JP2004221174A - Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device - Google Patents

Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device Download PDF

Info

Publication number
JP2004221174A
JP2004221174A JP2003004373A JP2003004373A JP2004221174A JP 2004221174 A JP2004221174 A JP 2004221174A JP 2003004373 A JP2003004373 A JP 2003004373A JP 2003004373 A JP2003004373 A JP 2003004373A JP 2004221174 A JP2004221174 A JP 2004221174A
Authority
JP
Japan
Prior art keywords
melt
substrate
liquid phase
raw material
phase epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003004373A
Other languages
Japanese (ja)
Inventor
Yukiya Shibata
幸弥 柴田
Norio Shimada
紀雄 島田
Teppei Sugawara
鉄平 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003004373A priority Critical patent/JP2004221174A/en
Publication of JP2004221174A publication Critical patent/JP2004221174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid phase epitaxial growth device and a method of manufacturing the liquid phase epitaxial growth in which a p-n-p-n layer is not formed in an area near a composition interface and a light emitting diode can be manufactured at a higher yield. <P>SOLUTION: Since Zn does not diffuse into a solution including a fused raw material 29c for the growth of an n-type layer by individually purifying solutions including fused raw materials 29a to 29c by controlling a slider 30 to slide over a board 23 for storing the solution including the fused raw material, the p-n-p-n layer is not formed at the area near the composition interface and thereby a light emitting diode can be manufactured at the higher manufacturing yield. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、液相エピタキシャル成長装置及び液相エピタキシャル基板の製造方法に関する。
【0002】
【従来の技術】
エピタキシャル基板の製造方法として液相エピタキシャル成長方法がある。
【0003】
図2(a)〜(c)は従来の液相エピタキシャル成長装置を用いた液相エピタキシャル成長方法の概念図である。図3はダブルヘテロ構造のエピタキシャルウェハの構造図である。
【0004】
液相エピタキシャル成長装置1は、図示しない加熱手段と、加熱手段により加熱され、原料融液2a、2b、2cを収容する融液用凹部3a、3b、3cが形成され、融液用凹部3a、3b、3cに底部で連通するように水平方向に貫通孔4が形成された融液溜板台5と、成長用基板6を収容する基板用凹部7が形成され、成長用基板6の上面と融液用凹部3a、3b、3cに収容された原料融液2a、2b、2cとが接触して液相エピタキシャル成長するように貫通孔4に摺動自在に挿入された基板収容台8とで構成されている。
【0005】
このような成長装置を用いた液相エピタキシャル成長について説明する。
【0006】
融液溜板台5及び基板収容台8を適当な雰囲気で適当な温度に加熱して、図2(a)に示す状態から基板収容台8を、基板収容台8の基板用凹部7と融液用凹部3aとが一致するまで矢印A方向にスライドさせ(図2(b))、融液用凹部3aと基板用凹部7とが一致したところで一定時間この状態を保持すると、成長用基板6上に薄膜結晶が成長する。その後、基板収容台8を再び矢印A方向にスライドさせて成長用基板6を原料融液2から分離させ、融液用凹部3b、3cにおいても同様の操作を繰り返すことにより、成長用基板6上に複数層の薄膜が形成される(図2(c)、融液用凹部が一つの場合については、例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開平05−345694号公報(第2頁、第5図)
【0008】
【発明が解決しようとする課題】
ところで、液相エピタキシャル成長法により、赤色発光ダイオード用のエピタキシャルウェハを製造する際には、p型ドーパントとして、通常Znが用いられる。
【0009】
しかしながら、Znはエピタキシャル成長を行う温度(700℃〜900℃)において非常に拡散しやすい性質を有している。
【0010】
このため、図3に示すダブルヘテロ構造のエピタキシャルウェハ10の場合、p型GaAs基板11上に形成された、p型GaAlAsクラッド層12及びp型GaAlAs活性層13のZnがn型GaAlAsクラッド層14に拡散するため、組成界面付近でp−n−p−n層が形成され、発光ダイオードがサイリスタ特性を示す不良が生じると考えられている(サイリスタ不良)。
【0011】
このようなp−n−p−n層が組成界面付近で形成されるのを防止するため、n型GaAlAsクラッド層14のドーパントであるTeの量を増加することや、p型GaAlAsクラッド層12及びp型GaAlAs活性層13のZnの量を減少させることが検討されているが、良好な結果が得られていないという問題がある。
【0012】
そこで、本発明の目的は、上記課題を解決し、組成界面付近でp−n−p−n層が形成されず、高歩留まりで発光ダイオードを製造することができる液相エピタキシャル成長装置及び液相エピタキシャル基板の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、少なくとも一つの融液用凹部が一列に形成され、各融液用凹部の底部で連通する水平方向の貫通孔が形成された融液溜板台と、成長用基板を収容する基板用凹部が形成され、基板用凹部が各融液用凹部に位置するように貫通孔に摺動自在に挿入された基板収容台と、融液用凹部に収容された原料を加熱して融液化する加熱手段とを備え、融液溜板台若しくは基板収容台をスライドさせ、成長用基板の上面に各融液用凹部内の原料融液を接触させることにより液相エピタキシャル成長させる液相エピタキシャル成長装置において、一つの通気口が形成され、各融液用凹部を個別に開放して原料融液を純化する板状のスライダーを融液溜板台上に摺動自在に配置したものである。
【0014】
請求項2の発明は、少なくとも一つの融液用凹部が一列に形成され、各融液用凹部の底部で連通する水平方向の貫通孔が形成された融液溜板台の貫通孔に、基板用凹部に成長用基板を収容した基板収容台を挿入し、各融液用凹部内に原料を収容し、加熱手段で原料を融液化し、成長用基板の上面と各融液用凹部に収容された原料融液とが接触して液相エピタキシャル成長するように基板収容台を摺動させる液相エピタキシャル基板の製造方法において、一つの通気口が形成された板状のスライダーを融液溜板台上に摺動させて各融液用凹部を個別に開放することで各原料融液を個別に純化させるものである。
【0015】
ここで、サイリスタ不良対策の取り組みにより、組成界面付近でp−n−p−n層が発生する原因は、n型クラッド層成長用原料融液中にZnが拡散していることに起因しており、このZnによりn型クラッド層初期成長部がp型に変換していることが分かった。
【0016】
エピタキシャル層成長用原料融液には、Gaを溶媒としてGaAs、Al、ドーパントが含まれているが、通常、酸素等の不純物を除去することを目的に、融液用凹部の上方を開放し、高温で純化している。そのため、p型層成長用の原料融液中のドーパントとしてのZnが拡散し、n型成長用の原料融液中に入り込んでしまっていると考えられる。
【0017】
そこで、本発明者らは、p型層成長用の原料融液やn型層成長用の原料融液を純化する際、n型層成長用原料融液中にZnが入り込まないように融液溜板台上に、通気口を有するスライダーを配置して各原料融液を個別に純化することにより、組成界面付近でp−n−p−n層が形成されず、高歩留まりで発光ダイオードを製造することができることを見出した。
【0018】
すなわち、本発明によれば、スライダーを融液溜板台上に摺動させて各原料融液を個別に純化させることにより、n型層成長用の原料融液中にZnが入り込まないので、組成界面付近でp−n−p−n層が形成されず、高歩留まりで発光ダイオードを製造することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づいて詳述する。
【0020】
図1(a)〜(c)は本発明の液相エピタキシャル基板の製造方法を適用した液相エピタキシャル成長装置の一実施の形態を示す概念図である。
【0021】
本実施の形態では、成長用基板に三つエピタキシャル層を成長させる場合について説明する。
【0022】
本液相エピタキシャル成長装置20は、三つ(図では三つであるが限定されない。)の融液用凹部21a、21b、21cが一列に形成され、各融液用凹部21a〜21cの底部で連通する水平方向の貫通孔22が形成された融液溜板台23、及び成長用基板24を収容する基板用凹部25が形成され、基板用凹部25が各融液用凹部21a〜21cに位置するように貫通孔22に摺動自在に挿入された基板収容台26で構成されたスライドボート式の三層成長用グラファイト治具27と、融液用凹部21a〜21cに収容された原料を加熱して融液化する加熱手段(図示せず。)と、融液溜板台23上に摺動自在に配置され、一つの通気口28が形成され、各融液用凹部21a〜21cを個別に開放して原料融液29a、29b、29cを純化する板状のスライダー30とで構成されている。
【0023】
次に図1(a)〜(c)を参照して本液相エピタキシャル基板の製造方法について説明する。
【0024】
成長用基板24としてのp型基板を基板収容台26にセットし、エピタキシャル層の各原料を三層成長用グラファイト治具27の各融液用凹部21a〜21c内にセットし、三層成長用グラファイト治具27をスライダー30ごと液相エピタキシャル成長装置20内の所定の箇所にセットする。水素気流中で図示しない加熱手段で液相エピタキシャル成長装置20を所定の温度に加熱し、所定の時間保持することにより、融液用凹部21a〜21c内の原料融液29a〜29c中の不純物を除去する純化を行う。
【0025】
純化の際、融液溜板台23上のスライダー30を一定時間毎に矢印C方向に移動する。
【0026】
純化における最初の段階では例えばp型層の原料融液29aを収容した融液用凹部21aの上方に通気口28が位置するようにスライダー30を摺動させ(図1(a))、次の段階ではp型層の原料融液29bを収容した融液用凹部21bの上方に通気口28が位置するようにスライダー30を摺動させ(図1(b))、最後の段階ではn型層の原料融液29cを収容した融液用凹部21cの上方に通気口28が位置するようにスライダー30を摺動させる(図1(c))ことにより各原料融液29a〜29cの純化を行う。
【0027】
所定時間経過後、液相エピタキシャル成長装置20を所定の温度まで一定の割合で降温させる。液相エピタキシャル成長装置20の降温中に、基板収容台26を摺動させて成長用基板24を順次原料融液29a〜29cに接触させ、p型層、p型層、n型層を順次液相エピタキシャル成長させることにより、n型層成長用の原料融液29c中にZnが入り込まないので、組成界面付近でp−n−p−n層が形成されず、高歩留まりで発光ダイオードを製造することができる。
【0028】
【実施例】
次に本発明の液相エピタキシャル基板の製造方法の実施例について図1(a)〜(c)を参照して説明する。
【0029】
本実施例ではダブルヘテロ構造のエピタキシャルウェハの場合について説明する。
【0030】
p型GaAs基板24とエピタキシャル層の原料であるGa、GaAs、Al、Zn、Teを三層成長用グラファイト治具27の各融液用凹部21a〜21c内にセットし、液相エピタキシャル成長装置20内の所定の箇所にセットする。水素気流中で図示しない加熱手段により液相エピタキシャル成長装置20を約900℃に加熱し、約3時間保持することにより、融液用凹部21a〜21c内の原料融液中の不純物を除去する純化を行った。
【0031】
純化の際、融液溜板台23上のスライダー30を約1時間毎に移動した。
【0032】
純化における最初の1時間(1時間目)はp型GaAlAsクラッド層の原料融液29aを収容した融液用凹部21aの上方に通気口28が位置するようにスライダー30を摺動させ(図1(a))、次の1時間(2時間目)はp型GaAlAs活性層の原料融液29bを収容した融液用凹部21bの上方に通気口28が位置するようにスライダー30を摺動させ(図1(b))、最後の1時間(3時間目)はn型GaAlAsクラッド層の原料融液29cを収容した融液用凹部21cの上方に通気口28が位置するようにスライダー30を摺動させる(図1(c))ことにより各原料融液29a〜29cの純化を行った。
【0033】
3時間経過後、液相エピタキシャル成長装置20を約700℃まで1℃/minの割合で降温させた。液相エピタキシャル成長装置20の降温中に、基板収容台26を摺動させてp型GaAs基板24を順次原料融液29a〜29cに接触させ、p型GaAlAsクラッド層、p型GaAlAs活性層、n型GaAlAsクラッド層を順次液相エピタキシャル成長させた。
【0034】
得られたエピタキシャルウェハに電極を形成してチップを作製した後、図示しないステムにチップを取り付けてエポキシ樹脂でコーティングして発光ダイオードを作製した。
【0035】
また、比較例として融液溜板台23上にスライダー30の無い通常のスライドボート式の三層成長用グラファイト治具27を用いて、上記実施例と同条件でエピタキシャルウェハを作製した。比較例ではスライダー30を用いていないため、融液用凹部21a〜21cの上方は最初から最後まで開放状態のままでエピタキシャル成長を実施した。
【0036】
上記実施例と同様に、得られたエピタキシャルウェハに電極を形成してチップを作製した後、図示しないステムにチップを取り付けて、エポキシ樹脂でコーティングして発光ダイオードを作製した。
【0037】
表1に実施例と比較例とのサイリスタ不良発生率を示す。
【0038】
【表1】

Figure 2004221174
【0039】
同表より、本実施例のエピタキシャルウェハを用いて発光ダイオードを製造すると、従来のエピタキシャルウェハを用いた発光ダイオードと比較して、サイリスタ不良発生率が1/50と少ないことが分かる。これは、p型層成長用原料融液29b中のドーパントであるZnが、n型成長用原料融液29c中に入り込まないようにスライダー30を用いたためである。
【0040】
本実施例ではダブルヘテロ構造のエピタキシャルウェハについて説明したが、本発明はこれに限定されるものではなく、シングルヘテロ構造のエピタキシャルウェハについても同様である。また、本液相エピタキシャル基板は、ダブルヘテロ構造のエピタキシャルウェハからGaAs基板を除去して得られる裏面反射型の発光ダイオードにも適用することができる。
【0041】
以上において、p型層成長用原料融液やn型層成長用原料融液を純化する際、n型層成長用原料融液中にZnが入り込まないように成長用グラファイト治具の融液用凹部の上方に、通気口を有するスライダーを設けて個別に純化を行うことにより、組成界面付近でp−n−p−n層が形成されなくなり、従来例に比較してサイリスタ特性を示さない発光ダイオードを高歩留まりで製造することができた。
【0042】
【発明の効果】
以上要するに本発明によれば、組成界面付近でp−n−p−n層が形成されず、高歩留まりで発光ダイオードを製造することができる液相エピタキシャル成長装置及び液相エピタキシャル基板の製造方法の提供を実現することができる。
【図面の簡単な説明】
【図1】(a)〜(c)は本発明の液相エピタキシャル基板の製造方法を適用した液相エピタキシャル成長装置の一実施の形態を示す概念図である。
【図2】(a)〜(c)は従来の液相エピタキシャル成長装置を用いた液相エピタキシャル成長方法の概念図である。
【図3】ダブルヘテロ構造のエピタキシャルウェハの構造図である。
【符号の説明】
20 液相エピタキシャル成長装置
21a〜21c 融液用凹部
22 貫通孔
23 融液溜板台
24 成長用基板(p型GaAs基板)
25 基板用凹部
26 基板収容台
27 三層成長用グラファイト治具
28 通気孔
29a〜29c 原料融液
30 スライダー[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid phase epitaxial growth apparatus and a method for manufacturing a liquid phase epitaxial substrate.
[0002]
[Prior art]
As a method for manufacturing an epitaxial substrate, there is a liquid phase epitaxial growth method.
[0003]
2A to 2C are conceptual diagrams of a liquid phase epitaxial growth method using a conventional liquid phase epitaxial growth apparatus. FIG. 3 is a structural diagram of an epitaxial wafer having a double hetero structure.
[0004]
The liquid phase epitaxial growth apparatus 1 is heated by a heating means (not shown) and a heating means to form concave portions 3a, 3b, and 3c for the melts for accommodating the raw material melts 2a, 2b, and 2c. 3c, a melt reservoir plate 5 in which a through hole 4 is formed in a horizontal direction so as to communicate with a bottom portion, and a substrate recess 7 for accommodating a growth substrate 6 are formed. A substrate accommodating table 8 is slidably inserted into the through-hole 4 so that the raw material melts 2a, 2b, 2c accommodated in the liquid recesses 3a, 3b, 3c come into contact with each other and undergo liquid phase epitaxial growth. ing.
[0005]
Liquid phase epitaxial growth using such a growth apparatus will be described.
[0006]
The melt storage plate base 5 and the substrate storage table 8 are heated to an appropriate temperature in an appropriate atmosphere, and the substrate storage table 8 is fused with the substrate recess 7 of the substrate storage table 8 from the state shown in FIG. Slide in the direction of arrow A until the concave portion 3a for the liquid coincides (FIG. 2B). When this state is maintained for a certain time when the concave portion 3a for the melt coincides with the concave portion 7 for the substrate, the growth substrate 6 A thin film crystal grows thereon. After that, the substrate accommodating table 8 is slid again in the direction of arrow A to separate the growth substrate 6 from the raw material melt 2, and the same operation is repeated in the melt recesses 3 b, 3 c, so that the growth substrate 6 is removed. (FIG. 2 (c), in the case of a single melt recess, see, for example, Patent Document 1).
[0007]
[Patent Document 1]
JP-A-05-345694 (page 2, FIG. 5)
[0008]
[Problems to be solved by the invention]
By the way, when manufacturing an epitaxial wafer for a red light emitting diode by a liquid phase epitaxial growth method, Zn is usually used as a p-type dopant.
[0009]
However, Zn has a property of being very easily diffused at a temperature at which epitaxial growth is performed (700 ° C. to 900 ° C.).
[0010]
Therefore, in the case of the epitaxial wafer 10 having the double hetero structure shown in FIG. 3, the Zn of the p-type GaAlAs cladding layer 12 and the p-type GaAlAs active layer 13 formed on the p-type GaAs substrate 11 is changed to the n-type GaAlAs cladding layer 14. Therefore, a pnpn layer is formed in the vicinity of the composition interface, and it is considered that a defect in which the light emitting diode exhibits thyristor characteristics occurs (thyristor defect).
[0011]
In order to prevent such a pnpn layer from being formed near the composition interface, the amount of Te which is a dopant of the n-type GaAlAs cladding layer 14 is increased, or the p-type GaAlAs cladding layer 12 In addition, although studies have been made to reduce the amount of Zn in the p-type GaAlAs active layer 13, there is a problem that good results have not been obtained.
[0012]
Therefore, an object of the present invention is to solve the above-mentioned problem, to provide a liquid-phase epitaxial growth apparatus and a liquid-phase epitaxial growth apparatus capable of manufacturing a light-emitting diode with a high yield without forming a pn-pn layer near a composition interface. It is to provide a method for manufacturing a substrate.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention provides a melt reservoir in which at least one melt recess is formed in a line, and a horizontal through hole communicating with the bottom of each melt recess is formed. A plate holder, a substrate recess in which a substrate recess for housing a growth substrate is formed, and a substrate housing slidably inserted into the through hole such that the substrate recess is located in each melt recess; and a melt recess. Heating means for heating and melting the raw material contained in the substrate, and sliding the melt storage plate or the substrate storage so that the raw material melt in each concave portion for melt is brought into contact with the upper surface of the growth substrate. In the liquid-phase epitaxial growth apparatus for performing liquid-phase epitaxial growth, one vent is formed, and a plate-shaped slider for purifying the raw material melt by individually opening each melt concave portion is slid on the melt reservoir plate base. It is arranged movably.
[0014]
The invention according to claim 2 is characterized in that at least one melt recess is formed in a line, and a horizontal through-hole communicating with the bottom of each melt recess is formed in the through-hole of the melt reservoir plate base. The substrate accommodating table accommodating the substrate for growth is inserted into the concave portion, and the raw material is accommodated in each concave portion for melt, the raw material is melted by the heating means, and accommodated in the upper surface of the substrate for growth and the concave portion for each melt. In the method for manufacturing a liquid phase epitaxial substrate, in which a substrate accommodating base is slid so that the raw material melt is brought into contact with the melt and the liquid phase epitaxial growth is performed, a plate-shaped slider having one vent hole is formed by a melt reservoir plate base. Each raw material melt is individually purified by sliding upward to individually open each melt concave portion.
[0015]
Here, the reason why the pnpn layer is generated near the composition interface due to the thyristor defect countermeasures is that Zn is diffused into the raw material melt for growing the n-type clad layer. Thus, it was found that the n-type clad layer initially grown portion was converted to p-type by the Zn.
[0016]
The raw material melt for epitaxial layer growth contains GaAs, Al, and a dopant using Ga as a solvent. However, usually, for the purpose of removing impurities such as oxygen, the upper part of the concave portion for melt is opened, Purified at high temperatures. Therefore, it is considered that Zn as a dopant in the raw material melt for growing the p-type layer diffuses and enters the raw material melt for n-type growth.
[0017]
Therefore, the present inventors, when purifying a raw material melt for growing a p-type layer or a raw material melt for growing an n-type layer, use a melt so that Zn does not enter the raw material melt for growing an n-type layer. By disposing a slider having an air vent on the reservoir plate and individually purifying each raw material melt, a pnpn layer is not formed near the composition interface, and light emitting diodes can be produced at a high yield. It has been found that it can be manufactured.
[0018]
That is, according to the present invention, since the slider is slid on the melt reservoir plate to individually purify each raw material melt, Zn does not enter the raw material melt for growing the n-type layer. No pnpn layer is formed near the composition interface, and a light-emitting diode can be manufactured with a high yield.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0020]
FIGS. 1A to 1C are conceptual views showing an embodiment of a liquid phase epitaxial growth apparatus to which a method for manufacturing a liquid phase epitaxial substrate according to the present invention is applied.
[0021]
In this embodiment, a case where three epitaxial layers are grown on a growth substrate will be described.
[0022]
In the present liquid phase epitaxial growth apparatus 20, three (three, but not limited to, three in the figure) concave portions for melt 21a, 21b, and 21c are formed in a row, and communicate with the bottom of each of the concave portions for melt 21a to 21c. And a substrate recess 25 for accommodating a growth substrate 24, and the substrate recess 25 is located in each of the melt recesses 21a to 21c. As described above, the slide boat type three-layer growth graphite jig 27 composed of the substrate accommodation table 26 slidably inserted into the through hole 22 and the raw materials accommodated in the melt recesses 21a to 21c are heated. And a heating means (not shown) for slidably forming a ventilation port 28 on the melt reservoir plate 23 to individually open the respective melt recesses 21a to 21c. And the raw material melts 29a, 29b, 29c It is composed of a plate-like slider 30 that reduction.
[0023]
Next, a method of manufacturing the present liquid phase epitaxial substrate will be described with reference to FIGS.
[0024]
A p-type substrate as the growth substrate 24 is set on the substrate accommodating table 26, and each raw material of the epitaxial layer is set in each of the melt recesses 21a to 21c of the three-layer growth graphite jig 27, and the three-layer growth is performed. The graphite jig 27 is set together with the slider 30 at a predetermined position in the liquid phase epitaxial growth apparatus 20. The liquid phase epitaxial growth apparatus 20 is heated to a predetermined temperature by a heating means (not shown) in a hydrogen stream, and is maintained for a predetermined time to remove impurities in the raw material melts 29a to 29c in the melt recesses 21a to 21c. To purify.
[0025]
At the time of purification, the slider 30 on the melt reservoir 23 is moved in the direction of arrow C at regular intervals.
[0026]
In the first stage of the purification, for example, the slider 30 is slid so that the ventilation hole 28 is located above the melt concave portion 21a containing the raw material melt 29a of the p-type layer (FIG. 1A). At the stage, the slider 30 is slid so that the ventilation hole 28 is located above the melt concave portion 21b containing the raw material melt 29b of the p-type layer (FIG. 1 (b)). The raw material melts 29a to 29c are purified by sliding the slider 30 so that the ventilation hole 28 is positioned above the melt concave portion 21c containing the raw material melt 29c (FIG. 1C). .
[0027]
After a lapse of a predetermined time, the temperature of the liquid phase epitaxial growth apparatus 20 is lowered to a predetermined temperature at a constant rate. While the temperature of the liquid-phase epitaxial growth apparatus 20 is lowered, the substrate accommodating table 26 is slid to bring the growth substrate 24 into contact with the raw material melts 29a to 29c in sequence, and the p-type layer, the p-type layer, and the n-type By epitaxial growth, Zn does not enter the raw material melt 29c for growing the n-type layer, so that a pnpn layer is not formed near the composition interface, and a light-emitting diode can be manufactured with a high yield. it can.
[0028]
【Example】
Next, an embodiment of a method for manufacturing a liquid phase epitaxial substrate according to the present invention will be described with reference to FIGS.
[0029]
In this embodiment, a case of an epitaxial wafer having a double hetero structure will be described.
[0030]
The p-type GaAs substrate 24 and Ga, GaAs, Al, Zn, and Te, which are the raw materials of the epitaxial layer, are set in the concave portions 21a to 21c for the melt of the graphite jig 27 for three-layer growth, and the liquid phase epitaxial growth apparatus 20 Set at a predetermined location. The liquid phase epitaxial growth apparatus 20 is heated to about 900 ° C. by a heating means (not shown) in a hydrogen gas stream, and is maintained for about 3 hours to purify the impurities in the raw material melts in the melt recesses 21a to 21c. went.
[0031]
During purification, the slider 30 on the melt reservoir plate 23 was moved about every hour.
[0032]
During the first hour (first hour) of the purification, the slider 30 is slid so that the vent hole 28 is located above the melt recess 21a containing the raw material melt 29a of the p-type GaAlAs cladding layer (FIG. 1). (A)) Next, for the next hour (second hour), the slider 30 is slid so that the vent hole 28 is located above the melt concave portion 21b containing the raw material melt 29b of the p-type GaAlAs active layer. (FIG. 1B), for the last hour (third hour), the slider 30 is positioned so that the vent hole 28 is positioned above the melt concave portion 21c containing the raw material melt 29c of the n-type GaAlAs cladding layer. The raw material melts 29a to 29c were purified by sliding (FIG. 1C).
[0033]
After a lapse of 3 hours, the temperature of the liquid phase epitaxial growth apparatus 20 was lowered to about 700 ° C. at a rate of 1 ° C./min. While the temperature of the liquid phase epitaxial growth apparatus 20 is lowered, the substrate accommodating table 26 is slid to bring the p-type GaAs substrate 24 into contact with the raw material melts 29a to 29c in sequence, and the p-type GaAlAs cladding layer, the p-type GaAlAs active layer, and the n-type GaAlAs cladding layers were sequentially grown by liquid phase epitaxial growth.
[0034]
After forming an electrode on the obtained epitaxial wafer to produce a chip, the chip was attached to a stem (not shown) and coated with an epoxy resin to produce a light emitting diode.
[0035]
Further, as a comparative example, an epitaxial wafer was manufactured under the same conditions as in the above-described example using a normal slide boat type three-layer growth graphite jig 27 without the slider 30 on the melt reservoir plate base 23. In the comparative example, since the slider 30 was not used, the epitaxial growth was performed from the beginning to the end in an open state above the concave portions 21 a to 21 c for the melt.
[0036]
In the same manner as in the above example, an electrode was formed on the obtained epitaxial wafer to produce a chip, and then the chip was attached to a stem (not shown) and coated with an epoxy resin to produce a light emitting diode.
[0037]
Table 1 shows thyristor defect occurrence rates of the example and the comparative example.
[0038]
[Table 1]
Figure 2004221174
[0039]
From the table, it can be seen that when a light emitting diode is manufactured using the epitaxial wafer of the present example, the thyristor defect occurrence rate is as low as 1/50 as compared with a light emitting diode using a conventional epitaxial wafer. This is because the slider 30 was used so that Zn as a dopant in the p-type layer growth material melt 29b did not enter the n-type growth material melt 29c.
[0040]
In the present embodiment, an epitaxial wafer having a double hetero structure has been described, but the present invention is not limited to this, and the same applies to an epitaxial wafer having a single hetero structure. In addition, the present liquid phase epitaxial substrate can be applied to a back reflection type light emitting diode obtained by removing a GaAs substrate from an epitaxial wafer having a double hetero structure.
[0041]
In the above, when purifying the raw material melt for p-type layer growth or the raw material melt for n-type layer growth, the melt for the graphite jig for growth is used so that Zn does not enter the raw material melt for n-type layer growth. By providing a slider having an air vent above the concave portion and performing individual purification, a pnpn layer is not formed near the composition interface, and light emission that does not exhibit thyristor characteristics as compared with the conventional example Diodes could be manufactured with high yield.
[0042]
【The invention's effect】
In short, according to the present invention, there is provided a liquid phase epitaxial growth apparatus and a liquid phase epitaxial substrate manufacturing method capable of manufacturing a light emitting diode with a high yield without forming a pnpn layer near a composition interface. Can be realized.
[Brief description of the drawings]
FIGS. 1A to 1C are conceptual diagrams showing an embodiment of a liquid phase epitaxial growth apparatus to which a method for manufacturing a liquid phase epitaxial substrate according to the present invention is applied.
FIGS. 2A to 2C are conceptual diagrams of a liquid phase epitaxial growth method using a conventional liquid phase epitaxial growth apparatus.
FIG. 3 is a structural diagram of an epitaxial wafer having a double hetero structure.
[Explanation of symbols]
Reference Signs List 20 liquid phase epitaxial growth apparatus 21a to 21c melt recess 22 through hole 23 melt reservoir 24 growth substrate (p-type GaAs substrate)
25 Substrate recess 26 Substrate container 27 Graphite jig for three-layer growth 28 Vent holes 29a to 29c Raw material melt 30 Slider

Claims (2)

少なくとも一つの融液用凹部が一列に形成され、各融液用凹部の底部で連通する水平方向の貫通孔が形成された融液溜板台と、成長用基板を収容する基板用凹部が形成され、該基板用凹部が各融液用凹部に位置するように上記貫通孔に摺動自在に挿入された基板収容台と、上記融液用凹部に収容された原料を加熱して融液化する加熱手段とを備え、上記融液溜板台若しくは上記基板収容台をスライドさせ、上記成長用基板の上面に各融液用凹部内の原料融液を接触させることにより液相エピタキシャル成長させる液相エピタキシャル成長装置において、一つの通気口が形成され、各融液用凹部を個別に開放して上記原料融液を純化する板状のスライダーを上記融液溜板台上に摺動自在に配置したことを特徴とする液相エピタキシャル成長装置。At least one melt recess is formed in a row, and a melt reservoir plate base in which a horizontal through hole communicating with the bottom of each melt recess is formed, and a substrate recess for accommodating a growth substrate is formed. A substrate receiving table slidably inserted into the through-hole such that the substrate concave portion is positioned in each of the melt concave portions; and a raw material contained in the melt concave portion is heated and melted. Liquid phase epitaxial growth in which a heating means is provided and the melt reservoir plate or the substrate accommodating stage is slid, and the raw material melt in each melt recess is brought into contact with the upper surface of the growth substrate by liquid phase epitaxial growth. In the apparatus, one vent hole is formed, and a plate-shaped slider for purifying the raw material melt by individually opening each melt concave portion is slidably disposed on the melt reservoir plate base. Characteristic liquid phase epitaxial growth equipment 少なくとも一つの融液用凹部が一列に形成され、各融液用凹部の底部で連通する水平方向の貫通孔が形成された融液溜板台の貫通孔に、基板用凹部に成長用基板を収容した基板収容台を挿入し、各融液用凹部内に原料を収容し、加熱手段で上記原料を融液化し、上記成長用基板の上面と各融液用凹部に収容された原料融液とが接触して液相エピタキシャル成長するように上記基板収容台を摺動させる液相エピタキシャル基板の製造方法において、一つの通気口が形成された板状のスライダーを上記融液溜板台上に摺動させて各融液用凹部を個別に開放することで各原料融液を個別に純化させることを特徴とする液相エピタキシャル基板の製造方法。At least one recess for the melt is formed in a row, a through hole of the melt reservoir plate base formed with a horizontal through hole communicating with the bottom of each recess for the melt, and a growth substrate in the recess for the substrate. The accommodated substrate accommodating table is inserted, the raw material is accommodated in each concave portion for melt, the raw material is melted by heating means, and the raw material melt accommodated in the upper surface of the growth substrate and the concave portion for each melt. In the method for manufacturing a liquid phase epitaxial substrate, the substrate accommodating base is slid so that liquid phase epitaxial growth is brought into contact with the substrate, a plate-like slider having one vent hole is slid onto the melt reservoir plate base. A method for manufacturing a liquid phase epitaxial substrate, wherein each raw material melt is individually purified by moving the melt concave portions individually.
JP2003004373A 2003-01-10 2003-01-10 Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device Pending JP2004221174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004373A JP2004221174A (en) 2003-01-10 2003-01-10 Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004373A JP2004221174A (en) 2003-01-10 2003-01-10 Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device

Publications (1)

Publication Number Publication Date
JP2004221174A true JP2004221174A (en) 2004-08-05

Family

ID=32895374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004373A Pending JP2004221174A (en) 2003-01-10 2003-01-10 Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device

Country Status (1)

Country Link
JP (1) JP2004221174A (en)

Similar Documents

Publication Publication Date Title
JP3356041B2 (en) Gallium phosphide green light emitting device
JP4554287B2 (en) Group III nitride crystal manufacturing method and semiconductor substrate manufacturing method
JP2004221174A (en) Liquid phase epitaxial growth device and method of manufacturing liquid phase epitaxial growth device
JPS6136395B2 (en)
JP4402217B2 (en) Epitaxial substrate for infrared light emitting device and light emitting device produced using the same
JP4211897B2 (en) Liquid phase epitaxial growth method
JPH08264467A (en) Method of forming nitrogen-doped gap epitaxial layer
JPH05335621A (en) Gallium phosphide green light emitting diode
JPH0279422A (en) Liquid phase epitaxial growth device and growth method
JP2006173338A (en) Manufacturing method of epitaxial wafer for light emitting diode
JPH0575165A (en) Material and manufacture for homo-joint type gainp light emitting material
JP2006128279A (en) Method and device of liquid phase growth
JP2006005074A (en) Method for liquid phase epitaxy
JPS5831739B2 (en) Method for manufacturing gallium phosphide green light emitting device
JPH11284227A (en) Manufacture of compound semiconductor
TW508835B (en) Epitaxial wafer for infrared light-emitting device and light-emitting device using the same
JP2783580B2 (en) Double hetero-type infrared light emitting device
JPH05206041A (en) Liquid growth method for semiconductor material
JP2007161547A (en) Liquid phase growing apparatus, growing tool for liquid phase growing apparatus and liquid phase growing method
JP2005175198A (en) Method and apparatus for liquid phase epitaxial growth
JPH06295874A (en) Method and system for liquid phase epitaxial growth
JP2000182978A (en) Method and apparatus for liquid phase epitaxial growth
JPH07115065A (en) Liquid phase epitaxial growth method
JPS5823435A (en) Liquid epitaxial growing method
JPS6021894A (en) Process for liquid phase epitaxial growth