JP2004225138A - Method for manufacturing conductive particle - Google Patents

Method for manufacturing conductive particle Download PDF

Info

Publication number
JP2004225138A
JP2004225138A JP2003017010A JP2003017010A JP2004225138A JP 2004225138 A JP2004225138 A JP 2004225138A JP 2003017010 A JP2003017010 A JP 2003017010A JP 2003017010 A JP2003017010 A JP 2003017010A JP 2004225138 A JP2004225138 A JP 2004225138A
Authority
JP
Japan
Prior art keywords
fine particles
metal
electroless plating
plating solution
conductive fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003017010A
Other languages
Japanese (ja)
Inventor
Yasushi Tominaga
康 富永
Toshiaki Yagi
俊明 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003017010A priority Critical patent/JP2004225138A/en
Publication of JP2004225138A publication Critical patent/JP2004225138A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily manufacturing conductive particles from non-conductive particles in the order of μm or under. <P>SOLUTION: In the method for manufacturing conductive particles, nonconductive particles are mixed and diffused in metal electroless plating solution, and the metal in the metal electroless plating solution is precipitated on the surface of the particles by providing ultrasonic vibration to the metal electroless plating solution. The nonconductive particles are preferably silica or alumina, and the metal in the metal electroless plating solution is preferably copper. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非導電性の微粒子から導電性微粒子を製造する方法に関するものである。
【0002】
【従来の技術】
金属微粒子や非導電性の微粒子の表面を金属めっきした導電性微粒子は、導電性インクや導電性塗料のビヒクル、導電性成形材料の導電性充填材などの種々の用途に使用されている。特に、導電性のインクでは、インクジェットプリンタ用など、最近のOA化や印刷技術の発展により、μmオーダー以下の導電性微粒子が使用されるようになっている。このような導電性の微粒子を製造する技術は、例えば、特許文献1、2に開示されているように、通常の無電解めっきと同様に、触媒付着、活性化等の処理工程を有するものである。
【0003】
【特許文献1】
特開2001−126532号公報
【特許文献2】
特開2002−038296号公報
【0004】
【発明が解決しようとする課題】
本発明は、上記のようなμmオーダー以下の導電性微粒子を簡易な工程で製造する方法を提供するものである。
【0005】
【課題を解決するための手段】
このような目的は、以下の本発明(1)〜(3)により達成できる。
(1) 非導電性の微粒子を金属無電解めっき液中に混合分散し、該金属無電解めっき液に超音波振動を与えることにより、前記微粒子の表面に前記金属無電解めっき液の金属を析出させることを特徴とする導電性微粒子の製造方法。
(2) 前記非導電性の微粒子が、シリカ又はアルミナである前記(1)記載の導電性微粒子の製造方法。
(3) 前記金属無電解めっき液の金属が銅である前記(1)又は(2)記載の導電性微粒子の製造方法。
【0006】
【発明の実施の形態】
以下に、本発明の導電性微粒子の製造方法について説明する。
本発明は、非導電性の微粒子を金属無電解めっき液中に混合分散し、該金属無電解めっき液に超音波振動を与えることにより、前記微粒子の表面に金属無電解めっき液の金属を析出させることを特徴とする導電性微粒子の製造方法であり、微粒子を分散させた金属無電解めっき液に、超音波振動を与えるという簡易な方法により、前記微粒子の表面に金属を析出させることができるものである。
【0007】
本発明において、非導電性の微粒子は、金属無電解めっき液に添加したときに、溶解しないものであれば、特に限定されず、シリカ、アルミナ、ジルコニア、酸化チタン、炭化珪素、希土類酸化物、雲母、珪藻土、ガラス、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シリコーン樹脂、ポリアミド、ポリスチレン、ポリカーボネートなどがあるが、膨潤や変質をしないものが好ましく、シリカ、アルミナが入手も容易であるので、特に好ましい。
【0008】
かかる非導電性の微粒子の粒径は、得られる導電性微粒子の粒径を規定するものであり、所望の導電性微粒子の粒径により、適宜選択される。通常は、10nm〜100μmであり、インクジェットプリンタ用インクなど、μmオーダー以下の粒径の導電性微粒子を必要とする場合、凝集を防止するために、水に分散したものを使用することが好ましい。例えば、扶桑化学工業(株)製コロイダルシリカPL−3(一次粒子径35nm)、PL−7(一次粒子径70nm)、PL−30(一次粒子径300nm)、などが好ましく使用される。本発明は、その簡易さから、10〜500nmの非導電性微粒子を導電性にするのに好適なものである。
【0009】
次に、金属無電解めっき液について説明する。
金属無電解めっき液は、通常、銅めっきの場合、硫酸銅、ホルムアルデヒド水溶液などの還元剤、水酸化ナトリウムなどのアルカリ、EDTA、エチレンジアミンなどのキレート剤などからなる。ニッケルめっきの場合、硫酸ニッケル、次亜リン酸ナトリウムなどの還元剤、クエン酸ナトリウム、水酸化ナトリウムなどのpH調整剤などからなる。かかる金属無電解めっき液は市販のものも使用でき、特に限定されない。無電解めっきのための金属としては、上記のものの他、銀、金、コバルト、イリジウム、タングステン、亜鉛、錫などがある。
無電解めっき液における金属イオンの濃度は、特に限定されないが、良好なめっき金属の析出を得るためには通常0.1〜1重量%であり、好ましくは0.2〜0.5重量%である。
【0010】
本発明において、前記非導電性の微粒子は、金属無電解めっき液中に混合分散される。この混合分散方法は、特に限定されず、通常の攪拌方法が適用される。超音波振動を与える際にも、非導電性の微粒子が金属無電解めっき液に、できる限り均一に分散していることが好ましく、微粒子の粉体は、水性分散体としたときには、2次凝集しやすいが、上記のようにして、これを効果的に防止することができる。
【0011】
非導電性の微粒子と金属無電解めっき液の割合は、導電性微粒子の必要な電気伝導性により決められるものであるが、通常は、非導電性微粒子100重量部に対して、金属イオンの量が、1〜100重量部であり、5〜50重量部が好ましい。
【0012】
次いで、非導電性の微粒子を分散させた金属無電解めっき液に、超音波振動を与える。超音波振動を与える方法は、特に限定されない。超音波発振装置のホーンをめっき液が入っている容器に接触させる、鍍金液に直接超音波発振装置を浸漬するなどの方法がある。超音波振動の強さは、強いほど無電解めっきの効果が大きいが、装置が大規模になる、エネルギーが大きくなる、などの問題があるので、適当な条件を選択するべきであり、例えば、100gの液の場合、周波数20〜40KHz、出力20〜200w程度である。液の温度は常温〜80℃程度が安全性と効率の点から好ましい範囲である。時間は、長いほど金属の析出量は多いが、通常は、1〜10時間程度である。このようにして、非導電性の微粒子に金属が析出した導電性微粒子を得ることができる。
【0013】
このようにして生成した導電性微粒子は、遠心分離、濾過等の方法により分散液から分離し、水洗等を行い、乾燥することにより、単体として得られる。かかる導電性微粒子は、非導電性微粒子の表面に金属が均一に析出していることが望ましいが、一部表面への析出であっても、少量の結合剤と混合したときに、導電性を示すものであればよい。例えば、生成した導電性微粒子とフェノール樹脂(レゾール樹脂)とを10:2で混合し硬化したときに、100mΩ−cm程度より小さい電気抵抗率であれば使用可能である。
【0014】
以上のようにして得られた導電性微粒子は、インクジェットプリンタ用の導電性インク、導電性成形材料の導電性充填材などの用途に好適に使用される。
【0015】
【実施例】
以下、実施例により本発明をより具体的に説明する。ここで、「部」は重量部を示す。
【0016】
実施例1
[銅無電解めっき液の調製]
ジャパンエナジー(株)製・「KC−500A」(硫酸銅4%、EDTA9%)10部、「KC−500C」(水酸化ナトリウム20%)0.5部及び「KC−500D」(ホルムアルデヒド37%)0.125部を混合し、純水にて50部とした。
[銅無電解めっきと導電性微粒子の単離]
上記銅無電解めっき液50部に、コロイダルシリカ水分散液(扶桑化学工業(株)製、「PL−7」(一次粒子径70nmのコロイダルシリカ20%含有))10部を混合した。攪拌しつつ液温を60℃に加温し、この状態で周波数38KHz、出力100Wにて超音波振動を60分間与え、コロイダルシリカ表面に銅を析出させた。次いで、この銅が析出したコロイダルシリカを濾別し水洗し、乾燥した。
【0017】
実施例2
[銅無電解めっき液の調製]
「KC−500A」20部、「KC−500C」(水酸化ナトリウム20%)1.0部及び「KC−500D」(ホルムアルデヒド37%)0.25部を混合し、純水にて50部とした。
[銅無電解めっきと導電性微粒子の単離]
実施例1と同様に実施した。
【0018】
実施例3
[銅無電解めっき液の調製]
「KC−500A」30部、「KC−500C」(水酸化ナトリウム20%)1.5部及び「KC−500D」(ホルムアルデヒド37%)0.375部を混合し、純水にて50部とした。
[銅無電解めっきと導電性微粒子の単離]
実施例1と同様に実施した。
【0019】
実施例4
[銅無電解めっき液の調製]
実施例3と同様に実施した。
[銅無電解めっきと導電性微粒子の単離]
コロイダルシリカ水分散液として、扶桑化学工業(株)製、「PL−30」(一次粒子径300nmのコロイダルシリカ30%含有)10部を使用した以外は、実施例1と同様に実施した。
【0020】
以上のようにして得られた導電性粒子100部に、レゾール型フェノール樹脂20部と溶剤(エチレングリコールモノブチルエーテル)30部を加え、均一混合してペースト状組成物を得た。この組成物を用いて、絶縁板上に、幅2mm、厚み30μm、長さ100mmの回路をスクリーン印刷し、30分間風乾したあと150℃の乾燥機で30分間加熱処理し硬化させた。次いで、この回路の体積抵抗率を測定した。その結果を表1に示す。
【0021】
表1 体積抵抗率の測定結果
実施例1 90mΩ−cm
実施例2 75mΩ−cm
実施例3 15mΩ−cm
実施例4 10mΩ−cm
この結果から、実施例で得られた導電性粒子は、良好な電気伝導性を有することが分かる。
【0022】
【発明の効果】
本発明による導電性微粒子の製造方法は、簡易な方法により非導電性の微粒子に金属を析出させることができ、得られる導電性微粒子は、良好な電気伝導性を有していて、インクジェットプリンタ用の導電性インク、導電性成形材料の導電性充填材などの用途に好適に適用することができる。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing conductive fine particles from non-conductive fine particles.
[0002]
[Prior art]
2. Description of the Related Art Conductive fine particles obtained by plating the surfaces of metal fine particles and non-conductive fine particles with a metal are used for various applications such as a conductive ink, a vehicle for a conductive paint, and a conductive filler for a conductive molding material. In particular, in the case of conductive ink, conductive fine particles of the order of μm or less have come to be used due to recent development of OA and printing technology such as for ink jet printers. Techniques for producing such conductive fine particles include, for example, as disclosed in Patent Literatures 1 and 2, which have treatment steps such as catalyst attachment and activation, similar to ordinary electroless plating. is there.
[0003]
[Patent Document 1]
JP 2001-126532 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-038296
[Problems to be solved by the invention]
The present invention provides a method for producing the above-described conductive fine particles of the order of μm or less in a simple process.
[0005]
[Means for Solving the Problems]
Such an object can be achieved by the following present inventions (1) to (3).
(1) Non-conductive fine particles are mixed and dispersed in a metal electroless plating solution, and the metal of the metal electroless plating solution is deposited on the surfaces of the fine particles by applying ultrasonic vibration to the metal electroless plating solution. A method for producing conductive fine particles.
(2) The method for producing conductive fine particles according to (1), wherein the non-conductive fine particles are silica or alumina.
(3) The method for producing conductive fine particles according to (1) or (2), wherein the metal of the metal electroless plating solution is copper.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for producing the conductive fine particles of the present invention will be described.
According to the present invention, non-conductive fine particles are mixed and dispersed in a metal electroless plating solution, and the metal of the metal electroless plating solution is deposited on the surface of the fine particles by applying ultrasonic vibration to the metal electroless plating solution. A method for producing conductive fine particles, characterized in that a metal can be deposited on the surface of the fine particles by a simple method of applying ultrasonic vibration to a metal electroless plating solution in which the fine particles are dispersed. Things.
[0007]
In the present invention, non-conductive fine particles are not particularly limited as long as they do not dissolve when added to the metal electroless plating solution, and silica, alumina, zirconia, titanium oxide, silicon carbide, rare earth oxides, There are mica, diatomaceous earth, glass, phenolic resin, epoxy resin, polyimide resin, silicone resin, polyamide, polystyrene, polycarbonate, etc. .
[0008]
The particle size of the non-conductive fine particles defines the particle size of the obtained conductive fine particles, and is appropriately selected depending on the desired particle size of the conductive fine particles. Generally, when conductive fine particles having a particle size of the order of μm or less, such as an ink for an ink jet printer, are required to be dispersed in water, it is preferable to use those dispersed in water in order to prevent aggregation. For example, colloidal silica PL-3 (primary particle diameter 35 nm), PL-7 (primary particle diameter 70 nm), PL-30 (primary particle diameter 300 nm) manufactured by Fuso Chemical Industry Co., Ltd. are preferably used. The present invention is suitable for making non-conductive fine particles of 10 to 500 nm conductive because of its simplicity.
[0009]
Next, the metal electroless plating solution will be described.
In the case of copper plating, the metal electroless plating solution usually comprises a reducing agent such as copper sulfate and an aqueous formaldehyde solution, an alkali such as sodium hydroxide, a chelating agent such as EDTA and ethylenediamine, and the like. In the case of nickel plating, it comprises a reducing agent such as nickel sulfate and sodium hypophosphite, and a pH adjusting agent such as sodium citrate and sodium hydroxide. A commercially available metal electroless plating solution can be used, and there is no particular limitation. Metals for electroless plating include silver, gold, cobalt, iridium, tungsten, zinc, tin, and the like, in addition to those described above.
The concentration of metal ions in the electroless plating solution is not particularly limited, but is usually 0.1 to 1% by weight, preferably 0.2 to 0.5% by weight in order to obtain good plating metal deposition. is there.
[0010]
In the present invention, the non-conductive fine particles are mixed and dispersed in a metal electroless plating solution. The mixing and dispersing method is not particularly limited, and an ordinary stirring method is applied. Even when ultrasonic vibration is applied, it is preferable that the non-conductive fine particles are dispersed as uniformly as possible in the metal electroless plating solution. However, as described above, this can be effectively prevented.
[0011]
The ratio between the non-conductive fine particles and the metal electroless plating solution is determined by the required electric conductivity of the conductive fine particles, but usually, the amount of the metal ions is 100 parts by weight of the non-conductive fine particles. Is 1 to 100 parts by weight, preferably 5 to 50 parts by weight.
[0012]
Next, ultrasonic vibration is applied to the metal electroless plating solution in which non-conductive fine particles are dispersed. The method of giving ultrasonic vibration is not particularly limited. There are methods such as bringing the horn of the ultrasonic oscillator into contact with the container containing the plating solution, and immersing the ultrasonic oscillator directly in the plating solution. The strength of the ultrasonic vibration is higher, the effect of the electroless plating is greater, but there are problems such as an increase in the size of the apparatus and an increase in energy, so that appropriate conditions should be selected. In the case of 100 g of liquid, the frequency is about 20 to 40 KHz and the output is about 20 to 200 w. The temperature of the liquid is preferably in the range of room temperature to about 80 ° C. in terms of safety and efficiency. The longer the time, the larger the amount of deposited metal, but usually about 1 to 10 hours. Thus, conductive fine particles in which metal is precipitated on non-conductive fine particles can be obtained.
[0013]
The conductive fine particles thus generated are separated from the dispersion by a method such as centrifugation or filtration, washed with water or the like, and dried to obtain a single substance. It is desirable that the metal is uniformly deposited on the surface of the non-conductive fine particles.However, even when the metal is partially deposited on the surface, when mixed with a small amount of a binder, the conductivity of the metal is reduced. Anything that is shown may be used. For example, when the produced conductive fine particles and a phenol resin (resole resin) are mixed at a ratio of 10: 2 and cured, an electric resistivity smaller than about 100 mΩ-cm can be used.
[0014]
The conductive fine particles obtained as described above are suitably used for applications such as a conductive ink for an inkjet printer and a conductive filler of a conductive molding material.
[0015]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Here, “parts” indicates parts by weight.
[0016]
Example 1
[Preparation of copper electroless plating solution]
10 parts of "KC-500A" (4% copper sulfate, 9% EDTA), 0.5 part of "KC-500C" (20% sodium hydroxide) and "KC-500D" (37% formaldehyde) manufactured by Japan Energy Corporation ) Was mixed with pure water to make 50 parts.
[Copper electroless plating and isolation of conductive fine particles]
To 50 parts of the copper electroless plating solution, 10 parts of an aqueous colloidal silica dispersion ("PL-7" (manufactured by Fuso Chemical Co., Ltd., containing 20% of colloidal silica having a primary particle diameter of 70 nm)) was mixed. The liquid temperature was heated to 60 ° C. while stirring, and in this state, ultrasonic vibration was applied at a frequency of 38 KHz and an output of 100 W for 60 minutes to precipitate copper on the surface of the colloidal silica. Next, the colloidal silica on which the copper was precipitated was separated by filtration, washed with water, and dried.
[0017]
Example 2
[Preparation of copper electroless plating solution]
20 parts of "KC-500A", 1.0 part of "KC-500C" (20% of sodium hydroxide) and 0.25 part of "KC-500D" (37% of formaldehyde) are mixed, and 50 parts are mixed with pure water. did.
[Copper electroless plating and isolation of conductive fine particles]
It carried out similarly to Example 1.
[0018]
Example 3
[Preparation of copper electroless plating solution]
30 parts of “KC-500A”, 1.5 parts of “KC-500C” (20% sodium hydroxide) and 0.375 part of “KC-500D” (37% formaldehyde) are mixed, and mixed with 50 parts with pure water. did.
[Copper electroless plating and isolation of conductive fine particles]
It carried out similarly to Example 1.
[0019]
Example 4
[Preparation of copper electroless plating solution]
It carried out similarly to Example 3.
[Copper electroless plating and isolation of conductive fine particles]
The same operation as in Example 1 was carried out except that 10 parts of "PL-30" (containing 30% of a colloidal silica having a primary particle diameter of 300 nm) manufactured by Fuso Chemical Industry Co., Ltd. was used as an aqueous dispersion of colloidal silica.
[0020]
To 100 parts of the conductive particles obtained as described above, 20 parts of a resole-type phenol resin and 30 parts of a solvent (ethylene glycol monobutyl ether) were added and uniformly mixed to obtain a paste composition. Using this composition, a circuit having a width of 2 mm, a thickness of 30 μm, and a length of 100 mm was screen-printed on an insulating plate, air-dried for 30 minutes, and then heated and cured by a dryer at 150 ° C. for 30 minutes. Next, the volume resistivity of this circuit was measured. Table 1 shows the results.
[0021]
Table 1 Measurement results of volume resistivity Example 1 90 mΩ-cm
Example 2 75 mΩ-cm
Example 3 15 mΩ-cm
Example 4 10 mΩ-cm
From these results, it can be seen that the conductive particles obtained in the examples have good electric conductivity.
[0022]
【The invention's effect】
The method for producing conductive fine particles according to the present invention can deposit metal on non-conductive fine particles by a simple method, and the obtained conductive fine particles have good electric conductivity and are used for inkjet printers. It can be suitably applied to applications such as a conductive ink of the present invention and a conductive filler of a conductive molding material.

Claims (3)

非導電性の微粒子を金属無電解めっき液中に混合分散し、該金属無電解めっき液に超音波振動を与えることにより、前記微粒子の表面に前記金属無電解めっき液の金属を析出させることを特徴とする導電性微粒子の製造方法。Non-conductive fine particles are mixed and dispersed in a metal electroless plating solution, and by applying ultrasonic vibration to the metal electroless plating solution, the metal of the metal electroless plating solution is deposited on the surface of the fine particles. A method for producing conductive fine particles, which is characterized in that: 前記非導電性の微粒子が、シリカ又はアルミナである請求項1記載の導電性微粒子の製造方法。The method for producing conductive fine particles according to claim 1, wherein the nonconductive fine particles are silica or alumina. 前記金属無電解めっき液の金属が銅である請求項1又は2記載の導電性微粒子の製造方法。3. The method according to claim 1, wherein the metal of the metal electroless plating solution is copper.
JP2003017010A 2003-01-27 2003-01-27 Method for manufacturing conductive particle Pending JP2004225138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017010A JP2004225138A (en) 2003-01-27 2003-01-27 Method for manufacturing conductive particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017010A JP2004225138A (en) 2003-01-27 2003-01-27 Method for manufacturing conductive particle

Publications (1)

Publication Number Publication Date
JP2004225138A true JP2004225138A (en) 2004-08-12

Family

ID=32904275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017010A Pending JP2004225138A (en) 2003-01-27 2003-01-27 Method for manufacturing conductive particle

Country Status (1)

Country Link
JP (1) JP2004225138A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327034A (en) * 2006-06-08 2007-12-20 Samsung Electro-Mechanics Co Ltd Metallic ink composition for inkjet
JP2009013454A (en) * 2007-07-03 2009-01-22 Institute Of Physical & Chemical Research Method for coating surface of fine particle with metal, and fine particle coated with metal by the method
US20180026570A1 (en) * 2016-07-22 2018-01-25 Abb Schweiz Ag Solid state switch system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327034A (en) * 2006-06-08 2007-12-20 Samsung Electro-Mechanics Co Ltd Metallic ink composition for inkjet
JP2009013454A (en) * 2007-07-03 2009-01-22 Institute Of Physical & Chemical Research Method for coating surface of fine particle with metal, and fine particle coated with metal by the method
US20180026570A1 (en) * 2016-07-22 2018-01-25 Abb Schweiz Ag Solid state switch system
US10411694B2 (en) * 2016-07-22 2019-09-10 Abb Schweiz Ag Solid state switch system

Similar Documents

Publication Publication Date Title
KR102598365B1 (en) Silver-coated resin particles, method for manufacturing same, and electroconductive paste using same
EP1278211B1 (en) Conductive composition
KR20010102308A (en) Conductive electrolessly plated powder, its producing method, and conductive material containing the plated powder
KR20110014966A (en) Conductive particle and anisotropic conductive material
KR20080052646A (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
CN101768386B (en) Ink and method adopting ink to prepare conductive line
KR20170031215A (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
EP1090959B1 (en) Conductive silicone rubber composition
EP2045028A1 (en) Metal nanoparticles, method for producing the same, aqueous dispersion, method for manufacturing printed wiring or electrode, and printed wiring board or device
JP2006302716A (en) Conductive particle and anisotropic conductive material
JP2007035573A (en) Conductive particulate and anisotropic conductive material
TWI419996B (en) Conductive electroless plating powder and its manufacturing method
JP3751154B2 (en) Silver powder manufacturing method
JPWO2006006687A1 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JPWO2012077548A1 (en) Conductive paste, base material with conductive film using the same, and method for producing base material with conductive film
JP4254313B2 (en) Conductive ink and method for producing the same
JP4494108B2 (en) Nickel-coated copper powder manufacturing method, nickel-coated copper powder and conductive paste
JP2004225138A (en) Method for manufacturing conductive particle
JP2006024808A (en) Conductive composition producing method, method of interlayer connection and conductive film or conductive image formation method
KR101416579B1 (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
JPWO2008105355A1 (en) Conductive fine particles and anisotropic conductive materials
JP3536788B2 (en) Manufacturing method of metal coated powder
JP4897344B2 (en) Conductive fine particles and anisotropic conductive materials
JP3828787B2 (en) Method for producing conductive powder and method for producing conductive composition
WO2002061766A1 (en) Conductive powder and conductive composition