JP2004239646A - 光学測定装置 - Google Patents

光学測定装置 Download PDF

Info

Publication number
JP2004239646A
JP2004239646A JP2003026488A JP2003026488A JP2004239646A JP 2004239646 A JP2004239646 A JP 2004239646A JP 2003026488 A JP2003026488 A JP 2003026488A JP 2003026488 A JP2003026488 A JP 2003026488A JP 2004239646 A JP2004239646 A JP 2004239646A
Authority
JP
Japan
Prior art keywords
light
lens
convergent
measured
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003026488A
Other languages
English (en)
Other versions
JP4037280B2 (ja
Inventor
Sadao Noda
貞雄 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Industrial Devices SUNX Co Ltd
Original Assignee
Sunx Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sunx Ltd filed Critical Sunx Ltd
Priority to JP2003026488A priority Critical patent/JP4037280B2/ja
Publication of JP2004239646A publication Critical patent/JP2004239646A/ja
Application granted granted Critical
Publication of JP4037280B2 publication Critical patent/JP4037280B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】変位及び傾きを高精度に測定することができる光学測定装置を提供する。
【解決手段】収束光によるワークWからの反射光を受光素子20にて受光し、制御手段3において、受光素子20からの受光信号Scが最大となったときのレンズ位置検出コイル31の位置信号Sbの基づいてワークWまでの距離を測定する。一方、傾き測定においては、CCD23の撮像面における結像点と撮像面の中央との距離d´を求め、この距離d´からワークWの傾きを測定する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、被測定対象物の変位及び傾きを検出するための光学測定装置に関する。
【0002】
【従来の技術】
被測定対象物の変位及び傾きを測定する装置として特許文献1及び特許文献2が開示されている。
特許文献1の変位測定装置は三角測量の原理を用いて被測定対象物の変位及び傾きを測定するものであり、変位測定用光学系と傾き測定用光学系とを備えている。変位測定用光学系では、レンズにより収束された投光素子からの光を被測定対象物に対して斜めから投射し、反射光をレンズにより収束して撮像手段の撮像面に照射する構成とされており、その撮像面における光の照射位置により被測定対象物の変位を測定することができる。
また、傾き測定用光学系は、レンズにより平行光とされた投光素子からの光を被測定対象物に対して斜めから投射し、反射光をレンズにより収束して撮像手段の撮像面に照射する構成とされており、その撮像面における光の照射位置により被測定対象物の傾きを測定することができる。
【0003】
一方、特許文献2の変位測定装置は投光素子からの光を被測定対象物に照射し、レンズにより集光された被測定対象物からの散乱光を変位測定用撮像手段に受光するとともに、正反射光をプリズムで反射させて傾き測定用撮像手段にて受光する構成とされている。これにより、変位測定用撮像手段における光の照射位置に基づいて被測定対象物の変位が測定されるとともに、傾き測定用撮像手段における光の照射位置に基づいて被測定対象物の傾きが測定されるのである。
【0004】
【特許文献1】
特開平8−240408号公報
【特許文献2】
特開平11−153407号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1の構成では被測定対象物に対して斜めから光を投射しているため、被測定対象物の距離によって被測定対象物上に照射される光の位置が変わることで正しい変位・傾き測定を行なうことができないという問題がある。さらに、投光素子が2つ必要とされることに伴って投光素子を制御する回路が複数必要となり、装置の大型化が避けられない。
また、特許文献2の構成では被測定対象物の距離によってプリズムにおける正反射光の照射位置が変位してしまうことから、傾き測定用撮像手段の光の照射位置が異なり、この結果傾きの測定値が変化して正しく傾き測定が行なわれないという問題がある。
【0006】
本発明は上記のような事情に基づいて完成されたものであって、変位及び傾きを高精度に測定することができる光学測定装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するための手段として、請求項1の発明は、光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、光を出射する投光手段と、前記投光手段からの光を平行光にするコリメータレンズと、前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、前記コリメータレンズからの平行光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、前記対物レンズと前記収束レンズとの配置関係は固定のままで前記対物レンズから出射した収束光の焦点位置を移動させるように前記対物レンズ及び前記収束レンズをそれぞれの中心軸に沿った方向に移動させるレンズ位置移動手段と、前記レンズ位置移動手段に駆動信号を与えて前記対物レンズ及び前記収束レンズを往復移動させる駆動制御手段と、前記対物レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたところに特徴を有する。
【0008】
請求項2の発明は、光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、光を出射する投光手段と、前記投光手段からの光を平行光にするコリメータレンズと、前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、開口を有し、前記収束レンズからの光を前記開口に通すとともに、前記コリメータレンズからの光を発散光に変える発散レンズと、前記発散レンズからの発散光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、前記対物レンズから出射した収束光の焦点位置を移動させるべく前記発散レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、前記レンズ位置移動手段に駆動信号を与えて前記発散レンズを往復移動させる駆動制御手段と、前記発散レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたところに特徴を有する。
【0009】
請求項3の発明は、請求項1又は請求項2に記載のものにおいて、前記収束レンズはその中心軸が前記コリメータレンズの中心軸に一致するように配されているところに特徴を有する。
【0010】
請求項4の発明は、光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、光を出射する投光手段と、前記投光手段からの光を平行光にするコリメータレンズと、前記コリメータレンズからの平行光の一部を発散光に変える発散レンズと、開口を有し、前記発散レンズからの発散光を前記開口に通すとともに、前記コリメータレンズからの平行光を収束光に変える収束レンズと前記収束レンズからの収束光が照射されるとともに、前記発散光を平行光に変えることで前記被測定対象物の光照射面に収束光及び平行光を照射する対物レンズと、前記対物レンズから出射した収束光の焦点位置を移動させるべく前記収束レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、前記レンズ位置移動手段に駆動信号を与えて前記収束レンズを往復移動させる駆動制御手段と、前記収束レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたところに特徴を有する。
【0011】
【発明の作用及び効果】
<請求項1の発明>
請求項1の発明では、投光手段から出射された光からコリメータレンズ、収束レンズ及び対物レンズにより平行光と収束光とを作り出してそれぞれ被測定対象物に照射する。そして、反射光を対物レンズ及びコリメータレンズを介して変位測定用受光手段にて受光し、その受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて被測定対象物の変位を測定する。また、反射光を対物レンズ及び収束レンズを介して傾き測定用撮像手段にて受光し、その撮像信号に基づいて被測定対象物の傾きを測定する。
これにより、変位及び傾き測定のための投光手段を1つにすることができるから、投光手段の制御装置を削減することができて光学測定装置の小型化を図ることができる。
また、対物レンズからの収束光及び平行光を被測定対象物の変位方向に沿った方向に投射することで、被測定対象物の距離に関係無く被測定対象物の一定の位置に光を照射することができ、もって、変位及び傾きの測定を正確に行なうことができる。
【0012】
<請求項2の発明>
発散レンズのみを往復移動させるようにしているから、レンズ位置移動手段を小型化することができる。また、発散レンズの開口に収束レンズからの光を通すようにして対物レンズと収束レンズとの間隔を一定に保つようにしたことで、発散レンズの位置に関係無く対物レンズから平行光を出射することができる。
【0013】
<請求項3の発明>
コリメータレンズと収束レンズとを一体的に形成することで、部品点数が減少し、装置の小型化・組付け工数の削減を図ることができる。
【0014】
<請求項4の発明>
収束レンズのみを往復移動させるようにしているから、レンズ位置移動手段を小型化することができる。また、収束レンズの開口に発散レンズからの光の一部を通すようにしたことで、収束レンズの位置に関係無く対物レンズから平行光を出射することができる。
【0015】
【発明の実施の形態】
<第1実施形態>
請求項1の発明に係る光学測定装置の一実施形態を図1によって説明する。
本実施形態の光学測定装置はいわゆる合焦点検出により金属や樹脂等の非測定対象物の変位を測定するとともに、オートコリメータの原理を用いてその傾きを測定するものである。その構成は図1に示す通りであり、レーザパワー制御回路11からの出力信号によりレーザ光源12(「投光手段」に相当)からレーザ光が出射され、この出射光がビームスプリッタ13を透過してコリメータレンズ14に至り、平行光に変えられてから1/4波長板15及び対物レンズ16を透過して板状のワークW(「被測定対象物」に相当)の表面に投射される。
【0016】
また、コリメータレンズ14と1/4波長板15との間にはビームスプリッタ17がその反射面の中央部をコリメータレンズ14の中心軸と一致させて配されており、さらに1/4波長板15と対物レンズ16との間には収束レンズ18が配されている。この収束レンズ18は、コリメータレンズ14よりも小径とされているとともに、その中心軸をコリメータレンズ14の中心軸と一致させた状態で配置されている。
【0017】
従って、コリメータレンズ14からの平行光のうち中央部分の光が収束レンズ18により収束光に変えられて発散した光が対物レンズ16により平行光としてワークWに照射されるとともに、収束レンズ18を介さずに対物レンズに至った円筒状の平行光は対物レンズ16により収束光とされてワークWに照射される。
また、対物レンズ16に入射する収束レンズ18からの光のスポット径が常に一定となるように両者16,18間の距離D1は一定とされている。
【0018】
対物レンズ16及び収束レンズ18は音叉19A(「レンズ位置移動手段」に相当)の先端部にそれぞれ取りつけられており、その軸部には制御手段3(「距離検出手段」及び「傾き検出手段」に相当)からの制御信号Saに応じて動作する音叉振動用の励磁コイル19B(「駆動制御手段」に相当)が配設されている。励磁コイル19Bに制御手段3からの制御信号Saが供給されると、音叉19Aが図面上下方向に振動することに伴って対物レンズ16及び収束レンズ18が光軸LCの方向に往復移動されるようになっている。また、音叉19Aのうち対物レンズ16を取りつけた部位の近傍には対物レンズ16の位置を検出するレンズ位置検出コイル31(「レンズ位置検出手段」に相当)が配設されており、このレンズ位置検出コイル31からの位置信号Sbが制御手段3に出力されるようになっている。
【0019】
ワークWの表面(「光照射面」に相当)で反射した対物レンズ16からの収束光は、1/4波長板15、コリメータレンズ14を通ってビームスプリッタ13にて反射されるとともに、受光面の前方にピンホール板21を設けた受光素子20(「変位測定用受光手段」に相当)に受光され、その受光信号Scが制御手段3に出力される。尚、対物レンズ16からの収束光がワークWの表面に焦点を結ぶと、その反射光がピンホール板21のピンホール位置で結像し、受光素子20での受光量が最大となる。一方、対物レンズ16を透過した収束光がワークWの表面に焦点を結んでいないときには、その反射光の受光量は著しく少なくなる。
【0020】
一方、ワークWの表面で反射した対物レンズ16からの平行光は収束レンズ18を通って平行光とされた後1/4波長板15を通ってビームスプリッタ17に至り、ビームスプリッタ17で反射され、収束レンズ22により収束されてCCD23(「傾き測定用撮像手段」に相当)の撮像面に結像する。CCD23では、その結像された撮像面における受光量分布に基づいて結像点の位置情報たるアナログ信号をCCD駆動回路24に出力し、CCD駆動回路24はアナログ信号をディジタル信号(「撮像信号Sd」に相当)に変換して制御手段3に出力する。
【0021】
以下、上記構成の動作について説明する。
制御手段3は、受光素子20からの受光信号Sc及びレンズ位置検出コイル31からの位置信号Sbを基にしてワークW表面の変位を測定する。具体的には、励磁コイル19Bに制御手段3からの制御信号が供給されると、音叉19Aが図面上下方向に振動することに伴って対物レンズ16及び収束レンズ18が光軸LCの方向に往復移動され、そのときの受光素子20からの受光信号Scをモニタし、その受光信号Scが最大となったときのレンズ位置検出コイル31からの位置信号Sbを取り込む。そして、取り込んだ位置信号Sbから対物レンズ16の位置を検出し、この対物レンズ16の位置と焦点距離f1とからワークWまでの距離を割り出す。以降、ワークWが光軸LCと直交する方向へ移動したときには、上記と同様の手順によりワークW表面までの距離を割り出すことでワークWの変位を検出する。
【0022】
また、制御手段3は受光素子20からの受光信号Scが最大とされたときのCCD駆動手段24からの撮像信号Sdに基づいてワークWの表面の傾きを検出する。例えば、ワークWの表面が光軸LCに対して直交した状態、即ち、傾きが無いときには(図中▲1▼の状態、以下、正規位置という。)、ワークWからの反射光は収束レンズ18を通って平行光とされてビームスプリッタ17の中央部分に至り、このビームスプリッタ17を反射した平行光は収束レンズ22により収束されてCCD23の撮像面の中央に結像する。
【0023】
ここで、オートコリメータの原理により、
d=2(f2 )θ・・・・・式(1)
d´=df3 /f1 ・・・式(2)
(d´:CCD23の撮像面中央と結像点との距離 d:収束レンズ18からの光の焦点位置と対物レンズ16を透過した反射光の焦点距離とのずれ量 f1 :収束レンズ18の焦点距離 f2 :対物レンズ16を透過した反射光の焦点距離 f3 :収束レンズ22の焦点距離 θ:ワークWの傾き角)
の関係が成り立つことを利用して、制御手段3では上記式(1)及び式(2)からワークWの傾き角を演算することができる。従って、上記のように撮像面の中央に光が結像しているときには、d´=0となって、傾き角θは「0°」と測定される(図2参照)。
【0024】
また、ワークWが正規位置から角度θ傾いているときには(図中▲2▼の状態)、反射光は光軸LCに対して2θ傾いて対物レンズ16に向かう。収束レンズ18からの平行光はビームスプリッタ17の左よりに照射され、CCD23上には中央から上側にd´だけオフセットして結像するから、上記式に基づいてワークWの傾き角θが測定される(図2参照)。
【0025】
ここで、ワークWが傾きθを維持したまま光軸LCと直交する方向に変位した場合においても、ワークWには常に対物レンズ16からの平行光が照射されているので、対物レンズ16からワークWまでの距離f1 に関係無く常に撮像面の中央からd´離れた位置に結像されて正確な測定が維持される。
【0026】
このように、本実施形態では、レーザ光源12により変位測定及び傾き測定を行なうようにしているから、それぞれの測定用に光源を設ける必要が無く、装置の構成を簡略化することができる。
また、対物レンズ16からの収束光及び平行光をワークWの変位方向に沿った方向に投射しているから、ワークWの距離に関係無く一定の位置に光を照射することができ、もって、正確に変位の測定を行なうことができる。
また、傾きを測定する際には、対物レンズ16とワークWとの距離に無関係にワークWの傾きを正確に測定できる。
【0027】
<第2実施形態>
請求項2の発明に係る光学測定装置の一実施形態について図3を参照して説明し、第1実施形態と同一の部分には同一の符号を付して重複する説明を省略し、同一の作用・効果についての説明も省略する。
本実施形態では1/4波長板15と対物レンズ16との間に発散レンズ41が配されている。この発散レンズ41は音叉19Aの一端部に取り付けられており、他端部の近傍には音叉振幅制御回路19Cからの駆動信号に基づいて動作する音叉振動用の励磁コイル19B(音叉振幅制御回路19Cとともに「レンズ位置移動手段」を構成する)が配設されている。励磁コイル19Bに駆動信号が与えられると、励磁コイル19Bが励磁されることにより音叉19Aが図面上下方向に往復移動されるようになっている。これによって、対物レンズ16に照射される発散レンズからの発散光のビーム径が変化することで、対物レンズ16からの収束光の焦点位置が光軸LCに沿って移動する。
また、発散レンズ41の中央部分には開口が形成されており、この開口の中心部が光軸に一致するように配されて収束レンズ18からの光が対物レンズ16に向かって通過するようになっている。
【0028】
本実施形態では、発散レンズ41を往復移動させることで、対物レンズ16からの収束光の焦点位置を変化させるようにしているから、第1実施形態のものと比べて、音叉19A及び励磁コイル19Bを小型化することができる。
また、収束レンズ18からの光を発散レンズ41の開口を通して対物レンズ16に照射するようにしているから、発散レンズ41を移動させたとしても対物レンズ16に照射される収束レンズ18からの光のビーム径は一定に保たれる。このようにすることで、ビーム径を一定に保つために収束レンズ18及び対物レンズ16を移動させるための機構が不要となり、装置を一層小型化させることができる。
【0029】
<第3実施形態>
本実施形態は図4に示すように、コリメータレンズ14と収束レンズ18との間にアキシコンレンズ対42を配したところが第2実施形態と相違している。このアキシコンレンズ対42は大きさの異なるアキシコンレンズ42A,42Bが互いに曲面を向かい合わせた状態で配されており、42Bが42Aよりも大きくされている。このアキシコンレンズ42A,42B間の距離を変えることで、アキシコンレンズ42Bの平坦面から出射される平行光のビーム径を変化させることができ、これに伴って、対物レンズから出射される平行光のビーム径を変化させられる。
微小なワークWの傾きを測定する場合と、大きなワークWの傾きを測定する場合とでは、要求される平行光のビーム径が異なっており、例えば微小なワークWに対して、そのワークの表面よりも大きなビーム径の光を照射しても正確な傾きが測定されず、逆に大きなワークWに対してビーム径の小さい光を照射すると、その表面粗さによって測定に影響を及ぼして正確に傾きが測定されないことがある。
これに対して本実施形態では、対物レンズ16からの平行光のビーム径を変えることができるから大きさの異なる様々なワークWに対して正確な傾き測定を行なうことができる。
【0030】
<第4実施形態>
請求項4に係る本実施形態は、コリメータレンズ14と1/4波長板15との間に発散レンズ43が配されており、また、1/4波長板15と対物レンズ16との間には中央部分に開口を有する収束レンズ44が配されているとともに、この収束レンズ44が音叉19Aの一端側に取り付けられているところが第2実施形態と異なっている(図5参照)。
コリメータレンズ14からの平行光の一部は収束レンズ44にて収束光とされる。また、コリメータレンズ14からの平行光のその他の一部は発散レンズ43によって発散光となり、収束レンズ44の開口を通過して対物レンズ16に照射される。そうすると、対物レンズ16からは収束光及び平行光が出射されてこれらがワークWの表面に照射される。また、収束レンズ44は音叉19Aのよって光軸LCに沿って往復移動しているから、これに伴って対物レンズ16から照射される収束レンズ44の焦点位置が光軸LCに沿った方向に移動する。
【0031】
本実施形態では、収束レンズ44を往復移動させることで、対物レンズ16からの収束光の焦点位置を変化させるようにしているから、第1実施形態のものと比べて、音叉19A及び励磁コイル19Bを小型化することができる。
また、発散レンズ43からの光を収束レンズ44の開口を通して対物レンズ16に照射するようにしているから、収束レンズ44を移動させたとしても対物レンズ16に照射される発散レンズ43からの光のビーム径は略一定に保たれる。このようにすることで、ビーム径を一定に保つために発散レンズ43及び対物レンズ16を移動させるための機構が不要となり、装置を一層小型化させることができる。
【0032】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
(1)上記第1及び第2実施形態では、コリメータレンズ14と収束レンズ18とを別体で設けた構成としていたが、例えばコリメータレンズ14と収束レンズ18とを一体的に形成したものを用いても良い。このようにすれば、部品点数が削減されるとともに、装置の小型化・組付け工数の削減を図ることができる。
【図面の簡単な説明】
【図1】第1実施形態の光学測定装置の構成を示す模式図
【図2】傾き測定の測定方法を示した模式図
【図3】第2実施形態の光学測定装置の構成を示す模式図
【図4】第3実施形態の光学測定装置の構成を示す模式図
【図5】第4実施形態の光学測定装置の構成を示す模式図
【符号の説明】
12…レーザ光源(投光手段)
14…コリメータレンズ
16…対物レンズ
18…収束レンズ
19A…音叉
19B…励磁コイル
20…受光素子(変位測定用受光手段)
23…CCD(傾き測定用撮像手段)
30…制御手段(距離検出手段、傾き検出手段)
31…レンズ位置検出コイル(レンズ位置検出手段)

Claims (4)

  1. 光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、
    光を出射する投光手段と、
    前記投光手段からの光を平行光にするコリメータレンズと、
    前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、
    前記コリメータレンズからの平行光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、
    前記対物レンズと前記収束レンズとの配置関係は固定のままで前記対物レンズから出射した収束光の焦点位置を移動させるように前記対物レンズ及び前記収束レンズをそれぞれの中心軸に沿った方向に移動させるレンズ位置移動手段と、
    前記レンズ位置移動手段に駆動信号を与えて前記対物レンズ及び前記収束レンズを往復移動させる駆動制御手段と、
    前記対物レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、
    前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、
    前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、
    前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、
    前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたことを特徴とする光学測定装置。
  2. 光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、
    光を出射する投光手段と、
    前記投光手段からの光を平行光にするコリメータレンズと、
    前記コリメータレンズからの平行光の一部を収束光に変える収束レンズと、
    開口を有し、前記収束レンズからの光を前記開口に通すとともに、前記コリメータレンズからの光を発散光に変える発散レンズと、
    前記発散レンズからの発散光を収束光に変えるとともに、前記収束レンズからの光を平行光に変えることで前記被測定対象物の光照射面に前記収束光及び前記平行光を投射する対物レンズと、
    前記対物レンズから出射した収束光の焦点位置を移動させるべく前記発散レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、
    前記レンズ位置移動手段に駆動信号を与えて前記発散レンズを往復移動させる駆動制御手段と、
    前記発散レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、
    前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、
    前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、
    前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、
    前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたことを特徴とする光学測定装置。
  3. 前記収束レンズは前記コリメータレンズよりも小径とされており、かつ、その中心軸が前記コリメータレンズの中心軸に一致するように配されていることを特徴とする請求項1又は請求項2に記載の光学測定装置。
  4. 光を被測定対象物に投射し、その被測定対象物からの反射光に基づいて前記被測定対象物の変位及び傾きを測定するものであって、
    光を出射する投光手段と、
    前記投光手段からの光を平行光にするコリメータレンズと、
    前記コリメータレンズからの平行光の一部を発散光に変える発散レンズと、
    開口を有し、前記発散レンズからの発散光を前記開口に通すとともに、前記コリメータレンズからの平行光を収束光に変える収束レンズと
    前記収束レンズからの収束光が照射されるとともに、前記発散光を平行光に変えることで前記被測定対象物の光照射面に収束光及び平行光を照射する対物レンズと、
    前記対物レンズから出射した収束光の焦点位置を移動させるべく前記収束レンズをその中心軸に沿った方向に移動させるレンズ位置移動手段と、
    前記レンズ位置移動手段に駆動信号を与えて前記収束レンズを往復移動させる駆動制御手段と、
    前記収束レンズの位置に基づいて位置信号を出力するレンズ位置検出手段と、
    前記被測定対象物の光照射面で反射した光を前記コリメータレンズを通して受光し、受光量に応じた受光信号を出力する変位測定用受光手段と、
    前記変位測定用受光手段からの受光信号が最大とされたときのレンズ位置検出手段からの位置信号に基づいて前記被測定対象物の光照射面までの距離を検出する距離検出手段と、
    前記被測定対象物の光照射面で反射した光を前記対物レンズを通して撮像面に受光し、その撮像面における受光量に基づいて撮像信号を出力する傾き測定用撮像手段と、
    前記傾き測定用撮像手段からの前記撮像信号に基づいて前記被測定対象物の光照射面の傾きを検出する傾き検出手段とを備えたことを特徴とする光学測定装置。
JP2003026488A 2003-02-03 2003-02-03 光学測定装置 Expired - Fee Related JP4037280B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003026488A JP4037280B2 (ja) 2003-02-03 2003-02-03 光学測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003026488A JP4037280B2 (ja) 2003-02-03 2003-02-03 光学測定装置

Publications (2)

Publication Number Publication Date
JP2004239646A true JP2004239646A (ja) 2004-08-26
JP4037280B2 JP4037280B2 (ja) 2008-01-23

Family

ID=32954479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003026488A Expired - Fee Related JP4037280B2 (ja) 2003-02-03 2003-02-03 光学測定装置

Country Status (1)

Country Link
JP (1) JP4037280B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012189547A (ja) * 2011-03-14 2012-10-04 Omron Corp 変位センサ
JP2012193970A (ja) * 2011-03-15 2012-10-11 Omron Corp 共焦点変位センサ
EP2075550A3 (en) * 2007-12-25 2016-01-20 Mitutoyo Corporation Optical displacement measuring instrument
CN107866804A (zh) * 2016-09-26 2018-04-03 精工爱普生株式会社 机器人、齿轮装置以及齿轮装置的制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2075550A3 (en) * 2007-12-25 2016-01-20 Mitutoyo Corporation Optical displacement measuring instrument
JP2012189547A (ja) * 2011-03-14 2012-10-04 Omron Corp 変位センサ
JP2012193970A (ja) * 2011-03-15 2012-10-11 Omron Corp 共焦点変位センサ
CN107866804A (zh) * 2016-09-26 2018-04-03 精工爱普生株式会社 机器人、齿轮装置以及齿轮装置的制造方法
CN107866804B (zh) * 2016-09-26 2022-09-23 精工爱普生株式会社 机器人、齿轮装置以及齿轮装置的制造方法

Also Published As

Publication number Publication date
JP4037280B2 (ja) 2008-01-23

Similar Documents

Publication Publication Date Title
KR101845187B1 (ko) 레이저 다이싱 장치 및 다이싱 방법
TWI406025B (zh) 自動聚焦裝置及方法
JP5072337B2 (ja) 光学式変位センサ及びその調整方法
TWI411860B (zh) 聚焦定位判定方法
JP2010151745A (ja) 変位センサ
JP4500097B2 (ja) 光学測定装置及び光学測定装置における距離算出方法
JP2008128744A (ja) 距離測定装置および距離測定方法
JP2010216880A (ja) 変位センサ
JP2005241607A (ja) 角度測定装置
JP2008096197A (ja) 偏心測定装置
JP4037280B2 (ja) 光学測定装置
JP2004102228A (ja) 合焦装置及び変位センサ並びに共焦点顕微鏡
JP2003035510A (ja) 位置検出装置
JP2005017257A (ja) 光学測定装置
JP2004085442A (ja) 変位測定装置
JP2015004600A (ja) 偏芯測定装置、偏芯測定方法およびレンズの製造方法
JP2012189546A (ja) 変位センサ
JP2005208027A (ja) 距離測定装置、光学測定装置及びこれらの距離測定方法
JP2005195338A (ja) 変位測定装置
JP5346670B2 (ja) 非接触表面形状測定装置
JP2002005617A (ja) 光学式測定装置
JP2003161610A (ja) 光学式測定装置
JP2020071414A (ja) コリメート調整用測定装置及びコリメート光学系の調整方法
JP4130599B2 (ja) レーザ光照射装置
JP5459619B2 (ja) 偏芯測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051206

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070709

RD04 Notification of resignation of power of attorney

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20071011

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101109

LAPS Cancellation because of no payment of annual fees