention has excellent dispersibility effect which is different from the existing technology because it causes a decrease in mechanical and electrical properties.

본 발명에 사용하는 상기 1종 이상의 첨가제들은 그 함량에서 전체 조성에 대하여 25중량% 이상을 넘지 않도록 사용하는 것이 좋은데 이는 과량 사용하는 것에 따른 기계적 물성의 저하를 방지하기 위함이다.The one or more additives used in the present invention are preferably used so that the content does not exceed 25% by weight or more based on the total composition, in order to prevent the deterioration of mechanical properties due to excessive use.

또한 본 발명에서 사용하는 탄소나노튜브는 앞에서 기재한 바와 같이 플라스틱과 혼합하기 전, 예를 들면 (A) 단계 전 탄소나노튜브를 400 ℃이하의 온도에서 열처리하는 단계, 탄소나노튜브를 황산과 질산의 비율이 3:1인 산 용액에 넣어 초음파 처리를 하는 단계, 초음파 처리된 탄소나노튜브 용액을 린싱 하는 단계 및 필터링 하는 단계, 상기 탄소나노튜브를 오븐에서 건조하는 단계 중 전부 또는 하나이상 단계를 포함하여 탄소나노튜브를 전 처리하여 사용할 수도 있다. 또한 예를 들어 (A) 단계 전, (A)에서 (D) 단계, (D) 단계 후에 실온(25℃) 이상 및 10 분 이상의 조건에서 건조 단계를 진행할 수도 있다. 본 발명에서 사용하는 탄소나노튜브의 함량은 전체 복합체의 조성물에 대하여 0.1~40중량%의 함량으로 사용하며, 더욱 좋게는 0.5~10중량%의 범위로 사용하는 것이 본 발명에 목적에 부합되며 또한 경제적으로 제조할 수 있다.In addition, the carbon nanotubes used in the present invention, as described above, before the carbon nanotubes are mixed with the plastic, for example, before the step (A), the carbon nanotubes are heat-treated at a temperature of 400 ° C. or less, and the carbon nanotubes are sulfuric acid and nitric acid. In the acid solution having a ratio of 3: 1, sonicating, rinsing and filtering the sonicated carbon nanotube solution, and all or one or more of the steps of drying the carbon nanotubes in an oven. It can also be used to pre-treat carbon nanotubes, including. In addition, for example, the drying step may be performed before (A), (A) to (D), and after (D) at room temperature (25 ° C) or more and 10 minutes or more. The content of the carbon nanotubes used in the present invention is used in an amount of 0.1 to 40% by weight based on the composition of the entire composite, and more preferably in the range of 0.5 to 10% by weight is suitable for the purpose of the present invention. It can be manufactured economically.

본 발명의 이용하여 유리, 플라스틱, 폴리머 등의 부도체 기판과 접촉이 되는 소재 및 부품, 디스플레이 및 반도체 제조용 장치에 이용되는 소재 및 부품, 액정디스플레이용 소재 및 부픔, 플라즈마 디스플레이용 소재 및 부품, 유기발광 다이오드용 디스플레이용 소재 및 부품, 디스플레이, 전자제품, 반도체 소재 및 부품, 외장 케이스, 포장 박스 및 시트, 캐리어, 카세트, 충격 및 정전기 방지 시트, 반송용 및 이송용 로봇 소재 및 부품, 자동차 소재 및 부품, 우주선 소재 및 ,인공 위성 및 항공기 소재 및 부품, 전극 및 전지 재료 및 부품, 방열 재료 및 부품 골프, 낚시, 테니스, 베드민턴, 하키, 등산 등을 포함하는 스포츠, 레저 용 소재, 기구 및 장치 등에 이용되어 질 수 있다. By using the present invention, materials and components which come into contact with non-conductive substrates such as glass, plastics, polymers, materials and components used in display and semiconductor manufacturing apparatus, materials and components for liquid crystal display, materials and components for plasma display, organic light emitting Display materials and components for diodes, displays, electronics, semiconductor materials and components, exterior cases, packing boxes and sheets, carriers, cassettes, shock and antistatic sheets, robot materials and components for transportation and transport, automotive materials and components Used for sports, leisure materials, equipment and devices, including golf, fishing, tennis, badminton, hockey, mountaineering, etc., spacecraft materials and satellite and aircraft materials and components, electrode and battery materials and components, heat dissipation materials and components Can be done.

상기에서 살핀 바와 같이, 본 발명의 제조방법에 따른 복합체의 경우 플라스틱 또는 폴리머에 극소량의 탄소나노튜브를 첨가 하여도 우수한 전도성을 얻을 수 있어서 비용이 저렴하며, 기존의 복합체에 비하여 수한 대전방지 특성, 기계적 강도, 내마모성, 내열성, 및 내화학성을 갖는 복합체를 얻을 수 있고, 공정성이 용이하고 생산성이 우수하며 열전도성이 우수하여 방열효과가 뛰어나며 산 및 알카리 환경에서도 이용 가능 하므로 전자차폐를 비롯한 전기도금, 도색, 도장이 기존 플라스틱 또는 폴리머에 비해 용이하다.As described above, in the case of the composite according to the manufacturing method of the present invention, excellent conductivity can be obtained even by adding a small amount of carbon nanotubes to a plastic or a polymer, and thus the cost is low. It is possible to obtain a composite having mechanical strength, abrasion resistance, heat resistance, and chemical resistance, easy processability, excellent productivity, excellent thermal conductivity, excellent heat dissipation effect, and can be used in acid and alkali environments. Painting and painting are easier than with conventional plastics or polymers.

이하에서는, 본 발명에 따른 탄소나노튜브를 가지는 복합체를 제조하는 방법에 대하여 실시예를 이용하여 더욱 상세히 설명한다. 실시예 중에서 부(part)와 중량은 특별한 언급이 없는 한 중량부와 중량%이다.Hereinafter, a method for producing a composite having carbon nanotubes according to the present invention will be described in more detail with reference to Examples. In the examples, parts and weights are parts by weight and weight percent unless otherwise specified.

<실시예 1><Example 1>

(1) 탄소나노튜브(1) carbon nanotubes

탄소나노튜브는 다중벽 탄소나노튜브(Multi-walled Nano Tube, MWNT)로서 평균직경이 120 ㎚이고 길이가 150 ㎛이며, 벌크 상태에서의 부피 저항치는 0.1Ωㆍcm인 중공성 섬유를 사용하였다. 다중벽 탄소나노튜브는 310 ℃에서 2시간 열처리하고, 탄소나노튜브를 황산과 질산의 비율이 3:1인 산 용액에 넣어 3시간 초음파 처리를 하는 단계, 초음파 처리된 탄소나노튜브 용액을 린싱 하는 단계 및 필터링 하는 단계, 상기 탄소나노튜브를 오븐에서 충분히 건조하여 제조한 것을 사용하였다. The carbon nanotubes were multi-walled nanotubes (MWNTs), each of which was hollow fiber having an average diameter of 120 nm and a length of 150 μm and a volume resistivity of 0.1 Ω · cm in bulk. The multi-walled carbon nanotubes were heat-treated at 310 ° C. for 2 hours, and the carbon nanotubes were placed in an acid solution having a ratio of sulfuric acid and nitric acid 3: 1 for 3 hours sonication, followed by rinsing the sonicated carbon nanotube solution. Step and filtering, the carbon nanotubes were prepared by drying sufficiently in an oven.

(2) 조성물의 제조(2) Preparation of the Composition

표 1과 같이 전체 조성물의 함량 100중량부에 대하여 MWNT 3 중량부와 1,2-디메틸-헥사데실이미다졸륨테트라플루오로보레이트(1,2-dimethyl-3-hexadecyl imidazolium tetrafluoroborate) 2 중량부를 우선 용융 혼합한 후, 혼합물을 평균 입경이 폴리페닐렌설피드(e-폴리머社) 95 중량부와 혼합후, 트윈(Twin) 압출기에 넣어 스크류의 온도를 270℃에서 140rpm으로 분간 혼련하여 펠렛화하고 이를 다시 동일한 온도에서 압출하여 시편을 제작하였다. 제조된 시편을 이용하여 물성을 측정한 결과를 표 1 및 표 2에 수록하였듯이 표면저항 특성이 우수하고 또한 내약품성도 우수함을 알 수 있다. 도 1의 SEM사진에서 보듯이 매우 분산성이 우수하였음을 알 수 있다. As shown in Table 1, 3 parts by weight of MWNT and 2 parts by weight of 1,2-dimethyl-hexadecylimidazolium tetrafluoroborate (1,2-dimethyl-3-hexadecyl imidazolium tetrafluoroborate) are preferred based on 100 parts by weight of the total composition. After melt mixing, the mixture was mixed with 95 parts by weight of polyphenylene sulfide (e-polymer), and then pelletized by kneading the screw temperature at 140 rpm at 270 ° C. in a twin extruder. The specimen was extruded again at the same temperature. As shown in Table 1 and Table 2, the results of measuring the physical properties using the prepared specimens are excellent in surface resistance and chemical resistance. As shown in the SEM photograph of Figure 1 it can be seen that very excellent dispersibility.

<비교예 1>Comparative Example 1

실시예1에서 1,2-디메틸-헥사데실이미다졸륨 테트라플루오로보레이트(1,2- dimethyl-3-hexadecylimidazolium tetrafluoroborate)를 사용하지 않고 그 함량만큼의 수지성분을 추가한 것을 제외하고는 동일한 조건에서 실험을 실시하였다. 그 결과를 표 2에 수록하였다. 도 2와 같이 SEM표면을 관찰한 결과 분산성이 매우 열세임이며 알 수 있었다. The same conditions as in Example 1, except that 1,2-dimethyl-hexadecylimidazolium tetrafluoroborate was not used and the amount of the resin component was added. The experiment was carried out in. The results are listed in Table 2. As a result of observing the SEM surface as shown in Figure 2 it was found that the dispersibility is very poor.

<실시예 2><Example 2>

표 1과 같이 전체 조성물의 함량 100중량부에 대하여 실시예 1과동일한 탄소나노튜브인 MWNT 3 중량부와 1,2-디메틸-헥사데실이미다졸륨 테트라플루오로보레이트(1,2-dimethyl-3-hexadecylimidazolium tetrafluoroborate) 2 중량부를 우선 용융 혼합한 후, 혼합물을 평균 PE (폴리에틸렌, LG 화학) 95 중량부와 혼합 후, 트윈(Twin) 압출기에 넣어 스크류의 온도를 140℃에서 140rpm으로 분간 혼련하여 시편을 제작하였다. 제조된 시편을 이용하여 물성을 측정한 결과를 표 1 및 표 2에 수록하였듯이 표면저항 특성이 우수하고 또한 내약품성도 우수함을 알 수 있다.As shown in Table 1, 3 parts by weight of MWNT and 1,2-dimethyl-hexadecylimidazolium tetrafluoroborate (1,2-dimethyl-3), which are the same carbon nanotubes as Example 1, based on 100 parts by weight of the total composition. 2 parts by weight of -hexadecylimidazolium tetrafluoroborate) are first melt-mixed, and then the mixture is mixed with 95 parts by weight of average PE (polyethylene, LG Chemical), and then mixed in a twin extruder and kneaded at a temperature of 140 ° C. to 140 rpm for 140 minutes. Was produced. As shown in Table 1 and Table 2, the results of measuring the physical properties using the prepared specimens are excellent in surface resistance and chemical resistance.

<비교예 2>Comparative Example 2

표 1과 같이 실시예2에서 1,2-디메틸-헥사데실이미다졸륨 테트라플루오로보레이트(1,2-dimethyl-3-hexadecylimidazolium tetrafluoroborate)를 사용하지 않고 그 함량만큼의 MWNT 성분을 추가한 것을 제외하고는 동일한 조건에서 실험을 실시하였다. 그 결과를 표 2에 수록하였다.Except that 1,2-dimethyl-3-hexadecylimidazolium tetrafluoroborate (1,2-dimethyl-3-hexadecylimidazolium tetrafluoroborate) was added in Example 2 as shown in Table 1, except that MWNT components were added in the same amount. And the experiment was carried out under the same conditions. The results are listed in Table 2.

<실시예 3><Example 3>

실시예1에서 폴리페닐렌설피드수지 92중량부로 변경하여 사용하고 기능성첨가제로서 디스테아릴 티오디프로피오네이트 3중량부를 추가 첨가한 것을 제외하고는 동일한 조성과 조건에서 실험을 실시하였다. 그 결과 제조된 시편의 표면광택이 증가되었으며, 색상이 더욱선명하게 나타남을 알 수 있어, 가공중의 마찰열등에 의한 내성이 증가되었음을 알 수 있다. 또한 표 1 및 표 2에 수록하였듯이 표면저항 특성이 우수하고 또한 내약품성도 우수함을 알 수 있다.The experiment was carried out under the same composition and conditions except for changing to 92 parts by weight of polyphenylene sulfide resin in Example 1 and adding 3 parts by weight of distearyl thiodipropionate as a functional additive. As a result, it was found that the surface gloss of the prepared specimen was increased, and the color appeared more vividly, so that the resistance by frictional heat during processing was increased. In addition, as shown in Table 1 and Table 2 it can be seen that the excellent surface resistance and excellent chemical resistance.

[표 1]TABLE 1

Figure 112007083277200-pat00002
Figure 112007083277200-pat00002

[표 2]TABLE 2

<내약품성><Chemical resistance>

Figure 112007083277200-pat00003
Figure 112007083277200-pat00003

도 1은 본 발명의 실시예1에 따르는 복합체 표면의 SEM사진이다.1 is a SEM picture of the surface of the composite according to Example 1 of the present invention.

도 2는 비교예 1에 따른 복합체 표면의 SEM사진이다.2 is a SEM photograph of the surface of the composite according to Comparative Example 1.

도 3은 본 발명의 실시예에 의한 상기 명시된 복합체를 제조를 위해 만들어진 플라스틱 또는 폴리머는 입자이다.Figure 3 is a plastic or polymer made for preparing the above-described composite according to an embodiment of the present invention is a particle.

도 4는 발명의 실시예에 의한 상기 명시된 복합체를 제조를 위해 이용되는 탄소나노튜브이다.Figure 4 is a carbon nanotube used to prepare the above-described composite according to an embodiment of the invention.

도 5는 발명의 실시예에 의한 상기 명시된 복합체를 제조를 위해 이용되는 첨가제중 하나이다.5 is one of the additives used to prepare the above-described composite according to an embodiment of the invention.

도 6은 발명의 실시예에 의한 상기 명시된 복합체를 제조를 위해 이용되는 플라스틱 또는 폴리머, 탄소나노튜브, 첨가제의 혼합물이다.6 is a mixture of plastics or polymers, carbon nanotubes, additives used to prepare the above-specified composite according to an embodiment of the invention.

도 7은 본 발명의 실시 예에 의한 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체 펠렛이다.7 is a plastic / carbon nanotube, polymer / carbon nanotube composite pellet according to an embodiment of the present invention.

도 8은 본 발명의 실시 예에 의한 플라스틱/탄소나노튜브, 폴리머/탄소나노튜브 복합체의 범용예로 액정디스플레이 패널 및 유리를 수납하기 위한 수납 지그이다.8 is a storage jig for accommodating a liquid crystal display panel and glass as a general-purpose example of a plastic / carbon nanotube, a polymer / carbon nanotube composite according to an embodiment of the present invention.

Claims (11)

삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete (A) 플라스틱 또는 폴리머를 0.1 ㎛에서 50 mm 사이의 크기를 가지는 입자로 만드는 단계;      (A) making the plastic or polymer into particles having a size between 0.1 μm and 50 mm; (B) 상기 플라스틱 또는 폴리머 입자들에 탄소나노튜브 및 하기 화학식 1의 화합물을 함유하는 첨가제를 혼합하는 단계;      (B) mixing an additive containing a carbon nanotube and a compound of Formula 1 to the plastic or polymer particles; (C) 상기 혼합된 플라스틱 또는 폴리머와 탄소나노튜브 및 첨가제를 가열하여 용융시키는 단계;      (C) heating and melting the mixed plastics or polymers and carbon nanotubes and additives; (D) 상기 용융된 혼합물들을 이용하여 펠렛을 만드는 단계;      (D) making pellets using the molten mixtures; (E) 상기 펠렛을 이용하여 복합체 성형품을 제조하는 단계;     (E) preparing a composite molded article using the pellet; 를 포함하는 탄소나노튜브와 중합체로 이루어지는 복합체의 제조방법. Method of producing a composite consisting of a carbon nanotube and a polymer comprising a. [화학식 1][Formula 1]
Figure 112009025266352-pat00014
Figure 112009025266352-pat00014
(상기 식에서 R1은 C1~C24의 선형 또는 분지형 알킬이거나 치환된 알킬기로부터 선택되고, R2는 메틸기 또는 C2~C5의 선형 또는 분지형 알킬기로부터 선택된다.) (Wherein R 1 is selected from C 1 to C 24 linear or branched alkyl or substituted alkyl groups, and R 2 is selected from methyl groups or C 2 to C 5 linear or branched alkyl groups.)
삭제delete 제 7항에 있어서,The method of claim 7, wherein 상기 첨가제는 티오비스페놀, 아민류, 부틸히드록시톨루엔, 디라우릴 티오디프로피오네이트, 디스테아릴 티오디프로피오네이트, 베타-티오디프로피온산-테트라키스(메틸렌-3,5-디-t-부틸-4-히드록시히드로시나메이트)메탄, 페놀수지, 유기포스파이트에서 선택되는 어느 하나 이상의 성분을 더 포함하는 것을 특징으로 하는 복합체의 제조방법.The additives are thiobisphenol, amines, butylhydroxytoluene, dilauryl thiodipropionate, distearyl thiodipropionate, beta-thiodipropionic acid-tetrakis (methylene-3,5-di-t-butyl -4-hydroxyhydrocinnamate) methane, phenol resin, organic phosphite any one or more components selected from the method of producing a composite characterized in that it further comprises. 제 7항에 있어서,The method of claim 7, wherein (B)단계에서 유리섬유를 더 포함하는 것을 특징으로 하는 복합체의 제조방법. Method (B) of producing a composite, characterized in that it further comprises a glass fiber. 삭제delete
KR1020070118443A 2007-11-20 2007-11-20 Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses KR100935365B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070118443A KR100935365B1 (en) 2007-11-20 2007-11-20 Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070118443A KR100935365B1 (en) 2007-11-20 2007-11-20 Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses

Publications (2)

Publication Number Publication Date
KR20090051962A KR20090051962A (en) 2009-05-25
KR100935365B1 true KR100935365B1 (en) 2010-01-06

Family

ID=40859872

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070118443A KR100935365B1 (en) 2007-11-20 2007-11-20 Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses

Country Status (1)

Country Link
KR (1) KR100935365B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255481A (en) 2003-02-25 2004-09-16 Japan Science & Technology Agency Carbon nanotube/polymer compound material, and manufacturing method thereof
KR100769251B1 (en) 2006-11-06 2007-10-22 (주)썬테크 Polymercomposite curing agent and preparing method thereof, epoxy resin composition using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004255481A (en) 2003-02-25 2004-09-16 Japan Science & Technology Agency Carbon nanotube/polymer compound material, and manufacturing method thereof
KR100769251B1 (en) 2006-11-06 2007-10-22 (주)썬테크 Polymercomposite curing agent and preparing method thereof, epoxy resin composition using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Advanced Functional Materials, 2005, 15, pp.910-916

Also Published As

Publication number Publication date
KR20090051962A (en) 2009-05-25

Similar Documents

Publication Publication Date Title
Chen et al. Study on polycarbonate/multi-walled carbon nanotubes composite produced by melt processing
JP6047569B2 (en) Nanotube and finely pulverized carbon fiber polymer composite composition and production method
Kumar et al. Dynamic synergy of graphitic nanoplatelets and multi-walled carbon nanotubes in polyetherimide nanocomposites
JP5357047B2 (en) Conductive thermoplastic resin composition and plastic molded article
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
Levchenko et al. Influence of organo-clay on electrical and mechanical properties of PP/MWCNT/OC nanocomposites
CN102532839B (en) High-performance conductive polycarbonate material and preparation method thereof
KR20140126292A (en) Production method for conductive resin composition, and conductive resin composition
Bao et al. Positive temperature coefficient effect of polypropylene/carbon nanotube/montmorillonite hybrid nanocomposites
KR101154502B1 (en) Thermoplastic polymer composite having improved barrier properties and electrical conductivity and the product made therefrom
KR20120077647A (en) Polymer/carbon nano tube composites and preparation method thereof
Torres‐Giner et al. Injection‐molded parts of polypropylene/multi‐wall carbon nanotubes composites with an electrically conductive tridimensional network
CN109810448A (en) Conductive resin composition and preparation method thereof
KR101055620B1 (en) Polymer / carbon nanotube composite with excellent electrical properties and its manufacturing method
Abdullah et al. AC electrical and dielectric properties of PVC-MWCNT nanocomposites
Lei et al. Preparation process and properties of exfoliated graphite nanoplatelets filled Bisphthalonitrile nanocomposites
Hajar et al. Effect of graphite loading on the electrical and mechanical properties of Poly (Ethylene Oxide)/Poly (Vinyl Chloride) polymer films
KR100935365B1 (en) Nanocomposite containing Carbon Nanotube, Its Preparing Method and Its Uses
KR101654638B1 (en) Hybrid filler composite and preparing method of the same
KR101740718B1 (en) Electroconductive polycarbonate composite and method for preparing the same
Alshammari et al. Electrical, Thermal, and Morphological Properties of Poly (ethylene terephthalate)‐Graphite Nanoplatelets Nanocomposites
KR101165148B1 (en) polymer-carbon nanotube nanocomposite resin composition and Method for manufacturing the same
Diaham et al. Novel electrical conduction properties obtained in few-layer graphene/epoxy nanocomposites
Yu et al. Fabrication and characterization of carbon nanotube reinforced poly (methyl methacrylate) nanocomposites
US20070037918A1 (en) Fluororesin compound

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121128

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131231

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee