JP2004226018A - Refrigeration unit - Google Patents

Refrigeration unit Download PDF

Info

Publication number
JP2004226018A
JP2004226018A JP2003015570A JP2003015570A JP2004226018A JP 2004226018 A JP2004226018 A JP 2004226018A JP 2003015570 A JP2003015570 A JP 2003015570A JP 2003015570 A JP2003015570 A JP 2003015570A JP 2004226018 A JP2004226018 A JP 2004226018A
Authority
JP
Japan
Prior art keywords
pipe
pressure gas
indoor
refrigerant
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003015570A
Other languages
Japanese (ja)
Inventor
Kunimori Sekigami
邦衛 関上
Sadahiro Takizawa
禎大 滝澤
Hajime Mutsukawa
元 六川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003015570A priority Critical patent/JP2004226018A/en
Publication of JP2004226018A publication Critical patent/JP2004226018A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration unit capable of preventing, the so-called refrigerant stagnant pool in a high-pressure gas pipe without arranging a bypass pipe or the like. <P>SOLUTION: The refrigeration unit comprises an outdoor unit 1 having a compressor and an outdoor heat exchanger, a high-pressure gas pipe in which a plurality of indoor units 5a and 5b having an indoor heat exchanger are connected to each other via a pipe 10 between units, one end of the outdoor heat exchanger is selectively connected to a refrigerant discharge pipe and a refrigerant suction pipe, and the pipe between units is connected to the refrigerant discharge pipe, a low-pressure gas pipe connected to the refrigerant suction pipe, and a liquid pipe connected to the other end of the outdoor heat exchanger. In each indoor unit, one end of the indoor heat exchanger is selectively connected to the high-pressure gas pipe and the low-pressure gas pipe, and the other end thereof is connected to the liquid pipe. The plurality of indoor units can simultaneously perform the cooling operation or the heating operation, or the cooling operation and the heating operation in a mixed manner. The refrigerating device 30 is operated while the inside of the high-pressure gas pipe 11 connected to the refrigerant discharge pipe 7 is at the super-critical pressure. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は室外ユニットと複数台の室内ユニットを有し、複数台の室内ユニットを同時に冷房運転もしくは暖房運転可能とし、または、これらの暖房運転と冷房運転を混在して実施可能とする冷凍装置に関する。
【0002】
【従来の技術】
一般に、室外ユニットと複数台の室内ユニットとを、高圧ガス管と低圧ガス管と液管からなるユニット間配管で接続し、複数台の室内ユニットを同時に冷房運転もしくは暖房運転可能とし、または、これらの暖房運転と冷房運転を混在して実施可能とする冷凍装置が知られている(特許文献1参照)。なお、本明細書において、冷凍装置は、ヒートポンプを含むものとする。
【0003】
【特許文献1】
特許2804527号公報。
【0004】
【発明が解決しようとする課題】
この種のものでは、冷媒にフロン冷媒が使用された場合、高圧ガス管内に滞留した冷媒が、液化して、当該高圧ガス管内に寝込むという問題がある。これを解消するために、ユニット間配管の内、高圧ガス管と低圧ガス管との間にバイパス管を接続し、このバイパス管を通じて寝込み冷媒を、圧縮機の吸込側に回収する技術が提案されているが、これでは配管構造が複雑化するという問題がある。
【0005】
そこで、本発明の目的は、上述した従来の技術が有する課題を解消し、バイパス管等を配置することなく、高圧ガス管内のいわゆる冷媒寝込みを防止することができる冷凍装置を提供することにある。
【0006】
【課題を解決するための手段】
請求項1記載の発明は、圧縮機及び室外熱交換器を備えた室外ユニットと、室内熱交換器を備えた複数台の室内ユニットとがユニット間配管により接続され、上記室外熱交換器の一端が、上記圧縮機の冷媒吐出管と冷媒吸込管とに択一的に接続され、上記ユニット間配管が、上記冷媒吐出管に接続された高圧ガス管と、上記冷媒吸込管に接続された低圧ガス管と、上記室外熱交換の他端に接続された液管とを有して構成され、上記各室内ユニットは、上記室内熱交換器の一端が上記高圧ガス管と上記低圧ガス管に択一的に接続され、他端が上記液管に接続され、これら複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成され、上記冷媒吐出管に接続された高圧ガス管内が当該冷凍装置の運転中に超臨界圧力で運転されることを特徴とする。
【0007】
請求項2記載の発明は、請求項1記載のものにおいて、上記冷凍装置の冷媒配管中に二酸化炭素冷媒を封入したことを特徴とする。
【0008】
請求項3記載の発明は、請求項1又は2記載のものにおいて、上記高圧ガス管と上記液管との間に貯湯ユニットを更に備えたことを特徴とする。
【0009】
これらの発明では、高圧ガス管内が冷凍装置の運転中に超臨界圧力で運転されるため、冷媒が、高圧ガス管内で凝縮することがなく、フロン冷媒のように、液化して高圧ガス管内に寝込むことはない。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、図面に基づき説明する。
【0011】
図1は、本発明に係る冷凍装置の一実施の形態を示す冷媒回路図である。この冷凍装置30は、圧縮機2、室外熱交換器3a、3b及び室外膨張弁27a、27bを備えた室外ユニット1と、室内熱交換器6a及び室内膨張弁18aを備えた室内ユニット5aと、室内熱交換器6b及び室内膨張弁18bを備えた室内ユニット5bと、ガスクーラ41、貯湯タンク43、循環ポンプ45及び膨張弁47を備えた給湯ユニット50とを有して構成される。そして、これら室外ユニット1と室内ユニット5a、5bと給湯ユニット50とがユニット間配管10により接続されて、冷凍装置30は、給湯ユニット50を運転しながら、室内ユニット5a、5bを同時に冷房運転もしくは暖房運転可能とし、または、これらの冷房運転と暖房運転とを混在して実施可能とする。
【0012】
上記室外ユニット1では、室外熱交換器3a、3bの一端が、圧縮機2の吐出管7と吸込管8とに、それぞれ切換弁9a、19a、9b、19bを介して択一的に接続されている。また、吸込管8にアキュムレータ4が配設されている。
【0013】
室外ユニット1は室外制御装置を備え、この室外制御装置が、室外ユニット1内の圧縮機2、室外膨張弁27a、27b、切換弁9a、19a、9b、19b、並びに冷凍装置30全体を制御する。
【0014】
上記ユニット間配管10は、高圧ガス管11、低圧ガス管12及び液管13を備えてなる。高圧ガス管11が吐出管7に接続され、低圧ガス管12が吸込管8に接続される。上記液管13は、室外膨張弁27a、27bを介して、室外熱交換器3a、3bの他端にそれぞれ接続される。
【0015】
室内ユニット5a、5bの室内熱交換器6a、6bは、その一端が、吐出側弁16a、16bを介して、高圧ガス管11に接続され、吸込側弁17a、17bを介して、低圧ガス管12に接続される。また、それらの他端が、室内膨張弁18a、18bを介して液管13に接続される。
【0016】
吐出側弁16aと吸込側弁17aは、一方が開操作された時、他方が閉操作される。吐出側弁16bと吸込側弁17bも、同様に、一方が開操作された時、他方が閉操作される。
【0017】
これにより、各室内熱交換器6a、6bの一端は、ユニット間配管10の高圧ガス管11と低圧ガス管12とに択一的に接続される。
【0018】
室内ユニット5a、5bは、更に室内ファン23a、23b、リモートコントローラ及び室内制御装置を有する。各室内ファン23a、23bは、室内熱交換器6a、6bのそれぞれに近接配置されて、これらそれぞれの室内熱交換器6a、6bに送風する。また、各リモートコントローラは、室内ユニット5a、5bにそれぞれ接続されて、各室内ユニット5a、5bのそれぞれの室内制御装置へ、冷房若しくは暖房運転指令、または停止指令等を出力する。
【0019】
貯湯ユニット50では、ガスクーラ41の一端が高圧ガス管11に接続され、ガスクーラ41の他端が膨張弁47を介して液管13に接続される。このガスクーラ41には、水配管46が接続され、この水配管46に、循環ポンプ45を介して、貯湯タンク43が接続される。
【0020】
本実施形態では、室外ユニット1、室内ユニット5a、5b、貯湯ユニット50並びにユニット間配管10に二酸化炭素冷媒が封入される。二酸化炭素冷媒が封入された場合、図2のエンタルピ・圧力線図に示すように、高圧ガス管11内は運転中に超臨界圧力で運転される。高圧ガス管11内が、超臨界圧力で運転される冷媒には、二酸化炭素冷媒のほかに、例えばエチレン、ディボラン、エタン、酸化窒素等が挙げられる。図2では、圧縮機出口は状態aで示される。冷媒は、熱交換器を通って循環し、そこで状態bまで冷却され、熱を冷却空気に放出する。冷媒は、所望により、状態cまで冷却される。ついで、冷媒は、減圧装置での圧力低下により、状態dに至り、ここではガス/液体の2相混合体が形成される。冷媒は、蒸発器において、液相の蒸発により熱を吸収する。状態eは、蒸発器出口の状態であり、ガス相の冷媒は、熱交換器で状態fまで加熱されてから圧縮機2の吸込管に向かう。
【0021】
上記超臨界サイクルにおいて、圧縮機2から吐出される高圧単相ガス冷媒は、凝縮されないが、熱交換器において温度低下が起こる。熱交換器(状態b)における冷媒の最終温度は、冷却空気の温度よりも数度高い。そして、高圧ガスは熱交換器において、数度低い状態cまで冷却される。
【0022】
つぎに、冷凍装置30の動作を説明する。
【0023】
この冷凍装置30では、圧縮機2の吐出冷媒が、高圧ガス管11を通じてガスクーラ41に導かれ、このガスクーラ41で、水配管46を通る水が加熱されて、高温となった水が貯湯タンク43に貯えられる。二酸化炭素冷媒が使用され、高圧の高い超臨界サイクルとなるため、ここに貯えられた湯は、約80℃以上の高温になる。この貯湯タンク43に貯えられた湯は、図示を省略した配管を介して各種設備へ送られる(貯湯運転)。
【0024】
全室内ユニット5a、5bを同時に冷房する場合は、室外熱交換器3a、3bの一方の切換弁9a、19aを開くとともに他方の切換弁9b、19bを閉じ、且つ吐出側弁16a、16bを閉じるとともに、吸込側弁17a、17bを開く。これにより、圧縮機2から吐出された冷媒は、吐出管7、切換弁9a、19a、室外熱交換器3へと順次流れ、この室外熱交換器3で熱交換した後、液管13を経て各室ユニット5a、5bの室内膨張弁18a、18bに分配され、ここで減圧される。
【0025】
しかる後、冷媒は、各室内熱交換器6a、6bで蒸発気化し、それぞれ吸込側弁17a、17bを流れた後、低圧ガス管12、吸込管8、アキュムレータ4を順次経て圧縮機2に吸入される。このように、蒸発器として機能する各室内熱交換器6a、6bの作用で全室内ユニット5a、5bが同時に冷房される。
【0026】
逆に、全室内ユニット5a、5bを同時に暖房する場合、室外熱交換器3a、3bの一方の切換弁9a、19aを閉じるとともに他方の切換弁9b、19bを開き、且つ吐出側弁16a、16bを開くとともに、吸込側弁17a、17bを閉じる。これにより、圧縮機2から吐出された冷媒は、吐出管7、高圧ガス管11を順次経て吐出側弁16a、16b、室内熱交換器6a、6bへと流れ、ここでそれぞれ熱交換(上述したように、凝縮しない。)した後、液管13で合流される。
【0027】
しかる後、室外膨張弁27a、27bで減圧され、各室外熱交換器3で蒸発気化した後、切換弁9b、吸込管8、アキュムレータ4を順次経て圧縮機2に吸入される。このように各室内熱交換器6a、6bの熱交換作用(凝縮ではない。)で、全室内ユニット5a、5bが同時に暖房される。
【0028】
また、同時に、例えば室内ユニット5aを冷房し、室内ユニット5bを暖房する場合には、室外熱交換器3a、3bの一方の切換弁9a、19aを開くとともに他方の切換弁9b、19bを閉じ、且つ、冷房する室内ユニット5aに対応する吐出側弁16aを閉じるとともに、吸込側弁17aを開き、且つ暖房する室内ユニット5bに対応する吐出側弁16bを開くとともに、吸込側弁17bを閉じる。すると、圧縮機2から吐出された冷媒の一部が吐出管7、切換弁9a、19aを順次経て室外熱交換器3に流れるとともに、残りの冷媒が高圧ガス管11を経て暖房する室内ユニット5bに対応する吐出側弁16b、室内熱交換器6bへと流れ、これらの室内熱交換器6b及び室外熱交換器3で熱交換(凝縮ではない。)される。
【0029】
そして、これら室内熱交換器6b、室外熱交換器3で熱交換された冷媒は、液管13を経て室内ユニット5aの室内膨張弁18aで減圧された後、それぞれの室内熱交換器6aで蒸発気化される。しかる後、冷媒は、吸込側弁17aを流れて低圧ガス管12で合流され、吸込管8、アキュムレータ4を順次経て圧縮機2に吸入される。このように、室内熱交換器6bの熱交換作用で室内ユニット5bが暖房され、蒸発器として機能する他の室内熱交換器6aの作用で室内ユニット5aが冷房される。
【0030】
次に、例えば、室内ユニット5bで冷房し、室内ユニット5aで暖房する場合には、室外熱交換器3の一方の切換弁9a、19aを閉じるとともに他方の切換弁9b、19bを開き、且つ冷房する室内ユニット5bに対応する吐出側弁16bを閉じるとともに、吸込側弁17bを開き、且つ暖房する室内ユニット5aに対応する吐出側弁16aを開き、吸込側弁17aを閉じる。すると、圧縮機2から吐出された冷媒が吐出管7、高圧ガス管11を順次経て吐出側弁16aへと分配され、室内熱交換器6aで熱交換される(凝縮ではない。)。この熱交換された冷媒は、室内膨張弁18aを経て液管13に流れる。この液管中の液冷媒の一部が、室内膨張弁18bで減圧された後に室内熱交換器6bで、且つ、残りの液冷媒が室外膨張弁27a、27bで減圧された後に室外熱交換器3でそれぞれ蒸発気化され、吸引管8、アキュムレータ4を順次経て圧縮機2に吸入される。室内熱交換器6aの熱交換作用で室内ユニット5aが暖房され、蒸発器として機能する室内熱交換器6bで室内ユニット5bが冷房される。
【0031】
上記のように、冷暖房混在運転する場合(一方の室内ユニットが冷房運転し、他方の室内ユニットが暖房運転する場合等。)、或いは貯湯運転する場合、冷媒は、室内熱交換器、室外熱交換器、ガスクーラ同士がいわゆる熱バランスするように循環する。これによれば、室内、室外の熱を効率的に利用した運転が可能となる。特に、室内ユニットによる冷房運転と、貯湯運転との混在運転時には、室内の熱によって貯湯(給湯)を行うことができるので、極めて有効な熱の利用となり、室外ユニットの放熱によるヒートアイランド現象の発生を少なく抑えることができる等の効果が得られる。
【0032】
本実施形態では、上述したように、冷媒に二酸化炭素冷媒が使用され、この二酸化炭素冷媒が使用された場合、高圧の高い超臨界サイクルとなって、図2からも明らかなように、圧縮機2から吐出される高圧単相冷媒蒸気は、高圧ガス管11内で凝縮することがないため、フロン冷媒のように、液化して、高圧ガス管11内に寝込むといった不都合が解消される。従って、寝込み冷媒の回収用として、従来必要であった、高圧ガス管11と低圧ガス管12との間のバイパス管(図示せず)等が不要になり、配管構造を複雑化させることなく、高圧ガス管11内の冷媒寝込みを防止することができる。
【0033】
バイパス管等が不要になるため、そこに使用された電磁弁等が不要になり、その制御も不要になり、コストダウンが図られる。
【0034】
【発明の効果】
本発明では、バイパス管等を配置することなく、高圧ガス管内のいわゆる冷媒寝込みを防止することができる。
【図面の簡単な説明】
【図1】本発明に係る冷凍装置の一実施の形態を示す冷媒回路図である。
【図2】超臨界サイクルのエンタルピ・圧力線図である。
【符号の説明】
1 室外ユニット
2 圧縮機
3 室外熱交換器
5a、5b 室内ユニット
6a、6b 室内熱交換器
9a、9b、19a、19b 切換弁
10 ユニット間配管
11 高圧ガス管
12 低圧ガス管
13 液管
16a、16b 吐出側弁
17a、17b 吸込側弁
30 冷凍装置
50 給湯ユニット
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerating apparatus that has an outdoor unit and a plurality of indoor units, enables a plurality of indoor units to simultaneously perform a cooling operation or a heating operation, or a mixture of the heating operation and the cooling operation. .
[0002]
[Prior art]
In general, an outdoor unit and a plurality of indoor units are connected by a unit pipe consisting of a high-pressure gas pipe, a low-pressure gas pipe, and a liquid pipe, and the plurality of indoor units can be simultaneously operated for cooling or heating, or There is known a refrigeration apparatus that can perform a heating operation and a cooling operation in a mixed manner (see Patent Document 1). In this specification, the refrigeration apparatus includes a heat pump.
[0003]
[Patent Document 1]
Japanese Patent No. 2804527.
[0004]
[Problems to be solved by the invention]
In this type, when a Freon refrigerant is used as the refrigerant, there is a problem that the refrigerant remaining in the high-pressure gas pipe is liquefied and falls asleep in the high-pressure gas pipe. In order to solve this problem, a technique has been proposed in which a bypass pipe is connected between the high-pressure gas pipe and the low-pressure gas pipe in the unit-to-unit pipe, and the stagnation refrigerant is recovered to the suction side of the compressor through the bypass pipe. However, this has a problem that the piping structure is complicated.
[0005]
Therefore, an object of the present invention is to provide a refrigeration apparatus that solves the above-described problems of the conventional technology and that can prevent so-called refrigerant stagnation in a high-pressure gas pipe without disposing a bypass pipe or the like. .
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, an outdoor unit including a compressor and an outdoor heat exchanger is connected to a plurality of indoor units including an indoor heat exchanger by inter-unit piping, and one end of the outdoor heat exchanger is provided. Is selectively connected to a refrigerant discharge pipe and a refrigerant suction pipe of the compressor, and the inter-unit piping is a high-pressure gas pipe connected to the refrigerant discharge pipe, and a low-pressure gas pipe connected to the refrigerant suction pipe. The indoor unit is configured to include a gas pipe and a liquid pipe connected to the other end of the outdoor heat exchange. One end of the indoor heat exchanger is selected from the high-pressure gas pipe and the low-pressure gas pipe. And the other end is connected to the liquid pipe so that the plurality of indoor units can be simultaneously operated for cooling or heating, or the cooling operation and the heating operation can be performed in a mixed manner. Configured and connected to the refrigerant discharge pipe High-pressure gas pipe is characterized in that it is operated under supercritical pressure during operation of the refrigeration apparatus.
[0007]
According to a second aspect of the present invention, in the first aspect, a carbon dioxide refrigerant is sealed in a refrigerant pipe of the refrigeration apparatus.
[0008]
According to a third aspect of the present invention, in the first or second aspect, a hot water storage unit is further provided between the high-pressure gas pipe and the liquid pipe.
[0009]
In these inventions, since the inside of the high-pressure gas pipe is operated at a supercritical pressure during the operation of the refrigeration system, the refrigerant does not condense in the high-pressure gas pipe, and liquefies like a chlorofluorocarbon refrigerant into the high-pressure gas pipe. Never fall asleep.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0011]
FIG. 1 is a refrigerant circuit diagram showing one embodiment of a refrigeration apparatus according to the present invention. The refrigeration apparatus 30 includes an outdoor unit 1 including a compressor 2, outdoor heat exchangers 3a and 3b, and outdoor expansion valves 27a and 27b; an indoor unit 5a including an indoor heat exchanger 6a and an indoor expansion valve 18a; An indoor unit 5b including the indoor heat exchanger 6b and the indoor expansion valve 18b, and a hot water supply unit 50 including the gas cooler 41, the hot water storage tank 43, the circulation pump 45, and the expansion valve 47 are configured. The outdoor unit 1, the indoor units 5a and 5b, and the hot water supply unit 50 are connected by the unit-to-unit piping 10, and the refrigeration apparatus 30 operates the hot water supply unit 50 while simultaneously cooling or operating the indoor units 5a and 5b. The heating operation can be performed, or the cooling operation and the heating operation can be performed in a mixed manner.
[0012]
In the outdoor unit 1, one ends of the outdoor heat exchangers 3a and 3b are alternatively connected to the discharge pipe 7 and the suction pipe 8 of the compressor 2 via switching valves 9a, 19a, 9b and 19b, respectively. ing. Further, the accumulator 4 is disposed in the suction pipe 8.
[0013]
The outdoor unit 1 includes an outdoor control device, and the outdoor control device controls the compressor 2, the outdoor expansion valves 27a, 27b, the switching valves 9a, 19a, 9b, 19b, and the entire refrigeration device 30 in the outdoor unit 1. .
[0014]
The inter-unit piping 10 includes a high-pressure gas pipe 11, a low-pressure gas pipe 12, and a liquid pipe 13. The high-pressure gas pipe 11 is connected to the discharge pipe 7, and the low-pressure gas pipe 12 is connected to the suction pipe 8. The liquid pipe 13 is connected to the other ends of the outdoor heat exchangers 3a and 3b via the outdoor expansion valves 27a and 27b, respectively.
[0015]
One end of each of the indoor heat exchangers 6a, 6b of the indoor units 5a, 5b is connected to the high-pressure gas pipe 11 via the discharge side valves 16a, 16b, and the low-pressure gas pipe is connected via the suction side valves 17a, 17b. 12 is connected. Further, the other ends thereof are connected to the liquid pipe 13 via the indoor expansion valves 18a and 18b.
[0016]
When one of the discharge side valve 16a and the suction side valve 17a is opened, the other is closed. Similarly, when one of the discharge side valve 16b and the suction side valve 17b is opened, the other is closed.
[0017]
Thereby, one end of each of the indoor heat exchangers 6a and 6b is alternatively connected to the high-pressure gas pipe 11 and the low-pressure gas pipe 12 of the inter-unit pipe 10.
[0018]
The indoor units 5a and 5b further include indoor fans 23a and 23b, a remote controller, and an indoor control device. The indoor fans 23a and 23b are arranged close to the indoor heat exchangers 6a and 6b, respectively, and blow air to the respective indoor heat exchangers 6a and 6b. Each remote controller is connected to each of the indoor units 5a and 5b, and outputs a cooling or heating operation command, a stop command, and the like to each indoor control device of each of the indoor units 5a and 5b.
[0019]
In hot water storage unit 50, one end of gas cooler 41 is connected to high-pressure gas pipe 11, and the other end of gas cooler 41 is connected to liquid pipe 13 via expansion valve 47. A water pipe 46 is connected to the gas cooler 41, and a hot water storage tank 43 is connected to the water pipe 46 via a circulation pump 45.
[0020]
In the present embodiment, a carbon dioxide refrigerant is sealed in the outdoor unit 1, the indoor units 5a and 5b, the hot water storage unit 50, and the unit piping 10. When the carbon dioxide refrigerant is charged, the inside of the high-pressure gas pipe 11 is operated at a supercritical pressure during operation, as shown in the enthalpy-pressure diagram of FIG. The refrigerant in which the inside of the high-pressure gas pipe 11 is operated at a supercritical pressure includes, for example, ethylene, diborane, ethane, nitrogen oxide, etc. in addition to the carbon dioxide refrigerant. In FIG. 2, the compressor outlet is shown in state a. The refrigerant circulates through the heat exchanger, where it is cooled to state b and releases heat to the cooling air. The refrigerant is optionally cooled to state c. The refrigerant then reaches state d due to the pressure drop in the decompression device, where a gas / liquid two-phase mixture is formed. The refrigerant absorbs heat by evaporating the liquid phase in the evaporator. State e is a state at the evaporator outlet, and the gas-phase refrigerant is heated to the state f by the heat exchanger before going to the suction pipe of the compressor 2.
[0021]
In the supercritical cycle, the high-pressure single-phase gas refrigerant discharged from the compressor 2 is not condensed, but the temperature of the heat exchanger decreases. The final temperature of the refrigerant in the heat exchanger (state b) is several degrees higher than the temperature of the cooling air. Then, the high-pressure gas is cooled in the heat exchanger to a state c lower by several degrees.
[0022]
Next, the operation of the refrigeration apparatus 30 will be described.
[0023]
In the refrigerating device 30, the refrigerant discharged from the compressor 2 is guided to the gas cooler 41 through the high-pressure gas pipe 11, and the water passing through the water pipe 46 is heated by the gas cooler 41, and the hot water is stored in the hot water storage tank 43. Stored in Since a carbon dioxide refrigerant is used and a high pressure and high supercritical cycle is performed, the hot water stored here becomes a high temperature of about 80 ° C. or more. The hot water stored in the hot water storage tank 43 is sent to various facilities via piping not shown (hot water storage operation).
[0024]
When cooling all the indoor units 5a and 5b simultaneously, one of the switching valves 9a and 19a of the outdoor heat exchangers 3a and 3b is opened, the other switching valves 9b and 19b are closed, and the discharge side valves 16a and 16b are closed. At the same time, the suction side valves 17a and 17b are opened. Accordingly, the refrigerant discharged from the compressor 2 flows sequentially to the discharge pipe 7, the switching valves 9a and 19a, and the outdoor heat exchanger 3, and after performing heat exchange in the outdoor heat exchanger 3, passes through the liquid pipe 13. It is distributed to the indoor expansion valves 18a, 18b of the respective chamber units 5a, 5b, and the pressure is reduced here.
[0025]
Thereafter, the refrigerant evaporates and evaporates in each of the indoor heat exchangers 6a and 6b, flows through the suction-side valves 17a and 17b, and then is sucked into the compressor 2 through the low-pressure gas pipe 12, the suction pipe 8, and the accumulator 4 in order. Is done. Thus, all the indoor units 5a, 5b are simultaneously cooled by the operation of the indoor heat exchangers 6a, 6b functioning as evaporators.
[0026]
Conversely, when heating all the indoor units 5a and 5b at the same time, one of the switching valves 9a and 19a of the outdoor heat exchangers 3a and 3b is closed, the other switching valves 9b and 19b are opened, and the discharge-side valves 16a and 16b are opened. Is opened and the suction side valves 17a and 17b are closed. Thereby, the refrigerant discharged from the compressor 2 flows through the discharge pipe 7 and the high-pressure gas pipe 11 to the discharge side valves 16a and 16b and the indoor heat exchangers 6a and 6b, respectively, where heat exchange is performed (described above). Are not condensed like this), and are merged in the liquid tube 13.
[0027]
Thereafter, the pressure is reduced by the outdoor expansion valves 27a and 27b, evaporated and vaporized in each outdoor heat exchanger 3, and then sucked into the compressor 2 through the switching valve 9b, the suction pipe 8 and the accumulator 4 in order. Thus, all the indoor units 5a and 5b are simultaneously heated by the heat exchange action (not condensation) of each of the indoor heat exchangers 6a and 6b.
[0028]
At the same time, for example, when cooling the indoor unit 5a and heating the indoor unit 5b, one of the switching valves 9a and 19a of the outdoor heat exchangers 3a and 3b is opened and the other switching valves 9b and 19b are closed. Further, the discharge side valve 16a corresponding to the indoor unit 5a to be cooled is closed, the suction side valve 17a is opened, and the discharge side valve 16b corresponding to the indoor unit 5b to be heated is opened, and the suction side valve 17b is closed. Then, a part of the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 via the discharge pipe 7 and the switching valves 9a and 19a sequentially, and the remaining refrigerant is heated via the high-pressure gas pipe 11 to the indoor unit 5b. Flows to the discharge side valve 16b and the indoor heat exchanger 6b corresponding to the above, and heat is exchanged (not condensed) by these indoor heat exchanger 6b and outdoor heat exchanger 3.
[0029]
Then, the refrigerant that has undergone heat exchange in the indoor heat exchanger 6b and the outdoor heat exchanger 3 is depressurized by the indoor expansion valve 18a of the indoor unit 5a via the liquid pipe 13, and then evaporated in each of the indoor heat exchangers 6a. Vaporized. Thereafter, the refrigerant flows through the suction-side valve 17a, is joined by the low-pressure gas pipe 12, and is sucked into the compressor 2 through the suction pipe 8 and the accumulator 4 in order. Thus, the indoor unit 5b is heated by the heat exchange action of the indoor heat exchanger 6b, and the indoor unit 5a is cooled by the action of the other indoor heat exchanger 6a functioning as an evaporator.
[0030]
Next, for example, when cooling is performed by the indoor unit 5b and heating is performed by the indoor unit 5a, one of the switching valves 9a and 19a of the outdoor heat exchanger 3 is closed, and the other switching valves 9b and 19b are opened and cooling is performed. The discharge side valve 16b corresponding to the indoor unit 5b to be heated is closed, the suction side valve 17b is opened, and the discharge side valve 16a corresponding to the indoor unit 5a to be heated is opened, and the suction side valve 17a is closed. Then, the refrigerant discharged from the compressor 2 is distributed to the discharge-side valve 16a through the discharge pipe 7 and the high-pressure gas pipe 11 sequentially, and heat is exchanged (not condensed) in the indoor heat exchanger 6a. The heat-exchanged refrigerant flows into the liquid pipe 13 via the indoor expansion valve 18a. After a part of the liquid refrigerant in the liquid pipe is decompressed by the indoor expansion valve 18b, the indoor heat exchanger 6b, and the remaining liquid refrigerant is depressurized by the outdoor expansion valves 27a, 27b, and then the outdoor heat exchanger. At 3, they are evaporated and vaporized, and are sucked into the compressor 2 through the suction pipe 8 and the accumulator 4 in order. The indoor unit 5a is heated by the heat exchange action of the indoor heat exchanger 6a, and the indoor unit 5b is cooled by the indoor heat exchanger 6b functioning as an evaporator.
[0031]
As described above, when the cooling / heating mixed operation is performed (for example, when one indoor unit performs the cooling operation and the other indoor unit performs the heating operation), or when the hot water storage operation is performed, the refrigerant uses the indoor heat exchanger and the outdoor heat exchange. The gas cooler and the gas cooler circulate so as to achieve a so-called heat balance. According to this, it is possible to operate the apparatus efficiently using indoor and outdoor heat. In particular, during the mixed operation of the cooling operation and the hot water storage operation by the indoor unit, the hot water storage (hot water supply) can be performed by the indoor heat, so that the use of the heat is extremely effective, and the heat island phenomenon due to the heat radiation of the outdoor unit is reduced. Effects such as being able to be suppressed to a small level are obtained.
[0032]
In the present embodiment, as described above, a carbon dioxide refrigerant is used as a refrigerant, and when this carbon dioxide refrigerant is used, a high-pressure, high-critical supercritical cycle is performed. As is apparent from FIG. Since the high-pressure single-phase refrigerant vapor discharged from 2 is not condensed in the high-pressure gas pipe 11, the inconvenience of liquefying and falling into the high-pressure gas pipe 11 like Freon refrigerant is eliminated. Therefore, a bypass pipe (not shown) between the high-pressure gas pipe 11 and the low-pressure gas pipe 12 which is conventionally required for collecting the stagnation refrigerant is not required, and the piping structure is not complicated. Refrigerant stagnation in the high-pressure gas pipe 11 can be prevented.
[0033]
Since the bypass pipe and the like are not required, the solenoid valve and the like used therein are not required, and the control thereof is not required, so that the cost can be reduced.
[0034]
【The invention's effect】
According to the present invention, so-called refrigerant stagnation in the high-pressure gas pipe can be prevented without disposing a bypass pipe or the like.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing an embodiment of a refrigeration apparatus according to the present invention.
FIG. 2 is an enthalpy-pressure diagram of a supercritical cycle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 5a, 5b Indoor unit 6a, 6b Indoor heat exchanger 9a, 9b, 19a, 19b Switching valve 10 Unit piping 11 High pressure gas pipe 12 Low pressure gas pipe 13 Liquid pipe 16a, 16b Discharge side valve 17a, 17b Suction side valve 30 Refrigeration unit 50 Hot water supply unit

Claims (3)

圧縮機及び室外熱交換器を備えた室外ユニットと、室内熱交換器を備えた複数台の室内ユニットとがユニット間配管により接続され、上記室外熱交換器の一端が、上記圧縮機の冷媒吐出管と冷媒吸込管とに択一的に接続され、上記ユニット間配管が、上記冷媒吐出管に接続された高圧ガス管と、上記冷媒吸込管に接続された低圧ガス管と、上記室外熱交換の他端に接続された液管とを有して構成され、上記各室内ユニットは、上記室内熱交換器の一端が上記高圧ガス管と上記低圧ガス管に択一的に接続され、他端が上記液管に接続され、これら複数台の室内ユニットを同時に冷房運転若しくは暖房運転可能とし、または、これらの冷房運転と暖房運転を混在して実施可能とするよう構成され、上記冷媒吐出管に接続された高圧ガス管内が当該冷凍装置の運転中に超臨界圧力で運転されることを特徴とする冷凍装置。An outdoor unit having a compressor and an outdoor heat exchanger and a plurality of indoor units having an indoor heat exchanger are connected by unit piping, and one end of the outdoor heat exchanger is connected to a refrigerant discharge of the compressor. The high-pressure gas pipe connected to the refrigerant discharge pipe, the low-pressure gas pipe connected to the refrigerant suction pipe, and the outdoor heat exchange. Each indoor unit is configured such that one end of the indoor heat exchanger is selectively connected to the high-pressure gas pipe and the low-pressure gas pipe, and the other end is connected to the other end of the indoor heat exchanger. Is connected to the liquid pipe, these two or more indoor units can be simultaneously operated for cooling operation or heating operation, or configured such that these cooling operation and heating operation can be performed in a mixed manner, the refrigerant discharge pipe The connected high-pressure gas pipe Refrigeration system characterized in that it is operated under supercritical pressure during operation of the freezing apparatus. 上記冷凍装置の冷媒配管中に二酸化炭素冷媒を封入したことを特徴とする請求項1記載の冷凍装置。The refrigeration apparatus according to claim 1, wherein a carbon dioxide refrigerant is sealed in a refrigerant pipe of the refrigeration apparatus. 上記高圧ガス管と上記液管との間に貯湯ユニットを更に備えたことを特徴とする請求項1又は2記載の冷凍装置。3. The refrigeration apparatus according to claim 1, further comprising a hot water storage unit between the high-pressure gas pipe and the liquid pipe.
JP2003015570A 2003-01-24 2003-01-24 Refrigeration unit Pending JP2004226018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015570A JP2004226018A (en) 2003-01-24 2003-01-24 Refrigeration unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015570A JP2004226018A (en) 2003-01-24 2003-01-24 Refrigeration unit

Publications (1)

Publication Number Publication Date
JP2004226018A true JP2004226018A (en) 2004-08-12

Family

ID=32903280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015570A Pending JP2004226018A (en) 2003-01-24 2003-01-24 Refrigeration unit

Country Status (1)

Country Link
JP (1) JP2004226018A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816416A1 (en) * 2004-11-25 2007-08-08 Mitsubishi Denki Kabushiki Kaisha Air conditioner
WO2010113372A1 (en) * 2009-03-31 2010-10-07 三菱電機株式会社 Combined system of air conditioning device and hot-water supply device
WO2011048695A1 (en) 2009-10-23 2011-04-28 三菱電機株式会社 Air conditioning device
JP2012047375A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Air conditioning system
CN104272036A (en) * 2012-04-25 2015-01-07 株式会社日立制作所 Air-conditioning/hot-water supply system
EP2483606A4 (en) * 2009-09-29 2015-12-09 Carrier Corp System and method for maintaining air temperature within a building hvac system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816416A1 (en) * 2004-11-25 2007-08-08 Mitsubishi Denki Kabushiki Kaisha Air conditioner
EP1816416A4 (en) * 2004-11-25 2011-08-03 Mitsubishi Electric Corp Air conditioner
US9003823B2 (en) 2009-03-31 2015-04-14 Mitsubishi Electric Corporation Combined air-conditioning and hot-water supply system
WO2010113372A1 (en) * 2009-03-31 2010-10-07 三菱電機株式会社 Combined system of air conditioning device and hot-water supply device
JP2010236817A (en) * 2009-03-31 2010-10-21 Mitsubishi Electric Corp Combined system of air conditioning device and hot-water supply device
US10295237B2 (en) 2009-09-29 2019-05-21 Carrier Corporation System and method for maintaining air temperature within a building HVAC system
US9310087B2 (en) 2009-09-29 2016-04-12 Carrier Corporation System and method for maintaining air temperature within a building HVAC system
EP2483606A4 (en) * 2009-09-29 2015-12-09 Carrier Corp System and method for maintaining air temperature within a building hvac system
WO2011048695A1 (en) 2009-10-23 2011-04-28 三菱電機株式会社 Air conditioning device
US9476618B2 (en) 2009-10-23 2016-10-25 Mitsubishi Electric Corporation Air conditioning apparatus
CN102401503A (en) * 2010-08-25 2012-04-04 日立空调·家用电器株式会社 Air conditioning system
JP2012047375A (en) * 2010-08-25 2012-03-08 Hitachi Appliances Inc Air conditioning system
CN104272036A (en) * 2012-04-25 2015-01-07 株式会社日立制作所 Air-conditioning/hot-water supply system

Similar Documents

Publication Publication Date Title
JP4321095B2 (en) Refrigeration cycle equipment
JP5627713B2 (en) Air conditioner
WO2012066763A1 (en) Freezer
JP2006052934A (en) Heat exchange apparatus and refrigerating machine
JP2008249236A (en) Air conditioner
JP2006112753A (en) Refrigerating air conditioner
JP2007240025A (en) Refrigerating device
WO2007119372A1 (en) Freezing apparatus
JP2009228979A (en) Air conditioner
JP4118254B2 (en) Refrigeration equipment
US7533539B2 (en) Refrigerating machine
JP2003004321A (en) Refrigerating air conditioner
JP2006220351A (en) Freezer
JP2018021730A (en) Refrigeration cycle device
JP2004286289A (en) Refrigerant cycle device
JP5237157B2 (en) Air heat source turbo heat pump
JP2004226018A (en) Refrigeration unit
JP4033788B2 (en) Heat pump equipment
JP2007263487A (en) Refrigerating device
JP2007051788A (en) Refrigerating device
WO2010041453A1 (en) Refrigeration device
JP2003004346A (en) Cooling equipment
JP2006138612A (en) Heat pump system
JP3750287B2 (en) Heat storage device
JPH10253171A (en) Air conditioner

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040819