JP2004231456A - SILICON NITRIDE (Si3N4) NANOROD AND ITS MANUFACTURING METHOD - Google Patents

SILICON NITRIDE (Si3N4) NANOROD AND ITS MANUFACTURING METHOD Download PDF

Info

Publication number
JP2004231456A
JP2004231456A JP2003021044A JP2003021044A JP2004231456A JP 2004231456 A JP2004231456 A JP 2004231456A JP 2003021044 A JP2003021044 A JP 2003021044A JP 2003021044 A JP2003021044 A JP 2003021044A JP 2004231456 A JP2004231456 A JP 2004231456A
Authority
JP
Japan
Prior art keywords
silicon nitride
nanorod
powder
carbon
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003021044A
Other languages
Japanese (ja)
Other versions
JP4000371B2 (en
Inventor
Yoshio Bando
義雄 板東
Gao Yihua
ガオ・イオハ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2003021044A priority Critical patent/JP4000371B2/en
Publication of JP2004231456A publication Critical patent/JP2004231456A/en
Application granted granted Critical
Publication of JP4000371B2 publication Critical patent/JP4000371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silicon nitride (Si<SB>3</SB>N<SB>4</SB>) nanorod which has performance applicable to practical use and is easily synthesized in a large amount at a low cost; and a manufacturing method therefor. <P>SOLUTION: A silicon nitride (Si<SB>3</SB>N<SB>4</SB>) nanorod with a diameter of 20-80 nm and a length of 1-10 μm is obtained by heating a silicon oxide (SiO) powder to 1,350-1,400°C in a nitrogen gas atmosphere in the presence of an amorphous activated carbon (AAC) as a reducing agent. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この出願の発明は、窒化硅素(Si)ナノロッドとその製造方法に関するものである。
【0002】
【従来の技術】
近年、炭素ナノチューブが発見されて以来、多くの一次元(1D)的ナノスケール物質が合成されてきている。たとえば、ナノチューブ構造の物質として窒化ホウ素(BN)等や、ナノロッドまたはナノワイヤー構造の物質として酸化マグネシウム(MgO)、窒化ガリウム(GaN)等が合成されている。ところで、窒化硅素(Si)は機械的、化学的、電子的、および耐熱性に優れた特質を有していることから、そのナノスケール物質は応用への大きな潜在力を有している。このため、たとえば、シリカと硅素(SiO+Si)の炭素加熱還元法によって窒化硅素(Si)のナノスケール構造体を合成することがすでに報告されている(文献1)。
【0003】
しかしながら、この方法においては、還元剤として1Dカーボンナノチューブが用いられているために、窒化硅素(Si)ナノロッドの合成のためには高価過ぎて、現実的でなく、その応用においては限界を来すものと考えられる。このため、窒化硅素(Si)ナノロッドを、実用化に適用できる性能を有するとともに、安価で簡便に、しかも大量に合成することのできる新しい方策の実現が望まれている。
【0004】
【文献1】
Han WQ, Fan SS, Li QQ, Gu BL, zhang XB, Yu DP, Appl.Phys.Lett.,71:2271−2273 (1997)
【0005】
【発明が解決しようとする課題】
この出願の発明は、以上のとおりの従来の技術に鑑みなされたものであり、実用化に適用できる性能を有するとともに、安価で簡便に、しかも大量に合成することのできる、新しい窒化硅素(Si)ナノロッドとその製造方法を提供することを課題としている。
【0006】
【課題を解決するための手段】
上記の課題を解決するものとして、この出願の発明の窒化硅素(Si)ナノロッドは、直径が20〜80nmで長さが1〜10ミクロンであることを特徴とする。そしてその製造方法としては、さらには、還元剤として非晶質活性化炭素(AAC)粉末を用い、酸化硅素(SiO)粉末を窒素ガス環境下において1350℃〜1400℃に加熱することを特徴とし、還元剤の非晶質活性化炭素(AAC)粉末が1〜100μmのサイズの炭素フレークからなるとともに、この炭素フレークが1〜10nmの炭素粒子により構成されていることを特徴とする。
【0007】
【発明の実施の形態】
この出願の発明の窒化硅素(Si)ナノロッドとその製造方法の実施の形態を以下に詳細に説明する。
【0008】
この出願の発明の窒化硅素(Si)ナノロッドは、還元剤として非晶質活性化炭素(AAC)粉末を用い、炭素加熱還元法により、酸化硅素(SiO)粉末を窒素ガス環境下において1350℃〜1400℃、より好ましくは1380℃前後に加熱することにより製造される。
【0009】
この場合、該AAC粉末が1〜100μmのサイズの炭素フレークからなるとともに該炭素フレークが1〜10nmの炭素粒子からなるものがこの好ましい。
【0010】
窒素ガスはできるだけ高純度のものが好ましいが、アルゴン等の不活性ガスが混合されていてもよい。
【0011】
そこで、次に実施例を示し、さらに詳しく説明する。
【0012】
【実施例】
長さが50cm、直径12cm、肉厚0.25cmの縦型石英管の中に、長さ7cm、外径4.5cm、内径3.5cmの高純度グラファイト製の誘導加熱円筒管を設置する。この円筒管の中に、高さ2cm、直径2cmのグラファイト製るつぼを入れ、るつぼの中に純度99.9%の一酸化ケイ素粉末と非晶質活性炭を入れる。活性炭は一酸化ケイ素の上に覆うようにする。窒素雰囲気下で、1380℃、2時間加熱する。1380℃で一酸化ケイ素の粉末が蒸気化し、反応する。反応が終了した後、窒化珪素ナノロットがるつぼの底に生成した。なお、反応器は、以上の例には限定されず、炭素加熱還元法に用いられる反応器であればよい。
【0013】
図1は、生成された窒化珪素(Si)ナノロッドを透過型電子顕微鏡を用いて観察した像の写真である。図2は、(a):窒化珪素(Si)ナノロッドの直線状部位を透過型電子顕微鏡を用いて観察した像の写真と、(b)(c):(a)に対応する電子線回折(ED)パターンと、(d):結晶化されていることを示す高分解能透過型電子顕微鏡(HRTEM)像の写真である。
【0014】
そして、図3は、わん曲部位を介して隣接する直線部位の角度が120度であることを透過型電子顕微鏡を用いて観察した像の写真である。さらに図4は、わん曲部位について例示した高分解能透過型電子顕微鏡(HRTEM)像の写真である。
【0015】
この出願の発明の窒化硅素(Si)ナノロッドは、形状が直線部位とわん曲部位とから構成されていて、直径が20〜80nmで、長さが概ね10μm以下であることがわかる。また、図2の(b)および(c)の電子線回折(ED)パターンおよび高分解能透過型電子顕微鏡(HRTEM)像に示されているように、ナノロッドは良好に結晶化された単結晶体から構成されている。
【0016】
【発明の効果】
この出願の発明によれば、実用化に適用できる性能を有するとともに安価で簡便にしかも大量に合成することができる、新しい窒化硅素(Si)ナノロッドとその製造方法が提供される。機械的、化学的、電子的、および耐熱性に優れた特質を有するとともにその応用への大きな潜在力を有している窒化硅素(Si)ナノロッドの広範な分野への応用が可能とされる。
【図面の簡単な説明】
【図1】この出願の発明の窒化硅素(Si)ナノロッドの形状の一例を示す透過型電子顕微鏡(TEM)像の写真である。
【図2】(a):窒化硅素(Si)ナノロッドの直線状部位を示す透過型電子顕微鏡(TEM)像の写真である。
(b)(c):(a)に対応する電子線回折(ED)パターンである。
(d):窒化硅素(Si)ナノロッドが結晶化されていることを示す高分解能透過型電子顕微鏡(HRTEM)像の写真である。
【図3】ナノロッドの形状が直線部位とわん曲部位から構成されるとともにわん曲部位を介して隣接する直線部位の角度が約120度である特徴を示す透過型電子顕微鏡(TEM)像の写真である。
【図4】窒化硅素(Si)ナノロッドのわん曲部位の一例を示す高分解能透過型電子顕微鏡(HRTEM)像の写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The invention of this application relates to a silicon nitride (Si 3 N 4 ) nanorod and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, many one-dimensional (1D) nanoscale materials have been synthesized since the discovery of carbon nanotubes. For example, boron nitride (BN) or the like is synthesized as a material having a nanotube structure, and magnesium oxide (MgO), gallium nitride (GaN), or the like is synthesized as a material having a nanorod or nanowire structure. By the way, since silicon nitride (Si 3 N 4 ) has properties excellent in mechanical, chemical, electronic, and heat resistance, its nanoscale material has great potential for application. I have. For this reason, for example, it has already been reported to synthesize a silicon nitride (Si 3 N 4 ) nanoscale structure by a carbon heating reduction method of silica and silicon (SiO 2 + Si) (Reference 1).
[0003]
However, in this method, since 1D carbon nanotube is used as a reducing agent, it is too expensive for synthesis of silicon nitride (Si 3 N 4 ) nanorods, is not practical, and is limited in its application. Is thought to come. For this reason, it is desired to realize a new method capable of synthesizing silicon nitride (Si 3 N 4 ) nanorods, which has a performance applicable to practical use, is inexpensive, simple, and can be synthesized in large quantities.
[0004]
[Reference 1]
Han WQ, Fan SS, Li QQ, Gu BL, zhang XB, Yu DP, Appl. Phys. Lett. , 71: 2271-2273 (1997).
[0005]
[Problems to be solved by the invention]
The invention of this application has been made in view of the above conventional technology, and has a performance applicable to practical use, and is a new silicon nitride (Si) that can be synthesized in a large amount at low cost, easily and inexpensively. 3 N 4) is an object to provide a nanorod and a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
In order to solve the above problem, silicon nitride (Si 3 N 4) nanorods of the invention of this application is characterized in that a diameter of 1-10 microns in length in 20 to 80 nm. Further, the method for producing the same is characterized in that amorphous activated carbon (AAC) powder is used as a reducing agent, and silicon oxide (SiO) powder is heated to 1350 ° C. to 1400 ° C. in a nitrogen gas environment. The amorphous activated carbon (AAC) powder of the reducing agent is made of carbon flakes having a size of 1 to 100 μm, and the carbon flakes are made up of carbon particles of 1 to 10 nm.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the silicon nitride (Si 3 N 4 ) nanorod and the method of manufacturing the same according to the present invention will be described in detail below.
[0008]
The silicon nitride (Si 3 N 4 ) nanorods of the invention of this application use amorphous activated carbon (AAC) powder as a reducing agent, and heat silicon oxide (SiO) powder in a nitrogen gas environment by a carbon heating reduction method. It is manufactured by heating to 1350 ° C to 1400 ° C, more preferably about 1380 ° C.
[0009]
In this case, it is preferable that the AAC powder be made of carbon flakes having a size of 1 to 100 μm and the carbon flakes be made of carbon particles having a size of 1 to 10 nm.
[0010]
The nitrogen gas is preferably as pure as possible, but may be mixed with an inert gas such as argon.
[0011]
Then, an example is shown next and explained in more detail.
[0012]
【Example】
In a vertical quartz tube having a length of 50 cm, a diameter of 12 cm, and a thickness of 0.25 cm, an induction heating cylindrical tube made of high-purity graphite having a length of 7 cm, an outer diameter of 4.5 cm, and an inner diameter of 3.5 cm is placed. A graphite crucible having a height of 2 cm and a diameter of 2 cm is placed in the cylindrical tube, and 99.9% pure silicon monoxide powder and amorphous activated carbon are placed in the crucible. Activated carbon is coated over silicon monoxide. Heat at 1380 ° C. for 2 hours under a nitrogen atmosphere. At 1380 ° C., the powder of silicon monoxide vaporizes and reacts. After the reaction was completed, silicon nitride nano lots were formed at the bottom of the crucible. In addition, a reactor is not limited to the above example, What is necessary is just a reactor used for a carbon heating reduction method.
[0013]
FIG. 1 is a photograph of an image obtained by observing the generated silicon nitride (Si 3 N 4 ) nanorods using a transmission electron microscope. FIG. 2 shows (a) a photograph of an image obtained by observing a linear portion of a silicon nitride (Si 3 N 4 ) nanorod using a transmission electron microscope, and (b) and (c): electrons corresponding to (a). It is a line diffraction (ED) pattern and (d): The photograph of the high-resolution transmission electron microscope (HRTEM) image which shows being crystallized.
[0014]
FIG. 3 is a photograph of an image observed by using a transmission electron microscope that the angle of a straight line portion adjacent through a curved portion is 120 degrees. FIG. 4 is a photograph of a high-resolution transmission electron microscope (HRTEM) image illustrating a curved portion.
[0015]
It can be seen that the silicon nitride (Si 3 N 4 ) nanorod of the invention of this application has a linear shape and a curved shape, a diameter of 20 to 80 nm, and a length of about 10 μm or less. In addition, as shown in the electron diffraction (ED) patterns and the high-resolution transmission electron microscope (HRTEM) images of FIGS. 2B and 2C, the nanorods are well-crystallized single crystals. It is composed of
[0016]
【The invention's effect】
According to the invention of this application, there is provided a new silicon nitride (Si 3 N 4 ) nanorod having a performance applicable to practical use, being inexpensive, simple, and capable of being synthesized in large quantities, and a method for producing the same. It is possible to apply silicon nitride (Si 3 N 4 ) nanorods, which have excellent mechanical, chemical, electronic, and heat-resistant properties and have great potential for their applications, to a wide range of fields. Is done.
[Brief description of the drawings]
FIG. 1 is a photograph of a transmission electron microscope (TEM) image showing an example of the shape of a silicon nitride (Si 3 N 4 ) nanorod of the present invention.
FIG. 2A is a photograph of a transmission electron microscope (TEM) image showing a linear portion of a silicon nitride (Si 3 N 4 ) nanorod.
(B) and (c): electron beam diffraction (ED) patterns corresponding to (a).
(D): Photograph of a high-resolution transmission electron microscope (HRTEM) image showing that silicon nitride (Si 3 N 4 ) nanorods are crystallized.
FIG. 3 is a photograph of a transmission electron microscope (TEM) image showing a feature that the shape of a nanorod is composed of a straight portion and a curved portion, and the angle of a straight portion adjacent to the curved portion is about 120 degrees. It is.
FIG. 4 is a photograph of a high-resolution transmission electron microscope (HRTEM) image showing an example of a curved portion of a silicon nitride (Si 3 N 4 ) nanorod.

Claims (3)

直径が20〜80nmで長さが1〜10ミクロンであることを特徴とする窒化硅素(Si)ナノロッド。Silicon nitride, wherein the diameter length at 20~80nm is from 1 to 10 microns (Si 3 N 4) nanorods. 還元剤として非晶質活性化炭素(AAC)粉末を用い、酸化硅素(SiO)粉末を窒素ガス環境下において1350℃〜1400℃に加熱することを特徴とする窒化硅素(Si)ナノロッドの製造方法。An amorphous activated carbon (AAC) powder as a reducing agent, silicon oxide (SiO) nitride powder is characterized by heating to 1350 ° C. to 1400 ° C. in a nitrogen gas environment silicon (Si 3 N 4) nanorods Manufacturing method. 還元剤の非晶質活性化炭素(AAC)粉末が1〜100μmのサイズの炭素フレークからなるとともに、この炭素フレークが1〜10nmの炭素粒子により構成されていることを特徴とする請求項2に記載の窒化硅素(Si)ナノロッドの製造方法。The amorphous activated carbon (AAC) powder as a reducing agent is formed of carbon flakes having a size of 1 to 100 μm, and the carbon flakes are formed of carbon particles having a size of 1 to 10 nm. The method for producing silicon nitride (Si 3 N 4 ) nanorods according to the above.
JP2003021044A 2003-01-29 2003-01-29 Silicon nitride (Si3N4) nanorods and manufacturing method thereof Expired - Lifetime JP4000371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003021044A JP4000371B2 (en) 2003-01-29 2003-01-29 Silicon nitride (Si3N4) nanorods and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003021044A JP4000371B2 (en) 2003-01-29 2003-01-29 Silicon nitride (Si3N4) nanorods and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004231456A true JP2004231456A (en) 2004-08-19
JP4000371B2 JP4000371B2 (en) 2007-10-31

Family

ID=32950505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003021044A Expired - Lifetime JP4000371B2 (en) 2003-01-29 2003-01-29 Silicon nitride (Si3N4) nanorods and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4000371B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336009A (en) * 2004-05-27 2005-12-08 National Institute For Materials Science Silicon nitride nano-wire coated with silicon nitride nano-sheet and its manufacturing method
JP2006160548A (en) * 2004-12-06 2006-06-22 Japan Atomic Energy Agency Single crystal silicon nitride nanosheet and its producing method
KR100753114B1 (en) 2005-07-26 2007-08-29 한국원자력연구원 Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders
CN100457616C (en) * 2005-05-13 2009-02-04 中国科学院合肥物质科学研究院 Silicon oxide nano rope with reversible luminous feature and preparation process thereof
JP2009161376A (en) * 2007-12-28 2009-07-23 Toda Kogyo Corp Manufacturing method of silicon nitride powder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005336009A (en) * 2004-05-27 2005-12-08 National Institute For Materials Science Silicon nitride nano-wire coated with silicon nitride nano-sheet and its manufacturing method
JP4581121B2 (en) * 2004-05-27 2010-11-17 独立行政法人物質・材料研究機構 Silicon nitride nanowire coated with boron nitride nanosheet and method for producing the same
JP2006160548A (en) * 2004-12-06 2006-06-22 Japan Atomic Energy Agency Single crystal silicon nitride nanosheet and its producing method
JP4572382B2 (en) * 2004-12-06 2010-11-04 独立行政法人 日本原子力研究開発機構 Single crystal silicon nitride nanosheet and manufacturing method thereof
CN100457616C (en) * 2005-05-13 2009-02-04 中国科学院合肥物质科学研究院 Silicon oxide nano rope with reversible luminous feature and preparation process thereof
KR100753114B1 (en) 2005-07-26 2007-08-29 한국원자력연구원 Method for fabrication of silicon-based ceramic nanowires using thermal reaction of silica powders
JP2009161376A (en) * 2007-12-28 2009-07-23 Toda Kogyo Corp Manufacturing method of silicon nitride powder

Also Published As

Publication number Publication date
JP4000371B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
Liang et al. Large-scale synthesis of β-SiC nanowires by using mesoporous silica embedded with Fe nanoparticles
Lee et al. Semiconductor nanowires: synthesis, structure and properties
Zhang et al. A simple method to synthesize Si3N4 and SiO2 nanowires from Si or Si/SiO2 mixture
Kong et al. Catalytic growth of ZnO nanotubes
Peng et al. Bulk-quantity Si nanosphere chains prepared from semi-infinite length Si nanowires
He et al. Fabrication of aluminum carbide nanowires by a nano-template reaction
WO2003010114A1 (en) A method of producing nanometer silicon carbide material
JP2009256204A (en) Method for making carbon nanotube
JP4487057B2 (en) Zinc oxide nanoplate / nanorod bonded product and method for producing the same
JP4000371B2 (en) Silicon nitride (Si3N4) nanorods and manufacturing method thereof
Xie et al. Low-temperature synthesis of SiC nanowires with Ni catalyst
Li-Hong et al. Synthesis and photoluminescence property of boron carbide nanowires
Kim et al. Formation of amorphous and crystalline gallium oxide nanowires by metalorganic chemical vapor deposition
Wang et al. Synthesis of tapered CdS nanobelts and CdSe nanowires with good optical property by hydrogen-assisted thermal evaporation
JP3571287B2 (en) Method for producing silicon oxide nanowires
Cai et al. Ultra long SiC/SiO2 core-shell nanocables from organic precursor
JP3896487B2 (en) Method for producing magnesium oxide nanowire and magnesium oxide nanorod
JP4025869B2 (en) Gallium oxide nanowire and manufacturing method thereof
Fan et al. Growth of semiconductor nanowires on iron-patterned silicon substrates
JP2004190183A (en) Boron nitride nanofiber having long period structure and method for producing the same
Meng et al. β-SiC nanorods with uniform amorphous SiO2 wrappers on the outside surface
Oku Synthesis, atomic structures and properties of boron nitride nanotubes
Pei et al. Single crystalline silicon carbide nanorods synthesized by hydrothermal method
JP3873126B2 (en) Method for producing indium phosphide nanowires and nanotubes
Meng et al. Synthesis of one-dimensional nanostructures—β-SiC nanorods with and without amorphous SiO 2 wrapping layers

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

R150 Certificate of patent or registration of utility model

Ref document number: 4000371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term