JP2004243391A - Method and facility for manufacturing square steel tube - Google Patents

Method and facility for manufacturing square steel tube Download PDF

Info

Publication number
JP2004243391A
JP2004243391A JP2003037528A JP2003037528A JP2004243391A JP 2004243391 A JP2004243391 A JP 2004243391A JP 2003037528 A JP2003037528 A JP 2003037528A JP 2003037528 A JP2003037528 A JP 2003037528A JP 2004243391 A JP2004243391 A JP 2004243391A
Authority
JP
Japan
Prior art keywords
heating
steel pipe
round steel
transformation point
heating means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003037528A
Other languages
Japanese (ja)
Inventor
Shin Nakajima
伸 中島
Norio Nakajima
教雄 中島
Hiroshi Nakajima
拓 中島
功雄 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakajima Steel Pipe Co Ltd
Original Assignee
Nakajima Steel Pipe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakajima Steel Pipe Co Ltd filed Critical Nakajima Steel Pipe Co Ltd
Priority to JP2003037528A priority Critical patent/JP2004243391A/en
Publication of JP2004243391A publication Critical patent/JP2004243391A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a square steel tube manufacturing method for heating a round steel tube before hot working at reduced heating cost and reduced equipment cost. <P>SOLUTION: A round steel tube 1 is entirely heated by a first heating means 11 close to A<SB>1</SB>transformation point, and each corner part formation corresponding part 1A is partially heated at a plurality of positions in the circumferential direction by a second heating means 41 close to A<SB>3</SB>transformation point. The heated round steel tube 1 is hot-worked by a forming means 51 into a square steel tube having a plurality of corner parts with the normal dimensions and shape. By entirely heating the tube by the first heating means close to A<SB>1</SB>transformation point and partially heating each corner part formation corresponding part by the second heating means close to A<SB>3</SB>transformation point required for corner hot working, the heating cost before hot working of the round steel tube can be reduced more than that of a method for entirely heating the round steel tube close to A<SB>3</SB>transformation point. The first heating means can have a configuration capable of withstanding the temperature close to A<SB>1</SB>transformation point, and the heating cost before hot working of the round steel tube can be reduced, the frequency of maintenance can be reduced, and the maintenance cost is also reduced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、たとえば建築用の柱材に使用される大径で厚肉の角形鋼管(正方体形状、直方体形状、五角形や六角形などの多角形状)を得るのに採用される角形鋼管の製造方法、および角形鋼管の製造設備に関するものである。
【0002】
【従来の技術】
従来、この種の角形鋼管の製造方法としては、丸形鋼管からなる原管を加熱炉内に搬入し、この加熱炉内での搬送中に800℃〜950℃(A変態点以上)で高温加熱し、そして角形鋼管成形ミルに搬入して熱間成形(成形温度A変態点以上)を行っている(たとえば、特許文献1参照。)。
【0003】
【特許文献1】
特開平8−294722号公報(第3頁、第1図)
【0004】
【特許文献2】
実願平5−44927号(実開平7−15763号)のマイクロフィルム(第6−7頁、第1−3図)
【0005】
【発明が解決しようとする課題】
しかし、上記した従来構成によると、通常、加熱炉としてはガス、油などによる燃焼加熱方式が採用されており、かかる方式により原管の全体を800℃〜950℃に高温加熱することは、その加熱コストが高くつくことになり、特に原管が大径で厚肉のとき、加熱コストは高価となる。また加熱炉としては、少なくとも800℃〜950℃の高温に耐える構成としなければならず、加熱炉自体が高価になるとともに、加熱炉や炉内搬送装置(ローラコンベヤ)などの保守点検は度々行わなければならず、維持費も高価になる。
【0006】
そこで本発明の請求項1記載の発明は、丸形鋼管の熱間成形前の加熱を、その加熱コストや設備費を安価として行える角形鋼管の製造方法を提供することを目的としたものである。
【0007】
また請求項4記載の発明は、請求項1記載の角形鋼管の製造方法を容易に実現し得る角形鋼管の製造設備を提供することを目的としたものである。
【0008】
【課題を解決するための手段】
前述した目的を達成するために、本発明の請求項1記載の角形鋼管の製造方法は、丸形鋼管を第1加熱手段によりA変態点の近辺にまで全体加熱し、引き続いて丸形鋼管の周方向複数箇所でコーナ部形成相当部を第2加熱手段によりA変態点の近辺にまで部分加熱し、そして加熱された丸形鋼管を成形手段によって、正規の寸法でかつ複数のコーナ部を有する角形鋼管に熱間成形することを特徴としたものである。
【0009】
したがって請求項1の発明によると、第1加熱手段によって丸形鋼管をA変態点の近辺に全体加熱し、第2加熱手段によって各コーナ部形成相当部を、コーナ部熱間成形に必要なA変態点の近辺にまで部分加熱することで、たとえば全体をA変態点の近辺にまでに加熱する方式と比べて、丸形鋼管の熱間成形前の加熱コストを安くし得る。また第1加熱手段としては、A変態点の近辺の温度に耐える構成とすればよいことから、設備費を安価にし得るとともに、第1加熱手段や搬送手段などの保守点検の頻度は少なくなり、維持費も安価になる。
【0010】
そして、加熱した丸形鋼管を成形手段によって、正規の寸法かつ形状とした角形鋼管(最終製品)に仕上がるように熱間成形し得る。その際に丸形鋼管は、各コーナ部形成相当部を除く部分、すなわち複数辺の平坦部がA変態点の近辺を維持しながら、各コーナ部形成相当部がA変態点の近辺であることから、絞り状の熱間成形力は各コーナ部形成相当部に強く作用することになり、以て角形鋼管は、平坦部(複数辺)に凹みが生じ難く、さらに各コーナ部の形状、すなわち外周半径を均等状にかつシャープに形成し得る。
【0011】
また本発明の請求項2記載の角形鋼管の製造方法は、上記した請求項1記載の構成において、第1加熱手段は、丸形鋼管を加熱炉に入れての燃焼加熱方式であり、第2加熱手段は高周波誘導加熱方式であることを特徴としたものである。
【0012】
したがって請求項2の発明によると、加熱炉において燃焼加熱方式により丸形鋼管をA変態点の近辺に全体加熱し、高周波誘導加熱方式によって各コーナ部形成相当部を、コーナ部熱間成形に必要なA変態点の近辺にまで部分加熱することで、たとえば全体をA変態点の近辺にまでに加熱する方式と比べて、丸形鋼管の熱間成形前の加熱コストを安くし得る。また加熱炉としては、A変態点の近辺の温度に耐える構成とすればよいことから、加熱炉自体(設備費)は安価になるとともに、加熱炉や炉内の搬送手段などの保守点検の頻度は少なくなり、維持費も安価になる。
【0013】
そして本発明の請求項3記載の角形鋼管の製造方法は、上記した請求項2記載の構成において、第1加熱手段の加熱炉から取り出される高温気体を発電装置の発電に利用し、発電装置で発電した電力を第2加熱手段の高周波誘導加熱に使用することを特徴としたものである。
【0014】
したがって請求項3の発明によると、第1加熱手段の加熱炉から取り出した高温気体を発電装置による発電に再利用し、これにより生じた電力を第2加熱手段の高周波誘導加熱に使用することによって、第2加熱手段での使用電力を安価に提供し得る。
【0015】
さらに本発明の請求項4記載の角形鋼管の製造設備は、丸形鋼管を搬送する搬送経路中に、この丸形鋼管をA変態点の近辺にまで全体加熱する第1加熱手段と、丸形鋼管の周方向複数箇所でコーナ部形成相当部をA変態点の近辺にまで部分加熱する第2加熱手段と、加熱された丸形鋼管を正規の寸法でかつ複数のコーナ部を有する角形鋼管に熱間成形する成形手段とを配設したことを特徴としたものである。
【0016】
したがって請求項4の発明によると、丸形鋼管を搬送経路上で搬送しながら、まず第1加熱手段によって丸形鋼管をA変態点の近辺にまで全体加熱し、次いで第2加熱手段によって丸形鋼管の各コーナ部形成相当部をA変態点の近辺にまで部分加熱したのち、この加熱した丸形鋼管を成形手段によって熱間成形することで、正規の寸法かつ形状の角形鋼管を製造し得る。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態を、大径、厚肉でかつ正方体形状の角形鋼管を得るのに採用した状態として、図1〜図7に基づいて説明する。
【0018】
図1に示すように、原管となる丸形鋼管1は、たとえば、所定長さでかつ所定幅の鋼板をプレス成形などにより管状とし、そして開先どうしを突き合わせし溶接することで、一辺に突き合わせ溶接部(シーム溶接部)2を有する状態で造管し得る。ここで丸形鋼管1は、後述する熱間成形によって、正規の外面間の寸法や各コーナ部が正規の外周半径の角形鋼管(最終製品)となるように、その外周直径Dを設定して造管している。
【0019】
この丸形鋼管1は、図2〜図5に示すように、搬入床7に渡されて搬送される。この搬入床7の終端部に搬送された丸形鋼管1は、鼓形ローラ群や平形ローラ群からなるローラコンベヤ(搬送手段の一例。)8に渡され、このローラコンベヤ8により形成される搬送経路9上で搬送される。
【0020】
この搬送経路9中には、前記丸形鋼管1をA変態点の近辺(たとえば600〜650℃)にまで全体加熱する第1加熱手段11と、丸形鋼管1の周方向における90度置きの4箇所(周方向複数箇所)でコーナ部形成相当部1AをA変態点(たとえば850〜1050℃)の近辺にまで部分加熱する第2加熱手段41と、加熱された丸形鋼管1を正規の寸法でかつ4箇所(複数)のコーナ部を有する角形鋼管に熱間成形する成形手段51とが配設されている。
【0021】
すなわち、第1加熱手段11は、丸形鋼管1を加熱炉12に入れての燃焼加熱方式であって、その加熱炉12における前後方向の両端には、貫通孔により搬入口や搬出口が形成され、そして搬入口や搬出口には、それぞれ開閉扉13が設けられている。前記加熱炉12の一側下部でかつローラコンベヤ8のローラ間の中間位置に下部加熱バーナー14が配設され、そして、加熱炉12の他側上部でかつ前記下部加熱バーナー14に対して千鳥状に対峙する位置には、上部加熱バーナー15が配設されている。なお前記加熱炉12の搬出口に隣接した部分には、上下方向の排煙口16が形成されている。
【0022】
以上の12〜16などにより、前記丸形鋼管1をA変態点の近辺にまで全体加熱する第1加熱手段11の一例が構成される。
前記排煙口16に接続される排煙装置21が設けられる。すなわち加熱炉12の側部で床内には主煙道22が形成され、この主煙道22の始端が、第1煙管23を介して前記排煙口16に接続されている。そして、主煙道22の終端に第2煙管24が接続され、この第2煙管24がファン25を介して煙突26の下部に接続されている。前記第2煙管24の中間にはダンパー27が設けられ、このダンパー27の操作により、前記加熱炉12内の気圧が大気圧よりも低くなるように制御される。以上の22〜27などにより排煙装置21の一例が構成される。
【0023】
前記主煙道22内には熱交換器28が配設され、ここで排煙と熱交換された高温(300〜350℃)の空気は、配管29,30を介して各バーナー14,15に供給され、以て熱の再利用が行われる。さらに熱交換器28で排煙と熱交換された空気(高温気体)が、配管31を介して自家発電用の発電装置33における発電タービン34に供給されることで、この発電タービン34を介して発電機35が稼動され、以て第1加熱手段11の加熱炉12から取り出される高温気体が発電装置33による発電に再利用される。なお、必要に応じて、配管31の部分には補助的にボイラー36が配設される。
【0024】
前記第2加熱手段41は高周波誘導加熱方式であって、搬送経路9の方向の5箇所(1箇所または複数箇所)に配設されている。すなわち、各第2加熱手段41は搬送経路9を囲む機枠42を有し、この機枠42側には、前記丸形鋼管1の各コーナ部形成相当部1Aに外側から対向される状態で、それぞれ保持部材43を介して発熱コイル44が設けられている。
【0025】
前記保持部材43は、丸形鋼管1のサイズ変化(種類変化)、つまり外周直径Dの変化に対応して位置調整自在に構成されている。すなわち、保持部材43の外面側にはブロック体45が一体化され、このブロック体45の外面側に連結されたねじ軸体46が前記機枠42側に設けられたブラケット体47に挿通されるとともに、ブラケット体47の両側においてねじ軸体46にそれぞれナット体48が螺合されている。そして、ブロック体45の外面側に連結されたガイドロッド49が前記ブラケット体47に挿通されている。
【0026】
なお、第2加熱手段41の周辺には、丸形鋼管1の幅決めを行うための鼓形のサイドガイドローラ50が、丸形鋼管1のサイズ変化に対応して左右位置調整自在に設けられている。以上の42〜50などにより、丸形鋼管1の各コーナ部形成相当部1AをA変態点の近辺にまで部分加熱する第2加熱手段41の一例が構成される。
【0027】
上記構成からなる各第2加熱手段41の各発熱コイル44に対して、前記発電機35からの給電線37が接続され、以て発電装置33で発電した電力を第2加熱手段41の高周波誘導加熱に使用するように構成されている。なお、発電装置33からの電力の不足を補うために、給電線37に対して通常給電線38が、接断制御器39を介して接続されている。
【0028】
前述したように、搬入床7の終端部に搬送された丸形鋼管1は、ローラコンベヤ8に渡され、このローラコンベヤ8により第1加熱手段11の加熱炉12に搬入される。この丸形鋼管1は、加熱炉12内にて搬送経路9上で搬送されながら、各バーナー14,15の燃焼熱によって徐々に均一的に加熱Hされ(図4参照)、そして600〜650℃(A変態点の近辺)の高温を維持しながら、かつ周方向ならびに長さ方向において均一温度でかつ曲げなど生じることなく加熱Hされることになる。
【0029】
このようにしてA変態点の近辺の温度に加熱された丸形鋼管1を、開閉扉13を開動させることで、搬出口を通して加熱炉12から搬出したのち、第2加熱手段41へ搬入し得る。そして丸形鋼管1の終端が完全に搬出されたときに、搬出口の開閉扉13が閉動される。
【0030】
前述したように、全体がA変態点の近辺に加熱されて加熱炉12から搬出される丸形鋼管1は、第2加熱手段41群の機枠42内を通過し、その間に各コーナ部形成相当部1AがA変態点の近辺にまで部分加熱される。すなわち丸形鋼管1は、ローラコンベヤ8により支持搬送されることで下位レベルが一定に維持され、サイドガイドローラ50により両側辺が案内されることで一定に幅決めされた状態で、振れなど生じることなく搬送経路9上で搬送される。
【0031】
その際に、たとえば突き合わせ溶接部2を検出し、この突き合わせ溶接部2が上位でかつ幅方向(横直径方向)の中央に位置するように丸形鋼管1を回転調整したのち、第2加熱手段41へ搬入することで、突き合わせ溶接部2を基準として各コーナ部形成相当部1Aの向き(位置)が設定されることになる。
【0032】
このようにして、向きを設定して安定して搬送される丸形鋼管1の各コーナ部形成相当部1Aに対して、第2加熱手段41群における各発熱コイル44の熱が加えられ、以て各コーナ部形成相当部1Aが徐々に均一的に加熱される(図5参照)。これにより丸形鋼管1は、その各コーナ部形成相当部1Aを除く部分は600〜650℃(A変態点の近辺)の高温を維持しながら、各コーナ部形成相当部1Aは850〜1050℃(A変態点の近辺)にまで部分加熱(追加加熱)されることになる。そして、加熱された丸形鋼管1は成形手段51へと搬送される。
【0033】
上述したように、第1加熱手段11によって丸形鋼管1の全体をA変態点の近辺に加熱、すなわち600〜650℃に全体加熱したのち、第2加熱手段41によって各コーナ部形成相当部1AをA変態点の近辺に部分加熱、すなわち850〜1050℃に部分加熱することで、丸形鋼管1の熱間成形前の加熱を、その加熱コストや設備費を安価として行えることになる。
【0034】
つまり、第1加熱手段11によって丸形鋼管1を600〜650℃に全体加熱し、第2加熱手段41によって各コーナ部形成相当部1Aを、コーナ熱間成形に必要な850〜1050℃に部分加熱することで、たとえば全体を850〜1050℃に加熱する方式と比べて加熱コストは安くなり、特に丸形鋼管1が大径で厚肉のとき、加熱コストは安価になる。また加熱炉12としては、600〜650℃に耐える構成とすればよいことから、加熱炉自体(設備費)は安価になるとともに、加熱炉12や炉内の搬送手段(ローラコンベヤ8)などの保守点検の頻度は少なくなり、維持費も安価になる。
【0035】
前述したように第1加熱手段11の加熱作用によって加熱炉12内で発生した熱い煙は、排煙装置21により排出し得る。すなわちファン25の作動により排煙口16に吸引力が作用し、これにより煙は、排煙口16を通して第1煙管23に吸引され、そして主煙道22、第2煙管24へと流れたのち、ファン25を介して煙突26へ吐き出される。このような吸引排煙により加熱炉12内が負圧化、すなわち大気圧よりも低くなることで、丸形鋼管1に曲げなどが生じることを防止し得る。その際に大気圧よりも低い程度は、ダンパー27を調整操作することで制御し得る。
【0036】
また熱い煙が主煙道22を流れるときに、熱交換器28によって空気が熱交換され、これにより加熱された高温(300〜350℃)の空気は、配管29,30を介して各バーナー14,15に供給される。したがって各バーナー14,15は、この加熱された空気を燃焼用空気として、効率のよい燃焼が行われる。通常、各バーナー14,15の燃焼には、燃焼用空気と燃料(ガス、天然ガス、LPGなどの気体燃料、重油、灯油などの液体燃料、石炭などの固形燃料)が必要で、これらにより燃焼効率を上げている。
【0037】
前述したように加熱された空気は、配管31を介して発電装置33の発電タービン34に供給されることで、この発電タービン34を介して発電機35が稼動されて発電される。これにより生じた電力は、給電線37を介して各第2加熱手段41の各発熱コイル44に給電され、以て高周波誘導加熱に使用される。このように、第1加熱手段11の加熱炉12から取り出した高温気体を発電装置33による発電に再利用し、そして発電した電力を第2加熱手段41の高周波誘導加熱に使用することによって、第2加熱手段41での使用電力を安価に提供し得、以て全体の運転費をより安価にし得る。
【0038】
上述したように、第1加熱手段11と第2加熱手段41とによって加熱された丸形鋼管1は成形手段51に搬送され、この成形手段51によって正規の寸法かつ形状に熱間成形される。すなわち成形手段51は、図2、図3、図6、図7に示すように、前後4段(複数段)に設けられている。そして各成形手段51は、機枠52側に対して位置調整自在に、または交換自在に設けられた上下一対ならびに左右一対の成形ロール53などを介して、丸形鋼管1を絞り状に熱間成形させるものである。
【0039】
ここで成形ロール53としては平形ロールが示されているが、上手側(前段側)の成形ロール53として、大きな円弧状の鼓形ロールを使用してもよい。なお、成形手段51の周辺で、必要する箇所(成形手段51の前後、前のみ、後ろのみ、スタンド間など)には、必要とする数のデスケーラー装置55が設けられている。このデスケーラー装置55は、丸形鋼管1に対して水圧をかけた水を噴射するもので、この水噴射によりミルスケールなどを除去し、表面肌を良くし得る。
【0040】
したがって、加熱されて成形手段51に搬入された丸形鋼管1は、成形ロール53群によって絞り状に熱間成形され、このとき熱間成形は、複数段の成形手段51によって徐々(段階的)に絞り状に行われる。すなわち丸形鋼管1は、各コーナ部形成相当部1Aを大きな外周半径としかつ各コーナ部形成相当部1A間を平坦部とするような熱間成形(図6参照)の段階などを経たのち、最終段では、正規の外面間の寸法Lでかつ正規の外周半径Rのコーナ部5とした角形鋼管(最終製品)4に仕上がるように熱間成形(図7参照)される。
【0041】
その際に熱間成形は、前述したように突き合わせ溶接部2を基準として各コーナ部形成相当部1Aの向き(位置)を設定した状態を、成形ロール53群や他の規制手段などにより維持しながら行われる。
【0042】
なお、熱間成形に際して丸形鋼管1は、その4辺の平坦部が600〜650℃(A変態点の近辺)で、各コーナ部形成相当部1Aが850〜1050℃(A変態点の近辺)であることから、その絞り状の熱間成形力は各コーナ部形成相当部1Aに強く作用することになり、以て角形鋼管4は、平坦部(4辺)に凹みが生じ難く、さらに各コーナ部5の形状、すなわち正規の外周半径Rを均等状にかつシャープに形成し得ることになる。さらに角形鋼管4は、熱間成形によって、残留応力が殆どなくて高い座屈強度が得られるとともに、二次溶接性に優れ、かつ十分な靱性を有するものとなる。
【0043】
このようにして熱間成形された角形鋼管4は、冷却床61に受け取られる。この冷却床61はコンベヤ形式であって複数本の角形鋼管4を平行させて支持し、そして長さ方向に対して横方向へと搬送させる。この冷却床61での搬送中に、角形鋼管4は空冷形式で徐冷される。冷却床61での角形鋼管4群の搬送は、隣接した角形鋼管4の間を離した状態で、または隣接した角形鋼管4どうしを接触させ両側よりクランプした状態で搬送される。これにより角形鋼管4は、同じ雰囲気温度下で徐冷されることになり、以て冷却時の曲がりを少なくし得る。冷却床61の終端に達した角形鋼管4は、図示していない矯正装置、先端切断装置、後端切断装置、洗浄装置、防錆装置へと搬送され、それぞれで処理されたのち、製品としてストレージされる。
【0044】
次に、本発明の別の実施の形態を図8に基づいて説明する。
すなわち、上述した実施の形態では、一辺に突き合わせ溶接部2を有する大径で厚肉の角形鋼管(最終製品)4を製造しているが、これは図8の(a)に示すように、二箇所に突き合わせ溶接部2を有する大径で厚肉の角形鋼管4を製造してもよく、さらにはシームレスの角形鋼管4を製造してもよい。
【0045】
また、上述した実施の形態では、正方体形状の角形鋼管4を製造しているが、これは直方体形状の角形鋼管4を製造してもよく、さらに図8の(b)に示すような五角形形状の角形鋼管4や、図8の(c)に示すような六角形形状の角形鋼管4など、各種の多角形状の角形鋼管4を製造してもよい。
【0046】
上記した実施の形態では、第1加熱手段11として、丸形鋼管1を加熱炉12に入れての燃焼加熱方式が採用されているが、この第1加熱手段としては、高周波誘導加熱方式などであってもよい。
【0047】
上記した実施の形態では、第1加熱手段11の加熱炉12から取り出される高温気体を発電装置33の発電に利用し、発電装置33で発電した電力を第2加熱手段41の高周波誘導加熱に使用する方式が採用されているが、この第2加熱手段41の高周波誘導加熱の全てに通常給電線38からの電力を使用する方式などであってもよい。
【0048】
上記した実施の形態で示すように、成形手段51での熱間成形は、複数段で徐々に絞り成形するのが好ましいが、その段数は任意であり、特に丸形鋼管1が薄肉の場合には、少数段での熱間成形が可能となる。
【0049】
上記した実施の形態では、大径(大きい寸法)で厚肉の角形鋼管4を製造しているが、これは大径で薄肉の角形鋼管、小径で厚肉の角形鋼管、小径で薄肉の角形鋼管などの製造であってもよい。たとえば、正規の外面間の寸法Lが300〜700mm、厚さtが9〜70mmの角形鋼管4を得るものであり、その際にコーナ部5の正規の外周半径Rは、厚さtの1.0〜3.0倍となるようにシャープに形成される。
【0050】
【発明の効果】
上記した本発明の請求項1によると、第1加熱手段によって丸形鋼管をA変態点の近辺に全体加熱し、第2加熱手段によって各コーナ部形成相当部を、コーナ部熱間成形に必要なA変態点の近辺にまで部分加熱することで、たとえば全体をA変態点の近辺にまでに加熱する方式と比べて、丸形鋼管の熱間成形前の加熱コストを安くでき、特に丸形鋼管が大径で厚肉のとき、加熱コストを安価にできる。また第1加熱手段としては、A変態点の近辺の温度に耐える構成とすればよいことから、設備費を安価にできるとともに、第1加熱手段や搬送手段などの保守点検の頻度を少なくできて、維持費も安価になる。
【0051】
そして、加熱した丸形鋼管を成形手段によって、正規の寸法かつ形状とした角形鋼管に仕上がるように熱間成形できる。その際に丸形鋼管は、各コーナ部形成相当部を除く部分、すなわち複数辺の平坦部がA変態点の近辺を維持しながら、各コーナ部形成相当部がA変態点の近辺であることから、絞り状の熱間成形力を各コーナ部形成相当部に強く作用させることができ、以て角形鋼管は、平坦部(複数辺)に凹みが生じ難く、さらに各コーナ部の形状、すなわち外周半径を均等状にかつシャープに形成できる。さらに角形鋼管は、熱間成形によって、残留応力が殆どなくて高い座屈強度が得ることができるとともに、二次溶接性に優れ、かつ十分な靱性を有するものにできる。
【0052】
また上記した本発明の請求項2によると、加熱炉において燃焼加熱方式により丸形鋼管をA変態点の近辺に全体加熱し、高周波誘導加熱方式によって各コーナ部形成相当部を、コーナ部熱間成形に必要なA変態点の近辺にまで部分加熱することで、たとえば全体をA変態点の近辺にまでに加熱する方式と比べて、丸形鋼管の熱間成形前の加熱コストを安くできる。また加熱炉としては、A変態点の近辺の温度に耐える構成とすればよいことから、加熱炉自体(設備費)を安価にできるとともに、加熱炉や炉内の搬送手段などの保守点検の頻度は少なくなり、維持費も安価にできる。
【0053】
そして上記した本発明の請求項3によると、第1加熱手段の加熱炉から取り出した高温気体を発電装置による発電に再利用し、これにより生じた電力を第2加熱手段の高周波誘導加熱に使用することによって、第2加熱手段での使用電力を安価に提供でき、以て全体の運転費をより安価にできる。
【0054】
さらに上記した本発明の請求項4によると、丸形鋼管を搬送経路上で搬送しながら、まず第1加熱手段によって丸形鋼管をA変態点の近辺にまで全体加熱し、次いで第2加熱手段によって丸形鋼管の各コーナ部形成相当部をA変態点の近辺にまで部分加熱したのち、この加熱した丸形鋼管を成形手段によって熱間成形することで、正規の寸法かつ形状の角形鋼管を製造でき、以て請求項1記載の角形鋼管の製造方法を容易に実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示し、角形鋼管の製造方法に使用される丸形鋼管で、(a)は正面図、(b)は一部切り欠き側面図である。
【図2】同角形鋼管の製造方法における加熱から熱間成形を含む工程斜視図である。
【図3】同角形鋼管の製造方法における加熱工程から熱間成形工程までの説明図である。
【図4】同角形鋼管の製造方法における第1加熱手段部分の正面図である。
【図5】同角形鋼管の製造方法における第2加熱手段部分の一部切り欠き正面図である。
【図6】同角形鋼管の製造方法における熱間成形工程で、前段成形時の正面図である。
【図7】同角形鋼管の製造方法における熱間成形工程で、最終段成形時の正面図である。
【図8】本発明の別の実施の形態を示し、(a)は二枚の鋼板を使用した角形鋼管の正面図、(b)は五角形形状の角形鋼管の正面図、(c)は六角形形状の角形鋼管の正面図である。
【符号の説明】
1 丸形鋼管
1A コーナ部形成相当部
2 突き合わせ溶接部
4 角形鋼管(最終製品)
5 コーナ部
8 ローラコンベヤ(搬送手段)
9 搬送経路
11 第1加熱手段
12 加熱炉
14 下部加熱バーナー
15 上部加熱バーナー
16 排煙口
21 排煙装置
25 ファン
26 煙突
27 ダンパー
28 熱交換器
33 発電装置
34 発電タービン
35 発電機
41 第2加熱手段
43 保持部材
44 発熱コイル
50 サイドガイドローラ
51 成形手段
53 成形ロール
55 デスケーラー装置
D 外周直径
H 加熱
L 正規の外面間の寸法
R 正規の外周半径
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a rectangular steel pipe used for obtaining a large-diameter, thick-walled rectangular steel pipe (a rectangular shape, a rectangular parallelepiped shape, a polygonal shape such as a pentagon or a hexagon) used for a column material for building, for example. , And a manufacturing facility for rectangular steel pipes.
[0002]
[Prior art]
Conventionally, as a method for producing this kind of square tube is a raw material pipe made of round steel pipe is carried into a heating furnace, in during the transport in the heating furnace 800 ℃ ~950 ℃ (A 3 transformation point or higher) high temperature heating, and then carried into the RHS forming mill is performing hot-forming the (molding temperature a 3 transformation point or above) (e.g., see Patent Document 1.).
[0003]
[Patent Document 1]
JP-A-8-294722 (page 3, FIG. 1)
[0004]
[Patent Document 2]
Microfilm of Jpn. Pat. Appln. KOKAI Publication No. 5-44927 (Jpn. Pat. Appln. KOKAI Publication No. 7-15763) (Page 6-7, FIG. 1-3)
[0005]
[Problems to be solved by the invention]
However, according to the conventional configuration described above, a combustion heating method using gas, oil, or the like is usually used as a heating furnace, and heating the entire raw tube to a high temperature of 800 ° C. to 950 ° C. by such a method is difficult. The heating cost is high, and the heating cost is expensive especially when the original tube is large in diameter and thick. Further, the heating furnace must be configured to withstand a high temperature of at least 800 ° C. to 950 ° C., and the heating furnace itself becomes expensive, and maintenance and inspection of the heating furnace and the in-furnace transfer device (roller conveyor) are frequently performed. And maintenance costs are high.
[0006]
Accordingly, an object of the present invention is to provide a method of manufacturing a rectangular steel pipe capable of heating a round steel pipe before hot forming at a reduced heating cost and equipment cost. .
[0007]
Another object of the present invention is to provide a square steel pipe manufacturing facility which can easily realize the method for manufacturing a square steel pipe according to the first aspect.
[0008]
[Means for Solving the Problems]
To achieve the above object, a manufacturing method of square tube according to claim 1 of the present invention, a round steel pipe is heated overall to the vicinity of A 1 transformation point by the first heating means, followed by a round steel pipe peripheral corner portion forming portion corresponding in direction a plurality of locations partially heated to near the a 3 transformation point by the second heating means, and by the heated round steel pipe forming means, and a plurality of corner portions the size of normal It is characterized by hot forming into a square steel pipe having
[0009]
Therefore, according to the invention of claim 1, a round steel tube by the first heating means heating the whole in the vicinity of A 1 transformation point, the corner portions each formed corresponding portion by the second heating means, necessary corner hot forming by partially heating to near the a 3 transformation point, for example a whole in comparison with the method of heating to near the a 3 transformation point, it may lower the value of the heating costs before hot forming of round steel pipe. As the first heating means, since it is sufficient a structure to withstand temperatures near the A 1 transformation point, with can inexpensively equipment costs, frequent maintenance and inspection, such as the first heating means and conveying means less , Maintenance costs are also lower.
[0010]
Then, the heated round steel pipe can be hot formed by a forming means so as to be finished into a square steel pipe (final product) having a regular size and shape. Round steel pipe At this time, the portion excluding the respective corner portions formed corresponding portion, i.e. while the flat portion of the plurality edges maintains the vicinity of A 1 transformation point, in the vicinity of each corner portion forming corresponding portion A 3 transformation point Because of this, the drawing-shaped hot forming force strongly acts on each corner-forming portion, so that the rectangular steel pipe hardly has a dent in the flat portion (multiple sides), and furthermore, the shape of each corner portion That is, the outer peripheral radius can be formed uniformly and sharply.
[0011]
Further, in the method for manufacturing a rectangular steel pipe according to claim 2 of the present invention, in the configuration according to claim 1 described above, the first heating means is a combustion heating method in which a round steel pipe is put into a heating furnace, and The heating means is a high-frequency induction heating method.
[0012]
Therefore, according to the invention of claim 2, the round steel pipe by combustion heating method in a heating furnace and heated the whole near the A 1 transformation point, the corner portions each formed corresponding portion by high frequency induction heating method, the corners hot forming by partially heating to near the required a 3 transformation point, for example a whole in comparison with the method of heating to near the a 3 transformation point, may lower the value of the heating costs before hot forming of round steel pipe . As the heating furnace, since it is sufficient a structure to withstand temperatures near the A 1 transformation point, the heating furnace itself (facilities expenses), together with the less expensive, maintenance and inspection, such as the transport means of the heating furnace and the furnace Less frequent and lower maintenance costs.
[0013]
According to a third aspect of the present invention, there is provided a method for manufacturing a rectangular steel pipe according to the second aspect, wherein the high-temperature gas taken out of the heating furnace of the first heating means is used for power generation by the power generator. The generated power is used for high-frequency induction heating of the second heating means.
[0014]
Therefore, according to the third aspect of the present invention, the high-temperature gas taken out of the heating furnace of the first heating means is reused for power generation by the power generator, and the generated power is used for high-frequency induction heating of the second heating means. In addition, power used in the second heating means can be provided at low cost.
[0015]
Further manufacturing facilities RHS according to claim 4 of the present invention, in the conveyance path for conveying the round steel pipe, a first heating means for heating the whole of this round steel pipe to the vicinity of A 1 transformation point, round square with a second heating means, the dimensions a and a plurality of corner portions of the regular a heated round steel pipe to partially heated to a corner portion formed corresponding portions in the circumferential direction a plurality of locations in the form steel in the vicinity of the a 3 transformation point The steel pipe is provided with a forming means for hot forming.
[0016]
Circular Therefore, according to the invention of claim 4, while conveying the round steel pipe on the conveying path, the round steel pipe is heated overall to the vicinity of A 1 transformation point by first of all heating means, and then by the second heating means After each corner portion forming portion corresponding shape steel was partially heated to near the a 3 transformation point, by hot molding by a molding means the heated round steel pipe, producing a square tube of regular size and shape I can do it.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 7 as a state adopted to obtain a large-diameter, thick-walled, square-shaped rectangular steel pipe.
[0018]
As shown in FIG. 1, a round steel pipe 1 serving as an original pipe is formed, for example, by forming a steel plate having a predetermined length and a predetermined width into a tubular shape by press molding and the like, and butt-welding and welding to one side. A pipe can be formed with a butt weld (seam weld) 2. The outer diameter D of the round steel pipe 1 is set by hot forming described later so that the regular outer surface dimensions and the corners become a square steel pipe (final product) having a regular outer radius. We are making a tube.
[0019]
As shown in FIGS. 2 to 5, the round steel pipe 1 is transferred to a carry-in floor 7 and transported. The round steel pipe 1 conveyed to the terminal end of the loading floor 7 is transferred to a roller conveyor (an example of conveying means) 8 composed of an hourglass roller group and a flat roller group, and is conveyed by the roller conveyor 8. It is transported on the route 9.
[0020]
During this conveyance path 9, the round steel pipe 1 and the first heating means 11 for heating the whole up to the vicinity of A 1 transformation point (e.g. 600 to 650 ° C.), placed 90 degrees in the circumferential direction of the round steel pipe 1 the second heating means 41 for partial heating to the vicinity of four places the corner portion formed corresponding portion 1A a 3 transformation point (the circumferential direction a plurality of locations) (e.g. from 850 to 1,050 ° C.), the heated round steel pipe 1 Forming means 51 for hot forming into a square steel pipe having regular dimensions and four (plural) corner portions is provided.
[0021]
That is, the first heating means 11 is a combustion heating method in which the round steel pipe 1 is put in a heating furnace 12, and a carry-in port and a carry-out port are formed at both ends in the front-rear direction of the heating furnace 12 by through holes. A door 13 is provided at each of the entrance and the exit. A lower heating burner 14 is disposed at a lower portion of one side of the heating furnace 12 and at an intermediate position between rollers of the roller conveyor 8, and is staggered with respect to the lower heating burner 14 at an upper side of the other side of the heating furnace 12. The upper heating burner 15 is provided at a position facing the upper surface. A vertical smoke outlet 16 is formed in a portion adjacent to the carry-out port of the heating furnace 12.
[0022]
Due more than 12 to 16, an example of the first heating means 11 for heating the whole the round steel pipe 1 to the vicinity of A 1 transformation point is constructed.
A smoke exhaust device 21 connected to the smoke exhaust port 16 is provided. That is, a main flue 22 is formed in the floor at the side of the heating furnace 12, and the starting end of the main flue 22 is connected to the smoke outlet 16 via the first flue 23. Then, a second smoke pipe 24 is connected to the end of the main flue 22, and the second smoke pipe 24 is connected to a lower portion of the chimney 26 via a fan 25. A damper 27 is provided in the middle of the second smoke pipe 24, and by operating the damper 27, the pressure in the heating furnace 12 is controlled to be lower than the atmospheric pressure. An example of the smoke exhaust device 21 is configured by the above 22 to 27 and the like.
[0023]
A heat exchanger 28 is disposed in the main flue 22, and the high-temperature (300 to 350 ° C.) air that has been heat-exchanged with the flue gas passes through the pipes 29 and 30 to the respective burners 14 and 15. The heat is reused. Further, the air (high-temperature gas) heat-exchanged with the flue gas in the heat exchanger 28 is supplied to the power generation turbine 34 in the power generation device 33 for private power generation via the pipe 31, so that the air is passed through the power generation turbine 34. The generator 35 is operated, and the high temperature gas taken out of the heating furnace 12 of the first heating means 11 is reused for power generation by the power generator 33. In addition, a boiler 36 is additionally provided in the pipe 31 as necessary.
[0024]
The second heating means 41 employs a high-frequency induction heating method, and is disposed at five (one or more) locations in the direction of the transport path 9. That is, each of the second heating means 41 has a machine frame 42 surrounding the transport path 9, and the machine frame 42 side faces the respective corner portion forming equivalent portions 1 </ b> A of the round steel pipe 1 from the outside. The heating coil 44 is provided via the holding member 43.
[0025]
The holding member 43 is configured to be adjustable in position in response to a change in the size (change in type) of the round steel pipe 1, that is, a change in the outer diameter D. That is, the block body 45 is integrated with the outer surface side of the holding member 43, and the screw shaft body 46 connected to the outer surface side of the block body 45 is inserted into the bracket body 47 provided on the machine frame 42 side. At the same time, nut bodies 48 are screwed to the screw shaft bodies 46 on both sides of the bracket body 47, respectively. A guide rod 49 connected to the outer surface of the block body 45 is inserted through the bracket body 47.
[0026]
In the vicinity of the second heating means 41, a drum-shaped side guide roller 50 for determining the width of the round steel pipe 1 is provided so as to be capable of adjusting the left and right positions in accordance with the size change of the round steel pipe 1. ing. Due more than 42 to 50, an example of a second heating means 41 for partially heating the corner portions each formed corresponding portion 1A of round steel pipe 1 to the vicinity of the A 3 transformation point is constructed.
[0027]
A power supply line 37 from the generator 35 is connected to each of the heating coils 44 of each of the second heating means 41 having the above-described configuration. It is configured to be used for heating. Note that a normal power supply line 38 is connected to the power supply line 37 via a disconnection controller 39 in order to compensate for the shortage of power from the power generation device 33.
[0028]
As described above, the round steel pipe 1 conveyed to the terminal end of the carry-in floor 7 is transferred to the roller conveyor 8 and is carried into the heating furnace 12 of the first heating means 11 by the roller conveyor 8. The round steel pipe 1 is gradually and uniformly heated by the heat of combustion of the burners 14 and 15 while being transported on the transport path 9 in the heating furnace 12 (see FIG. 4), and then at 600 to 650 ° C. while maintaining the high temperature (a 1 near the transformation point), and will be heated H without causing such uniform temperature at and bend in the circumferential direction and length direction.
[0029]
Thus the round steel pipe 1 heated to a temperature near the A 1 transformation point to the door 13 by causing the opening motion, then taken out of the heating furnace 12 through the outlet port, and carried into the second heating means 41 obtain. Then, when the end of the round steel pipe 1 is completely carried out, the opening / closing door 13 of the carry-out port is closed.
[0030]
As mentioned above, round steel pipe 1 the whole is unloaded from the heating furnace 12 is heated in the vicinity of A 1 transformation point, it passes through the second heating means 41 groups the machine frame 42, each corner portion therebetween forming corresponding portion 1A is partially heated to the vicinity of the a 3 transformation point. That is, the round steel pipe 1 is supported and conveyed by the roller conveyor 8 so that the lower level is kept constant, and the side guide rollers 50 guide the both sides, so that the round steel pipe 1 oscillates in a state where the width is fixed. The paper is transported on the transport path 9 without being transported.
[0031]
At that time, for example, the butt weld 2 is detected, and the round steel pipe 1 is rotationally adjusted so that the butt weld 2 is positioned at the upper position and at the center in the width direction (lateral diameter direction), and then the second heating means is provided. By carrying it into 41, the direction (position) of each corner portion forming equivalent portion 1A is set with reference to the butt welded portion 2.
[0032]
In this way, the heat of each heat generating coil 44 in the second heating means 41 group is applied to each corner forming equivalent part 1A of the round steel pipe 1 which is stably conveyed with its orientation set, and As a result, the corresponding portions 1A are gradually and uniformly heated (see FIG. 5). Accordingly round steel tube 1 while maintaining its high temperature portion excluding the respective corner portions formed corresponding portion 1A is 600 to 650 ° C. (near the A 1 transformation point), the corner portions formed corresponding section 1A 850-1050 ℃ partial heating becomes (additional heating) by the fact to a (near the a 3 transformation point). Then, the heated round steel pipe 1 is transported to the forming means 51.
[0033]
As described above, heating the entire round steel pipe 1 by the first heating means 11 in the vicinity of A 1 transformation point, i.e. After whole heated to 600 to 650 ° C., the corner portions formed corresponding portion by the second heating means 41 1A partial heating in the vicinity of the a 3 transformation point, i.e. by partial heating to from 850 to 1,050 ° C., the heating before hot forming of round steel tube 1, will be capable of performing its heating costs and equipment costs as an inexpensive .
[0034]
That is, the entire round steel pipe 1 is heated to 600 to 650 ° C. by the first heating means 11, and each corner portion forming equivalent portion 1A is partially heated to 850 to 1050 ° C. required for corner hot forming by the second heating means 41. By heating, the heating cost is reduced as compared with, for example, a method in which the whole is heated to 850 to 1050 ° C., and particularly when the round steel pipe 1 is large in diameter and thick, the heating cost is reduced. In addition, since the heating furnace 12 may be configured to withstand 600 to 650 ° C., the heating furnace itself (equipment cost) becomes inexpensive, and the heating furnace 12 and the conveying means (roller conveyor 8) in the furnace are used. Maintenance inspections are less frequent and maintenance costs are lower.
[0035]
As described above, the hot smoke generated in the heating furnace 12 by the heating action of the first heating means 11 can be exhausted by the smoke exhaust device 21. That is, the suction force acts on the smoke outlet 16 by the operation of the fan 25, whereby the smoke is sucked into the first smoke pipe 23 through the smoke exhaust port 16, and then flows to the main flue 22 and the second smoke pipe 24. , And is discharged to a chimney 26 via a fan 25. By making the inside of the heating furnace 12 a negative pressure, that is, lowering than the atmospheric pressure due to such suction and exhaust, it is possible to prevent the round steel pipe 1 from being bent. At this time, the degree lower than the atmospheric pressure can be controlled by adjusting the damper 27.
[0036]
When hot smoke flows through the main flue 22, the heat is exchanged by the heat exchanger 28, and the high-temperature (300 to 350 ° C.) air thus heated is supplied to each burner 14 via the pipes 29 and 30. , 15. Therefore, the burners 14 and 15 perform efficient combustion using the heated air as combustion air. Normally, combustion of the burners 14 and 15 requires combustion air and fuel (gas fuel such as gas, natural gas, LPG, liquid fuel such as heavy oil and kerosene, and solid fuel such as coal). Improving efficiency.
[0037]
The air heated as described above is supplied to the power generation turbine 34 of the power generation device 33 via the pipe 31, and the power generator 35 is operated via the power generation turbine 34 to generate power. The power generated by this is supplied to each heating coil 44 of each second heating means 41 via the power supply line 37, and is used for high-frequency induction heating. As described above, the high-temperature gas taken out of the heating furnace 12 of the first heating means 11 is reused for power generation by the power generation device 33, and the generated power is used for high-frequency induction heating of the second heating means 41. (2) The electric power used in the heating means 41 can be provided at a low cost, so that the overall operation cost can be reduced.
[0038]
As described above, the round steel pipe 1 heated by the first heating means 11 and the second heating means 41 is conveyed to the forming means 51, and is hot-formed into a regular size and shape by the forming means 51. That is, as shown in FIGS. 2, 3, 6, and 7, the forming means 51 is provided in four stages (a plurality of stages) before and after. Each of the forming means 51 hot-rolls the round steel pipe 1 in a drawing shape through a pair of upper and lower forming rolls and a pair of left and right forming rolls 53 provided so as to be adjustable in position or exchangeable with respect to the machine frame 52 side. It is to be molded.
[0039]
Here, a flat roll is shown as the forming roll 53, but a large arc-shaped drum-shaped roll may be used as the forming roll 53 on the upper side (front side). A necessary number of descaler devices 55 are provided at necessary locations around the molding means 51 (before and after, only before, behind, only between stands, etc.). The descaler device 55 injects water with water pressure applied to the round steel pipe 1, and this water injection removes mill scale and the like, thereby improving the surface texture.
[0040]
Therefore, the round steel pipe 1 which has been heated and carried into the forming means 51 is hot-formed in a drawing shape by the group of forming rolls 53, and the hot forming is gradually (stepwise) performed by the multi-stage forming means 51. It is performed in the form of an aperture. In other words, the round steel pipe 1 is subjected to a step of hot forming (see FIG. 6) in which each corner portion forming equivalent portion 1A has a large outer radius and a flat portion is formed between each corner portion forming equivalent portion 1A. In the final stage, hot forming (see FIG. 7) is performed so as to obtain a square steel pipe (final product) 4 having a corner portion 5 having a regular outer surface dimension L and a regular outer peripheral radius R.
[0041]
At this time, in the hot forming, as described above, the state in which the direction (position) of each corner forming equivalent portion 1A is set with reference to the butt welded portion 2 is maintained by the forming rolls 53 and other restricting means. It is done while.
[0042]
Incidentally, round steel pipe 1 during hot forming, the flat portion of the four sides 600 to 650 ° C. (near the A 1 transformation point), the corner portions formed corresponding portion 1A is 850~1050 ℃ (A 3 transformation point ), The draw-shaped hot forming force strongly acts on each of the corner portion forming equivalent portions 1A, so that the square steel pipe 4 is less likely to have a dent in the flat portion (four sides). Furthermore, the shape of each corner portion 5, that is, the regular outer radius R can be formed uniformly and sharply. Further, the rectangular steel pipe 4 has high buckling strength with almost no residual stress by hot forming, and has excellent secondary weldability and sufficient toughness.
[0043]
The rectangular steel pipe 4 thus hot-formed is received by the cooling floor 61. The cooling floor 61 is of a conveyor type and supports a plurality of rectangular steel pipes 4 in parallel and transports them in a direction transverse to the length direction. During the transportation on the cooling floor 61, the rectangular steel pipe 4 is gradually cooled in an air-cooled manner. The group of square steel pipes 4 is conveyed on the cooling floor 61 in a state where the adjacent square steel pipes 4 are separated from each other or in a state where the adjacent square steel pipes 4 are brought into contact with each other and clamped from both sides. Thereby, the rectangular steel pipe 4 is gradually cooled under the same ambient temperature, and thus the bending at the time of cooling can be reduced. The square steel pipe 4 that has reached the end of the cooling floor 61 is transported to a straightening device, a leading end cutting device, a trailing end cutting device, a washing device, and a rust prevention device (not shown). Is done.
[0044]
Next, another embodiment of the present invention will be described with reference to FIG.
That is, in the above-described embodiment, a large-diameter and thick-walled square steel pipe (final product) 4 having a butt weld 2 on one side is manufactured. As shown in FIG. A large-diameter, thick-walled rectangular steel pipe 4 having butt welds 2 at two locations may be manufactured, or a seamless rectangular steel pipe 4 may be manufactured.
[0045]
Further, in the above-described embodiment, the rectangular steel pipe 4 having a rectangular parallelepiped shape is manufactured. However, the rectangular steel pipe 4 having a rectangular parallelepiped shape may be manufactured, and a pentagonal rectangular steel pipe 4 as shown in FIG. And various polygonal square steel pipes 4 such as the square steel pipe 4 shown in FIG. 8C and the hexagonal square steel pipe 4 as shown in FIG.
[0046]
In the above-described embodiment, the combustion heating method in which the round steel pipe 1 is put into the heating furnace 12 is adopted as the first heating means 11, but the first heating means is a high-frequency induction heating method or the like. There may be.
[0047]
In the above-described embodiment, the high-temperature gas extracted from the heating furnace 12 of the first heating means 11 is used for power generation by the power generation device 33, and the power generated by the power generation device 33 is used for high-frequency induction heating of the second heating means 41. Although a method of using the power from the normal power supply line 38 may be used for all of the high-frequency induction heating of the second heating means 41, for example.
[0048]
As shown in the above-described embodiment, the hot forming by the forming means 51 is preferably performed by gradually drawing in a plurality of steps, but the number of steps is arbitrary, particularly when the round steel pipe 1 is thin. Can be hot formed in a small number of stages.
[0049]
In the above-described embodiment, a large-diameter (large dimension), thick-walled square steel pipe 4 is manufactured. This is a large-diameter, thin-walled square steel pipe, a small-diameter, thick-walled square steel pipe, and a small-diameter, thin-walled square pipe. Production of steel pipes and the like is also possible. For example, a square steel pipe 4 having a regular outer surface dimension L of 300 to 700 mm and a thickness t of 9 to 70 mm is obtained. In this case, the regular outer radius R of the corner portion 5 is one of the thickness t. It is formed sharply so as to be 0.0 to 3.0 times.
[0050]
【The invention's effect】
According to claim 1 of the present invention described above, a round steel pipe is heated overall to the vicinity of A 1 transformation point by the first heating means, the respective corner portions formed corresponding portion by the second heating means, between the corner portion Thermoforming by partially heating to near the required a 3 transformation point, for example a whole in comparison with the method of heating to near the a 3 transformation point, it can cheaper heating costs before hot forming of round steel pipe, Especially when the round steel pipe is large in diameter and thick, the heating cost can be reduced. As the first heating means, since it is sufficient a structure to withstand temperatures near the A 1 transformation point, it is possible at low cost equipment cost, it can reduce the frequency of maintenance, such as the first heating means and conveying means As a result, maintenance costs are also reduced.
[0051]
Then, the heated round steel pipe can be hot formed by a forming means so as to be finished into a square steel pipe having a regular size and shape. Round steel pipe At this time, the portion excluding the respective corner portions formed corresponding portion, i.e. while the flat portion of the plurality edges maintains the vicinity of A 1 transformation point, in the vicinity of each corner portion forming corresponding portion A 3 transformation point Because of this, it is possible to strongly apply a drawing-like hot forming force to each of the corresponding corner portions, so that the rectangular steel pipe hardly has a dent in a flat portion (a plurality of sides). That is, the outer peripheral radius can be formed uniformly and sharply. Further, the rectangular steel pipe can be formed by hot forming with little residual stress, high buckling strength, excellent secondary weldability, and sufficient toughness.
[0052]
Further, according to claim 2 of the present invention described above, a round steel pipe is heated overall to the vicinity of A 1 transformation point by combustion heating method in a heating furnace, each corner portion formed corresponding portion by high frequency induction heating method, the corners heat by partially heating to near the a 3 transformation point needed between molding, for example a whole in comparison with the method of heating to near the a 3 transformation point, the heating cost before hot forming of round steel pipe Can be cheap. As the heating furnace, since it is sufficient a structure to withstand temperatures near the A 1 transformation point, with the heating furnace itself (equipment cost) it can be inexpensive, the maintenance, such as the transport means of the heating furnace and the furnace Less frequent and lower maintenance costs.
[0053]
According to the third aspect of the present invention, the high-temperature gas taken out of the heating furnace of the first heating means is reused for power generation by the power generator, and the generated power is used for high-frequency induction heating of the second heating means. By doing so, the electric power used in the second heating means can be provided at low cost, and the overall operating cost can be further reduced.
[0054]
Furthermore, according to claim 4 of the present invention described above, while transporting the round steel pipe on the conveying path, the round steel pipe is heated overall to the vicinity of A 1 transformation point by first of all heating means, then the second heating After each corner portion forming corresponding portions of the round steel pipe was partially heated to near the a 3 transformation point by means, by hot molding by a molding means the heated round steel pipe, square regular size and shape A steel pipe can be manufactured, whereby the method for manufacturing a square steel pipe according to claim 1 can be easily realized.
[Brief description of the drawings]
FIG. 1 shows an example of an embodiment of the present invention, and is a round steel pipe used in a method for manufacturing a square steel pipe, in which (a) is a front view and (b) is a partially cutaway side view.
FIG. 2 is a process perspective view including a process from heating to hot forming in the method of manufacturing a square steel pipe.
FIG. 3 is an explanatory view from a heating step to a hot forming step in the method for manufacturing a rectangular steel pipe.
FIG. 4 is a front view of a first heating means in the method of manufacturing the rectangular steel pipe.
FIG. 5 is a partially cutaway front view of a second heating means in the method of manufacturing the rectangular steel pipe.
FIG. 6 is a front view at the time of pre-forming in a hot forming step in the method of manufacturing the rectangular steel pipe.
FIG. 7 is a front view at the time of final stage forming in the hot forming step in the method of manufacturing a square steel pipe.
8A and 8B show another embodiment of the present invention, wherein FIG. 8A is a front view of a square steel pipe using two steel plates, FIG. 8B is a front view of a pentagonal square steel pipe, and FIG. It is a front view of a square steel pipe of a square shape.
[Explanation of symbols]
1 Round steel pipe 1A Corner formation equivalent part 2 Butt weld 4 Square steel pipe (final product)
5 Corner section 8 Roller conveyor (transportation means)
9 Conveying path 11 First heating means 12 Heating furnace 14 Lower heating burner 15 Upper heating burner 16 Smoke outlet 21 Smoke exhaust device 25 Fan 26 Chimney 27 Damper 28 Heat exchanger 33 Power generation device 34 Power generation turbine 35 Generator 41 Second heating Means 43 Holding member 44 Heating coil 50 Side guide roller 51 Forming means 53 Forming roll 55 Descaler device D Outer diameter H Heating L Regular space between outer surfaces R Regular outer radius

Claims (4)

丸形鋼管を第1加熱手段によりA変態点の近辺にまで全体加熱し、引き続いて丸形鋼管の周方向複数箇所でコーナ部形成相当部を第2加熱手段によりA変態点の近辺にまで部分加熱し、そして加熱された丸形鋼管を成形手段によって、正規の寸法でかつ複数のコーナ部を有する角形鋼管に熱間成形することを特徴とする角形鋼管の製造方法。The round steel pipe is heated overall to the vicinity of A 1 transformation point by the first heating means and subsequently corner formed corresponding portions in the circumferential direction a plurality of locations of a round steel pipe with the vicinity of A 3 transformation point by the second heating means A method of manufacturing a rectangular steel pipe, comprising partially heating the heated round steel pipe to a rectangular steel pipe having a regular dimension and a plurality of corners by a forming means. 第1加熱手段は、丸形鋼管を加熱炉に入れての燃焼加熱方式であり、第2加熱手段は高周波誘導加熱方式であることを特徴とする請求項1記載の角形鋼管の製造方法。The method according to claim 1, wherein the first heating means is a combustion heating method in which a round steel pipe is placed in a heating furnace, and the second heating means is a high-frequency induction heating method. 第1加熱手段の加熱炉から取り出される高温気体を発電装置の発電に利用し、発電装置で発電した電力を第2加熱手段の高周波誘導加熱に使用することを特徴とする請求項2記載の角形鋼管の製造方法。3. The rectangular shape according to claim 2, wherein the high-temperature gas taken out of the heating furnace of the first heating means is used for power generation of the power generator, and the power generated by the power generator is used for high-frequency induction heating of the second heating means. Manufacturing method of steel pipe. 丸形鋼管を搬送する搬送経路中に、この丸形鋼管をA変態点の近辺にまで全体加熱する第1加熱手段と、丸形鋼管の周方向複数箇所でコーナ部形成相当部をA変態点の近辺にまで部分加熱する第2加熱手段と、加熱された丸形鋼管を正規の寸法でかつ複数のコーナ部を有する角形鋼管に熱間成形する成形手段とを配設したことを特徴とする角形鋼管の製造設備。During conveyance path for conveying the round steel pipe, a first heating means for heating the whole of this round steel pipe to the vicinity of A 1 transformation point, a corner portion formed corresponding portions in the circumferential direction a plurality of locations of round steel pipe A 3 A second heating means for partially heating up to the vicinity of the transformation point, and a forming means for hot forming the heated round steel pipe into a square steel pipe having a regular size and a plurality of corners are provided. Manufacturing equipment for square steel pipes.
JP2003037528A 2003-02-17 2003-02-17 Method and facility for manufacturing square steel tube Pending JP2004243391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037528A JP2004243391A (en) 2003-02-17 2003-02-17 Method and facility for manufacturing square steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037528A JP2004243391A (en) 2003-02-17 2003-02-17 Method and facility for manufacturing square steel tube

Publications (1)

Publication Number Publication Date
JP2004243391A true JP2004243391A (en) 2004-09-02

Family

ID=33022302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037528A Pending JP2004243391A (en) 2003-02-17 2003-02-17 Method and facility for manufacturing square steel tube

Country Status (1)

Country Link
JP (1) JP2004243391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006866A (en) * 2006-07-14 2008-01-17 박가영 Curved shape pipe and its manufacturing method
CN102716934A (en) * 2012-06-18 2012-10-10 山西太钢不锈钢股份有限公司 Method for forming large-diameter stainless steel square tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080006866A (en) * 2006-07-14 2008-01-17 박가영 Curved shape pipe and its manufacturing method
CN102716934A (en) * 2012-06-18 2012-10-10 山西太钢不锈钢股份有限公司 Method for forming large-diameter stainless steel square tube

Similar Documents

Publication Publication Date Title
US9631867B2 (en) Equipment and method for preheating a continuously moving steel strip
JP2004243391A (en) Method and facility for manufacturing square steel tube
CN209763591U (en) On-line air cooling device for steel pipe production line
JP2004243329A (en) Method and facility for manufacturing square steel tube
WO2016155583A1 (en) Heating furnace with obliquely arranged coil pipes
JP2004330222A (en) Square steel pipe and manufacturing method for square steel pipe
JP5019783B2 (en) Steel pipe manufacturing method and steel pipe manufacturing equipment
JP2004269990A (en) Method and facility for manufacturing steel pipe
JP2735405B2 (en) Hot forming method for large diameter square steel pipe
JP3501553B2 (en) Heating equipment for hollow steel pipes
JP2006334632A (en) Method and apparatus for manufacturing beam material
JP4173142B2 (en) Cooling method for heated steel pipe
JP2894871B2 (en) Multi-stage heating furnace and multi-stage heating method for steel pipe
JP2735402B2 (en) Hot forming method for large diameter square steel pipe
JP2006315015A (en) Method for manufacturing square steel pipe for connecting beam member, and manufacturing facilities therefor
JP2852311B2 (en) Forming method and equipment for large diameter square steel pipe
JPH093544A (en) Heating equipment for hollow steel tube
CN206635373U (en) A kind of free movement support structures of radiant tube
JP3414553B2 (en) Heating equipment for hollow steel pipes
JP4535890B2 (en) Steel structure
JP4260169B2 (en) Manufacturing method of square steel pipe and manufacturing equipment of square steel pipe
JP2849595B2 (en) Forming method and equipment for large diameter square steel pipe
JP2007303107A (en) Square steel pipe and steel structure using square steel pipe
JP2002048476A (en) Heating furnace and method of operating the same
CN107167016A (en) A kind of staple head tube and the heating furnace with the studded tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051117

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060411

RD04 Notification of resignation of power of attorney

Effective date: 20080430

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Effective date: 20081118

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106