JP2004231991A - Electron beam vapor-deposition apparatus - Google Patents

Electron beam vapor-deposition apparatus Download PDF

Info

Publication number
JP2004231991A
JP2004231991A JP2003019176A JP2003019176A JP2004231991A JP 2004231991 A JP2004231991 A JP 2004231991A JP 2003019176 A JP2003019176 A JP 2003019176A JP 2003019176 A JP2003019176 A JP 2003019176A JP 2004231991 A JP2004231991 A JP 2004231991A
Authority
JP
Japan
Prior art keywords
electron beam
crucible
dome
deposition
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003019176A
Other languages
Japanese (ja)
Inventor
Hideharu Ogami
秀晴 大上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003019176A priority Critical patent/JP2004231991A/en
Publication of JP2004231991A publication Critical patent/JP2004231991A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electron beam vapor-deposition apparatus which forms a vapor-deposited film with uniform thickness distribution and is particularly effective for an article having comparatively small vapor deposition area. <P>SOLUTION: The electron beam vapor-deposition apparatus comprises a dome 6 which hangs in a vacuum chamber 1 and in which members 7 to be subjected to vapor-deposition can be arranged, a crucible 3 containing a vapor-deposition material and arranged below the center of the dome 6 in the chamber 1, and an electron gun 4 for applying an electron beam 5 and arranged in the center of the crucible 3. The crucible 3 is set so as to continuously rotate around its own central axis during vapor deposition. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子ビーム蒸着装置に関する。
【0002】
【従来の技術】
図4に示すように、従来の電子ビーム蒸着装置は、通常、真空チャンバー1内の中心あるいは中心から下方にずれた位置に蒸着物質2を収納した坩堝3があり、その中央付近に電子銃4から電子ビーム5が照射され、そのエネルギーによって蒸着物質2が蒸発し、真空チャンバー1内に坩堝3と同心的に上方に吊るされたドーム6上に配置された被蒸着部材7に蒸着膜が形成されるようになっている。
【0003】
かかる従来の電子ビーム蒸着装置では、電子銃4からの電子ビーム5は一方向から照射されているため、僅かながらではあるにしろ、蒸着粒子が坩堝3の中心線に対して回転対称に均一な分布で飛んではいかいない。したがって、ドーム6の中心直下に坩堝3を配置しただけでは、ドーム面内同心円上の位置における蒸着膜厚分布は均一にはならない。そこで、従来、ドーム6を回転させてドーム面内同心円上の位置における蒸着膜厚分布の均一化を計るようにしていた(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平5−339714号公報
【0005】
【発明が解決しようとする課題】
しかしながら、ドーム6に被蒸着部材7をセットした状態で、真空中で該ドーム6を低振動かつ安定して回転させるためには、大掛かりなモータを用いた回転機構が必要になり、装置の大型化を招いていた。
さらに、ドーム6の全面に均一な膜厚分布を実現するため、回転するドーム6の下に木の葉状の補正板を設けて、これにより影を意図的に作るようにする方法もある。
また、長時間に渡る連続蒸着においては、電子ビーム5によって坩堝3中の蒸着材料2が深く掘られてしまい、低角度方向に蒸着粒子が飛び出しにくくなってしまうため、大きな坩堝3の中心にではなく、坩堝3の半径方向にその中心から1/2程度ずれた位置に、電子ビームを蒸着物質の半径以下のサイズで照射し、そして坩堝3を徐々に回転させながら、蒸着材料2の全面を溶かして蒸着を行う方法もある。
しかしながら、これらの方法は、装置が複雑化したり、蒸着面積が比較的小さい場合には意図したほどの蒸着膜厚の均一化を実現することが出来ないという問題点があった。
【0006】
本発明は、上記の如き従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、均一な蒸着膜厚分布を得ることができ、特に蒸着面積が比較的小さいものに有効な電子ビーム蒸着装置を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明による電子ビーム蒸着装置は、真空チャンバー内に吊るされていて被蒸着部材を配置し得るドームと、該ドームの中心下方の前記チャンバー内に配置された蒸着材料収納用坩堝と、該坩堝の中心に電子ビームを照射するように配置された電子銃とを備えた電子ビーム蒸着装置において、蒸着中、前記坩堝がその中心軸線の周りに連続回転するように構成されていることを特徴としている。
【0008】
本発明によれば、前記被蒸着部材はレーザロッドであり、その端面に蒸着膜が形成されるように構成されていることを特徴としている。
【0009】
また、本発明によれば、前記坩堝上方の同一距離位置に少なくとも2つ以上の膜厚センサーが装備されていることを特徴としている。
【0010】
【発明の実施の形態】
以下、本発明の実施の態様を図示した実施例に基づき説明する。
図1は本発明にかかる電子ビーム蒸着装置の概略構成図、図2は図1に示したドームの底面図である。図1及び2において、従来例で説明したのと実質上同一の部材には同一符号を用い、それらについての説明は省略する。図中、8は坩堝3の直下に設置されていて坩堝3をその中心軸線の周りに所定速度で連続回転せしめ得るモーターを含む駆動装置、9は坩堝3の直上に設置されたシャッター、10,11,12及び13はドーム1の周縁部付近に等間隔に配設された公知の水晶振動式膜厚センサー、14はドーム6の中心部に配設された公知の光学干渉式膜厚モニターである。
ドーム6は真空チャンバー1の上部中心から吊り下げられていて、被蒸着部材7をドーム6上にをセットするために手でフリー回転させることはできるが、蒸着中に回転することはないように構成されている。
【0011】
本発明による電子ビーム蒸着装置は上記のように構成されているから、ドーム6に図示の如く被蒸着部材7をセットして装置を稼動させれば、坩堝3は駆動装置8によりその中心軸線の周りに連続回転せしめられ、それにより、電子ビーム5が坩堝3の一方向から照射されていても、被蒸着部材7に形成される蒸着膜の膜厚分布を均一にすることが出来る。従って、従来装置における如く、大きなドームを回転させる場合に比べて、遥かに装置全体を小型化かつ安価に製作することが可能となる。
【0012】
図3は、レーザロッド15の端面に蒸着膜を形成する場合の実施例を示している。この実施例から明らかなように、本発明による電子ビーム蒸着装置は、蒸着面積の小さい光ファイバーやレーザロッドの端面に蒸着膜を形成するのに適している。即ち、レーザロッド15のように、ドーム6を回転させるようにした場合にその回転中に振動が発生しやすいものや、光ファイバーのように全長が長いため回転中にドーム6に絡まってしまう可能性があるものには特に有効である。
【0013】
次に、本発明による電子ビーム蒸着装置を用いた実験例について説明する。実験には、蒸着物質2としてMgF2を用い、坩堝3を20rpmで回転させた場合と回転させない場合の、4個の水晶振動式膜厚センサー10〜13による膜厚を比較してみた(表1参照)。さらに、光学干渉式膜厚モニター14を用いて、ドーム6の同心円上に配置した被蒸着部材7としてのガラス基板の分光反射特性から求めた光学的膜厚も比較してみた(表2参照)。

Figure 2004231991
【0014】
上記表から明らかなように、蒸着中、ドーム6の中心直下に配置した坩堝3をその中心軸線の周りに回転させ、坩堝3の中心に電子ビーム5を照射することで、ドーム6の同心円上位置における蒸着膜厚分布を均一化することができる。
【0015】
【発明の効果】
上述の如く本発明によれば、均一な蒸着膜厚が得られ、特に蒸着面積の比較的小さい被蒸着部材の蒸着に適する、小型で安価に製作し得る電子ビーム蒸着装置を提供することができる。
【図面の簡単な説明】
【図1】本発明による電子ビーム蒸着装置の一実施例の概略構成図である。
【図2】図1に示した電子ビーム蒸着装置のドームの底面図である。
【図3】本発明による電子ビーム蒸着装置の他の実施例の概略構成図である。
【図4】従来の電子ビーム蒸着装置の一例の概略構成図である。
【符号の説明】
1 真空チャンバー
2 蒸着物質
3 坩堝
4 電子銃
5 電子ビーム
6 ドーム
7 被蒸着部材
8 駆動装置
9 シャッター
10〜13 水晶振動式膜厚センサー
14 光学干渉式膜厚モニター
15 レーザロッド[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electron beam evaporation apparatus.
[0002]
[Prior art]
As shown in FIG. 4, a conventional electron beam evaporation apparatus generally has a crucible 3 containing an evaporation material 2 at a center or a position shifted downward from the center in a vacuum chamber 1, and an electron gun 4 near the center thereof. Is irradiated with an electron beam 5, and the energy thereof evaporates the deposition material 2, forming a deposition film on the deposition target member 7 disposed on the dome 6 suspended above the concentric crucible 3 in the vacuum chamber 1. It is supposed to be.
[0003]
In such a conventional electron beam vapor deposition apparatus, since the electron beam 5 from the electron gun 4 is irradiated from one direction, the vapor deposition particles are uniform, though slightly, rotationally symmetrically with respect to the center line of the crucible 3. It does not fly in distribution. Therefore, merely by disposing the crucible 3 immediately below the center of the dome 6, the distribution of the deposited film thickness at a position on the concentric circle in the dome surface is not uniform. Therefore, conventionally, the dome 6 is rotated so as to uniform the thickness of the deposited film at a position on a concentric circle in the dome surface (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-5-339714
[Problems to be solved by the invention]
However, in order to stably rotate the dome 6 in a vacuum with low vibration while the deposition target member 7 is set on the dome 6, a rotating mechanism using a large-scale motor is required, and the apparatus becomes large. Was inviting.
Furthermore, in order to realize a uniform film thickness distribution over the entire surface of the dome 6, there is a method in which a leaf-shaped correction plate is provided below the rotating dome 6 to intentionally create a shadow.
In addition, in continuous vapor deposition over a long period of time, the vapor deposition material 2 in the crucible 3 is dug deep by the electron beam 5 and it becomes difficult for vapor deposition particles to fly out in a low angle direction. Instead, the electron beam is applied to a position shifted from the center of the crucible 3 by about 1/2 in the radial direction with a size equal to or smaller than the radius of the deposition material, and the entire surface of the deposition material 2 is rotated while the crucible 3 is gradually rotated. There is also a method of performing evaporation by melting.
However, these methods have a problem that if the apparatus is complicated or the deposition area is relatively small, it is not possible to achieve the intended uniformity of the deposited film thickness.
[0006]
The present invention has been made in view of the above-mentioned problems of the related art, and has as its object to obtain a uniform deposited film thickness distribution, and particularly to a device having a relatively small deposition area. It is to provide an effective electron beam evaporation apparatus.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an electron beam evaporation apparatus according to the present invention includes a dome suspended in a vacuum chamber, on which a member to be evaporated can be arranged, and a vapor deposition arranged in the chamber below the center of the dome. In an electron beam evaporation apparatus including a material storage crucible and an electron gun arranged to irradiate an electron beam to the center of the crucible, such that the crucible rotates continuously around its central axis during evaporation. It is characterized by being constituted.
[0008]
According to the present invention, the deposition target member is a laser rod, and is characterized in that a deposition film is formed on an end face thereof.
[0009]
Further, according to the present invention, at least two or more film thickness sensors are provided at the same distance position above the crucible.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the illustrated embodiments.
FIG. 1 is a schematic configuration diagram of an electron beam evaporation apparatus according to the present invention, and FIG. 2 is a bottom view of the dome shown in FIG. 1 and 2, substantially the same members as those described in the conventional example are denoted by the same reference numerals, and description thereof will be omitted. In the figure, reference numeral 8 denotes a driving device including a motor installed immediately below the crucible 3 and capable of rotating the crucible 3 continuously at a predetermined speed around its central axis, and 9 denotes a shutter installed immediately above the crucible 3. Reference numerals 11, 12, and 13 denote known quartz vibration type film thickness sensors disposed at equal intervals near the periphery of the dome 1. Reference numeral 14 denotes a known optical interference type film thickness monitor disposed at the center of the dome 6. is there.
The dome 6 is suspended from the upper center of the vacuum chamber 1, and the member 7 to be deposited can be freely rotated by hand to set it on the dome 6, but it is not rotated during deposition. It is configured.
[0011]
Since the electron beam evaporation apparatus according to the present invention is configured as described above, the crucible 3 is driven by the driving device 8 when the member 7 to be evaporated is set on the dome 6 as shown in FIG. Accordingly, even when the electron beam 5 is irradiated from one direction of the crucible 3, the film thickness distribution of the deposited film formed on the deposition target member 7 can be made uniform. Therefore, it is possible to make the whole apparatus much smaller and cheaper than when a large dome is rotated as in the conventional apparatus.
[0012]
FIG. 3 shows an embodiment in which a vapor deposition film is formed on the end face of the laser rod 15. As is apparent from this embodiment, the electron beam evaporation apparatus according to the present invention is suitable for forming an evaporation film on an end face of an optical fiber or a laser rod having a small evaporation area. That is, when the dome 6 is rotated, as in the case of the laser rod 15, vibration is likely to occur during the rotation, or there is a possibility that the dome 6 is entangled with the dome 6 during rotation due to its long overall length, such as an optical fiber. It is particularly effective for those that do.
[0013]
Next, an experimental example using the electron beam evaporation apparatus according to the present invention will be described. In the experiment, the film thicknesses of the four quartz-crystal vibrating film thickness sensors 10 to 13 were compared when the crucible 3 was rotated at 20 rpm and when the crucible 3 was not rotated, using MgF 2 as the deposition material 2 (Table 1). reference). Furthermore, using the optical interference type film thickness monitor 14, the optical film thickness obtained from the spectral reflection characteristics of the glass substrate as the deposition target member 7 arranged on the concentric circle of the dome 6 was also compared (see Table 2). .
Figure 2004231991
[0014]
As is clear from the above table, during the vapor deposition, the crucible 3 disposed immediately below the center of the dome 6 is rotated around its central axis, and the center of the crucible 3 is irradiated with the electron beam 5 so that the concentric circle of the dome 6 is formed. The deposition thickness distribution at the position can be made uniform.
[0015]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a small-sized and inexpensive electron beam vapor deposition apparatus which can obtain a uniform vapor-deposited film thickness and is particularly suitable for vapor-depositing a member to be vapor-deposited having a relatively small vapor deposition area. .
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of an electron beam evaporation apparatus according to the present invention.
FIG. 2 is a bottom view of a dome of the electron beam evaporation apparatus shown in FIG.
FIG. 3 is a schematic configuration diagram of another embodiment of the electron beam evaporation apparatus according to the present invention.
FIG. 4 is a schematic configuration diagram of an example of a conventional electron beam evaporation apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vacuum chamber 2 Evaporation substance 3 Crucible 4 Electron gun 5 Electron beam 6 Dome 7 Evaporated member 8 Drive 9 Shutter 10-13 Crystal vibration type film thickness sensor 14 Optical interference type film thickness monitor 15 Laser rod

Claims (3)

真空チャンバー内に吊るされていて被蒸着部材を配置し得るドームと、該ドームの中心下方の前記チャンバー内に配置された蒸着材料収納用坩堝と、該坩堝の中心に電子ビームを照射するように配置された電子銃とを備えた電子ビーム蒸着装置において、蒸着中、前記坩堝がその中心軸線の周りに連続回転するように構成されていることを特徴とする電子ビーム蒸着装置。A dome that is suspended in a vacuum chamber and on which a member to be deposited can be arranged, a crucible for depositing a deposition material disposed in the chamber below the center of the dome, and irradiating an electron beam to the center of the crucible. An electron beam evaporation apparatus comprising: an electron gun disposed therein; wherein the crucible is configured to rotate continuously around its central axis during evaporation. 前記被蒸着部材がレーザロッドであり、その端面に蒸着膜が形成されるように構成されていることを特徴とする請求項1に記載の電子ビーム蒸着装置。2. The electron beam evaporation apparatus according to claim 1, wherein the member to be deposited is a laser rod, and a deposition film is formed on an end surface thereof. 前記坩堝上方の同一距離位置に少なくとも2つ以上の膜厚センサーが装備されていることを特徴とする請求項1に記載の電子ビーム蒸着装置。The electron beam evaporation apparatus according to claim 1, wherein at least two or more film thickness sensors are provided at the same distance above the crucible.
JP2003019176A 2003-01-28 2003-01-28 Electron beam vapor-deposition apparatus Pending JP2004231991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019176A JP2004231991A (en) 2003-01-28 2003-01-28 Electron beam vapor-deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019176A JP2004231991A (en) 2003-01-28 2003-01-28 Electron beam vapor-deposition apparatus

Publications (1)

Publication Number Publication Date
JP2004231991A true JP2004231991A (en) 2004-08-19

Family

ID=32949121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019176A Pending JP2004231991A (en) 2003-01-28 2003-01-28 Electron beam vapor-deposition apparatus

Country Status (1)

Country Link
JP (1) JP2004231991A (en)

Similar Documents

Publication Publication Date Title
KR100216542B1 (en) Multi-target driving apparatus for pulse laser depositing system
TWI819206B (en) Film forming device and film forming method
KR20080061132A (en) Apparatus for forming organic layer
JP2008007806A (en) Sputtering film deposition apparatus, manufacturing method of sealing film, and organic el element
JP2007204784A (en) Particle coating method and particle coating apparatus
JP2001108832A5 (en)
JP2012098175A5 (en)
JP2004231991A (en) Electron beam vapor-deposition apparatus
JP2010095745A (en) Film-forming method and film-forming apparatus
JP4555638B2 (en) Thin film deposition equipment
KR101958190B1 (en) Vacuum deposition apparatus capable of deposition at large coating product
JP2004232006A (en) Vapor deposition system and method
KR101184210B1 (en) Method and apparatus for thin metal film deposition on a hemisperical resonator
JP2004091899A (en) Deposition system and deposition method for antireflection film
JP2009007651A (en) Method of film-coating neutral-density filter, apparatus for forming neutral-density filter, neutral-density filter using the same, and image pick-up light quantity diaphragm device
JP2004131749A (en) Vacuum film deposition system, and film deposition method
JP3810034B2 (en) Manufacturing method of elliptic gradation ND filter
KR102470280B1 (en) Substrate processing apparatus
JP4193951B2 (en) Method of depositing an antireflection film on an optical substrate
JPH03104865A (en) Vapor deposition device
DE60108207D1 (en) Method and device for producing a phase change medium
JP2004253504A (en) Apparatus and method for vacuum vapor deposition
JPH1171671A (en) Vacuum deposition device
JPH04202773A (en) Film forming method and corrector used therefor
JP2009084638A (en) Film forming apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Effective date: 20080219

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080624

Free format text: JAPANESE INTERMEDIATE CODE: A02