JP2783580B2 - Double hetero-type infrared light emitting device - Google Patents

Double hetero-type infrared light emitting device

Info

Publication number
JP2783580B2
JP2783580B2 JP5582089A JP5582089A JP2783580B2 JP 2783580 B2 JP2783580 B2 JP 2783580B2 JP 5582089 A JP5582089 A JP 5582089A JP 5582089 A JP5582089 A JP 5582089A JP 2783580 B2 JP2783580 B2 JP 2783580B2
Authority
JP
Japan
Prior art keywords
type
layer
light emitting
emitting device
gaalas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5582089A
Other languages
Japanese (ja)
Other versions
JPH02235380A (en
Inventor
哲男 関和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13009586&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2783580(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5582089A priority Critical patent/JP2783580B2/en
Publication of JPH02235380A publication Critical patent/JPH02235380A/en
Application granted granted Critical
Publication of JP2783580B2 publication Critical patent/JP2783580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、GaAlAs層を用いた発光素子に関し、特に80
〜880nmの赤外光領域で高出力の発光素子として利用す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to a light emitting device using a GaAlAs layer,
It is used as a high-output light emitting element in the infrared light range of 880880 nm.

(従来の技術) III−V族の化合物半導体結晶を利用する発光素子は
複数種類が実用化されており、その中でダブルヘテロ
(Double Hetero)構造のGaAlAsも開発を終えて市販さ
れている。この化合物半導体単結晶はいわゆる液相エピ
タキシャル(Epitaxial)成長法を利用する一方法に、
徐冷方式により成長させる方法が知られている。また、
発光波長が840±40nmの範囲にあるGaAlAs発光素子で
も、液相エピタキシャル成長を徐冷方式により施して製
造することも行われている。即ち、第5図aに明らかな
ように、n型GaAs基板50表面付近に両性不純物であるシ
リコンを添加してn型GaAs層51とp型GaAs層52を隣接し
て順次成長させて赤外光用発光素子を形成している。こ
のP型GaAs層52の露出表面部分には、Au−Be層からなる
電極53を、n型GaAs基板50の露出表面全面にAu−Ge層か
らなる電極54を設置してホモ接合型発光素子を完成して
いる。また、第5図bにあるように、n型GaAs基板(図
示せず)表面付近には、上記のようにシリコンなどの両
性不純物を導入してn型GaAlAs層55とp型GaAlAs層56を
隣接して順次成長させてからn型GaAs基板を除去し、電
極は第5図aの例と同様に形成する。この結果、n型Ga
AlAs層55から発光波長が840±40nmの赤外光を取出す型
も実用化されている。第6図a,bに従来素子の特性を明
らかにしたが、説明は後述する。
(Prior Art) A plurality of types of light-emitting devices using III-V group compound semiconductor crystals have been put into practical use, and among them, GaAlAs having a double hetero structure has been developed and marketed. This compound semiconductor single crystal is used as one method utilizing a so-called liquid phase epitaxial (Epitaxial) growth method.
A method of growing by a slow cooling method is known. Also,
Some GaAlAs light emitting devices having an emission wavelength in the range of 840 ± 40 nm are also manufactured by performing liquid phase epitaxial growth by a slow cooling method. That is, as is apparent from FIG. 5A, silicon, which is an amphoteric impurity, is added to the vicinity of the surface of the n-type GaAs substrate 50, and the n-type GaAs layer 51 and the p-type GaAs layer 52 are successively grown adjacent to each other. A light emitting element for light is formed. An electrode 53 made of an Au-Be layer is provided on an exposed surface portion of the P-type GaAs layer 52, and an electrode 54 made of an Au-Ge layer is provided on the entire exposed surface of the n-type GaAs substrate 50. Has been completed. As shown in FIG. 5B, an n-type GaAlAs layer 55 and a p-type GaAlAs layer 56 are formed near the surface of an n-type GaAs substrate (not shown) by introducing an amphoteric impurity such as silicon as described above. After successively growing adjacently, the n-type GaAs substrate is removed, and electrodes are formed as in the example of FIG. 5A. As a result, n-type Ga
A type that extracts infrared light having an emission wavelength of 840 ± 40 nm from the AlAs layer 55 has also been put to practical use. 6a and 6b show the characteristics of the conventional device, and the description will be given later.

(発明が解決しようとする課題) このような発光素子の発光効率(I=10mA)は、4〜
5%、GaAlAs素子の発光効率(I=10mA)は、6〜7%
である。しかし、最近このような発光素子が利用されて
いるリモコン機器やフォトカプラなどにおける低電流駆
動では、発光出力不足のため単体で使用はできない。ま
た、高出力を得るため、2回目の発光素子による低電流
駆動を使う製品があるが、部品構造が複雑になる外に製
造工程が長い時間を要するなどの難点がある。
(Problems to be Solved by the Invention) The luminous efficiency (I = 10 mA) of such a light emitting element is 4 to
5%, luminous efficiency (I = 10mA) of GaAlAs element is 6-7%
It is. However, low-current driving in a remote control device, a photocoupler, or the like in which such a light-emitting element is recently used cannot be used alone due to insufficient light-emission output. In addition, there is a product that uses a low-current drive by a second light emitting element in order to obtain a high output. However, there are disadvantages in that the component structure becomes complicated and the manufacturing process requires a long time.

同様に、高電流駆動すると高い発光出力が得られるも
のの、寿命が短く高発光出力を継続できない。
Similarly, although high light emission output can be obtained by driving at a high current, the life is short and high light emission output cannot be continued.

本発明は、このような事情により成されたもので、発
光素子構造をP型GaAlAsクラッド層、P型GaAlAsアクテ
ィブ層及びN型GaAlAsクラッド層から成るダブルヘテロ
構造とし、更に、発光効率を向上して単体でもリモコン
(Remoto Controle)などへの適用を可能にすることを
目的とするものである。
The present invention has been made under such circumstances, and the light emitting device structure has a double hetero structure including a P-type GaAlAs cladding layer, a P-type GaAlAs active layer and an N-type GaAlAs cladding layer, and further improves the luminous efficiency. It is intended to enable application to a remote control (Remoto Controle) or the like by itself.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 本発明に係るダブルヘテロ型赤外光発光素子は、P型
GaAlAsクラッド層内に含有する不純物濃度が0.5×1017/
cm3以上、前記P型GaAlAsクラッド層に隣接するアクテ
ィブ層内の不純物濃度が1〜8×1017/cm3、N型GaAlAs
クラッド層内に含有する不純物濃度が0.5×1017/cm3
上であり、各成長層厚さをP型クラッド層50〜200μ
m、P型アクティブ層0.1〜2μm、N型クラッド層20
〜90μmとする点に特徴がある。
(Means for Solving the Problems) The double hetero type infrared light emitting device according to the present invention is a P-type infrared light emitting device.
The impurity concentration in the GaAlAs cladding layer is 0.5 × 10 17 /
cm 3 or more, the impurity concentration in the active layer adjacent to the P-type GaAlAs cladding layer is 1 to 8 × 10 17 / cm 3 , and the N-type GaAlAs
The impurity concentration in the cladding layer is 0.5 × 10 17 / cm 3 or more, and the thickness of each growth layer is set to 50 to 200 μm for the P-type cladding layer.
m, P-type active layer 0.1 to 2 μm, N-type cladding layer 20
It is characterized in that the thickness is up to 90 μm.

(作 用) このダブルヘテロ型GaAlAs発光素子では徐冷法を利用
する液相エピタキシャル成長により、P型GaAs基板に亜
鉛を添加した高AlAs混晶比のP型GaAlAsクラッド層を形
成し、更に、発光波長を840±40nmとするのに必要なAlA
s混晶比を備えた亜鉛添加P型GaAlAsアクティブ層を設
け、これに隣接してテルル添加のN型GaAlAs層をP型Ga
AlAsクラッド層と同等のAlAs高混晶比に形成する。
(Operation) In this double hetero-type GaAlAs light-emitting device, a P-type GaAlAs cladding layer having a high AlAs mixed crystal ratio, in which zinc is added, is formed on a P-type GaAs substrate by liquid phase epitaxial growth using a slow cooling method. AlA required for 840 ± 40nm
A zinc-doped P-type GaAlAs active layer having a mixed crystal ratio is provided, and a tellurium-doped N-type GaAlAs layer is formed adjacent to the zinc-doped P-type GaAlAs layer.
The AlAs cladding layer is formed to have the same high AlAs mixed crystal ratio.

混晶比について更に説明すると、本発明に係わるダブ
ルヘテロ型GaAlAs素子は、上記のように発光波長を840n
mとするようにアクティブ層を形成するために、GaAlAs
におけるAl混晶比は0.03程度にしており、発光波長が66
0nmのダブルヘテロ型GaAlAs発光素子におけるAl混晶比
0.35とは相違している。
To further explain the mixed crystal ratio, the double hetero type GaAlAs device according to the present invention has an emission wavelength of 840 nm as described above.
GaAlAs to form the active layer
Is about 0.03, and the emission wavelength is 66
Al mixed crystal ratio in 0nm double hetero-type GaAlAs light emitting device
It is different from 0.35.

このAl混晶比を0.03程度にしたGaAlAs層を備えた発光
素子のダブルヘテロ構造は、高出力の赤外光発光素子が
得られるが、本発明では、各層の最適不純物濃度及び厚
さを見出だした事実を基に完成した。
The double heterostructure of the light emitting device including the GaAlAs layer having the Al mixed crystal ratio of about 0.03 can provide a high-output infrared light emitting device. In the present invention, however, the optimum impurity concentration and thickness of each layer are determined. It was completed based on the facts that came out.

即ち、縦軸に不純物濃度/cm3、横軸に各層の厚さμm
を採った第1図aに示すように、ハッチング(Hatchin
g)をした領域内に選定すると、従来のGaAsもしくはGaA
lAsからなり、しかも両性不純物であるSiを添加した発
光素子が得られる発光効率より優れたダブルヘテロ型Ga
AlAs発光素子が得られる。
That is, the vertical axis represents the impurity concentration / cm 3 , and the horizontal axis represents the thickness μm of each layer.
As shown in FIG. 1a, the hatching (Hatchin
g), the conventional GaAs or GaAs
Double hetero-Ga with higher luminous efficiency than luminescence efficiency that can be obtained from a light emitting device made of lAs and doped with amphoteric impurity Si
An AlAs light emitting device is obtained.

このダブルヘテロ型GaAlAs発光素子は、上記のように
徐冷方式を利用する液相エピチキシャル成長法により形
成するが、冷却速度も発光効率と相関があることが判明
しており、第1表にこの相関と不純物濃度の調査結果を
明らかにするが、第6図a,bに従来素子、第1図a,bに本
発明素子における不純物濃度とPN接合との関係を示し
た。
This double hetero-type GaAlAs light-emitting device is formed by the liquid phase epitaxial growth method using the slow cooling method as described above, and it has been found that the cooling rate also has a correlation with the luminous efficiency. 6a and 6b show the relationship between the impurity concentration and the PN junction in the device of the present invention, and FIGS. 6a and 6b show the relationship between the impurity concentration and the PN junction.

次に冷却速度(C.R.Cooling Rate:950℃〜780℃、ΔT
170℃)と発光効率の関係を第2表に示す。
Next, the cooling rate (CRC Cooling Rate: 950 ℃ ~ 780 ℃, ΔT
Table 2 shows the relationship between the luminous efficiency and 170 ° C.).

即ち、従来のGaAs LEDとGaAlAs LEDは、発光効率が平
均7%であるのに対して、本発明のように冷却速度0.5
℃/分で処理すると〜20%の発光効率が得られることが
判明した。
That is, while the conventional GaAs LED and GaAlAs LED have an average luminous efficiency of 7%, the cooling rate is 0.5% as in the present invention.
It has been found that a luminous efficiency of 2020% is obtained when the treatment is performed at a rate of ° C./min.

このように、従来技術より有利な発光効率を得るに
は、上記のように第1図の特殊な不純物領界に選定し、
それに厚さを絞ると良いことが判明し、従って、本発明
では、P型GaAlAsクラッド層内の亜鉛濃度を0.5×1017/
cm3以上、P型GaAlAsアクティブ層の亜鉛濃度を1〜8
×1017/cm3、N型GaAlAsクラッド層内のテルル濃度を0.
5×1017/cm3以上とし、更に、各々の厚さをP型GaAlAs
クラッド層を50〜200μm、P型GaAlAsアクティブ層を
0.1〜2μm、N型GaAlAsクラッド層を20〜90μmに限
定する。
As described above, in order to obtain a luminous efficiency more advantageous than the conventional technique, as described above, it is necessary to select a special impurity region in FIG.
It has been found that it is better to reduce the thickness, and therefore, in the present invention, the zinc concentration in the P-type GaAlAs cladding layer is set to 0.5 × 10 17 /
cm 3 or more, the zinc concentration of the P-type GaAlAs active layer is 1 to 8
× 10 17 / cm 3 , the tellurium concentration in the N-type GaAlAs cladding layer is set to 0.
5 × 10 17 / cm 3 or more, and furthermore, P-type GaAlAs
50-200 μm cladding layer, P-type GaAlAs active layer
The thickness is limited to 0.1 to 2 μm, and the N-type GaAlAs cladding layer is limited to 20 to 90 μm.

(実施例) 第2図、第3図及び第4図を参照して本発明に係わる
一実施例を説明する。即ち、P型GaAs結晶基板に液相エ
ピタキシャル徐冷成長法により、P型Ga1-xAlxAsクラッ
ド成長層(x:0.6〜0.35)、P型Ga0.965Al0.035Asアク
ティブ成長層及びN型Ga1-yAlyAsクラッド成長層(y:0.
35〜0.16)のダブルヘテロ構造のエピタキシャルウエー
ハを得た。P型不純物に亜鉛、N型不純物にテルルを使
用して、第2図に明らかにしたようなP型Ga1-xAlxAsク
ラッド成長層1とP型Ga0.965Al0.035Asアクティブ成長
層2及びN型Ga1-yAlyAsクラッド成長層3を互いに隣接
して設け、電極は両クラッド層の露出面に従来技術と同
様に形成する。
(Embodiment) An embodiment according to the present invention will be described with reference to FIGS. 2, 3, and 4. FIG. That is, a P-type Ga 1-x Al x As clad growth layer (x: 0.6 to 0.35), a P-type Ga 0.965 Al 0.035 As active growth layer and an N-type Ga 1-y Al y As clad growth layer (y: 0.
An epitaxial wafer having a double hetero structure of 35 to 0.16) was obtained. Using zinc as a P-type impurity and tellurium as an N-type impurity, a P-type Ga 1-x Al x As clad growth layer 1 and a P-type Ga 0.965 Al 0.035 As active growth layer 2 as shown in FIG. An N-type Ga 1-y Al y As clad growth layer 3 is provided adjacent to each other, and electrodes are formed on the exposed surfaces of both clad layers in the same manner as in the prior art.

この結晶成長には、アクティブ成長層及びクラッド成
長層用の両成長溶液溜が設置されている液相成長用ボー
ト(第3図参照)4を利用した。
For this crystal growth, a liquid phase growth boat (see FIG. 3) 4 in which both growth solution reservoirs for the active growth layer and the clad growth layer were installed was used.

即ち、液相成長用ボートは、基板ホルダー5と溶液溜
6,7及び8で構成されており、基板ホルダー5は、石英
棒(図示せず)によりスライド(Slide)可能な基板溜
9と支持台10で作られている。固定状態に維持する溶液
溜6,7及び8頂面には、蓋11…を配置して収容され蒸気
圧の高いGa含有溶液の蒸発を防止して、Ga含有溶液の組
成変化を防止している。基板溜9に設置する被処理半導
体P型GaAs基板12は、石英棒の操作により各溶液溜6,7
及び8の位置に図示矢印方向に移動させて、所定の液相
成長層を形成する。
That is, the boat for liquid phase growth comprises the substrate holder 5 and the solution reservoir.
The substrate holder 5 is made up of a substrate reservoir 9 and a support 10 that can be slid by a quartz rod (not shown). On the top surfaces of the solution reservoirs 6, 7, and 8, which are maintained in a fixed state, lids 11 are arranged and accommodated to prevent evaporation of the Ga-containing solution having a high vapor pressure, thereby preventing a change in the composition of the Ga-containing solution. I have. The semiconductor P-type GaAs substrate 12 to be processed placed in the substrate reservoir 9 is placed in each of the solution reservoirs 6, 7 by operating a quartz rod.
And 8 are moved in the direction of the arrow in the figure to form a predetermined liquid phase growth layer.

また、溶液溜6,7及び8の中間には、ストッパー(Sto
per)13を配置しまた、最初と最後には被処理GaAs基板1
2を保護する高純度カーボン製部材14,14を設置する。
A stopper (Sto) is provided between the solution reservoirs 6, 7, and 8.
per) 13 and the first and last GaAs substrate 1
The high-purity carbon members 14, 14 for protecting 2 are installed.

P型GaAlAsクラッド層1用として溶液溜6に充填する
溶融液は、Al0.68g,多結晶GaAs13.65g,Ga150gにアクセ
プター濃度が0.5〜5×1017/cm3となるように亜鉛20〜1
20mgを添加する。P型GaAlAsアクティブ層2層用溶液溜
7には、発光波長が840nmになるようにAl0.22g,多結晶G
aAs22.06g,Ga150gと共に、アクセプタ濃度が1〜8×10
17/cm3に調整できるように亜鉛10〜100mgを添加する。
The molten liquid to be filled in the solution reservoir 6 for the P-type GaAlAs cladding layer 1 is made of zinc 20-1 such that the acceptor concentration becomes 0.5-5 × 10 17 / cm 3 in 0.68 g of Al, 13.65 g of polycrystalline GaAs, and 150 g of Ga.
Add 20 mg. The solution reservoir 7 for the P-type GaAlAs active layer 2 layer contains 0.22 g of Al and polycrystalline G so that the emission wavelength becomes 840 nm.
a22.06g As and 150g of Ga together with acceptor concentration of 1-8 × 10
Adding zinc 10~100mg so it can be adjusted to 17 / cm 3.

更に、N型GaAlAsクラッド層3用溶液溜8には、Al0.
68g,多結晶GaAs13.65g及びGa150gであり、液相成長層の
ドナー濃度が0.5〜4×1017/cm3になる量のテルル1〜4
mgを添加する。
Further, the solution reservoir 8 for the N-type GaAlAs cladding layer 3 contains AlO.
68 g, 13.65 g of polycrystalline GaAs and 150 g of Ga, and an amount of tellurium 1-4 in which the donor concentration of the liquid phase growth layer is 0.5-4 × 10 17 / cm 3.
Add mg.

このような各溶液溜6,7,8には不純物と成長溶融液を
充填した液相成長用スライド式ボードを炉に設置後、95
0℃で2時間加熱してから、上記のように溶液溜6の位
置に、基板溜9に設置する被処理半導体GaAs基板12を石
英棒の操作により移動し、次に、第4図にあるように94
9℃から830℃に炉温度を下げて厚さ50μm〜200μmの
P型GaAlAsクラッド層1を液相成長する。更に、P型Ga
AlAsクラッド層1を液相成長した被処理半導体GaAs基板
12は溶液溜7の位置に移動後830℃の炉温度を約60秒間
保持して、P型GaAlAsクラッド層3に隣接する厚さ0.1
μm〜2μmのP型GaAlAsアクティブ層2を液相成長す
る。
After installing a liquid phase growth slide board filled with impurities and a growth melt in each of these solution reservoirs 6, 7, and 8 in a furnace, 95
After heating at 0 ° C. for 2 hours, the semiconductor GaAs substrate 12 to be processed placed in the substrate reservoir 9 was moved to the position of the solution reservoir 6 by operating a quartz rod as described above, and then, as shown in FIG. As 94
The furnace temperature is lowered from 9 ° C. to 830 ° C., and a P-type GaAlAs cladding layer 1 having a thickness of 50 μm to 200 μm is grown in a liquid phase. Furthermore, P-type Ga
Semiconductor GaAs substrate to be processed in which AlAs cladding layer 1 is liquid phase grown
Reference numeral 12 denotes a thickness of 0.1 mm adjacent to the P-type GaAlAs clad layer 3 while maintaining the furnace temperature of 830 ° C. for about 60 seconds after moving to the position of the solution reservoir 7.
A P-type GaAlAs active layer 2 of 2 μm to 2 μm is grown in a liquid phase.

更に、溶液溜8に被処理半導体GaAs基板12を石英棒の
操作により再度移動すると共に炉温度を780℃に調整し
て厚さ20〜90μmのN型GaAlAsクラッド層3を液相成長
する。
Further, the semiconductor GaAs substrate 12 to be processed is again moved to the solution reservoir 8 by operating a quartz rod, and the furnace temperature is adjusted to 780 ° C. to grow the N-type GaAlAs cladding layer 3 having a thickness of 20 to 90 μm in the liquid phase.

この一連の液相成長操作を終え自然冷却により室温と
なった炉から、各液相成長層1,2,3を被覆した被処理半
導体P型GaAs基板12を取出してから、被処理半導体GaAs
基板12だけを除去する。
After the series of liquid phase growth operations is completed, the semiconductor P-type GaAs substrate 12 covering the liquid phase growth layers 1, 2, and 3 is taken out of the furnace cooled to room temperature by natural cooling.
Only the substrate 12 is removed.

〔発明の効果〕〔The invention's effect〕

ダブルヘテロ構造を採用した本発明に係わる発光素子
は、キャリァの充分な閉込め効果と、アクティブ層の亜
鉛濃度及びこの付近の両クラッド層における亜鉛とテル
ル濃度を最適に形成し更に、各々の成長層厚を制御する
ことにより、従来素子の発光効率の3〜4倍の発光特性
を発揮できる発光素子が再現性よく得られた。
The light-emitting device according to the present invention employing the double hetero structure has a sufficient carrier confinement effect, an optimum zinc concentration in the active layer and zinc and tellurium concentrations in both cladding layers near the active layer, and furthermore, each growth By controlling the layer thickness, a light emitting device capable of exhibiting light emitting characteristics three to four times the light emitting efficiency of the conventional device was obtained with good reproducibility.

また、両クラッド層は、アクティブ層付近で発光出力
の最適値に設定でき、表面が良好なオーミック接触が可
能になる5×1017/cm3以上となる。従って、発光特性が
優れているばかりでなく、電気的特性も非常に安定して
いる。
Further, both clad layers can be set to the optimum value of the light emission output in the vicinity of the active layer, and have a surface of 5 × 10 17 / cm 3 or more at which good ohmic contact is possible. Therefore, not only the light emission characteristics are excellent, but also the electric characteristics are very stable.

上記実施例では、被処理半導体P型GaAs基板12を除去
する例を示したが、除去しなくても、従来素子より〜1.
5倍の素子が得られたことを付記する。
In the above embodiment, the example in which the semiconductor P-type GaAs substrate 12 to be processed is removed has been described.
Note that a five-fold element was obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、縦軸に不純物濃度、横軸に距離を採ってプロ
ファイルを示す図、第2図は、本発明に係わる発光素子
の断面図、第3図は、その製造に利用する益相成長用ス
ライド式ボードを概略を示す断面図、第4図は、加熱炉
の温度プログラム、第5図a,bは、従来の発光素子の断
面図、第6図a,bは、従来素子の特性を示す図である。 1:P型GaAlAsクラッド層 2:P型GaAlAsアクティブ層 3:P型GaAlAsクラッド層 4:液相成長用ボード 5:基板ホルダー 6,7,8:溶液溜 9:基板溜 10:支持台 11:蓋 12:被処理GaAs基板 13:ストッパー 14:カーボン製部材
FIG. 1 is a diagram showing the profile with the impurity concentration on the vertical axis and the distance on the horizontal axis, FIG. 2 is a cross-sectional view of the light emitting device according to the present invention, and FIG. FIG. 4 is a sectional view of a conventional light emitting device, and FIGS. 4A and 4B are sectional views of a conventional light emitting device. It is a figure showing a characteristic. 1: P-type GaAlAs cladding layer 2: P-type GaAlAs active layer 3: P-type GaAlAs cladding layer 4: liquid phase growth board 5: substrate holder 6, 7, 8: solution reservoir 9: substrate reservoir 10: support base 11: Lid 12: GaAs substrate to be processed 13: Stopper 14: Carbon member

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】P型GaAlAsクラッド層内に含有する不純物
濃度が0.5×1017/cm3以上、前記P型GaAlAsクラッド層
に隣接するアクティブ層内の不純物濃度が1〜8×1017
/cm3、N型GaAlAsクラッド層内に含有する不純物濃度が
0.5×1017/cm3以上であり、各成長層厚さをP型クラッ
ド層50〜200μm、P型アクティブ層0.1〜2μm、N型
クラッド層20〜90μmとすることを特徴とするダブルヘ
テロ型赤外光発光素子
An impurity concentration in a P-type GaAlAs cladding layer is 0.5 × 10 17 / cm 3 or more, and an impurity concentration in an active layer adjacent to the P-type GaAlAs cladding layer is 1 to 8 × 10 17.
/ cm 3 , the impurity concentration in the N-type GaAlAs cladding layer is
0.5 × 10 17 / cm 3 or more, and each growth layer has a P-type cladding layer of 50 to 200 μm, a P-type active layer of 0.1 to 2 μm, and an N-type cladding layer of 20 to 90 μm. Infrared light emitting device
JP5582089A 1989-03-08 1989-03-08 Double hetero-type infrared light emitting device Expired - Fee Related JP2783580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5582089A JP2783580B2 (en) 1989-03-08 1989-03-08 Double hetero-type infrared light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5582089A JP2783580B2 (en) 1989-03-08 1989-03-08 Double hetero-type infrared light emitting device

Publications (2)

Publication Number Publication Date
JPH02235380A JPH02235380A (en) 1990-09-18
JP2783580B2 true JP2783580B2 (en) 1998-08-06

Family

ID=13009586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5582089A Expired - Fee Related JP2783580B2 (en) 1989-03-08 1989-03-08 Double hetero-type infrared light emitting device

Country Status (1)

Country Link
JP (1) JP2783580B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183977A (en) * 1985-02-08 1986-08-16 Toshiba Corp Light emitting element and manufacture thereof
JPS63278383A (en) * 1987-05-11 1988-11-16 Toshiba Corp Light emitting diode
JPS6435968A (en) * 1987-07-30 1989-02-07 Mitsubishi Monsanto Chem Gallium arsenide/aluminum mixed crystal epitaxial wafer

Also Published As

Publication number Publication date
JPH02235380A (en) 1990-09-18

Similar Documents

Publication Publication Date Title
JP2913808B2 (en) Manufacturing method of ZnSe blue light emitting device
JPH08335715A (en) Epitaxial wafer and its manufacture
JP2579326B2 (en) Epitaxial wafer and light emitting diode
EP0516162B1 (en) Semiconductor light emitting device
JP2783580B2 (en) Double hetero-type infrared light emitting device
JPS5846686A (en) Blue light emitting diode
JP2000101133A (en) Epitaxial wafer for light-emitting element and manufacture thereof
JP2817577B2 (en) GaP pure green light emitting element substrate
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JPH08139358A (en) Epitaxial wafer
JPH0531316B2 (en)
JP2004207549A (en) Method of manufacturing light emitting diode
JPS63213378A (en) Manufacture of semiconductor light emitting element
JP3523412B2 (en) Manufacturing method of GaP: N light emitting diode
JP2818312B2 (en) Light emitting element
JPH0712093B2 (en) Light emitting semiconductor device substrate and manufacturing method thereof
JPH0351674B2 (en)
JP2681431B2 (en) Light emitting element
JPH03161981A (en) Manufacture of semiconductor device and ii-vi compound semiconductor crystal layer
JP2804093B2 (en) Optical semiconductor device
JPH0575165A (en) Material and manufacture for homo-joint type gainp light emitting material
JPH05175548A (en) Multilayer epitaxial crystal structure
JPH02262380A (en) Semiconductor light emitting element
JP2001244501A (en) Epitaxial wafer for infrared-emitting diode and light emitting diode formed thereof
JPH02251179A (en) Epitaxial wafer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees