JP2004228364A - Surface mounting structure of surface mounting electronic part - Google Patents

Surface mounting structure of surface mounting electronic part Download PDF

Info

Publication number
JP2004228364A
JP2004228364A JP2003014909A JP2003014909A JP2004228364A JP 2004228364 A JP2004228364 A JP 2004228364A JP 2003014909 A JP2003014909 A JP 2003014909A JP 2003014909 A JP2003014909 A JP 2003014909A JP 2004228364 A JP2004228364 A JP 2004228364A
Authority
JP
Japan
Prior art keywords
land
electrode
electronic component
surface mounting
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003014909A
Other languages
Japanese (ja)
Other versions
JP4276446B2 (en
Inventor
Kazuhiro Maeno
一弘 前野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2003014909A priority Critical patent/JP4276446B2/en
Publication of JP2004228364A publication Critical patent/JP2004228364A/en
Application granted granted Critical
Publication of JP4276446B2 publication Critical patent/JP4276446B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent thermal stress from concentrating on the specific part of a soldered joint for bonding the electrodes of a surface-mounting electronic part to the lands of a circuit board without subjecting the surface-mounting electronic part to special working. <P>SOLUTION: The lands 12 are formed on the surface of the circuit board 11, and a chip part 13 is bonded on the lands 12 with solder 14. The chip part 13 is soldered on the lands 12 constituting a conductor pattern formed on the surface of the circuit board 11 in a reflow soldering method. The two lands 12 are so formed as to make a distance between their tips nearly equal to that between the internal ends of the two electrodes 15 of the chip part 13. A part of the land 12 corresponding to the internal end of the electrode 15 of the chip part 13 is formed into a certain shape so as to decrease or disperse thermal stress imposed on the soldered joint, for example, an expanded pard 12a is provided to each side edge of the land 12 corresponding to the internal edge of the electrode 15 of the tip part 13. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、表面実装用電子部品の表面実装構造に係り、詳しくは回路基板のランド上に表面実装用電子部品を半田により接合した表面実装用電子部品の表面実装構造に関する。
【0002】
【従来の技術】
半田接合は、接合作業が比較的容易であり、接合強度も強固で信頼性が高く、かつ安価である等の優れた長所を有するため、従来より電子部品の実装に多用されている。
【0003】
一方、近年、電子装置の小型化等の目的で、電子部品を回路基板上に実装する際の高密度化のため、電子部品の実装構造の主流は、リード部品を使用する挿入実装から表面実装用電子部品(チップ部品)を使用する表面実装へと変化している。
【0004】
例えば、表面実装用電子部品としてのセラミックコンデンサを実装する場合は、図10(a)に示すように、直方体状のチップ部品51の両端にメッキ等で形成された電極52が設けられている。そして、回路基板53の表面に形成された一対のランド54にクリーム半田55が印刷された状態で、チップ部品51が両電極52において各ランド54のクリーム半田55上にマウントされる。次いで、リフロー炉に入れられて、クリーム半田55が加熱溶融されることにより、チップ部品51が回路基板53上に半田接合により実装される。
【0005】
電子装置の使用環境が温度変化の少ない場合は通常の半田接合で問題はない。しかし、例えば、車載用の電子装置では使用環境温度が氷点下から数十℃までの変化に耐えることが必要とされ、高温環境下及び低温環境下での信頼性及び高温環境と低温環境とのサイクル変化を受けた際の信頼性が求められる。
【0006】
一般に材料は、温度の上昇により膨張し、温度の下降により収縮し、その度合い(線膨張係数)は材料によって異なる。電子部品の半田実装部分においても、回路基板(ランド)側と電子部品とでは線膨張係数が異なるため、温度変化に伴って両者の半田接合部分に熱応力が発生する。そして、これが長期間にわたって繰り返されると、半田組成におけるPb(鉛)リッチなα相とSn(錫)リッチなβ相とが分離し、徐々に両相の粒子が成長しこの粒界は脆い。また、ランドの材質がCu(銅)である場合には、Cu−Sn合金層が生じるが、やはり硬くて脆い。クラックは主にこのような脆い結晶粒界や合金層に沿って生じ、それが進展すると半田接合部が断線し、故障に至ることがある。
【0007】
半田フィレット先端や半田接合部に発生する熱応力による疲労、クラックや破断を防止する表面実装用電子部品が提案されている(特許文献1参照)。図11に示すように、特許文献1に記載の表面実装用電子部品(チップ部品51)は、長手方向両側に設けられた電極52の半田と接合される部分に複数の凹凸形成されている。
【0008】
【特許文献1】
特開平11−68284号公報(明細書の段落[0005]、図1)
【0009】
【発明が解決しようとする課題】
ところが、特許文献1に記載の表面実装用電子部品は、電極に複数の凹凸を形成する特殊な加工を施す必要があり、表面実装用電子部品の製造コストが高くなる。
【0010】
冷熱衝撃試験に投入した試験品を切断して断面観察を行った結果、図10(b)に示すように、半田フィレット56に発生するクラックの傾向として、先ず、電極52の下面とランド54間にクラック57が発生し、これが徐々に進展して、最終的に貫通破断に至ることが判明した。なお、図10(b)はチップ部品51の片側半分を示している。「貫通破断」とは、クラックが半田接合部をランド側部分と電極側部分とに分割するように面状に進展して、電極とランドの導通が妨げられる状態になることを意味する。
【0011】
この原因として、線膨張係数の異なるチップ部品51と基板53(ランド54)とが相対最近接するチップ部品51の両端の電極52下面と基板53(ランド54)との間に応力集中し易いこと等が考えられる。また、チップ部品51の両端の電極52下面と基板53(ランド54)との間の中でも、特に内側両角部に応力集中が生じる。
【0012】
本発明は、前記知見と従来技術の問題に鑑みてなされたものである。本発明の目的は、表面実装用電子部品に特殊な加工を施すことなく、表面実装用電子部品の電極を回路基板のランドに接合するための半田接合部の特定部分に熱応力が集中するのを抑制し、半田クラックの発生、進展を低減あるいは防止することができる表面実装用電子部品の表面実装構造を提供することにある。
【0013】
【課題を解決するための手段】
前記の目的を達成するため請求項1に記載の発明は、回路基板のランド上に表面実装用電子部品を半田により接合した表面実装用電子部品の表面実装構造において、前記ランドの形状が、半田接合部の熱応力を低下若しくは分散させる形状に形成されている。この発明では、半田接合部の表面実装用電子部品の電極下面と回路基板のランドとの間に発生する応力が低下若しくは分散され、特定部分に集中するのが緩和される。その結果、貫通破断に至るクラックを低減、若しくは解消することができる。
【0014】
請求項2に記載の発明は、請求項1に記載の発明において、前記ランドは、前記表面実装用電子部品の電極の内側端部寄りの形状が、半田接合部の熱応力を低下若しくは分散させる形状に形成されている。「表面実装用電子部品の電極の内側端部」とは、例えば、直方体状のチップ部品の長手方向の両端に形成された電極のチップ部品中央寄りの端部を意味する。
【0015】
この発明では、半田接合部の表面実装用電子部品の電極下面と回路基板のランドとの間に発生する応力が特に集中し易い部分に対応するランド部分の形状を従来と変えることにより、当該部分への応力集中が緩和され、貫通破断に至るクラックをより低減、若しくは解消することができる。「電極下面」とは電極のランドと対向する面を意味する。
【0016】
請求項3に記載の発明は、請求項2に記載の発明において、前記ランドは、前記表面実装用電子部品の電極の内側端部寄り部分の両側に膨出部が形成され、前記膨出部上にも半田接合部が形成されている。このため、表面実装用電子部品の電極下面と対応する部分の半田厚を増加させることができ、電極下面とランドとの間に発生する熱応力が緩和される。また、電極の側面にも半田フィレットが形成され、電極下面の半田接合部にクラックが発生しても、その進展が側面の半田フィレットには及ばず、貫通破断による断線を回避できる。
【0017】
請求項4に記載の発明は、回路基板のランド上に表面実装用電子部品を半田により接合した表面実装用電子部品の表面実装構造において、前記ランドは、前記表面実装用電子部品の電極の内側端部寄り両端隅部が面取り形状又は扇形状に形成されている。この発明では、表面実装用電子部品の電極下面とランドとの間に存在する半田接合部の隅部に直角あるいは鋭角の部分が無くなり、当該箇所への応力集中が緩和される。
【0018】
請求項5に記載の発明は、請求項2〜請求項4のいずれか一項に記載の発明において、前記ランドは、前記表面実装用電子部品の電極の内側端部寄り部分は、電極の外方への少なくとも一つの凹部を備えている。この発明では、表面実装用電子部品の電極下面とランドとの間に存在する半田接合部の、電極下面内側端部に発生する応力の方向が分散され、特定の箇所への応力集中が緩和される。
【0019】
請求項6に記載の発明は、請求項2に記載の発明において、前記ランドは、前記表面実装用電子部品の電極と対応する部分の厚さが前記表面実装用電子部品の幅方向と直交する方向において変化する形状に形成されている。この発明では、表面実装用電子部品の電極下面とランドとの間に存在する半田接合部に発生する応力の方向が分散され、特定の箇所への応力集中が緩和される。
【0020】
請求項7に記載の発明は、請求項2〜請求項5のいずれか一項に記載の発明において、前記ランドは、前記表面実装用電子部品の電極と対応する部分の少なくとも一辺に面取りが施されている。この発明では、表面実装用電子部品の電極下面とランドとの間に存在する半田接合部の、ランドの辺と対応する部分が厚くなり、当該部分に発生する応力が緩和される。
【0021】
【発明の実施の形態】
(第1の実施の形態)
以下、本発明を具体化した第1の実施の形態を図1及び図2に従って説明する。図1(a)は、チップ部品とランドの関係を示す模式斜視図、(b)はチップ部品が実装された状態の模式側面図、(c)はランドとチップ部品の関係を示す模式平面図であり、図2(a),(b)は変更例の部分模式平面図である。なお、図1及び図2では半田付け箇所以外の回路基板上に半田が付着するのを防止するためのソルダーレジストの図示を省略している。
【0022】
図1(b)に示すように、回路基板11の表面にはランド12が形成され、ランド12上に表面実装用電子部品としてのチップ部品13が半田14により接合されている。チップ部品13は、回路基板11の表面に形成された導体パターンを構成するランド12上に、リフロー半田法で半田付けされている。即ち、チップ部品13は回路基板11上に表面実装されている。チップ部品13としては例えばセラミックコンデンサがある。
【0023】
チップ部品13は直方体状に形成され、その長手方向の両端にメッキ等で電極15が形成されている。そして、図1(a)に示すように、一対のランド12にクリーム半田16が印刷された状態で、チップ部品13は各電極15においてクリーム半田16上にマウントされる。そして、リフロー炉に入れられて、クリーム半田16が加熱溶融されることにより、回路基板11上に半田接合により実装される。
【0024】
図1(b)に示すように、一対のランド12は、その先端間の距離がチップ部品13の一対の電極15の内側端部の距離と略一致するように形成されるとともに、チップ部品13の長手方向に沿う方向の長さが電極15と対向する部分以上に形成されている。
【0025】
ランド12は、その形状が半田接合部の熱応力を低下若しくは分散させる形状に形成されている。この実施の形態ではランド12は、チップ部品13の電極15の内側端部寄りの形状が、半田接合部の熱応力を低下若しくは分散させる形状に形成されている。詳述すれば、図1(c)に示すように、ランド12には、チップ部品13の電極15の内側端部寄り部分の両側に膨出部12aが形成されている。両膨出部12aは対称に形成されている。
【0026】
膨出部12aの形状は、図1(c)に示すような円弧面状に限らず、図2(a)に示すように長方形状としたり、図2(b)に示すように三角形状としてもよい。また、例示した以外の形状でも、電極15の内側端部寄り部分の両側に膨出形成されていて、電極15の側面にも半田フィレットを形成可能な形状であれば、適宜の形状に変更してもよい。
【0027】
前記の形状に形成されたランド12にチップ部品13を半田によって接合する場合、ランド12の膨出部12a上にもクリーム半田16を塗布した状態で従来と同様なリフロー法で半田接合が行われる。膨出部12a上にもクリーム半田16が塗布された状態で加熱溶融が行われると、チップ部品13の電極15の下面と対応する部分の半田厚が、膨出部12aが無い場合に比較して増加する。その結果、チップ部品13が実装された後、半田接合部に熱応力が作用する場合、従来、応力集中が起こり易かった電極15下面とランド12との間に発生する熱応力が緩和される。
【0028】
また、電極15の先端面と対応する位置だけでなく、側面と対応する位置にも半田フィレット17が形成される。その結果、電極15下面の半田接合部14aにクラックが発生しても、その進展が側面の半田フィレットには及ばず、貫通破断による断線が回避される。なお、図では側面と対応する半田フィレット17は図示を省略している。
【0029】
膨出部12aを対称となるように形成する代わりに、非対称となるように形成してもよい。
この実施の形態では以下の効果を有する。
【0030】
(1) ランド12は、チップ部品13の電極15の内側端部寄り部分の両側に膨出部12aが形成された形状に形成されている。従って、膨出部12a上にもクリーム半田16を塗布した状態でリフロー法によりチップ部品13を半田接合により実装すると、チップ部品13の電極15下面と対応する部分の半田厚を増加させることができ、電極15下面とランド12との間の半田接合部14aに発生する熱応力が緩和される。また、電極15の側面にも半田フィレットが形成されるため半田接合部の面積が増加し、電極15下面の半田接合部14aにクラックが発生しても、その進展が側面の半田フィレットには及ばず、貫通破断による断線を回避できる。
【0031】
(2) ランド12の形状を一部変更するだけで、チップ部品13側には何ら加工する必要がなく、従来と同様に、ランド12にクリーム半田16を塗布し、チップ部品13をクリーム半田16上にマウントして加熱溶融を行うことにより前記(1)の効果が得られる。従って、チップ部品13に加工を施す方法に比較してコストを低減できる。
【0032】
(3) 膨出部12aが対称に形成された場合は、非対称に形成された場合に比較してチップ部品13が所定の位置に正確に半田実装され易い。
(第2の実施の形態)
次に第2の実施の形態を図3(a)〜(c)に従って説明する。この実施の形態では、チップ部品13の電極15下面と対応する部分の半田厚を増加させるのではなく、電極15下面と対応する部分の半田接合部14aに熱応力が発生した際に、応力集中が起こり易い鋭角部分や直角部分を無くすようにした点が第1の実施の形態と大きく異なっている。第1の実施の形態と同様な部分は同一符号を付して詳しい説明を省略する。
【0033】
従来のランドは、チップ部品13の電極15の内側端部と対応する両端隅部が直角であるが、図3(a)〜(c)に示すように、この実施の形態のランド12は、前記電極15の内側端部寄り両端隅部が面取り形状又は扇形状に形成されている。図3(a)に示すランド12は、前記両端隅部が直線状に切り落とされた面取り形状に形成された面取り部12bを備え、図3(b)に示すランド12は、前記両端隅部が円弧状となる面取り形状に形成された面取り部12bを備えている。また、図3(c)に示すランド12は、前記両端隅部に扇形状部12cが形成されている。
【0034】
また、例示した以外の形状でも、電極15の内側両端部と対応する部分に鋭角部分や直角部分が無くなる形状であれば、他の形状であってもよい。また、両隅部を対称構造とする必要はなく、非対称構造であってもよい。
【0035】
前記の形状に形成されたランド12にチップ部品13を半田によって接合する場合、ランド12上にクリーム半田16を塗布した状態で従来と同様なリフロー法で半田接合が行われる。ランド12上に塗布されたクリーム半田16の量は従来のランドの場合と同じか殆ど変わらない。図3(c)に示す、扇形状部12cを有する場合も、膨出されている面積が第1の実施の形態の場合に比較して小さいため、第1の実施の形態と異なり、チップ部品13の電極15の下面と対応する部分の半田厚が、熱応力を緩和させるほど増加することはない。
【0036】
この実施の形態では次の効果を有する。
(4) ランド12は、チップ部品13の電極15の内側端部寄り両端隅部が面取り形状又は扇形状に形成されている。従って、チップ部品13の電極15下面とランド12との間に存在する半田接合部14aの隅部に直角あるいは鋭角の部分が無くなり、当該箇所への応力集中が緩和される。その結果、半田接合部14aへの半田クラックの発生、進展を低減あるいは抑制することができる。
【0037】
(5) ランド12の前記両端隅部に面取り部12bを設けた場合は、ランド12の幅が広くならず、高密度化に悪影響を与えない。
(第3の実施の形態)
次に第3の実施の形態を図4(a)〜(c)に従って説明する。この実施の形態では、チップ部品13の電極15下面とランド12との間に存在する半田接合部14aの、電極15下面内側端部に発生する応力の方向が分散され、特定の箇所への応力集中が緩和されるようにした点が前記第1及び第2の実施の形態と大きく異なっている。第1及び第2の実施の形態と同様な部分は同一符号を付して詳しい説明を省略する。
【0038】
図4(a)に示すランド12は、チップ部品13の電極15の内側端部寄り部分の形状が矩形波状、即ち凹凸が連続する形状に形成され、図4(b)に示すランド12は、前記内側端部寄り部分の形状が内側に凸の曲線部12dとなるように形成されている。また、図4(c)に示すランド12は、前記内側端部寄り部分の形状が三角波状、即ち凹凸が連続する形状に形成されている。なお、両隅部に鋭角部分が形成されないように、図4(b),(c)に示す形状のランド12では、両隅部の角が落とされた形状となっている。この実施の形態では、ランド12は、チップ部品13の電極15の内側端部寄り部分は、電極15の外方への少なくとも一つの凹部を備えている。
【0039】
図4(b)に示す曲線部12dを有するランド12の場合、曲線部12dの曲率は限定されず、適宜設定し得る。また、全域が一定の曲率に限定されることもなく、途中で段階的に変化させてもよいし、連続的に変化させてもよい。例えば、両端隅部を大きい曲率とし、その間を次第に小さくなるように除変させてもよい。
【0040】
また、矩形波形状あるいは三角波形状に形成する場合、等ピッチに限定されず、適宜幅や高さを変えてもよいし、連続的に変化させてもよい。たとえば、応力集中が起こり易い両端隅部を狭ピッチとし、その間を次第に大きくなるように除変させてもよい。また、矩形波及び三角波の両端隅部の始点をチップ部品13の中央側に向かって凸となる形状ではなく、凹となる形状としたり、一方が凸で他方が凹となるようにしてもよい。
【0041】
また、例示した以外の形状でも、半田接合部14aの電極15下面内側端部に発生する応力の方向が分散される形状であれば、他の形状であってもよい。
チップ部品13とランド12の線膨張率の差によって、電極15下面とランド12との間に存在する半田接合部14aに発生する熱応力の向きは、端部においてはチップ部品13の長手方向に平行な方向となる。ランド12の前記内側端部寄り部分の形状が直線状の場合は、前記熱応力の向きは同じ方向となる。しかし、この実施の形態では、ランド12の前記内側端部寄り部分の形状が直線状でないため、チップ部品13の電極15下面とランド12との間に存在する半田接合部14aの、電極15下面内側端部に発生する応力の方向が分散され、特定の箇所への応力集中が緩和される。
【0042】
図4(a)に示すランド12では、前記内側端部寄り部分に作用する応力の向きが、図に矢印で示すように、チップ部品13の長手方向と平行な方向と、長手方向と直交する方向となる。図4(b)に示すランド12では、前記内側端部寄り部分に作用する応力の向きが、図に矢印で示すように、全体的に異なる方向となる。また、図4(c)に示すランド12では、前記内側端部寄り部分に作用する応力の向きが、図に矢印で示すように、三角形の辺とほぼ直交する方向となる。
【0043】
この実施の形態では次の効果を有する。
(6) ランド12は、チップ部品13の電極15の内側端部寄り部分の形状が内側に凸の形状又は複数の凹凸が連続する形状に形成されている。ランド12は、チップ部品13の電極15の内側端部寄り部分は、電極15の外方への少なくとも一つの凹部を備えている。従って、チップ部品13の電極15下面とランド12との間に存在する半田接合部14aの、電極15下面内側端部に発生する応力の方向が分散され、特定の箇所への応力集中が緩和される。その結果、半田接合部14aへの半田クラックの発生、進展を低減あるいは抑制することができる。
【0044】
(7) ランド12の前記電極15の内側端部寄り部分の形状が、矩形波状あるいは三角波状に形成した場合は角部が増えるため、従来、両端隅部に集中していた応力がより分散されて、低減される。
【0045】
(第4の実施の形態)
次に第4の実施の形態を図5(a),(b)及び図6(a),(b)に従って説明する。この実施の形態では、チップ部品13の電極15下面とランド12との間に存在する半田接合部14aに発生する応力の方向が分散され、特定の箇所への応力集中が緩和されるようにした点が前記第1及び第2の実施の形態と大きく異なっている。第1及び第2の実施の形態と同様な部分は同一符号を付して詳しい説明を省略する。
【0046】
ランド12は、チップ部品13の電極15と対応する部分の厚さがチップ部品13の幅方向と直交する方向において変化する形状に形成されている。図5(a)に示すランド12は、チップ部品13の電極15と対応する部分に断面矩形状の溝18が複数平行に形成され、側面から見た状態で矩形波状、即ち凹凸が連続する形状に形成されている。図6(a)に示すランド12は、電極15と対応する部分の形状が側面から見た状態で凹の曲線部となるように形成されている。また、図6(b)に示すランド12は、チップ部品13の電極15と対応する部分に断面三角形状の溝18が複数平行に形成され、側面から見た状態で三角波状、即ち凹凸が連続する形状に形成されている。
【0047】
図6(a)に示す曲線部を有するランド12の場合、曲線部の曲率は限定されず、適宜設定し得る。また、全域が一定の曲率に限定されることもなく、途中で段階的に変化させてもよいし、連続的に変化させてもよい。例えば、両端部を大きい曲率とし、その間を次第に小さくなるように除変させてもよい。
【0048】
また、矩形波形状あるいは三角波形状に形成する場合、等ピッチに限定されず、適宜幅や高さを変えてもよいし、連続的に変化させてもよい。たとえば、応力集中が起こり易い電極15の下面内側端部及び外側端部の両端部を狭ピッチとし、その間を次第に大きくなるように除変させてもよい。また、矩形波及び三角波の両端部の始点を電極15側に向かって凸となる形状ではなく、凹となる形状としたり、一方は凸、他方は凹となるようにしてもよい。
【0049】
また、例示した以外の形状でも、半田接合部14aの電極15の下面内側端部と対応する箇所に発生する応力の方向が分散される形状であれば、他の形状であってもよい。
【0050】
この実施の形態では次の効果を有する。
(8) ランド12は、チップ部品13の電極15と対応する部分の厚さがチップ部品13の幅方向と直交する方向において変化する形状に形成されている。従って、チップ部品13の電極15下面とランド12との間に存在する半田接合部14aに発生する応力の方向が分散され、特定の箇所への応力集中が緩和される。その結果、半田接合部14aへの半田クラックの発生、進展を低減あるいは抑制することができる。
【0051】
実施の形態は前記に限定されるものではなく、例えば、次のように変更してもよい。
○ 図7に示すように、チップ部品13の電極15と対向するランド12の部分を薄く形成してもよい。薄く形成する方法としては、プレス加工、切削加工、エッチング等が考えられる。この場合も、チップ部品13の電極15下面と対応する部分の半田接合部14aの半田厚を増加させることができ、電極15下面とランド12との間の半田接合部14aに発生する熱応力が緩和される。
【0052】
〇 図8(a)に示すように、ランド12の周縁部に複数の凹部19を設けたり、図8(b)に示すように、ランド12の周縁部に面取り部12bを設けてもよい。これらの場合、ランド12の周縁部の半田厚を増加させることができ、電極15下面とランド12との間の半田接合部14aに発生する熱応力が緩和される。なお、面取り部12bや凹部19を一辺のみに設けてもよい。
【0053】
○ ランド12の形状及び配線部の延びる方向は同じに限らず、例えば、図9に示すように、配線部20が別の方向に延びるように形成し、チップ部品13の電極15の内側端部寄り部分を、第3の実施の形態と同様な形状となるように加工を施してもよい。
【0054】
○ 第1〜第3の実施の形態において、ランド12自体を各実施の形態で説明した各ランド12の形状に形成するのではなく、例えば、ランドと対応する部分の導体パターンの形状をランドより大きな形状に形成し、所望の形状でランドが露出するように半田レジスト層を形成してもよい。この場合、回路基板11上のランド(導体パターン)をサブトラクティブ法で形成する際に、エッチングで除去する金属量が少なくなる。
【0055】
○ ランド12は、チップ部品13の電極15の内側端部寄りの形状が、半田接合部の熱応力を低下若しくは分散させる形状に形成されたものに限らない。例えば、電極15から離れた側の端部、即ち半田フィレット17の裾の端部と対応する部分の形状が半田接合部の熱応力を低下若しくは分散させる形状に形成されていてもよい。銅製のランド12と半田との接合面近傍には、Cu−Sn合金層が生じ、合金層は脆いため、半田フィレット17の裾の端部側で先にクラックが発生すると、そのクラックがチップ部品13の電極15と対応する部分に向かって進展して貫通破断となる虞もある。しかし、半田フィレット17の裾の端部側と対応する部分のランド12の形状を前記のように形成することにより、そのようなクラックの発生、進展を抑制することができる。
【0056】
○ 第1〜第4の実施の形態の各構成を適宜組み合わせてもよい。例えば、第1の実施の形態と第3の実施の形態とを組み合わせ、チップ部品13の電極15の内側端部寄り部分の両側に膨出部12aを形成し、前記内側端部寄り部分の形状を内側に凸の形状又は複数の凹凸が連続する形状に形成する。また、第2の実施の形態と第3の実施の形態とを組み合わせたり、第1〜第3の実施の形態のいずれかと、第4の実施の形態とを組み合わせてもよい。また、第1〜第4の実施の形態の各構成と、別の実施の形態の構成とを組み合わせてもよい。
【0057】
○ 半田付け方法はリフロー形式に限定されない。例えば、卓上式ホットプレート上で加熱溶融してもよい。
○ 半田はクリーム半田に限定されない。例えば、ペレット状半田を用いてもよい。
【0058】
○ 銅製のランド12の表面にNiメッキが施されていてもよい。
○ ランド12の素材は銅に限らず、導電性の良い金属(例えば、銀、アルミニウム等)であってもよい。
【0059】
○ チップ部品13の形状は直方体形状に限らず、また、電極の数が3個以上のものであってもよい。
○ 回路基板は表面実装部品のみが搭載される回路基板に限らず、表面実装部品とリード部品とが混載される回路基板に適用してもよい。
【0060】
前記実施の形態から把握できる請求項記載以外の技術的思想について、以下に記載する。
(1) 請求項3〜請求項5のいずれか一項に記載の発明において、前記ランドは、ランドと対応する部分の導体パターンの形状がランドより大きな形状に形成され、所望の形状でランドが露出するように半田レジスト層が形成されることにより形成されている。
【0061】
(2) 請求項1に記載の発明において、前記ランドは、表面実装用電子部品の電極と対向する部分が薄く形成されている。
【0062】
【発明の効果】
以上詳述したように、請求項1〜請求項7に記載の発明によれば、表面実装用電子部品に特殊な加工を施すことなく、表面実装用電子部品の電極を回路基板のランドに接合するための半田接合部の特定部分に熱応力が集中するのを抑制することができる。
【図面の簡単な説明】
【図1】(a)は第1の実施の形態のチップ部品とランドの関係を示す模式斜視図、(b)はチップ部品が実装された状態の模式側面図、(c)は同じくチップ部品とランドの関係を示す模式平面図。
【図2】(a),(b)は第1の実施の形態の変更例の部分模式平面図。
【図3】(a)〜(c)は第2の実施の形態のチップ部品とランドの関係を示す部分模式平面図。
【図4】(a)〜(c)は第3の実施の形態のチップ部品とランドの関係を示す部分模式平面図。
【図5】(a)は第4の実施の形態のランドの模式斜視図、(b)はチップ部品が実装された状態の模式側面図。
【図6】(a),(b)は第4の実施の形態の別例の部分模式側面図。
【図7】別の実施の形態の部分模式側面図。
【図8】(a),(b)は別の実施の形態のランドを示す模式斜視図。
【図9】別の実施の形態のランドを示す模式平面図。
【図10】(a)はチップ部品とランドの関係を示す模式斜視図、(b)はクラックの発生状態を示す模式側面図。
【図11】従来技術を示す模式図。
【符号の説明】
11…回路基板、12…ランド、12a…膨出部、12d…凹部としての曲線部、13…表面実装用電子部品としてのチップ部品、14…半田、14a…半田接合部、15…電極。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface mounting structure of a surface mounting electronic component, and more particularly, to a surface mounting structure of a surface mounting electronic component in which a surface mounting electronic component is joined to a land of a circuit board by soldering.
[0002]
[Prior art]
Solder bonding has been used extensively for mounting electronic components because of its advantages such as relatively easy bonding, strong bonding strength, high reliability, and low cost.
[0003]
On the other hand, in recent years, in order to increase the density when electronic components are mounted on a circuit board for the purpose of downsizing electronic devices, the mounting structure of electronic components has been changed from insertion mounting using lead components to surface mounting. Has been changed to surface mounting using electronic components (chip components).
[0004]
For example, when a ceramic capacitor as a surface mounting electronic component is mounted, as shown in FIG. 10A, electrodes 52 formed by plating or the like are provided on both ends of a rectangular parallelepiped chip component 51. Then, with the cream solder 55 printed on the pair of lands 54 formed on the surface of the circuit board 53, the chip component 51 is mounted on the cream solder 55 of each land 54 at both electrodes 52. Next, the chip component 51 is mounted on the circuit board 53 by soldering by being put into a reflow furnace and heating and melting the cream solder 55.
[0005]
When the use environment of the electronic device is small in temperature change, there is no problem in ordinary soldering. However, for example, in-vehicle electronic devices are required to withstand changes in the operating environment temperature from below freezing to several tens of degrees Celsius, and reliability under high and low temperature environments and the cycle between high and low temperature environments are required. Reliability is required when receiving changes.
[0006]
Generally, a material expands with an increase in temperature and contracts with a decrease in temperature, and the degree (linear expansion coefficient) differs depending on the material. Also in the solder mounting portion of the electronic component, since the linear expansion coefficient is different between the circuit board (land) side and the electronic component, thermal stress is generated in the solder joint portion of the two with the temperature change. When this is repeated for a long period of time, the Pb (lead) -rich α phase and the Sn (tin) -rich β phase in the solder composition separate, and particles of both phases grow gradually, and the grain boundaries are brittle. Further, when the material of the land is Cu (copper), a Cu—Sn alloy layer is formed, but is also hard and brittle. Cracks mainly occur along such brittle crystal grain boundaries and alloy layers, and when the cracks develop, the solder joints may break, leading to failure.
[0007]
There has been proposed a surface mount electronic component that prevents fatigue, cracks, and breakage due to thermal stress generated at a solder fillet tip and a solder joint (see Patent Document 1). As shown in FIG. 11, the surface-mounting electronic component (chip component 51) described in Patent Literature 1 has a plurality of irregularities formed on portions of electrodes 52 provided on both sides in the longitudinal direction, which are joined to solder.
[0008]
[Patent Document 1]
JP-A-11-68284 (paragraph [0005] of the specification, FIG. 1)
[0009]
[Problems to be solved by the invention]
However, the electronic component for surface mounting described in Patent Literature 1 needs to perform a special process of forming a plurality of irregularities on the electrode, and the manufacturing cost of the electronic component for surface mounting increases.
[0010]
As shown in FIG. 10B, as a result of cutting the test sample put into the thermal shock test and observing the cross section, the tendency of cracks to be generated in the solder fillet 56 was determined as follows. It was found that cracks 57 were generated and gradually developed, eventually leading to breakthrough. FIG. 10B shows one half of the chip component 51. The “penetration fracture” means that the cracks develop in a planar manner so as to divide the solder joint into a land-side portion and an electrode-side portion, so that conduction between the electrode and the land is hindered.
[0011]
This is because the chip component 51 and the substrate 53 (land 54) having different linear expansion coefficients tend to concentrate stress between the lower surfaces of the electrodes 52 at both ends of the chip component 51 and the substrate 53 (land 54) which are relatively closest. Can be considered. Also, stress concentration occurs between the lower surfaces of the electrodes 52 at both ends of the chip component 51 and the substrate 53 (land 54), particularly at both inner corners.
[0012]
The present invention has been made in view of the above findings and the problems of the related art. It is an object of the present invention that thermal stress is concentrated on a specific portion of a solder joint for joining an electrode of a surface mount electronic component to a land of a circuit board without performing special processing on the surface mount electronic component. An object of the present invention is to provide a surface mounting structure of a surface mounting electronic component capable of suppressing the occurrence of solder cracks and reducing or preventing the occurrence and progress of solder cracks.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, in a surface mounting structure of a surface mounting electronic component in which a surface mounting electronic component is joined to a land of a circuit board by solder, the land has a shape of solder. It is formed in a shape that reduces or disperses the thermal stress of the joint. According to the present invention, the stress generated between the lower surface of the electrode of the surface mounting electronic component at the solder joint and the land of the circuit board is reduced or dispersed, and concentration on a specific portion is reduced. As a result, it is possible to reduce or eliminate cracks leading to breakthrough.
[0014]
According to a second aspect of the present invention, in the first aspect of the present invention, the shape of the land near the inner end of the electrode of the surface mounting electronic component reduces or disperses the thermal stress of the solder joint. It is formed in a shape. The “inside end of the electrode of the surface-mount electronic component” means, for example, an end near the center of the chip component of the electrode formed at both ends in the longitudinal direction of the rectangular parallelepiped chip component.
[0015]
According to the present invention, the shape of the land portion corresponding to the portion where the stress generated between the lower surface of the electrode of the surface mounting electronic component of the solder joint and the land of the circuit board is particularly likely to concentrate is changed from the conventional shape. The concentration of stress on the substrate is reduced, and cracks leading to breakage through can be further reduced or eliminated. “Electrode lower surface” means a surface facing an electrode land.
[0016]
According to a third aspect of the present invention, in the invention of the second aspect, the land has bulging portions formed on both sides of a portion near an inner end of the electrode of the surface mounting electronic component, and A solder joint is also formed thereon. For this reason, the solder thickness of the portion corresponding to the electrode lower surface of the surface mounting electronic component can be increased, and the thermal stress generated between the electrode lower surface and the land is reduced. Further, a solder fillet is also formed on the side surface of the electrode, and even if a crack occurs in the solder joint on the lower surface of the electrode, the crack does not extend to the solder fillet on the side surface, and disconnection due to penetration breakage can be avoided.
[0017]
According to a fourth aspect of the present invention, in the surface mounting structure of the surface mounting electronic component in which the surface mounting electronic component is joined to the land of the circuit board by soldering, the land is provided inside the electrode of the surface mounting electronic component. Both end corners near the end are formed in a chamfered shape or a fan shape. According to the present invention, there is no right-angled or acute-angled portion at the corner of the solder joint between the lower surface of the electrode of the surface-mounting electronic component and the land, and the concentration of stress on the portion is reduced.
[0018]
According to a fifth aspect of the present invention, in the invention according to any one of the second to fourth aspects, the land is formed such that a portion of the surface-mounting electronic component near an inner end of the electrode is outside the electrode. At least one recess. According to the present invention, the direction of the stress generated at the inner end of the lower surface of the electrode of the solder joint between the lower surface of the electrode and the land of the electronic component for surface mounting is dispersed, and the concentration of stress at a specific location is reduced. You.
[0019]
According to a sixth aspect of the present invention, in the second aspect of the present invention, in the land, a thickness of a portion corresponding to an electrode of the surface mounting electronic component is orthogonal to a width direction of the surface mounting electronic component. It is formed in a shape that changes in the direction. According to the present invention, the direction of the stress generated in the solder joint existing between the lower surface of the electrode and the land of the electronic component for surface mounting is dispersed, and the concentration of the stress on a specific location is reduced.
[0020]
According to a seventh aspect of the present invention, in the invention according to any one of the second to fifth aspects, the land is chamfered on at least one side of a portion corresponding to an electrode of the surface mounting electronic component. Have been. According to the present invention, the portion of the solder joint between the lower surface of the electrode of the surface mounting electronic component and the land corresponding to the side of the land becomes thicker, and the stress generated in the portion is reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
(First Embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1A is a schematic perspective view showing a relationship between a chip component and a land, FIG. 1B is a schematic side view showing a state where the chip component is mounted, and FIG. 1C is a schematic plan view showing a relationship between the land and the chip component. 2A and 2B are partial schematic plan views of a modified example. In FIGS. 1 and 2, illustration of a solder resist for preventing the solder from adhering to the circuit board other than the soldering location is omitted.
[0022]
As shown in FIG. 1B, a land 12 is formed on the surface of the circuit board 11, and a chip component 13 as a surface mounting electronic component is joined on the land 12 by solder 14. The chip component 13 is soldered on the land 12 constituting the conductor pattern formed on the surface of the circuit board 11 by a reflow soldering method. That is, the chip component 13 is surface-mounted on the circuit board 11. Examples of the chip component 13 include a ceramic capacitor.
[0023]
The chip component 13 is formed in a rectangular parallelepiped shape, and electrodes 15 are formed at both ends in the longitudinal direction by plating or the like. Then, as shown in FIG. 1A, in a state where the cream solder 16 is printed on the pair of lands 12, the chip component 13 is mounted on the cream solder 16 at each electrode 15. Then, the cream solder 16 is placed in a reflow furnace and heated and melted, so that it is mounted on the circuit board 11 by solder bonding.
[0024]
As shown in FIG. 1B, the pair of lands 12 is formed such that the distance between the tips is substantially equal to the distance between the inner ends of the pair of electrodes 15 of the chip component 13. Is formed in a length in a direction along the longitudinal direction at a portion facing the electrode 15 or more.
[0025]
The land 12 is formed in a shape that reduces or disperses the thermal stress of the solder joint. In this embodiment, the land 12 is formed such that the shape near the inner end of the electrode 15 of the chip component 13 reduces or disperses the thermal stress of the solder joint. More specifically, as shown in FIG. 1C, the lands 12 have bulges 12a formed on both sides of a portion of the chip component 13 near the inner end of the electrode 15. Both bulging portions 12a are formed symmetrically.
[0026]
The shape of the bulging portion 12a is not limited to a circular arc shape as shown in FIG. 1C, but may be a rectangular shape as shown in FIG. 2A or a triangular shape as shown in FIG. Is also good. In addition, any shape other than the illustrated one may be changed to an appropriate shape as long as it is bulged on both sides of a portion near the inner end of the electrode 15 and a solder fillet can also be formed on the side surface of the electrode 15. You may.
[0027]
When the chip component 13 is joined to the land 12 formed in the above-mentioned shape by soldering, the solder joining is performed by the same reflow method as in the related art in a state where the cream solder 16 is also applied to the bulging portion 12a of the land 12. . When the heating and melting are performed in a state where the cream solder 16 is also applied on the bulging portion 12a, the solder thickness of the portion corresponding to the lower surface of the electrode 15 of the chip component 13 is compared with the case where the bulging portion 12a is not provided. Increase. As a result, when thermal stress acts on the solder joints after the chip component 13 is mounted, the thermal stress generated between the lower surface of the electrode 15 and the land 12 where stress concentration tends to occur conventionally is reduced.
[0028]
The solder fillet 17 is formed not only at the position corresponding to the front end surface of the electrode 15 but also at the position corresponding to the side surface. As a result, even if a crack occurs in the solder joint portion 14a on the lower surface of the electrode 15, the crack does not extend to the solder fillet on the side surface, and disconnection due to breakage through is avoided. In the figure, the illustration of the solder fillet 17 corresponding to the side surface is omitted.
[0029]
Instead of forming the bulging portion 12a to be symmetric, it may be formed to be asymmetric.
This embodiment has the following effects.
[0030]
(1) The land 12 is formed in a shape in which bulging portions 12a are formed on both sides of a portion near the inner end of the electrode 15 of the chip component 13. Therefore, when the chip component 13 is mounted by soldering by the reflow method in a state where the cream solder 16 is also applied on the bulging portion 12a, the solder thickness of a portion corresponding to the lower surface of the electrode 15 of the chip component 13 can be increased. The thermal stress generated in the solder joint 14a between the lower surface of the electrode 15 and the land 12 is reduced. Further, since a solder fillet is also formed on the side surface of the electrode 15, the area of the solder joint increases, and even if a crack occurs in the solder joint 14 a on the lower surface of the electrode 15, the propagation does not reach the solder fillet on the side surface. Therefore, disconnection due to breakthrough can be avoided.
[0031]
(2) It is not necessary to perform any processing on the chip component 13 side only by partially changing the shape of the land 12, and the cream solder 16 is applied to the land 12 and the chip component 13 is The effect of the above (1) can be obtained by mounting and heating and melting on the top. Therefore, the cost can be reduced as compared with the method of processing the chip component 13.
[0032]
(3) When the bulging portion 12a is formed symmetrically, the chip component 13 is easily soldered to a predetermined position more accurately than when it is formed asymmetrically.
(Second embodiment)
Next, a second embodiment will be described with reference to FIGS. In this embodiment, instead of increasing the solder thickness at the portion corresponding to the lower surface of the electrode 15 of the chip component 13, when a thermal stress is generated at the solder joint 14a at the portion corresponding to the lower surface of the electrode 15, the stress concentration is reduced. The point that an acute angle portion and a right angle portion where the occurrence of the pits easily occurs is largely different from the first embodiment. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description is omitted.
[0033]
In the conventional land, both end corners corresponding to the inner end of the electrode 15 of the chip component 13 are at right angles, but as shown in FIGS. 3A to 3C, the land 12 of this embodiment is Both corners near the inner end of the electrode 15 are formed in a chamfered shape or a fan shape. The land 12 shown in FIG. 3A includes a chamfered portion 12b formed in a chamfered shape in which both corners of the land are cut off linearly, and the land 12 shown in FIG. It has a chamfered part 12b formed in an arc-shaped chamfered shape. In addition, the land 12 shown in FIG. 3C has fan-shaped portions 12c formed at the corners at both ends.
[0034]
In addition, other shapes may be used as long as the shapes corresponding to the inner ends of the electrode 15 have no acute angle portions or right angle portions. Further, it is not necessary that both corners have a symmetrical structure, but may be an asymmetrical structure.
[0035]
When the chip component 13 is joined to the land 12 formed in the above-mentioned shape by soldering, soldering is performed by a reflow method similar to the conventional one in a state where the cream solder 16 is applied on the land 12. The amount of the cream solder 16 applied on the land 12 is the same or almost the same as that of the conventional land. Also in the case of having the fan-shaped portion 12c shown in FIG. 3C, since the swelling area is smaller than that of the first embodiment, the chip component is different from the first embodiment. The solder thickness of the portion corresponding to the lower surface of the thirteenth electrode 15 does not increase so as to reduce the thermal stress.
[0036]
This embodiment has the following effects.
(4) The land 12 is formed such that both corners near the inner end of the electrode 15 of the chip component 13 are chamfered or fan-shaped. Accordingly, the corners of the solder joints 14a existing between the lower surfaces of the electrodes 15 of the chip component 13 and the lands 12 have no right-angled or acute-angled portions, and stress concentration on the portions is reduced. As a result, it is possible to reduce or suppress the occurrence and progress of solder cracks in the solder joint 14a.
[0037]
(5) In the case where the chamfered portions 12b are provided at both corners of the land 12, the width of the land 12 is not widened and does not adversely affect the high density.
(Third embodiment)
Next, a third embodiment will be described with reference to FIGS. In this embodiment, the direction of the stress generated at the inner end of the lower surface of the electrode 15 of the solder joint 14a existing between the lower surface of the electrode 15 of the chip component 13 and the land 12 is dispersed, and the stress on a specific portion is reduced. The point that the concentration is eased is greatly different from the first and second embodiments. Portions similar to those in the first and second embodiments are denoted by the same reference numerals, and detailed description is omitted.
[0038]
In the land 12 shown in FIG. 4A, the shape of the portion near the inner end of the electrode 15 of the chip component 13 is formed in a rectangular wave shape, that is, a shape in which irregularities are continuous, and the land 12 shown in FIG. The shape of the portion near the inner end is formed to be a curved portion 12d that is convex inward. The land 12 shown in FIG. 4 (c) has a triangular wave shape near the inner end, that is, a shape in which irregularities are continuous. The land 12 having the shape shown in FIGS. 4B and 4C has a shape in which the corners of both corners are reduced so that no sharp corners are formed at both corners. In this embodiment, the land 12 has a portion near the inner end of the electrode 15 of the chip component 13 and has at least one concave portion outward of the electrode 15.
[0039]
In the case of the land 12 having the curved portion 12d shown in FIG. 4B, the curvature of the curved portion 12d is not limited and can be set as appropriate. Further, the entire area is not limited to a constant curvature, and may be changed stepwise in the middle or may be changed continuously. For example, the corners at both ends may be made to have a large curvature, and the distance between the corners may be gradually reduced.
[0040]
In the case of forming a rectangular wave shape or a triangular wave shape, the pitch is not limited to the same pitch, and the width and height may be changed as appropriate, or may be changed continuously. For example, the corners at both ends where stress concentration is likely to occur may have a narrow pitch, and the interval between the corners may be gradually increased. Also, the starting points of the corners at both ends of the rectangular wave and the triangular wave may not be convex toward the center of the chip component 13, but may be concave, or one may be convex and the other concave. .
[0041]
In addition, any shape other than the illustrated shape may be used as long as the direction of the stress generated at the inner end of the lower surface of the electrode 15 of the solder joint 14a is dispersed.
Due to the difference in the linear expansion coefficient between the chip component 13 and the land 12, the direction of the thermal stress generated in the solder joint 14a existing between the lower surface of the electrode 15 and the land 12 is in the longitudinal direction of the chip component 13 at the end. The directions are parallel. When the shape of the portion near the inner end of the land 12 is linear, the direction of the thermal stress is the same. However, in this embodiment, since the shape of the portion near the inner end of the land 12 is not linear, the lower surface of the electrode 15 of the solder joint portion 14 a existing between the lower surface of the electrode 15 of the chip component 13 and the land 12 is formed. The direction of the stress generated at the inner end is dispersed, and the stress concentration at a specific location is reduced.
[0042]
In the land 12 shown in FIG. 4A, the direction of the stress acting on the portion near the inner end is perpendicular to the longitudinal direction of the chip component 13 and perpendicular to the longitudinal direction, as indicated by arrows in the figure. Direction. In the land 12 shown in FIG. 4 (b), the direction of the stress acting on the portion near the inner end is a totally different direction as indicated by the arrow in the figure. In the land 12 shown in FIG. 4C, the direction of the stress acting on the portion near the inner end is a direction substantially orthogonal to the sides of the triangle, as indicated by arrows in the figure.
[0043]
This embodiment has the following effects.
(6) The land 12 is formed such that the shape of the portion near the inner end of the electrode 15 of the chip component 13 is inwardly convex or a shape in which a plurality of irregularities are continuous. The land 12 has a portion near the inner end of the electrode 15 of the chip component 13 and has at least one concave portion outward of the electrode 15. Accordingly, the direction of the stress generated at the inner end of the lower surface of the electrode 15 of the solder joint 14a existing between the lower surface of the electrode 15 of the chip component 13 and the land 12 is dispersed, and the concentration of stress at a specific location is reduced. You. As a result, it is possible to reduce or suppress the occurrence and progress of solder cracks in the solder joint 14a.
[0044]
(7) When the shape of the portion of the land 12 near the inner end of the electrode 15 is formed in a rectangular wave or a triangular wave, the number of corners increases, so that the stress conventionally concentrated at both corners is more dispersed. And is reduced.
[0045]
(Fourth embodiment)
Next, a fourth embodiment will be described with reference to FIGS. 5 (a) and 5 (b) and FIGS. 6 (a) and 6 (b). In this embodiment, the direction of the stress generated in the solder joint 14a existing between the lower surface of the electrode 15 of the chip component 13 and the land 12 is dispersed, so that the concentration of the stress at a specific location is reduced. This point is significantly different from the first and second embodiments. Portions similar to those in the first and second embodiments are denoted by the same reference numerals, and detailed description is omitted.
[0046]
The land 12 is formed in a shape in which the thickness of a portion corresponding to the electrode 15 of the chip component 13 changes in a direction orthogonal to the width direction of the chip component 13. The land 12 shown in FIG. 5A has a plurality of grooves 18 having a rectangular cross section formed in parallel at portions corresponding to the electrodes 15 of the chip component 13, and has a rectangular wave shape when viewed from the side, that is, a shape in which irregularities are continuous. Is formed. The land 12 shown in FIG. 6A is formed such that the shape of a portion corresponding to the electrode 15 is a concave curved portion when viewed from the side. In the land 12 shown in FIG. 6B, a plurality of grooves 18 having a triangular cross section are formed in parallel at portions corresponding to the electrodes 15 of the chip component 13, and triangular waves, that is, irregularities are continuous when viewed from the side. It is formed in the shape which does.
[0047]
In the case of the land 12 having the curved portion shown in FIG. 6A, the curvature of the curved portion is not limited and can be set as appropriate. Further, the entire area is not limited to a constant curvature, and may be changed stepwise in the middle or may be changed continuously. For example, both ends may be made to have a large curvature, and the distance between them may be gradually reduced.
[0048]
In the case of forming a rectangular wave shape or a triangular wave shape, the pitch is not limited to the same pitch, and the width and height may be changed as appropriate, or may be changed continuously. For example, both ends of the inner and outer ends of the lower surface of the electrode 15 where stress concentration is likely to occur may have a narrow pitch, and the interval between them may be gradually increased so as to gradually increase. In addition, the starting points of both ends of the rectangular wave and the triangular wave may not be convex toward the electrode 15 side, but may be concave, or one may be convex and the other may be concave.
[0049]
In addition, any shape other than the illustrated shape may be used as long as the direction of the stress generated at a portion corresponding to the inner end of the lower surface of the electrode 15 of the solder joint 14a is dispersed.
[0050]
This embodiment has the following effects.
(8) The land 12 is formed in a shape in which the thickness of a portion corresponding to the electrode 15 of the chip component 13 changes in a direction orthogonal to the width direction of the chip component 13. Therefore, the direction of the stress generated in the solder joint 14a existing between the lower surface of the electrode 15 of the chip component 13 and the land 12 is dispersed, and the concentration of the stress on a specific location is reduced. As a result, it is possible to reduce or suppress the occurrence and progress of solder cracks in the solder joint 14a.
[0051]
The embodiment is not limited to the above, and may be changed as follows, for example.
As shown in FIG. 7, a portion of the land 12 facing the electrode 15 of the chip component 13 may be formed thin. Pressing, cutting, etching, and the like are conceivable as methods for forming a thin layer. Also in this case, the solder thickness of the solder joint 14a in the portion corresponding to the lower surface of the electrode 15 of the chip component 13 can be increased, and the thermal stress generated in the solder joint 14a between the lower surface of the electrode 15 and the land 12 can be reduced. Be relaxed.
[0052]
複数 As shown in FIG. 8A, a plurality of concave portions 19 may be provided on the peripheral edge of the land 12, or as shown in FIG. 8B, a chamfered portion 12b may be provided on the peripheral edge of the land 12. In these cases, the solder thickness at the peripheral edge of the land 12 can be increased, and the thermal stress generated at the solder joint 14a between the lower surface of the electrode 15 and the land 12 is reduced. Note that the chamfered portion 12b and the concave portion 19 may be provided on only one side.
[0053]
The shape of the land 12 and the direction in which the wiring portion extends are not limited to the same. For example, as shown in FIG. 9, the wiring portion 20 is formed so as to extend in another direction, and the inner end of the electrode 15 of the chip component 13 is formed. The shift portion may be processed so as to have a shape similar to that of the third embodiment.
[0054]
In the first to third embodiments, the land 12 is not formed in the shape of each land 12 described in each embodiment, but, for example, the shape of the conductor pattern corresponding to the land is changed from the land. The solder resist layer may be formed in a large shape and the land may be exposed in a desired shape. In this case, when a land (conductor pattern) on the circuit board 11 is formed by a subtractive method, the amount of metal removed by etching is reduced.
[0055]
The shape of the land 12 near the inner end of the electrode 15 of the chip component 13 is not limited to the shape formed to reduce or disperse the thermal stress of the solder joint. For example, the shape of the end portion on the side away from the electrode 15, that is, the portion corresponding to the end portion of the bottom of the solder fillet 17 may be formed in a shape that reduces or disperses the thermal stress of the solder joint portion. In the vicinity of the joint surface between the copper land 12 and the solder, a Cu—Sn alloy layer is formed. Since the alloy layer is brittle, if a crack occurs first at the end of the skirt of the solder fillet 17, the crack is formed into a chip component. There is also a possibility that the wire may progress toward the portion corresponding to the thirteen electrodes 15 and break through. However, by forming the shape of the land 12 at the portion corresponding to the end of the solder fillet 17 as described above, it is possible to suppress the occurrence and progress of such cracks.
[0056]
O The configurations of the first to fourth embodiments may be appropriately combined. For example, by combining the first embodiment and the third embodiment, bulging portions 12a are formed on both sides of a portion of the chip component 13 closer to the inner end of the electrode 15, and the shape of the portion closer to the inner end is formed. Is formed in a shape convex inward or a shape in which a plurality of irregularities are continuous. Further, the second embodiment and the third embodiment may be combined, or any one of the first to third embodiments may be combined with the fourth embodiment. Further, each configuration of the first to fourth embodiments may be combined with a configuration of another embodiment.
[0057]
○ The soldering method is not limited to the reflow method. For example, it may be heated and melted on a tabletop hot plate.
○ Solder is not limited to cream solder. For example, pellet-shaped solder may be used.
[0058]
○ The surface of the copper land 12 may be plated with Ni.
The material of the land 12 is not limited to copper, and may be a metal having good conductivity (for example, silver, aluminum, or the like).
[0059]
The shape of the chip component 13 is not limited to a rectangular parallelepiped shape, and may have three or more electrodes.
The circuit board is not limited to a circuit board on which only surface mount components are mounted, but may be applied to a circuit board on which surface mount components and lead components are mixed.
[0060]
The technical ideas other than those described in the claims that can be grasped from the embodiment will be described below.
(1) In the invention according to any one of claims 3 to 5, the land is formed such that a shape of a conductor pattern corresponding to the land is larger than that of the land, and the land has a desired shape. It is formed by forming a solder resist layer so as to be exposed.
[0061]
(2) In the invention described in claim 1, the land has a thin portion at a portion facing the electrode of the surface-mounting electronic component.
[0062]
【The invention's effect】
As described in detail above, according to the first to seventh aspects of the present invention, the electrodes of the surface mount electronic component are joined to the lands of the circuit board without performing special processing on the surface mount electronic component. Concentration of the thermal stress on a specific portion of the solder joint to be performed can be suppressed.
[Brief description of the drawings]
1A is a schematic perspective view showing a relationship between a chip component and a land according to a first embodiment, FIG. 1B is a schematic side view showing a state where the chip component is mounted, and FIG. FIG. 4 is a schematic plan view showing the relationship between the land and the land.
FIGS. 2A and 2B are partial schematic plan views of a modification of the first embodiment.
FIGS. 3A to 3C are partial schematic plan views illustrating a relationship between a chip component and a land according to the second embodiment.
FIGS. 4A to 4C are partial schematic plan views illustrating a relationship between a chip component and a land according to a third embodiment.
FIG. 5A is a schematic perspective view of a land according to a fourth embodiment, and FIG. 5B is a schematic side view of a state where chip components are mounted.
FIGS. 6A and 6B are partial schematic side views of another example of the fourth embodiment.
FIG. 7 is a partial schematic side view of another embodiment.
FIGS. 8A and 8B are schematic perspective views showing lands according to another embodiment.
FIG. 9 is a schematic plan view showing a land according to another embodiment.
10A is a schematic perspective view showing a relationship between a chip component and a land, and FIG. 10B is a schematic side view showing a state in which cracks are generated.
FIG. 11 is a schematic view showing a conventional technique.
[Explanation of symbols]
Reference numeral 11 denotes a circuit board, 12 denotes a land, 12a denotes a bulging portion, 12d denotes a curved portion as a concave portion, 13 denotes a chip component as a surface mounting electronic component, 14 denotes a solder, 14a denotes a solder joint, and 15 denotes an electrode.

Claims (7)

回路基板のランド上に表面実装用電子部品を半田により接合した表面実装用電子部品の表面実装構造において、
前記ランドの形状が、半田接合部の熱応力を低下若しくは分散させる形状に形成されている表面実装用電子部品の表面実装構造。
In the surface mounting structure of the electronic component for surface mounting, in which the electronic component for surface mounting is joined to the land of the circuit board by soldering,
A surface mounting structure for a surface mounting electronic component, wherein the land has a shape that reduces or disperses thermal stress at a solder joint.
前記ランドは、前記表面実装用電子部品の電極の内側端部寄りの形状が、半田接合部の熱応力を低下若しくは分散させる形状に形成されている請求項1に記載の表面実装用電子部品の表面実装構造。2. The surface-mounted electronic component according to claim 1, wherein a shape of the land near an inner end of an electrode of the surface-mounted electronic component is formed in a shape that reduces or disperses thermal stress of a solder joint. 3. Surface mount structure. 前記ランドは、前記表面実装用電子部品の電極の内側端部寄り部分の両側に膨出部が形成され、前記膨出部上にも半田接合部が形成されている請求項2に記載の表面実装用電子部品の表面実装構造。3. The surface according to claim 2, wherein the land has a bulge formed on both sides of a portion near an inner end of the electrode of the surface mounting electronic component, and a solder joint is also formed on the bulge. 4. Surface mounting structure of mounting electronic components. 回路基板のランド上に表面実装用電子部品を半田により接合した表面実装用電子部品の表面実装構造において、
前記ランドは、前記表面実装用電子部品の電極の内側端部寄り両端隅部が面取り形状又は扇形状に形成されている表面実装用電子部品の表面実装構造。
In the surface mounting structure of the electronic component for surface mounting, in which the electronic component for surface mounting is joined to the land of the circuit board by soldering,
The surface mounting structure of the electronic component for surface mounting, wherein the lands are formed in a chamfered or fan shape at both corners near the inner end of the electrode of the electronic component for surface mounting.
前記ランドは、前記表面実装用電子部品の電極の内側端部寄り部分は、電極の外方への少なくとも一つの凹部を備えている請求項2〜請求項4のいずれか一項に記載の表面実装用電子部品の表面実装構造。The surface according to any one of claims 2 to 4, wherein the land has a portion near an inner end of an electrode of the surface-mounting electronic component, and at least one concave portion outward of the electrode. Surface mounting structure of mounting electronic components. 前記ランドは、前記表面実装用電子部品の電極と対応する部分の厚さが前記表面実装用電子部品の幅方向と直交する方向において変化する形状に形成されている請求項2に記載の表面実装用電子部品の表面実装構造。The surface mount according to claim 2, wherein the land is formed in a shape in which a thickness of a portion corresponding to an electrode of the surface mount electronic component changes in a direction orthogonal to a width direction of the surface mount electronic component. Mounting structure of electronic parts for electronic devices. 前記ランドは、前記表面実装用電子部品の電極と対応する部分の少なくとも一辺に面取りが施されている請求項2〜請求項5のいずれか一項に記載の表面実装用電子部品の表面実装構造。The surface mounting structure of the electronic component for surface mounting according to any one of claims 2 to 5, wherein the land is chamfered on at least one side of a portion corresponding to an electrode of the electronic component for surface mounting. .
JP2003014909A 2003-01-23 2003-01-23 Surface mounting structure of electronic components for surface mounting Expired - Fee Related JP4276446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003014909A JP4276446B2 (en) 2003-01-23 2003-01-23 Surface mounting structure of electronic components for surface mounting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003014909A JP4276446B2 (en) 2003-01-23 2003-01-23 Surface mounting structure of electronic components for surface mounting

Publications (2)

Publication Number Publication Date
JP2004228364A true JP2004228364A (en) 2004-08-12
JP4276446B2 JP4276446B2 (en) 2009-06-10

Family

ID=32902810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003014909A Expired - Fee Related JP4276446B2 (en) 2003-01-23 2003-01-23 Surface mounting structure of electronic components for surface mounting

Country Status (1)

Country Link
JP (1) JP4276446B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252016A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Substrate and manufacturing method therefor, and circuit device and manufacturing method therefor
WO2011078214A1 (en) * 2009-12-24 2011-06-30 古河電気工業株式会社 Assembly structure for injection molded substrate and for mounting component
JP2014067756A (en) * 2012-09-24 2014-04-17 Sharp Corp Surface mounting structure of circuit board, and printed board equipped with surface mounting structure
JP2014072241A (en) * 2012-09-27 2014-04-21 Rohm Co Ltd Chip component
JP2016092119A (en) * 2014-10-31 2016-05-23 Tdk株式会社 Mounting structure
JP2016219580A (en) * 2015-05-19 2016-12-22 日亜化学工業株式会社 Semiconductor device
JP2018107302A (en) * 2016-12-27 2018-07-05 日立オートモティブシステムズ株式会社 Semiconductor device
JP2020194859A (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Electronic component mounting board and printed circuit board

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265293A (en) * 1988-08-31 1990-03-05 Toyo Commun Equip Co Ltd Pattern on printed board for surface mounting
JPH0323965U (en) * 1989-07-15 1991-03-12
JPH04273192A (en) * 1991-02-27 1992-09-29 Sharp Corp Terminal connection structure of part
JPH04127679U (en) * 1991-05-13 1992-11-20 株式会社三ツ葉電機製作所 circuit board
JPH07336030A (en) * 1994-06-13 1995-12-22 Sony Corp Solder land structure for printed circuit board
JP2002374060A (en) * 2001-06-15 2002-12-26 Mitsubishi Electric Corp Electronic circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265293A (en) * 1988-08-31 1990-03-05 Toyo Commun Equip Co Ltd Pattern on printed board for surface mounting
JPH0323965U (en) * 1989-07-15 1991-03-12
JPH04273192A (en) * 1991-02-27 1992-09-29 Sharp Corp Terminal connection structure of part
JPH04127679U (en) * 1991-05-13 1992-11-20 株式会社三ツ葉電機製作所 circuit board
JPH07336030A (en) * 1994-06-13 1995-12-22 Sony Corp Solder land structure for printed circuit board
JP2002374060A (en) * 2001-06-15 2002-12-26 Mitsubishi Electric Corp Electronic circuit board

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498378B2 (en) * 2007-03-30 2010-07-07 三洋電機株式会社 Substrate and manufacturing method thereof, circuit device and manufacturing method thereof
US8258409B2 (en) 2007-03-30 2012-09-04 Sanyo Electric Co., Ltd. Circuit board and circuit device
JP2008252016A (en) * 2007-03-30 2008-10-16 Sanyo Electric Co Ltd Substrate and manufacturing method therefor, and circuit device and manufacturing method therefor
US9078358B2 (en) 2009-12-24 2015-07-07 Furukawa Electric Co., Ltd. Assembly structure for injection molded substrate and for mounting component
WO2011078214A1 (en) * 2009-12-24 2011-06-30 古河電気工業株式会社 Assembly structure for injection molded substrate and for mounting component
CN102668726A (en) * 2009-12-24 2012-09-12 古河电气工业株式会社 Assembly structure for injection molded substrate and for mounting component
JP2014067756A (en) * 2012-09-24 2014-04-17 Sharp Corp Surface mounting structure of circuit board, and printed board equipped with surface mounting structure
JP2014072241A (en) * 2012-09-27 2014-04-21 Rohm Co Ltd Chip component
JP2016092119A (en) * 2014-10-31 2016-05-23 Tdk株式会社 Mounting structure
JP2016219580A (en) * 2015-05-19 2016-12-22 日亜化学工業株式会社 Semiconductor device
US9985189B2 (en) 2015-05-19 2018-05-29 Nichia Corporation Semiconductor device
JP2018107302A (en) * 2016-12-27 2018-07-05 日立オートモティブシステムズ株式会社 Semiconductor device
JP2020194859A (en) * 2019-05-28 2020-12-03 三菱電機株式会社 Electronic component mounting board and printed circuit board
JP7345278B2 (en) 2019-05-28 2023-09-15 三菱電機株式会社 Electronic component mounting boards and printed circuit boards

Also Published As

Publication number Publication date
JP4276446B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP3976020B2 (en) Surface mounting structure of electronic components for surface mounting
JP5459445B2 (en) Electronic components
EP1342294B1 (en) I-channel surface-mount connector
KR102408016B1 (en) Chip electronic component
JP2004228364A (en) Surface mounting structure of surface mounting electronic part
US4864079A (en) Electrical components and assemblies
JP2009049272A (en) Semiconductor device, and its manufacturing method
JPH11251176A (en) Ceramic electronic component
JP4700343B2 (en) I-channel surface mount connector with expansion flange
JP3809575B2 (en) Surface mount multilayer ceramic electronic components
JP2007188957A (en) Surface-mounting electronic component
JP4544387B2 (en) Ceramic capacitor and manufacturing method thereof
US20060084329A1 (en) Connection terminal structure of wiring board
JP2009130147A (en) Electronic chip component, and mounting method for electronic chip component
TWI550767B (en) Trace design for bump-on-trace (bot) assembly
JP2004228444A (en) Surface mounting structure of surface mounting electronic part
JP2004296624A (en) Semiconductor device
JP6565167B2 (en) Mounting structure
JP2006294932A (en) Circuit mounting substrate having lands and surface mounting components mounted thereon
JP2005340699A (en) Surface mounting electronic component, packaging structure and method of electronic component
JP2007251032A (en) Connection structure of circuit board and frame body
WO2015087692A1 (en) Substrate onto which to mount electronic component
JP2003007510A (en) Chip thermistor
JPS6235209Y2 (en)
JP3139747B2 (en) Chip components

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070223

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R151 Written notification of patent or utility model registration

Ref document number: 4276446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees