JP2004228322A - Method for manufacturing multilayer flexible wiring board - Google Patents

Method for manufacturing multilayer flexible wiring board Download PDF

Info

Publication number
JP2004228322A
JP2004228322A JP2003013949A JP2003013949A JP2004228322A JP 2004228322 A JP2004228322 A JP 2004228322A JP 2003013949 A JP2003013949 A JP 2003013949A JP 2003013949 A JP2003013949 A JP 2003013949A JP 2004228322 A JP2004228322 A JP 2004228322A
Authority
JP
Japan
Prior art keywords
wiring board
solder
pad
flux function
adhesive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003013949A
Other languages
Japanese (ja)
Inventor
Satoru Nakao
悟 中尾
Masaaki Kato
正明 加藤
Toshiaki Chuma
敏秋 中馬
Masayoshi Kondo
正芳 近藤
Kentaro Fujiura
健太郎 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003013949A priority Critical patent/JP2004228322A/en
Publication of JP2004228322A publication Critical patent/JP2004228322A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a multilayer flexible wiring board capable of certainly connecting between layers with the high reliability without spotting out. <P>SOLUTION: In the method for manufacturing the multilayer flexible wiring board, this structure has a wiring pattern on one side of a support substrate composed of an insulating material, a one-side outer layer wiring board having a conductive post projected beyond a surface on an opposed side to the wiring pattern of the support substrate from the wiring pattern, an inner layer wiring board arranged with the wiring pattern having a pad for connecting the conductive post on at least one side, and an adhesive layer with a flux function between the conductive post and the pad. It is pressurized at 0.005 MPa or more and heated until the viscosity of the adhesive layer with the flux function becomes from 500 Pas to 10 Pas, to be temporarily bound so that the conductive post comes into contact with the pad or almost comes into contact with the pad. It is heated at a pressure or less in a temporary binding or at no pressure up to a melting point or more of a solder, to form a solder binding between the conductive post and the pad. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器の部品として用いられる多層フレキシブル配線板の製造方法に関するものである。
【0002】
【従来の技術】
近年の電子機器の高密度化に伴い、これに用いられるプリント配線板の多層化が進んでおり、フレキシブル配線板も多層構造のものが多用されている。このプリント配線板はフレキシブル配線板とリジッド配線板との複合基板であるリジッドフレックス配線板であり、用途が拡大している。
【0003】
従来の多層フレキシブル配線板やリジッドフレックス配線板の製造方法は、多層リジッド配線板の製造方法と類似している。即ち、パターニングされた銅箔と絶縁層を交互に複数積み重ねた積層板を形成し、該積層板に層間接続用の貫通孔をあけ、該貫通孔に層間接続用メッキを施した後、最外層の回路等の加工を行う方法が主流であった。しかし、更なる搭載部品の小型化・高密度化が進み、全層を通して同一の個所に各層の接続ランド及び貫通穴をあける従来の技術では、設計上配線密度が不足して、部品の搭載に問題が生じるようになってきている。
【0004】
このような背景により、近年多層リジッド配線板では、新しい積層技術としてビルドアップ法が採用されている。ビルドアップ法とは、樹脂のみで構成される絶縁層と導体とを積み重ねながら、単層間で層間接続をする方法である。層間接続方法としては、従来のドリル加工に代わって、レーザー法、プラズマ法やフォト法など、多岐にわたり、小径のビアホールを自由に配置することで高密度化を達成するものである。
【0005】
従来、層間接続を形成する場合は、既述の通り貫通孔又はビアホールに銅メッキを施す。しかし、層間接続を樹脂のみで形成する絶縁層の素材は、熱により厚みが変化し銅メッキでは耐えられなくなり、接続が断裂して、信頼性が低下する場合がある。又貫通孔或いはビアホールを形成する際に発生する樹脂の染み出しなどが原因であるスミアが障害となり、層間接続が十分に取れず、信頼性が低下する。
【0006】
そこで、ビルドアップ法は、絶縁層にビアを形成してから層間接続する方法と、層間接続部を形成してから絶縁層を積層する方法とに大別される。又層間接続部は、導電性ペーストなどで形成する場合、使用される絶縁材料やビア形成方法により、更に細分化される。
【0007】
その中でも、絶縁層に層間接続用の微細ビアをレーザーで形成し、ビアホールを銅ペースト等の導電性接着剤で穴埋めし、この導電性接着剤により電気的接続を得る方法では、ビアの上にビアを形成するスタックドビアが可能なため、高密度化ができ、かつ、配線設計制限を少なくすることができる(例えば、特許文献1参照)。しかし、この方法では、導電性物質(金属)と絶縁性物質(接着剤)の混合物で層間の電気的接続を行い、接合面に金属と接着剤が共存するため、熱衝撃試験などの接合に対する信頼性が十分ではない。又、微細なビアに導電性接着剤を埋め込む際、微細なビアへの埋め込み、導電性接着剤内の脱泡など高度な技術も必要となり、信頼性が不十分である。又、配線パターン上に金属からなる突起物を形成し、積層により絶縁層をこの突起物が貫通し、厚み方向に隣り合った層の配線パターンと接触させ、層間接続する方法もある(例えば、特許文献2参照)。しかし、この方法では、層間接続が物理的接触のみであり、その接触を維持する手段がなく、信頼性が低い。そこで、信頼性の改善策として、金属突起物上に絶縁樹脂の硬化温度より高い熔融温度を有する半田層を形成し、積層により未硬化の絶縁層を貫通し、更に半田層を熔融・冷却することで半田接合を形成する方法もある(例えば、特許文献3参照)。しかし、突起先端の半田層と導電体回路層の表面が十分に清浄化、即ち表面酸化物の除去や還元がされていないと、半田が濡れ広がることができないため、半田接合が不十分となり、この方法でも信頼性が低い。また、多層フレキシブル配線板は層間接着するために熱硬化型接着剤を使用しているが、これまでの技術では単純にポスト部分が接着剤を物理的に排除し接続パッド上まで達し接続する等の方法もある(例えば、特許文献4参照)が、これでも完全に接続ポストとパッド間の接着剤を除去することは難しく、信頼性が低い。
【0008】
さらに、多層フレキシブル配線板を製造する際、各層間に接着剤を挟み、プレスを行う。しかし、このプレスを高温高圧力で行うので、染みだしが多くなる。
この染みだしがフレキシブル部上に広がると、可撓性が低下し、外観も悪くなる。そのため、多層フレキシブル配線板を製造する際は、この接着剤の染み出しをコントロールする必要がある。
【0009】
【特許文献1】
特開平8−316598号公報
【特許文献2】
特開平8−125344号公報
【特許文献3】
特開平8−195560号公報
【特許文献4】
特開平11−54934号公報
【0010】
【発明が解決しようとする課題】
本発明は、上記の問題を解決させるため、染みだしの少なく、確実に、かつ信頼性が高い層間接続ができる多層フレキシブル配線板の製造方法を提供するものである。
【0011】
【課題を解決させるための手段】
本発明は、
〔1〕 絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅のみ、または銅と金属、または銅と半田からなる導体ポストを有する片面外層配線板、絶縁材を支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該パッド上に開口部を有する表面被覆材で構成され、かつ開口部に半田の被覆をその厚みが5μm以上になるように施した内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の半田に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法、
〔2〕 絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材を支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該パッド上に開口部を有する表面被覆材で構成され、かつ開口部に金属の被膜を施した内層配線板、及び該導体ポストと該パッドの間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の金属に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法、
〔3〕 絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材を支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該パッド上に開口部を有する表面被覆材で構成された内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法、
〔4〕 絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅のみ、または銅と金属、または銅と半田からなる導体ポストを有する片面外層配線板、絶縁材を支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該配線パターン上の少なくとも該パッド上に半田の被覆をその厚みが5μm以上になるように施した内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の半田に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法、
〔5〕 絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材を支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該配線パターン上の少なくとも該パッド上に金属の被覆を施した内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の金属に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法、
〔6〕 絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材を支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンで構成された内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法、
〔7〕 金属が金、銀、ニッケル、インジウムの少なくとも1種類からなる第〔1〕項から第〔6〕項のいずれかに記載の多層フレキシブルプリント配線板の製造方法、
〔8〕 半田が錫のみ、または錫と鉛、銀、亜鉛、ビスマス、アンチモン、銅の少なくとも1種類からなる半田である第〔1〕項から第〔7〕項のいずれかに記載の多層フレキシブルプリント配線板の製造方法、
〔9〕 第〔1〕項から第〔8〕項いずれか記載の多層フレキシブルプリント配線板の製造方法で製造された多層フレキシブルプリント配線板、
である。
【0012】
【発明の実施の形態】
以下は、図面に基づき本発明の実施形態について説明するが、本発明はこれに何ら限定されるものではない。
【0013】
図1〜図4は、本発明の実施形態である多層フレキシブル配線板の製造方法の例を説明する図であり、図4(d)は、多層部320とフレキシブル部330を併せ持つ多層フレキシブル配線板310あり、本発明の製造方法で得られる多層フレキシブル配線板の断面図である。
本発明の多層フレキシブル配線板の製造方法として、先ず、ステップA(図1)として、導体ポスト107を有する片面外層配線板を120形成する。続いて、ステップB(図2)としてパット205を有する内層配線板220を形成する。最後に、ステップC(図3、4)として、内層配線板220のパット208と片面外層配線板120の導体ポスト107をフラックス機能付き接着剤層111の機能により金属結合を形成し、電気的接続を形成する。以上、3ステップに分けることができる。
【0014】
ステップAの導体2層ポスト107を有する片面外層配線板120を形成する方法として、ポリイミド樹脂、エポキシ樹脂などの樹脂を硬化させた絶縁材からなる支持基材102の片面に銅箔101が付いた片面積層板110を準備する (図1(a))。この際、支持基材と銅箔との間には、導体接続の妨げとなるスミアの発生を防ぐため、銅箔と支持基材を貼り合わせるための接着剤層は存在しない方が好ましいが、接着剤を使い貼りあわせたものでもよい。この支持基材110の片面にある銅箔101をエッチングにより配線パターン103を形成し(図1(b))、配線パターンに表面被覆104を施す(図1(c))。この表面被覆104としては、絶縁樹脂に接着剤を塗布したオーバーレイフィルムを貼付または、インクを直接支持基材に印刷する方法などがある。この表面被覆104にはメッキなどの表面処理用に表面被覆開口部105を設けてもよい。次いで、支持基材102側の面から、配線パターン103が露出するまで、支持基材開口部106を形成する (図1(d))。
【0015】
この際、レーザー法を用いると開口部を容易に形成することができ、かつ小径もあけることができる。更に、過マンガン酸カリウム水溶液によるウェットデスミア又はプラズマによるドライデスミアなどの方法により、支持基材開口部106内に残存している樹脂を除去すると層間接続の信頼性が向上し好ましい。
この支持基材開口部106内に導体ポスト107が支持基材102の面から突出するまで形成する(図1(f))。導体ポスト107の形成方法としては、ペースト又はメッキ法などで、銅ポスト108を形成する(図1(e))。この銅ポスト上に必要に応じて、金属又は半田にて被覆する。金属としては、金、銀、ニッケル、又はインジウムのいずれかからなり、半田としては錫単体、または錫と鉛、銀、亜鉛、ビスマス、アンチモン、銅から選ばれた少なくとも1種類以上の合金からなる。例えば錫−鉛系、錫−銀系、錫−亜鉛系、錫−ビスマス系、錫−アンチモン、錫−銀−ビスマス系、錫−銅系等があるが、半田の金属組合せや組成に限定されず、最適なものを選択すればよい。金属又は半田の被覆の厚みは0.05μm以上、好ましくは0.5μm以上である。この時同時に表面被覆開口部105の表面にも前記同様の半田又は金属や半田により表面処理109してもよい。次に、支持基材102の導体ポスト107が突出した面にフラックス機能付き接着剤層111を形成する(図1(g))。このフラックス機能付き接着剤層はポストと接続するためのパッドを有する内層配線板220に形成しても差し支えはない。このフラックス機能付き接着剤層は印刷法により支持基材102にフラックス機能付き接着剤を塗布する方法などがあるが、シート状になった接着剤を支持基材102にラミネートする方法が簡便である。そして、必要に応じて、多層部のサイズに応じて切断し、個片にしてもよい。
また、この導体2層ポスト107の製法としては、片面積層板110に先に支持基材開口部106を形成し、導体ポスト107を形成後、配線パターン103を形成し、配線パターンに表面被覆104を施してもよい。
【0016】
本発明に用いるフラックス機能付き接着剤は、金属表面の清浄化機能、例えば、金属表面に存在する酸化膜の除去機能や、酸化膜の還元機能を有した接着剤であり、第1の好ましい接着剤の構成としては、フェノール性水酸基を有するフェノールノボラック樹脂、クレゾールノボラック樹脂、アルキルフェノールノボラック樹脂、レゾール樹脂、ポリビニルフェノール樹脂などの樹脂と、前記樹脂の硬化剤を含むものである。硬化剤としては、ビスフェノール系、フェノールノボラック系、アルキルフェノールノボラック系、ビフェノール系、ナフトール系、レゾルシノール系などのフェノールベースや、脂肪族、環状脂肪族や不飽和脂肪族などの骨格をベースとしてエポキシ化されたエポキシ樹脂やイソシアネート化合物が挙げられる。
【0017】
ステップBのパッド205を有する内層配線板220を形成する方法としては、ポリイミド樹脂、エポキシ樹脂などの樹脂を硬化させた絶縁材からなる支持基材202と少なくとも片面に銅箔201がついた積層板210を準備する(図2(a))。積層板210は、ステップBの加工を行うことができるよう、接着剤層は存在しない方が好ましいが存在しても構わない。この積層板210をエッチングにより、配線パターン204及び導体ポスト107を受けることができるパッド205を形成する(図2(b))。その後、パッド205上に表面被覆開口部207を形成した表面被覆206(図2(c))を施す。さらに、開口部分には半田メッキ又は半田ペースト、半田ボールにより表面処理208を実施する(図2(d))。このメッキの厚みは5μm以上で、好ましくは表面被覆206の高さと比べ同じもしくは2μmほど低くつけることが好ましい。
表面処理は、金属又は半田で行う。金属としては、特に限定しないが、融点が低いため錫が好ましい。表面処理の半田としては錫単体、または錫と鉛、銀、亜鉛、ビスマス、アンチモン、銅から選ばれた少なくとも1種類以上からなる合金である。例えば錫−鉛系、錫−銀系、錫−亜鉛系、錫−ビスマス系、錫−アンチモン、錫−銀−ビスマス系、錫−銅系等があるが、半田の金属組合せや組成に限定されず、最適なものを選択すればよい。この表面処理を厚くすることで導体ポストの高さを低くすることができ、かつ接続時に熔融した表面処理部208に導体ポスト107が進入、浸漬され接続することができるため、導体ポストを作製する工程を短縮することができ、かつ導体ポストの高さにばらつきがあっても、この表面処理208の厚みにより緩衝させることができ、接続信頼性が向上する。以上のステップによりコアとなる内層フレキシブル配線板230は、両面にパッドを有する構造をもつことができる(図2(e))。また、先ほどあげたステップA(2層ポスト形成)を併用した片面配線板240を形成してもよい((図2(f))。
【0018】
ステップCの多層フレキシブル配線板310を形成する方法としては、個片の片面外層配線板120を内層フレキシブル配線板230にレイアップする(図3(a))。その際の位置合わせは、各層の配線パターンに予め形成されている位置決めマークを画像認識装置により読み取り位置合わせする方法、位置合わせ用のピンで位置合わせする方法を用いることができる。その後、真空プレスを用いて、0.005MPa以上まで加圧し、フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるよう加熱し、導体ポスト107がフラックス機能付き接着剤層111を排除し、内層フレキシブル配線板230のバッド部分205の半田208に接触させる(図3(b))、または接触近傍状態(図4(c))にし、仮接着する。粘度測定は、ARES 粘弾性測定システム(Rheometric Scientific, Inc. )で行った。
そして、仮接着時の圧力以下または無圧にて、半田の融点以上で導体ポスト107と内層フレキシブル配線板230のパッド部分205の半田208を熔融接合させ、金属結合を形成する。その後、フラックス機能付き接着剤層111を硬化させ、片面外層配線板120と内層フレキシブル配線板230を接着させる。
また、片面外層配線板120と内層フレキシブル配線板230の間に片面配線版240を挿入してもよい(図5(a))。
【0019】
【実施例】
実施例1
[片面外層配線板の作成]
厚み60μmのエポキシ樹脂を硬化させた絶縁材からなる支持基材102(住友ベークライト製 スミライトAPL−4001)上に厚み12μmの銅箔101が付いた片面積層板110をエッチングし、配線パターン103を形成し、液状レジスト(日立化成製 SR9000W)を印刷し、表面被膜104を施す。
次いで、支持基材102側の面から、COレーザーにより100μm径の支持基材開口部106を形成し、過マンガン酸カリウム水溶液によるデスミアを施す。この支持基材開口部106内に電解銅メッキを施し高さ100μmとした後、半田メッキ厚み10μmを施し、導体ポスト107を形成する。次に、支持基材102の導体ポスト107が突出した面に厚み20μmの熱硬化性のフラックス機能付き接着剤シート(住友ベークライト製 層間接着シート RCF)をラミネートし、フラックス機能付き接着剤層111を形成する。最後に、積層部のサイズに外形加工し、導体ポストを有する片面外層配線板120を得た。
【0020】
[内層配線板の作成]
銅箔201が18μm、支持基材202がポリイミドフィルム厚み25μmの2層両面板210(新日鐵化学製 エスパネックス SB−18−25−18FR)を、ドリルによる穴明け後、ダイレクトメッキし、電解銅メッキによりスルーホール203を形成し表裏の電気的導通を形成した後、エッチングにより、配線パターン204及び導体ポスト107を受けることができるパッド205を形成する。その後、配線パターン204に、厚み25μmのポリイミド(鐘淵化学工業製 アピカルNPI)及び厚み25μmの熱硬化性接着剤(自社開発材料)により表面被覆206を形成する。次にパッド205を開口するためCOレーザーにて孔明けし、デスミアを行い、表面被覆開口部207を作製する。次いでこの開口部に表面処理208として厚み45μmの半田メッキを形成し、パッド部205を有する内層フレキシブル配線板230を形成する。
【0021】
[多層フレキシブル配線板の作成]
片面外層配線板120を内層フレキシブル配線板230に、位置合わせ用のピンガイド付き治具を用いてレイアップした。その後、真空式熱プレス機でフラックス機能接着剤層111の粘度が105Pa・sになるように加熱し、0.2MPa、10秒で仮接着し、導体ポスト107がフラックス機能付き接着剤層111を排除し、内層フレキシブル配線板230のバッド部分205の半田208に接触させ、フラックス機能付き接着剤層の接着剤機能により位置決め仮接着をする。そして、ホットプレートで無圧にて260℃60秒間加熱し、フラックス機能付き接着剤層111を活性化させ導体ポスト107が内層フレキシブル配線板230のパッド部分205の半田208により熔融接合させ、導体ポスト107とバッド205間に金属結合を形成する。最後に160℃1時間Box乾燥機にてフラックス機能付き接着剤層111を硬化させて、多層フレキシブル配線板120を得た。
【0022】
実施例2
多層フレキシブル配線板を積層する際、仮接着をフラックス機能付き接着剤層の粘度を150Pa・sで行った以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0023】
実施例3
多層フレキシブル配線板を積層する際、本接合を油圧プレス機にて、0.1MPa加圧した以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0024】
実施例4
多層フレキシブル配線板を積層する際、本接合を油圧プレス機にて、0.05MPa加圧した以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0025】
実施例5
多層フレキシブル配線板を積層する際、本接合を油圧プレス機にて、0.005MPa加圧した以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0026】
比較例1
多層フレキシブル配線板の接続部作成のため積層する際、本接合を油圧プレスにて2MPa加圧した以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0027】
比較例2
片面外層配線板120のフラックス機能付接着剤シート111をフラックス機能のない一般的な接着剤シート(デュポン製 パイララックスLF100)に変更した以外、実施例1と同様の方法で得られた多層フレキシブル配線板。
【0028】
実施例1〜5の多層フレキシブル配線板は、金属同士で層間接続部が金属接合されており、温度サイクル試験では、断線不良や抵抗の変化がなく、金属接合部の接合状態も良好であり、染みだしも少なく、フレキシブル部の。可撓性も良好であった。しかし、比較例1の場合、層間接続部は金属接合していたが、染みだしが多く、フレキシブル部の可撓性を劣化させた。また、比較例2の場合、導体ポストとパッド間に樹脂噛みしているものもみられ、その導体ポストとパッドは金属接合がなされず、熱衝撃試験(260℃ホットオイル/常温オイル)後、接合部の抵抗の上昇が見られ、信頼性が低下した。
【0029】
【発明の効果】
本発明の多層フレキシブル配線板の製造方法に従うと、染みだしが少なく、フレキシブル部の可撓性が良好である多層フレキシブル配線板が得られる。かつ、金属表面の清浄化機能を有した層間接着剤を用いることで配線板の積層における金属接合部を信頼性高く接続することができ、また、層間接続であるので、設計自由度の高い多層フレキシブル配線板を得ることができる。
【図面の簡単な説明】
【図1】本発明に使用する導体2層ポストを有する片面外層配線板の一実施例とその製造方法を説明するための断面図。
【図2】本発明に使用するパッドを有する内層配線板の一実施例とその製造方法を説明するための断面図。
【図3】本発明の多層フレキシブル配線板の製造方法の一実施例を説明するための断面図。
【図4】本発明の多層フレキシブル配線板の製造方法の一実施例を説明するための断面図
【図5】本発明の多層フレキシブル配線板の製造方法の他の実施例を説明するための断面図。
【符号の説明】
101、201:銅箔
102、202:支持基材
103、204:配線パターン
104、206:表面被覆
105、207:表面被覆開口部
106:支持基材開口部
107:導体ポスト
108:銅ポスト
109、208:表面処理
110:片面積層板
111:フラックス機能付き接着剤層
120:片面外層配線板
205:パッド
210:両面板
220:内層配線板
230:内層フレキシブル配線板
240:片面配線板
310:多層フレキシブル配線板
320:多層部
330:フレキシブル部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer flexible wiring board used as a component of an electronic device.
[0002]
[Prior art]
With the recent increase in the density of electronic devices, multilayered printed wiring boards used for the electronic devices have been developed, and flexible wiring boards having a multilayer structure are often used. This printed wiring board is a rigid-flex wiring board which is a composite board of a flexible wiring board and a rigid wiring board, and its use is expanding.
[0003]
A conventional method for manufacturing a multilayer flexible wiring board or a rigid-flex wiring board is similar to a method for manufacturing a multilayer rigid wiring board. That is, a laminated plate in which a plurality of patterned copper foils and insulating layers are alternately stacked is formed, a through hole for interlayer connection is formed in the laminated plate, and the through hole is plated for interlayer connection. The method of processing a circuit or the like was mainly used. However, with the progress of further miniaturization and higher density of mounted components, the conventional technology of drilling connection lands and through holes in each layer at the same location throughout all layers has led to a shortage of wiring density due to design, resulting in mounting of components. Problems are starting to arise.
[0004]
Against such a background, in recent years, a build-up method has been adopted as a new laminating technique in a multilayer rigid wiring board. The build-up method is a method in which an insulating layer made of only a resin and a conductor are stacked, and interlayer connection is made between single layers. As the interlayer connection method, various methods such as a laser method, a plasma method, and a photo method are used instead of the conventional drilling to achieve high density by freely arranging small-diameter via holes.
[0005]
Conventionally, when forming an interlayer connection, copper plating is applied to a through hole or a via hole as described above. However, the material of the insulating layer in which the interlayer connection is formed only of the resin changes in thickness due to heat and cannot be endured by copper plating, so that the connection may be broken and reliability may be reduced. In addition, smear caused by resin exudation generated when forming a through hole or a via hole becomes an obstacle, so that interlayer connection cannot be sufficiently obtained and reliability is reduced.
[0006]
Therefore, the build-up method is roughly classified into a method of forming a via in an insulating layer and then connecting the layers, and a method of forming an interlayer connecting portion and then stacking the insulating layer. When the interlayer connection portion is formed of a conductive paste or the like, it is further subdivided depending on an insulating material used and a via forming method.
[0007]
Among them, a method of forming fine vias for interlayer connection in an insulating layer with a laser, filling a via hole with a conductive adhesive such as a copper paste, and obtaining an electrical connection with the conductive adhesive, a method of forming a via on the via. Since a stacked via for forming a via is possible, the density can be increased and the wiring design restriction can be reduced (for example, see Patent Document 1). However, in this method, electrical connection between the layers is performed using a mixture of a conductive substance (metal) and an insulating substance (adhesive), and the metal and the adhesive coexist on the joint surface. Not reliable enough. In addition, when embedding the conductive adhesive in the fine via, an advanced technique such as embedding in the fine via and defoaming in the conductive adhesive is required, and the reliability is insufficient. Also, there is a method in which a protrusion made of metal is formed on a wiring pattern, and the protrusion penetrates an insulating layer by lamination, and is brought into contact with a wiring pattern of an adjacent layer in a thickness direction to perform interlayer connection (for example, Patent Document 2). However, in this method, the interlayer connection is only physical contact, there is no means for maintaining the contact, and the reliability is low. Therefore, as a measure for improving reliability, a solder layer having a melting temperature higher than the curing temperature of the insulating resin is formed on the metal protrusion, and the uncured insulating layer is penetrated by lamination, and the solder layer is further melted and cooled. There is also a method of forming a solder joint by this (for example, see Patent Document 3). However, if the surface of the solder layer and the conductor circuit layer at the tip of the protrusion are not sufficiently cleaned, that is, if the surface oxide is not removed or reduced, the solder cannot be spread by wetting, so the solder joining becomes insufficient. This method is also unreliable. In addition, the multilayer flexible wiring board uses a thermosetting adhesive for interlayer bonding. However, in the conventional technology, the post part simply removes the adhesive physically and reaches the connection pad and connects. (For example, see Patent Document 4), but it is still difficult to completely remove the adhesive between the connection post and the pad, and the reliability is low.
[0008]
Furthermore, when manufacturing a multilayer flexible wiring board, an adhesive is sandwiched between each layer and pressing is performed. However, since this press is performed at high temperature and high pressure, bleeding increases.
When the exudation spreads on the flexible portion, the flexibility is reduced and the appearance is deteriorated. Therefore, when manufacturing a multilayer flexible wiring board, it is necessary to control the exudation of the adhesive.
[0009]
[Patent Document 1]
JP-A-8-316598 [Patent Document 2]
JP-A-8-125344 [Patent Document 3]
JP-A-8-195560 [Patent Document 4]
JP-A-11-54934
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for manufacturing a multilayer flexible wiring board that can perform reliable and highly reliable interlayer connection with less exudation.
[0011]
[Means for solving the problem]
The present invention
[1] A conductor having a wiring pattern on one side of a support base made of an insulating material and protruding only on the opposite side of the support base from the wiring pattern, consisting of only copper, copper and metal, or copper and solder A single-sided outer wiring board having a post, a wiring pattern having a pad for connecting an insulating material to the conductor post on at least one surface of the support base, and a surface covering material having an opening on the pad; Production of an inner wiring board having a part coated with solder so that the thickness becomes 5 μm or more, and a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between the one-side outer wiring board and the inner wiring board The method,
The pressure is applied at 0.005 MPa or more, and the viscosity of the adhesive layer with a flux function is heated from 500 Pa · s to 10 Pa · s. A temporary bonding step in which the conductor posts eliminate the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
Curing the adhesive with a flux function at a temperature lower than the melting point of the solder, and bonding the outer wiring board to the inner wiring board, a method for manufacturing a multilayer flexible wiring board,
[2] A single-sided outer wiring board having a wiring pattern on one side of a support base made of an insulating material and having a conductor post made of copper and solder protruding on the opposite side of the support base from the wiring pattern, insulation A wiring pattern having a pad for connecting a material to the conductor post on at least one surface of the supporting base material, and an inner layer comprising a surface coating material having an opening on the pad, and a metal coating applied to the opening. A wiring board, and a method for manufacturing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between the conductor post and the pad,
Pressure is applied at 0.005 MPa or more, and the adhesive layer with the flux function is heated until the viscosity of the adhesive layer becomes from 500 Pa · s to 10 Pa · s. A temporary bonding step in which the conductor posts eliminate the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
Curing the adhesive with a flux function at a temperature lower than the melting point of the solder, and bonding the outer wiring board to the inner wiring board, a method for manufacturing a multilayer flexible wiring board,
[3] A single-sided outer wiring board having a wiring pattern on one side of a supporting base material made of an insulating material and having a conductor post made of copper and solder protruding from the opposite side of the supporting base material from the wiring pattern, A wiring pattern having a pad for connecting the material to the conductor post on at least one side of the supporting base material, an inner wiring board made of a surface covering material having an opening on the pad, and the one-side outer wiring board A method for producing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between the inner wiring boards,
Pressure is applied at 0.005 MPa or more, and heated until the viscosity of the adhesive layer with a flux function becomes 500 Pa · s to 10 Pa · s, and the tip of the conductor post contacts the pad or close to the contact. Is a temporary bonding step of eliminating the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
Curing the adhesive with a flux function at a temperature lower than the melting point of the solder, and bonding the outer wiring board to the inner wiring board, a method for manufacturing a multilayer flexible wiring board,
[4] a conductor having a wiring pattern on one side of a support base made of an insulating material, and only copper, or copper and metal, or copper and solder protruding on the opposite side of the support base from the wiring pattern A single-sided outer layer wiring board having a post, a wiring pattern having a pad for connecting an insulating material to the conductor post on at least one side of the supporting base material, and a solder coating on at least the pad on the wiring pattern having a thickness of An inner wiring board provided so as to have a thickness of 5 μm or more, and a method for producing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between the one-side outer wiring board and the inner layer wiring board,
The pressure is applied at 0.005 MPa or more, and the viscosity of the adhesive layer with a flux function is heated from 500 Pa · s to 10 Pa · s. A temporary bonding step in which the conductor posts eliminate the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
Curing the adhesive with a flux function at a temperature lower than the melting point of the solder, and bonding the outer wiring board to the inner wiring board, a method for manufacturing a multilayer flexible wiring board,
[5] A single-sided outer-layer wiring board having a wiring pattern on one side of a supporting base material made of an insulating material and having a conductor post made of copper and solder protruding on the opposite surface of the supporting base material from the wiring pattern, A wiring pattern having a pad for connecting a material to the conductor post on at least one side of a supporting base material, an inner wiring board having a metal coating on at least the pad on the wiring pattern, and the one-side outer wiring board A method for manufacturing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between the inner wiring board and
Pressure is applied at 0.005 MPa or more, and the adhesive layer with the flux function is heated until the viscosity of the adhesive layer becomes from 500 Pa · s to 10 Pa · s. A temporary bonding step in which the conductor posts eliminate the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
Curing the adhesive with a flux function at a temperature lower than the melting point of the solder, and bonding the outer wiring board to the inner wiring board, a method for manufacturing a multilayer flexible wiring board,
[6] A single-sided outer wiring board having a wiring pattern on one side of a supporting base material made of an insulating material and having a conductor post made of copper and solder protruding on the opposite side of the supporting base material from the wiring pattern, insulating An inner wiring board composed of a wiring pattern having a pad for connecting the material to the conductor post on at least one side of the supporting base material, and an adhesive layer with a flux function interposed between the outer wiring board on one side and the inner wiring board. A method for manufacturing a multilayer flexible wiring board having a structure to
Pressure is applied at 0.005 MPa or more, and heated until the viscosity of the adhesive layer with a flux function becomes 500 Pa · s to 10 Pa · s, and the tip of the conductor post contacts the pad or close to the contact. Is a temporary bonding step of eliminating the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
Curing the adhesive with a flux function at a temperature lower than the melting point of the solder, and bonding the outer wiring board to the inner wiring board, a method for manufacturing a multilayer flexible wiring board,
[7] The method for producing a multilayer flexible printed wiring board according to any one of [1] to [6], wherein the metal is at least one of gold, silver, nickel, and indium;
[8] The multilayer flexible according to any one of [1] to [7], wherein the solder is tin alone, or tin and solder made of at least one of lead, silver, zinc, bismuth, antimony, and copper. Manufacturing method of printed wiring board,
[9] A multilayer flexible printed wiring board manufactured by the method for manufacturing a multilayer flexible printed wiring board according to any one of [1] to [8],
It is.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.
[0013]
1 to 4 are diagrams illustrating an example of a method for manufacturing a multilayer flexible wiring board according to an embodiment of the present invention. FIG. 4D illustrates a multilayer flexible wiring board having both a multilayer portion 320 and a flexible portion 330. FIG. 310 is a cross-sectional view of the multilayer flexible wiring board obtained by the manufacturing method of the present invention.
In the method for manufacturing a multilayer flexible wiring board of the present invention, first, as step A (FIG. 1), a single-sided outer wiring board 120 having a conductor post 107 is formed. Subsequently, as step B (FIG. 2), the inner wiring board 220 having the pad 205 is formed. Finally, as step C (FIGS. 3 and 4), the pad 208 of the inner wiring board 220 and the conductor post 107 of the outer wiring board 120 on one side are metal-bonded by the function of the adhesive layer 111 with a flux function, and are electrically connected. To form The above can be divided into three steps.
[0014]
As a method of forming the single-sided outer wiring board 120 having the conductor two-layer post 107 in Step A, a copper foil 101 is attached to one surface of a support base material 102 made of an insulating material obtained by curing a resin such as a polyimide resin or an epoxy resin. A one-area layer plate 110 is prepared (FIG. 1A). At this time, between the supporting substrate and the copper foil, it is preferable that there is no adhesive layer for bonding the copper foil and the supporting substrate, in order to prevent the occurrence of smear that hinders the conductor connection, It may be bonded using an adhesive. A wiring pattern 103 is formed by etching the copper foil 101 on one side of the support base 110 (FIG. 1B), and a surface coating 104 is applied to the wiring pattern (FIG. 1C). As the surface coating 104, there is a method of attaching an overlay film obtained by applying an adhesive to an insulating resin, or printing ink directly on a supporting substrate. The surface coating 104 may be provided with a surface coating opening 105 for surface treatment such as plating. Next, a support base opening 106 is formed from the surface on the support base 102 side until the wiring pattern 103 is exposed (FIG. 1D).
[0015]
At this time, if a laser method is used, an opening can be easily formed and a small diameter can be opened. Further, it is preferable to remove the resin remaining in the support base opening 106 by a method such as wet desmear using an aqueous solution of potassium permanganate or dry desmear using plasma, because the reliability of interlayer connection is improved.
The conductor posts 107 are formed in the support base openings 106 until they protrude from the surface of the support base 102 (FIG. 1F). As a method for forming the conductor posts 107, the copper posts 108 are formed by a paste or plating method (FIG. 1E). The copper post is covered with metal or solder as needed. The metal is gold, silver, nickel, or indium, and the solder is tin alone or tin and lead, silver, zinc, bismuth, antimony, and at least one alloy selected from copper. . For example, there are tin-lead, tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin-silver-bismuth, tin-copper, etc. Instead, an optimal one may be selected. The thickness of the metal or solder coating is 0.05 μm or more, preferably 0.5 μm or more. At this time, the surface of the surface covering opening 105 may be simultaneously surface-treated 109 with the same solder, metal, or solder as described above. Next, an adhesive layer 111 with a flux function is formed on the surface of the support base 102 from which the conductor posts 107 protrude (FIG. 1 (g)). The adhesive layer with the flux function may be formed on the inner wiring board 220 having pads for connecting to the posts. The adhesive layer with a flux function can be applied to the support base material 102 by a printing method, for example. A method of laminating the adhesive in sheet form on the support base material 102 is simple. . And if necessary, it may be cut into individual pieces according to the size of the multilayer part.
The method of manufacturing the conductor two-layer post 107 is as follows. First, the support base opening 106 is formed on the one-area layer plate 110, the conductor post 107 is formed, the wiring pattern 103 is formed, and the wiring pattern is covered with the surface coating 104. May be applied.
[0016]
The adhesive having a flux function used in the present invention is an adhesive having a function of cleaning a metal surface, for example, a function of removing an oxide film present on a metal surface and a function of reducing an oxide film. The composition of the agent includes a resin such as a phenol novolak resin having a phenolic hydroxyl group, a cresol novolak resin, an alkylphenol novolak resin, a resol resin, and a polyvinylphenol resin, and a curing agent for the resin. As the curing agent, a phenol base such as bisphenol, phenol novolak, alkylphenol novolak, biphenol, naphthol or resorcinol, or a skeleton based on an aliphatic, cycloaliphatic or unsaturated aliphatic skeleton is used. Epoxy resin and isocyanate compound.
[0017]
As a method of forming the inner layer wiring board 220 having the pads 205 in Step B, a supporting substrate 202 made of an insulating material obtained by curing a resin such as a polyimide resin and an epoxy resin and a laminate board having a copper foil 201 on at least one surface 210 is prepared (FIG. 2A). It is preferable that the adhesive layer is not present in the laminated plate 210 so that the processing in Step B can be performed, but it may be present. The laminated plate 210 is etched to form a pad 205 that can receive the wiring pattern 204 and the conductor post 107 (FIG. 2B). Thereafter, a surface coating 206 (FIG. 2C) in which a surface coating opening 207 is formed on the pad 205 is applied. Further, a surface treatment 208 is performed on the opening using solder plating, a solder paste, or a solder ball (FIG. 2D). The thickness of the plating is 5 μm or more, and is preferably equal to or lower than the height of the surface coating 206 by about 2 μm.
The surface treatment is performed with metal or solder. The metal is not particularly limited, but tin is preferable because of its low melting point. The solder used for the surface treatment is tin alone or an alloy composed of tin and at least one selected from the group consisting of lead, silver, zinc, bismuth, antimony, and copper. For example, there are tin-lead, tin-silver, tin-zinc, tin-bismuth, tin-antimony, tin-silver-bismuth, tin-copper, etc. Instead, an optimal one may be selected. By increasing the thickness of the surface treatment, the height of the conductor post can be reduced, and the conductor post 107 can enter and be immersed in the surface treatment portion 208 melted at the time of connection, so that the conductor post is manufactured. The number of steps can be shortened, and even if the height of the conductor posts varies, the thickness of the surface treatment 208 can buffer the height, thereby improving the connection reliability. Through the above steps, the inner-layer flexible wiring board 230 serving as a core can have a structure having pads on both surfaces (FIG. 2E). Alternatively, the single-sided wiring board 240 may be formed by using Step A (formation of a two-layer post) described above together (FIG. 2F).
[0018]
As a method of forming the multilayer flexible wiring board 310 in Step C, the individual single-sided outer wiring board 120 is laid up on the inner flexible wiring board 230 (FIG. 3A). The positioning at this time can be performed by a method of reading and positioning a positioning mark formed in advance on the wiring pattern of each layer by an image recognition device, or a method of positioning with a positioning pin. Thereafter, using a vacuum press, the pressure is increased to 0.005 MPa or more, and the adhesive layer with the flux function is heated so that the viscosity of the adhesive layer with the flux function becomes 500 Pa · s to 10 Pa · s. Then, it is brought into contact with the solder 208 of the pad portion 205 of the inner-layer flexible wiring board 230 (FIG. 3B) or brought into a state near the contact (FIG. 4C), and temporarily bonded. Viscosity measurements were performed on an ARES viscoelasticity measurement system (Rheometric Scientific, Inc.).
Then, the conductor post 107 and the solder 208 of the pad portion 205 of the inner flexible wiring board 230 are melt-bonded at a pressure equal to or lower than the pressure at the time of the temporary bonding or at a temperature equal to or higher than the melting point of the solder, thereby forming a metal bond. Thereafter, the adhesive layer 111 with a flux function is cured, and the single-sided outer wiring board 120 and the inner-layer flexible wiring board 230 are bonded.
Further, a single-sided wiring board 240 may be inserted between the single-sided outer wiring board 120 and the inner-layer flexible wiring board 230 (FIG. 5A).
[0019]
【Example】
Example 1
[Creation of single-sided outer wiring board]
A wiring pattern 103 is formed by etching a single-area layer plate 110 having a copper foil 101 having a thickness of 12 μm on a support base material 102 (Sumilite APL-4001 manufactured by Sumitomo Bakelite) made of an insulating material obtained by curing an epoxy resin having a thickness of 60 μm. Then, a liquid resist (SR9000W manufactured by Hitachi Chemical Co., Ltd.) is printed, and a surface coating 104 is applied.
Next, a support base opening 106 having a diameter of 100 μm is formed from the surface on the support base 102 side by a CO 2 laser, and desmearing is performed with an aqueous solution of potassium permanganate. After the inside of the supporting base material opening 106 is subjected to electrolytic copper plating to a height of 100 μm, a solder plating thickness of 10 μm is applied to form the conductor post 107. Next, a thermosetting adhesive sheet with a flux function (interlayer adhesive sheet RCF made by Sumitomo Bakelite) having a thickness of 20 μm is laminated on the surface of the support base 102 from which the conductor posts 107 protrude, and the adhesive layer with a flux function 111 is formed. Form. Finally, the outer shape was processed to the size of the laminated portion to obtain a single-sided outer wiring board 120 having conductor posts.
[0020]
[Creation of inner wiring board]
The copper foil 201 has a thickness of 18 μm, and the support base 202 has a polyimide film thickness of 25 μm. After the through hole 203 is formed by copper plating and the front and back electrical continuity is formed, the pad 205 that can receive the wiring pattern 204 and the conductor post 107 is formed by etching. Thereafter, a surface coating 206 is formed on the wiring pattern 204 using a 25 μm-thick polyimide (Apical NPI manufactured by Kaneka Chemical Industry) and a 25 μm-thick thermosetting adhesive (a material developed in-house). Next, in order to open the pad 205, a hole is formed by a CO 2 laser and desmearing is performed to form a surface covering opening 207. Next, solder plating having a thickness of 45 μm is formed as a surface treatment 208 on the opening to form an inner-layer flexible wiring board 230 having a pad portion 205.
[0021]
[Preparation of multilayer flexible wiring board]
The single-sided outer wiring board 120 was laid up on the inner flexible wiring board 230 using a jig with a pin guide for positioning. Thereafter, the flux function adhesive layer 111 is heated by a vacuum heat press machine so that the viscosity of the flux function adhesive layer 111 becomes 105 Pa · s, and is temporarily bonded at 0.2 MPa for 10 seconds. The flux is eliminated and the solder is brought into contact with the solder 208 of the pad portion 205 of the inner-layer flexible wiring board 230, and positioning temporary bonding is performed by the adhesive function of the adhesive layer with the flux function. Then, heating is performed at 260 ° C. for 60 seconds with no pressure on a hot plate to activate the adhesive layer 111 with a flux function, and the conductor posts 107 are melt-bonded by the solder 208 of the pad portions 205 of the inner flexible wiring board 230, and A metal bond is formed between 107 and pad 205. Finally, the adhesive layer 111 with a flux function was cured by a Box drier at 160 ° C. for 1 hour to obtain a multilayer flexible wiring board 120.
[0022]
Example 2
A multilayer flexible wiring board obtained in the same manner as in Example 1, except that the temporary bonding is performed at a viscosity of 150 Pa · s when the multilayer flexible wiring board is laminated.
[0023]
Example 3
A multilayer flexible wiring board obtained by the same method as that of Example 1 except that when the multilayer flexible wiring board is laminated, the final joining is performed by applying a pressure of 0.1 MPa using a hydraulic press.
[0024]
Example 4
A multilayer flexible wiring board obtained by the same method as that of Example 1 except that when the multilayer flexible wiring board is laminated, the final bonding is performed by applying a pressure of 0.05 MPa using a hydraulic press.
[0025]
Example 5
A multilayer flexible wiring board obtained in the same manner as in Example 1, except that when the multilayer flexible wiring board is laminated, the final bonding is performed by applying a pressure of 0.005 MPa using a hydraulic press.
[0026]
Comparative Example 1
A multilayer flexible wiring board obtained in the same manner as in Example 1, except that the main bonding is pressurized by 2 MPa with a hydraulic press when the multilayer flexible wiring board is laminated for forming a connection portion.
[0027]
Comparative Example 2
Multilayer flexible wiring obtained by the same method as in Example 1 except that the adhesive sheet with flux function 111 of the single-sided outer wiring board 120 is changed to a general adhesive sheet without flux function (Pilalux LF100 manufactured by DuPont). Board.
[0028]
In the multilayer flexible wiring boards of Examples 1 to 5, the metal-to-metal connection of the interlayer connection portion is performed, and in the temperature cycle test, there is no disconnection failure or change in resistance, and the connection state of the metal connection portion is good. Less exudation, flexible part. The flexibility was also good. However, in the case of Comparative Example 1, although the interlayer connection portion was metal-bonded, the interlayer connection portion was largely exuded and deteriorated the flexibility of the flexible portion. Further, in the case of Comparative Example 2, a resin bit was found between the conductor post and the pad, and the conductor post and the pad were not metal-bonded. The resistance of the part increased, and the reliability decreased.
[0029]
【The invention's effect】
According to the method for manufacturing a multilayer flexible wiring board of the present invention, it is possible to obtain a multilayer flexible wiring board with less exudation and good flexibility of the flexible portion. In addition, by using an interlayer adhesive having a metal surface cleaning function, it is possible to reliably connect metal joints in the lamination of wiring boards, and since it is an interlayer connection, a multi-layer having a high degree of design freedom is provided. A flexible wiring board can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view for explaining one embodiment of a single-sided outer wiring board having a conductor two-layer post used in the present invention and a manufacturing method thereof.
FIG. 2 is a cross-sectional view for explaining one embodiment of an inner wiring board having pads used in the present invention and a method of manufacturing the same.
FIG. 3 is a cross-sectional view for explaining one embodiment of the method for manufacturing a multilayer flexible wiring board according to the present invention.
FIG. 4 is a cross-sectional view for explaining one embodiment of the method for manufacturing a multilayer flexible wiring board according to the present invention; FIG. 5 is a cross-section for explaining another embodiment of the method for manufacturing a multilayer flexible wiring board according to the present invention; FIG.
[Explanation of symbols]
101, 201: copper foil 102, 202: supporting base material 103, 204: wiring pattern 104, 206: surface coating 105, 207: surface coating opening 106: support base opening 107: conductor post 108: copper post 109, 208: Surface treatment 110: Single-area layer board 111: Adhesive layer with flux function 120: Single-sided outer wiring board 205: Pad 210: Double-sided board 220: Inner-layer wiring board 230: Inner-layer flexible wiring board 240: Single-sided wiring board 310: Multi-layer flexible Wiring board 320: multilayer part 330: flexible part

Claims (9)

絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅のみ、または銅と金属、または銅と半田からなる導体ポストを有する片面外層配線板、絶縁材からなる支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該パッド上に開口部を有する表面被覆材で構成され、かつ開口部に半田の被覆をその厚みが5μm以上になるように施した内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の半田に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法。
Having a wiring pattern on one side of a supporting base made of an insulating material, and having a conductor post made of only copper or copper and metal, or copper and solder protruding on the opposite side of the supporting base from the wiring pattern A wiring pattern having a pad for connecting to the conductor post on at least one side of a support substrate made of an insulating material, and a surface covering material having an opening on the pad, and A method of manufacturing a multilayer flexible wiring board having a structure in which a solder coating is applied to a thickness of 5 μm or more and an adhesive layer with a flux function is interposed between the single-sided outer wiring board and the inner-layer wiring board. Then, pressure is applied at 0.005 MPa or more, and heating is performed until the viscosity of the adhesive layer with a flux function becomes from 500 Pa · s to 10 Pa · s. Temporary bonding step of conductor post to the vicinity contact or contact with the solder on to eliminate the flux function adhesive layer,
A step of heating the solder to a temperature not lower than the melting point of the solder by applying a pressure equal to or lower than the pressure at the time of the temporary bonding to a temperature equal to or higher than the melting point of the solder,
And a step of curing the adhesive with a flux function at a temperature lower than the melting point of the solder to bond the outer wiring board to the inner wiring board.
絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材からなる支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該パッド上に開口部を有する表面被覆材で構成され、かつ開口部に金属の被覆を施した内層配線板、及び該導体ポストと該パッドの間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の金属に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法。
A single-sided outer layer wiring board having a wiring pattern on one side of a supporting base material made of an insulating material, and having a conductor post made of copper and solder protruding on a surface of the supporting base material opposite to the wiring pattern, made of an insulating material A wiring pattern having a pad for connecting to the conductor post on at least one side of the supporting base material, and an inner wiring board comprising a surface covering material having an opening on the pad, and having a metal coating on the opening. A method for manufacturing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between the conductor post and the pad,
Pressure is applied at 0.005 MPa or more, and the adhesive layer with the flux function is heated until the viscosity of the adhesive layer becomes from 500 Pa · s to 10 Pa · s. A temporary bonding step in which the conductor posts eliminate the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
And a step of curing the adhesive with a flux function at a temperature lower than the melting point of the solder to bond the outer wiring board to the inner wiring board.
絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材からなる支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該パッド上に開口部を有する表面被覆材で構成された内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法。
A single-sided outer layer wiring board having a wiring pattern on one side of a supporting base material made of an insulating material, and having a conductor post made of copper and solder protruding on a surface of the supporting base material opposite to the wiring pattern, made of an insulating material A wiring pattern having a pad for connecting to the conductor post on at least one side of the support base, an inner wiring board composed of a surface covering material having an opening on the pad, and the one-side outer wiring board and the inner layer A method for manufacturing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between wiring boards,
Pressure is applied at 0.005 MPa or more, and heated until the viscosity of the adhesive layer with a flux function becomes from 500 Pa · s to 10 Pa · s, and the tip of the conductor post is brought into contact with or near the contact on the pad. Is a temporary bonding step of eliminating the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
And a step of curing the adhesive with a flux function at a temperature lower than the melting point of the solder to bond the outer wiring board to the inner wiring board.
絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅のみ、または銅と金属、または銅と半田からなる導体ポストを有する片面外層配線板、絶縁材からなる支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該配線パターン上の少なくとも該パッド上に半田の被覆をその厚みが5μm以上になるように施した内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の半田に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法。
Having a wiring pattern on one side of a supporting base made of an insulating material, and having a conductor post made of only copper or copper and metal, or copper and solder protruding on the opposite side of the supporting base from the wiring pattern A wiring pattern having a pad for connecting to the conductor post on at least one side of a single-sided outer layer wiring board and a supporting base made of an insulating material; and a solder coating on the wiring pattern on at least the pad having a thickness of 5 μm or more. The method for manufacturing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between the inner wiring board and the single-sided outer wiring board and the inner wiring board, and
The pressure is applied at 0.005 MPa or more, and the viscosity of the adhesive layer with a flux function is heated from 500 Pa · s to 10 Pa · s. A temporary bonding step in which the conductor posts eliminate the adhesive layer with the flux function,
A step of heating the solder to a temperature higher than the melting point of the solder by applying a pressure equal to or less than the pressure at the time of the temporary bonding or higher than the melting point of the solder, and soldering the conductor post and the pad;
And a step of curing the adhesive with a flux function at a temperature lower than the melting point of the solder to bond the outer wiring board to the inner wiring board.
絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材からなる支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンと、該配線パターン上の少なくとも該パッド上に金属の被覆を施した内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上の金属に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法。
A single-sided outer layer wiring board having a wiring pattern on one side of a supporting base material made of an insulating material, and having a conductor post made of copper and solder protruding on a surface of the supporting base material opposite to the wiring pattern, made of an insulating material A wiring pattern having a pad for connecting to the conductor post on at least one side of the supporting base material, an inner wiring board having a metal coating on at least the pad on the wiring pattern, and the one outer wiring board; A method of manufacturing a multilayer flexible wiring board having a structure in which an adhesive layer with a flux function is interposed between inner wiring boards,
Pressure is applied at 0.005 MPa or more, and the adhesive layer with the flux function is heated until the viscosity of the adhesive layer becomes from 500 Pa · s to 10 Pa · s. A temporary bonding step in which the conductor posts eliminate the adhesive layer with the flux function,
A step of heating the solder to a temperature not lower than the melting point of the solder by applying a pressure equal to or lower than the pressure at the time of the temporary bonding to a temperature equal to or higher than the melting point of the solder,
And a step of curing the adhesive with a flux function at a temperature lower than the melting point of the solder to bond the outer wiring board to the inner wiring board.
絶縁材からなる支持基材の片側に配線パターンを有し、かつ該支持基材の該配線パターンとは反対面に突出した銅と半田からなる導体ポストを有する片面外層配線板、絶縁材からなる支持基材の少なくとも片面に該導体ポストと接続するためのパッドを有する配線パターンで構成された内層配線板、及び該片面外層配線板と該内層配線板の間にフラックス機能付き接着剤層が介在する構造の多層フレキシブル配線板の製造方法であって、
0.005MPa以上で加圧し、該フラックス機能付き接着剤層の粘度が500Pa・sから10Pa・sになるまで加熱し、該導体ポストの先端部が該パッド上に接触または接触近傍まで該導体ポストが該フラックス機能付き接着剤層を排除する仮接着工程、
前記仮接着時の圧力以下の加圧または無圧にて、該半田の融点以上に加熱し、該導体ポストと該パッド間を半田接合する工程、
及び該フラックス機能付き接着剤を該半田の融点未満の温度で硬化させ、該片面外層配線板と該内層配線板を接着させる工程、を含むことを特徴とする多層フレキシブル配線板の製造方法。
A single-sided outer layer wiring board having a wiring pattern on one side of a supporting base material made of an insulating material, and having a conductor post made of copper and solder protruding on a surface of the supporting base material opposite to the wiring pattern, made of an insulating material An inner wiring board composed of a wiring pattern having a pad for connecting to the conductor post on at least one side of the supporting base material, and a structure in which an adhesive layer with a flux function is interposed between the outer wiring board on one side and the inner wiring board A method for manufacturing a multilayer flexible wiring board,
Pressure is applied at 0.005 MPa or more, and heated until the viscosity of the adhesive layer with a flux function becomes from 500 Pa · s to 10 Pa · s, and the tip of the conductor post is brought into contact with or near the contact on the pad. Is a temporary bonding step of eliminating the adhesive layer with the flux function,
A step of heating the solder to a temperature not lower than the melting point of the solder by applying a pressure equal to or lower than the pressure at the time of the temporary bonding to a temperature equal to or higher than the melting point of the solder,
And a step of curing the adhesive with a flux function at a temperature lower than the melting point of the solder to bond the outer wiring board to the inner wiring board.
金属が金、銀、ニッケル、インジウムの少なくとも1種類からなる請求項1から6のいずれかに記載の多層フレキシブルプリント配線板の製造方法。The method for producing a multilayer flexible printed wiring board according to any one of claims 1 to 6, wherein the metal comprises at least one of gold, silver, nickel, and indium. 半田が錫単体、または錫と鉛、銀、亜鉛、ビスマス、アンチモン、銅の少なくとも1種類からなる合金である請求項1から7のいずれかに記載の多層フレキシブルプリント配線板の製造方法。8. The method for manufacturing a multilayer flexible printed wiring board according to claim 1, wherein the solder is tin alone or an alloy composed of tin and at least one of lead, silver, zinc, bismuth, antimony, and copper. 請求項1から8いずれか記載の多層フレキシブルプリント配線板の製造方法で製造された多層フレキシブルプリント配線板。A multilayer flexible printed wiring board manufactured by the method for manufacturing a multilayer flexible printed wiring board according to claim 1.
JP2003013949A 2003-01-22 2003-01-22 Method for manufacturing multilayer flexible wiring board Pending JP2004228322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003013949A JP2004228322A (en) 2003-01-22 2003-01-22 Method for manufacturing multilayer flexible wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013949A JP2004228322A (en) 2003-01-22 2003-01-22 Method for manufacturing multilayer flexible wiring board

Publications (1)

Publication Number Publication Date
JP2004228322A true JP2004228322A (en) 2004-08-12

Family

ID=32902143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013949A Pending JP2004228322A (en) 2003-01-22 2003-01-22 Method for manufacturing multilayer flexible wiring board

Country Status (1)

Country Link
JP (1) JP2004228322A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035692A1 (en) * 2004-09-30 2006-04-06 Sumitomo Electric Industries, Ltd. Conductive paste and method for manufacturing multilayer printed wiring board using same
JP2006196571A (en) * 2005-01-12 2006-07-27 Nippon Mektron Ltd Multilayer flexible circuit wiring board and its manufacturing method
CN102088825A (en) * 2009-12-07 2011-06-08 富士通株式会社 Multilayered circuit board, method for manufacturing the same, and electronic apparatus
JP2018125350A (en) * 2017-01-30 2018-08-09 新光電気工業株式会社 Wiring board and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006035692A1 (en) * 2004-09-30 2006-04-06 Sumitomo Electric Industries, Ltd. Conductive paste and method for manufacturing multilayer printed wiring board using same
US8597459B2 (en) 2004-09-30 2013-12-03 Sumitomo Electric Industries, Ltd. Conductive paste and method for manufacturing multilayer printed wiring board using the same
JP2006196571A (en) * 2005-01-12 2006-07-27 Nippon Mektron Ltd Multilayer flexible circuit wiring board and its manufacturing method
CN102088825A (en) * 2009-12-07 2011-06-08 富士通株式会社 Multilayered circuit board, method for manufacturing the same, and electronic apparatus
JP2018125350A (en) * 2017-01-30 2018-08-09 新光電気工業株式会社 Wiring board and manufacturing method of the same

Similar Documents

Publication Publication Date Title
JP3906225B2 (en) Circuit board, multilayer wiring board, method for manufacturing circuit board, and method for manufacturing multilayer wiring board
KR100522385B1 (en) Multilayer wiring board assembly, multilayer wiring board assembly component and method of manufacture thereof
JPH1154934A (en) Multilayered printed wiring board and its manufacture
JP2007273654A (en) Flexible circuit board, method for manufacturing the same, and electronic component
JP2005317943A (en) Printed circuit board and manufacturing method therefor
JPH11204939A (en) Multilayer circuit board and manufacture thereof
JPH1154926A (en) One-sided circuit board and its manufacture
JP2004228322A (en) Method for manufacturing multilayer flexible wiring board
JP2004311909A (en) Circuit board, multilayer wiring board, method for producing the circuit board and method for producing the multilayer wiring board
JP2007208229A (en) Manufacturing method of multilayer wiring board
JP2003017856A (en) Multilayer printed-wiring board and manufacturing method therefor
JP2003229665A (en) Multilayered flexible wiring board and its manufacturing method
JP2005039136A (en) Circuit board and method for connection thereof
JP2004063908A (en) Multilayer flexible wiring board and its producing process
JP4824972B2 (en) Circuit wiring board and manufacturing method thereof
JP2007173343A (en) Multilayer board and electronic apparatus
JP4351939B2 (en) Multilayer wiring board and manufacturing method thereof
JP4277723B2 (en) Multilayer circuit board and method for manufacturing multilayer circuit board
JP4968616B2 (en) Manufacturing method of multilayer printed wiring board
JP2004134536A (en) Method for connecting flexible multilayer wiring board
JP2004214227A (en) Interlayer connection part and multilayer wiring board
JP2005183944A (en) Multi-layer substrate and manufacturing method of multi-layer substrate
JP2004095695A (en) Multilayer flexible wiring board and manufacturing method thereof
JP2005109188A (en) Circuit board and multilayer board, and method for manufacturing circuit board and multilayer board
JP2004111758A (en) Multilayer flexible wiring board and its production method