JP2004220974A - Optical functional material - Google Patents

Optical functional material Download PDF

Info

Publication number
JP2004220974A
JP2004220974A JP2003008520A JP2003008520A JP2004220974A JP 2004220974 A JP2004220974 A JP 2004220974A JP 2003008520 A JP2003008520 A JP 2003008520A JP 2003008520 A JP2003008520 A JP 2003008520A JP 2004220974 A JP2004220974 A JP 2004220974A
Authority
JP
Japan
Prior art keywords
group
photoelectric conversion
sensitizing dye
dye
acid group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003008520A
Other languages
Japanese (ja)
Other versions
JP4423857B2 (en
Inventor
Munenori Andou
宗徳 安藤
Tadao Yagi
弾生 八木
Ryuichiro Kurata
隆一郎 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Ink Mfg Co Ltd
Original Assignee
Toyo Ink Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink Mfg Co Ltd filed Critical Toyo Ink Mfg Co Ltd
Priority to JP2003008520A priority Critical patent/JP4423857B2/en
Publication of JP2004220974A publication Critical patent/JP2004220974A/en
Application granted granted Critical
Publication of JP4423857B2 publication Critical patent/JP4423857B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • C09B1/005Di-anthraquinonyl and derivative compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • C09B1/16Amino-anthraquinones
    • C09B1/20Preparation from starting materials already containing the anthracene nucleus
    • C09B1/26Dyes with amino groups substituted by hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/12Amino derivatives of triarylmethanes without any OH group bound to an aryl nucleus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B11/00Diaryl- or thriarylmethane dyes
    • C09B11/04Diaryl- or thriarylmethane dyes derived from triarylmethanes, i.e. central C-atom is substituted by amino, cyano, alkyl
    • C09B11/10Amino derivatives of triarylmethanes
    • C09B11/24Phthaleins containing amino groups ; Phthalanes; Fluoranes; Phthalides; Rhodamine dyes; Phthaleins having heterocyclic aryl rings; Lactone or lactame forms of triarylmethane dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B17/00Azine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B19/00Oxazine dyes
    • C09B19/02Bisoxazines prepared from aminoquinones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B21/00Thiazine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0066Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain being part of a carbocyclic ring,(e.g. benzene, naphtalene, cyclohexene, cyclobutenene-quadratic acid)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/06Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups three >CH- groups, e.g. carbocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B29/00Monoazo dyes prepared by diazotising and coupling
    • C09B29/06Monoazo dyes prepared by diazotising and coupling from coupling components containing amino as the only directing group
    • C09B29/08Amino benzenes
    • C09B29/0805Amino benzenes free of acid groups
    • C09B29/0807Amino benzenes free of acid groups characterised by the amino group
    • C09B29/0809Amino benzenes free of acid groups characterised by the amino group substituted amino group
    • C09B29/081Amino benzenes free of acid groups characterised by the amino group substituted amino group unsubstituted alkylamino, alkenylamino, alkynylamino, cycloalkylamino, aralkylamino or arylamino
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B3/00Dyes with an anthracene nucleus condensed with one or more carbocyclic rings
    • C09B3/14Perylene derivatives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B45/00Complex metal compounds of azo dyes
    • C09B45/02Preparation from dyes containing in o-position a hydroxy group and in o'-position hydroxy, alkoxy, carboxyl, amino or keto groups
    • C09B45/14Monoazo compounds
    • C09B45/20Monoazo compounds containing cobalt
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B48/00Quinacridones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B55/00Azomethine dyes
    • C09B55/009Azomethine dyes, the C-atom of the group -C=N- being part of a ring (Image)
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/004Diketopyrrolopyrrole dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/02Coumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/08Naphthalimide dyes; Phthalimide dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/008Dyes containing a substituent, which contains a silicium atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensitizing dye for photoelectric conversion used in a dye sensitized photoelectric converting cell with high solar energy conversion efficiency without using a raw material with exhaustibility such as ruthenium. <P>SOLUTION: This optical functional material comprises a compound represented by a general formula (1). In the general formula (1), n is an integer of 1 to 20, X is a chromophore organic residue and R is a hydrogen atom or a monovalent organic residue. A is a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a hydroxy group and a hydroxamic acid group, and some hydrogen atoms may be replaced by a positive ion or an alkyl group which may be replaced, an aryl group which may be replaced, or a cyril group which may be replaced. A and R, R and X may form a ring by joining together with substituents. Moreover, X and R may change their places. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光電変換用増感色素、これを用いた光電変換材料、光電変換電極、およびこれを用いた光電変換セルに関する。
【0002】
【従来の技術】
太陽光発電は単結晶シリコン太陽電池、多結晶シリコン太陽電池、アモルファスシリコン太陽電池、テルル化カドミウムやセレン化インジウム銅などの化合物太陽電池が実用化、もしくは研究開発対象となっているが、普及させる上で製造コスト、原材料確保、エネルギーペイバックタイムが長い等の問題点を克服する必要がある。一方、大面積化や低価格を指向した有機材料を用いた太陽電池もこれまでに多く提案されているが変換効率が低く、耐久性も悪いという問題があった。
【0003】
こうした状況の中で、色素によって増感された半導体微多孔質体を用いた光電変換電極および光電変換セル、ならびにこれを作成するための材料および製造技術が開示された(非特許文献1および特許文献1参照)。開示された電池は、ルテニウム錯体色素によって分光増感された酸化チタン多孔質薄層を作用電極としヨウ素を主体とする電解質層および対電極から成る色素増感型の光電変換セルである。この方式の第一の利点は酸化チタン等の安価な酸化物半導体を用いるため、安価な光電変換素子を提供できる点であり、第二の利点は用いられるルテニウム錯体色素が可視光域に幅広く吸収を有していることから比較的高い変換効率が得られる点である。
【0004】
このような色素増感型の光電変換セルの問題点のひとつとして、色素の原料にルテニウムを用いていることが挙げられる。ルテニウムはクラーク数が0.01ppmと白金やパラジウムに匹敵する量しか地球に現存せず、大量に使われると枯渇が免れない。さらにルテニウム錯体色素の価格も高価な物となり、光電変換セルの大量普及の妨げとなる。このため脱ルテニウム系の増感色素の研究が近年盛んとなってきている。たとえば特開平10‐92477号公報にはルテニウムを原料としない増感色素が開示されている(特許文献2参照)。
【0005】
最近、色素増感型太陽電池における増感色素として、非ルテニウム錯体色素の研究が盛んに行なわれている。その例としてはフェニルキサンテン系色素、フタロシアニン系色素、クマリン系色素、シアニン形色素、ポルフィリン系色素、アゾ系色素等があげられる。これらの有機色素はルテニウム錯体に比較して吸光係数が大きく、分子設計の自由度も大きいため、高い光電変換効率が期待されている。しかしながら、色素の光吸収領域がせまかったり、酸化チタンへの電荷の注入が非効率的である等の理由から、良い有機増感色素はなかった。
【0006】
これらの問題を解決するため、酸化チタンとの吸着末端に特徴をもたせた増感色素として、置換アクリル酸部位を持つ増感色素が比較的高い変換効率を有することが開示されている(特許文献3、4参照)。これらの増感色素に特徴的な点はアクリル酸末端のカルボン酸基が結合する炭素原子が同時にシアノ基を代表とする電子吸引性置換基を有することによりアクリル酸末端の電子吸引効果を増大させている点にある。増感色素は末端のカルボン酸基で酸化チタン等の無機酸化物多孔質半導体表面に結着し、増感色素が光吸収することによって生じた励起電子をカルボン酸基を通して無機酸化物側へ注入しているが、この部位の電子吸引効果が強くなることによって電子注入効果が促進され、ひいては高い変換効率を実現している。代表的な例はクマリン骨格とシアノ基を有するアクリル酸末端とを組み合わせた増感色素で、5%以上の高い変換効率を実現している(非特許文献2参照)。
【0007】
シアノ基を組み合わせると一般的にエタノール等の環境負荷の小さな染色用有機溶剤に対する溶解度が低下し、無機酸化物表面へ増感色素を染色する際に製造上の困難が生じやすい。
さらに光電変換を行う増感色素は光の可視部から近赤外部領域を幅広く覆って光吸収を行うことのできることが望まれるが、一般的には色素クロモファーの共役系を大きくする設計でこれを行っている。しかし、この設計では一般的に分子量が増大する傾向にあり、色素の製造コスト増大、染色用有機溶剤に対する溶解度低下等に結びつきやすい。
【0008】
増感色素の光吸収によって生じた励起電子を無機酸化物多孔質半導体側へより効果的に注入し、かつ環境負荷の小さな染色用有機溶剤に溶解しやすくすることにより製造上の有利性をもたらすことが可能な吸着末端の設計が求められていた。さらにコンパクトなクロモファー共役系設計で幅広く可視〜近赤外領域の光吸収を行える色素設計が求められていた。
【0009】
【非特許文献1】Nature(第353巻、第737〜740頁、1991年)
【非特許文献2】Chem.commun.,(6),569−570(2001)
【特許文献1】米国特許4927721号明細書
【特許文献2】特開平10‐92477号公報
【特許文献3】特開2002−164089号公報
【特許文献4】WO02/11213号パンフレット
【0010】
【発明が解決しようとする課題】
本発明は無機半導体への吸着末端の電子吸引力を既存の吸着末端より高めることで、無機酸化物多孔質半導体側への電子注入効果を高め、高い変換効率性能を有する色素増感型光電変換セル用の増感色素を提供することである。さらには本吸着末端を有するクロモファーの光吸収領域をより長波長化させることにより、幅広く可視〜近赤外領域の光励起電子を発生させる増感色素を提供することである。さらにエタノール等の環境負荷の小さな溶剤に対する溶解度を高め、製造上の問題点を解決することである。さらにはこの増感色素を無機半導体多孔質体表面に連結させた光電変換材料、および光電変換材料を電導性表面を有する透明基材の電導面に積層して成る光電変換電極、および光電変換電極を電解質層を介して導電性対極を組み合わせて成る光電変換セルを提供することである。
【0011】
【課題を解決するための手段】
本発明者は、前記課題を解決すべく鋭意研究を重ねた結果、特定の増感色素を透明導電性基板上に積層させた無機半導体表面に連結させ、良好な光電変換セルを作成することに成功し、本発明に至った。
すなわち、本発明は、下記一般式(1)で示されるビニル基を有する光機能材料に関する。
一般式(1)
【化2】

Figure 2004220974
(式中、nは1〜20の整数であり、Xはクロモファー有機残基を表し、Rは水素原子もしくは1価の有機残基を表す。Aはカルボン酸基、ホスホン酸基、ホスフィン酸基、ヒドロキシ基、ヒドロキサム酸基を表し、水素原子の一部が、陽イオンもしくは置換されてもよいアルキル基、置換されてもよいアリール基、置換されてもよいシリル基で置換されてもよい。AとR、RとXは、置換基同士で結合して環を形成してもよい。さらにXとRは入れ替わっても良い。)
【0012】
また、本発明は、Xが、置換アミノ基を含むクロモファー有機残基である上記光機能材料に関する。
【0013】
また、本発明は、上記光機能材料を含んでなる光電変換用増感色素に関する。
【0014】
また、本発明は、さらに、一般式(1)で表される以外の増感色素を含んでなる上記増感色素に関する。
【0015】
また、本発明は、上記増感色素と、無機半導体多孔質体とを連結させてなる光電変換材料に関する。
【0016】
また、本発明は、上記光電変換材料を透明電極に積層させてなる光電変換電極に関する。
【0017】
また、本発明は、上記光電変換電極、電解質層、および導電性対極を含んでなる光電変換セルに関する。
【0018】
【発明の実施の形態】
以下、詳細にわたって本発明を説明する。
【0019】
本発明において光機能材料とは光を吸収することによって新たに増感効果、発熱効果、発色効果、退色効果、蓄光効果、相変化効果、光電変換効果、光磁気効果、光触媒効果、光変調効果、光記録効果、ラジカル発生効果等の機能を発現する材料、あるいは逆にこれらの効果を受けて発光機能を有する材料のことをさす。当該光機能材料は、例として光電変換材料、発光材料、光記録材料、画像形成材料、フォトクロミック材料、エレクトロルミネッセンス材料、光導電材料、二色性材料、ラジカル発生材料、酸発生材料、塩基発生材料、蓄光材料、非線形光学材料、第2高調波発生材料、第3高調波発生材料、感光材料、光吸収材料、近赤外吸収材料、フォトケミカルホールバーニング材料、光センシング材料、光マーキング材料、光化学治療用増感材料、光相変化記録材料、光焼結記録材料、光磁気記録材料、光線力学療法用色素および光電変換用増感色素等に幅広く用いることができる。
【0020】
本明細書においては一般式(1)で表される光機能材料を主として光電変換用増感色素として用いるので、この材料を主として光電変換用増感色素あるいは増感色素として呼称するが、前記の幅広い応用を否定するものではない。
【0021】
一般式(1)中、−C(=O)C(2n+1)基の代表例は、−C(=O)CF基(トリフルオロアセチル基)である。この置換基は極めて強い電子吸引効果を示し、一般的なアルキルアセチル基とは異なる化学的性質を示す。代表的な例はトリフルオロ酢酸で、酢酸が弱酸であるのに対して強酸としての性質を示す。さらに強い極性効果を有するので溶解性や屈折率等も大きく異なる。
【0022】
−C(=O)CF基の強い電子吸引効果はNMRで観測されるプロトンシフトにも現れる。表1は、本発明の増感色素の原材料(トリフルオロアセト酢酸エチル)と比較色素に対応する原材料での一般式(2)中のa位置水素のプロトンシフト位置を比較したものである。NMR測定におけるプロトンシフト位置は、環電流効果の強弱によっても変化するが、同じ骨格同士で比較する場合、置換基の電子吸引性能の比較として参考となる。また、一般式(2)での比較はa位置水素のプロトンシフトの帰属が容易であるのでE位置の置換基の電子吸引効果ほ比較を論じやすい。E位置置換基の電子吸引効果が大きいほどa位置の水素の電子密度が小さくなり、より低磁場(PPM値の大きな位置)で水素は核磁気共鳴を示す。
【0023】
非電子吸引性置換基の例としてE位置にメチル基を有した場合のa位置水素のプロトンシフト位置が2.3ppmであるのに対して、E位置にシアノ基等の一般的な電子吸引基が結合した場合、プロトンシフト位置は3.3〜3.7ppmの低磁場側に現れる。これに比べて本発明であるトリフルオロアセチル基をE位置に結合させた場合、a位置水素のプロトンシフト位置は大幅に低磁場側の5.6ppmを示し、極端に強い電子吸引効果を有していることがわかる。
【0024】
一般式(2)
【化3】
Figure 2004220974
(一般式(2)中Eは電子吸引基又は比較置換基、aは置換基Eが結合する炭素原子上の水素。表1ではa位置水素のNMRプロトンシフト位置を比較した。)
【0025】
−C(=O)C(2n+1)基は可溶性基としても効果を示すので、これを有する増感色素はエタノール等の環境負荷の小さな溶剤にも高い溶解度を示しやすい。
【表1】
Figure 2004220974
【0026】
さらに、強力な電子吸引基を有することは光励起のHOMO−LUMO間の遷移エネルギーギャップを狭めることに繋がるため、クロモファー骨格はそのままで光吸収領域を長波長化させることが可能となる。
【0027】
まず、一般式(1)中のXは、クロモファー有機残基を表す。ここでいうクロモファー有機残基は、π電子平面骨格や不飽和炭化水素残基を構造中に有し分子中のHOMO−LUMO電子遷移で可視部〜近赤外部領域の光吸収を発現できる有機残基であれば、特に制限はない。有機金属錯体残基として同様の光領域に吸収を有する物も本発明でのクロモファー有機残基に含まれる。光吸収の発現は一般式(1)中のビニル基を結合させた後に初めて生じる物でもかまわない。
【0028】
π電子平面骨格としては芳香族炭化水素の芳香環残基、複素環残基等が挙げられる。
【0029】
芳香族炭化水素の芳香環残基としては、特に制限はないが、例えば、ベンゼン、ナフタレン、アントラセン、ナフタセン、ピレン、フェナンスレン、インデン、アズレン、ペリレン、フルオレン、ビフェニル、ターフェニル等が挙げられる。
【0030】
複素環残基としては、特に制限はないが、例えば、ピリジン、ピラジン、ピリミジン、ピラゾール、ピラゾリジン、ピラン、クロメン、ピロール、ベンゾイミダゾール、イミダゾリン、イミダゾリジン、イミダゾール、ピラゾール、トリアゾール、トリアジン、ジアゾール、モルホリン、インドリン、チオフェン、フラン、オキサゾール、チアジン、チアゾール、インドール、ベンゾチアゾール、ナフトチアゾール、ベンゾオキサゾール、ナフトオキサゾール、インドレニン、ベンゾインドレニン、ピラジン、キノリン、キナゾリン、カルバゾール、クマリン等が挙げられる。
また、これらの複素環は4級化されていてもよく、対イオンを有しても良い。この場合の対イオンは、特に制限はなく、一般的な陰イオンでよい。例としては、ハロゲンイオン、過塩素酸イオン、テトラフッ化ホウ素イオン、ヘキサフッ化リンイオン、水酸化物イオン、メタンスルホン酸イオン、トルエンスルホン酸等が挙げられる。また、対イオンを有さない場合は、分子内または分子間のカルボキシル基等の酸性基で中和されていても良い。
【0031】
さらに複素環としては染料や顔料に用いられる色素骨格を含む。
用いられる色素骨格としては、アゾ系色素、キナクリドン系色素、ジケトピロロピロール系色素、スクワリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、クロロフィル系色素、ルテニウム錯体系色素、インジゴ系色素、ペリレン系色素、ジオキサジン系色素、アントラキノン系色素、フタロシアニン系色素、ナフタロシアニン系色素等の色素骨格が挙げられる。
【0032】
不飽和炭化水素残基としては、特に制限はないが、不飽和結合の総和が1〜20の範囲であることが好ましい。
【0033】
有機金属錯体残基の有機金属錯体としては、特に制限はないが、例えば、フェロセン、ルテノセン、チタノセン、ジルコノセン、フタロシアニン、ナフタロシアニン、ポルフィリン、ルテニウムビピリジル錯体等が挙げられる。
【0034】
上記の芳香族炭化水素残基、複素環残基、不飽和炭化水素残基、有機金属錯体残基は置換基を有しても良い。置換基としては特に制限はないが、例えば、アルキル基、アリール基、シアノ基、イソシアノ基、チオシアネート基、イソチオシアネート基、ニトロ基、ニトロシル基、アシル基、ハロゲン原子、ケトン基、ヒドロキシル基、置換基を有しても良いメルカプト基、置換基を有しても良いアミノ基、置換基を有しても良いアミド基、アルコキシル基、アルコキシアルキル基、カルボキシル基、アルコキシカルボニル基、シリル基等があげられる。
【0035】
アルキル基としては、置換基を有しても良い炭素数1〜30の直鎖、分岐及び環状の炭化水素基が挙げられ、メチル基、エチル基、プロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基といった炭素数1〜30のアルキル基があげられる。
【0036】
また、アルコキシル基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert−ブトキシ基、オクチルオキシ基、tert−オクチルオキシ基といった炭素数1〜20のアルコキシル基があげられる。
【0037】
また、アリールオキシ基としては、フェノキシ基、4−tert−ブチルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、9−アンスリルオキシ基といった炭素数6〜20のアリールオキシ基があげられる。
【0038】
また、アルキルチオ基としては、メチルチオ基、エチルチオ基、tert−ブチルチオ基、ヘキシルチオ基、オクチルチオ基といった炭素数1〜20のアルキルチオ基があげられる。
【0039】
また、アリールチオ基としては、フェニルチオ基、2−メチルフェニルチオ基、4−tert−ブチルフェニルチオ基といった炭素数6〜20のアリールチオ基があげられる。
【0040】
また、アリール基としては、フェニル基、o−トリル基、m−トリル基、p−トリル基、2,4−キシリル基、p−クメニル基、メシチル基、1−ナフチル基、2−ナフチル基、1−アンスリル基、9−フェナントリル基、1−アセナフチル基、2−アズレニル基、1−ピレニル基、2−トリフェニレル基等の炭素数6〜30のアリール基があげられる。
【0041】
また、置換アミノ基としては、N−メチルアミノ基、N−エチルアミノ基、N,N−ジエチルアミノ基、N,N−ジイソプロピルアミノ基、N,N−ジブチルアミノ基、N−ベンジルアミノ基、N,N−ジベンジルアミノ基、N−フェニルアミノ基、N−フェニル−N−メチルアミノ基、N,N−ジフェニルアミノ基、N,N−ビス(m−トリル)アミノ基、N,N−ビス(p−トリル)アミノ基、N,N−ビス(p−ビフェニリル)アミノ基、ビス[4−(4−メチル)ビフェニリル]アミノ基、N−p−ビフェニリル−N−フェニルアミノ基、N−α−ナフチル−N−フェニルアミノ基、N−β−ナフチル−N−フェニルアミノ基、N−フェナントリル−N−フェニルアミノ基等の炭素数1〜30の置換アミノ基があげられる。
【0042】
アシル基としては、アセチル基、プロピオニル基、ピバロイル基、シクロヘキシルカルボニル基、ベンゾイル基、トルオイル基、アニソイル基、シンナモイル基等があげられる。
【0043】
また、アリールオキシカルボニル基としては、フェノキシカルボニル基、ナフチルオキシカルボニル基等があげられる。
【0044】
また、アルキルスルホニル基としては、メシル基、エチルスルホニル基、プロピルスルホニル基等があげられる。
【0045】
また、アリールスルホニル基としては、ベンゼンスルホニル基、トルエンスルホニル基等があげられる。
【0046】
また、シリル基としては、アルキルシリル基、アリールシリル基等があげられ、例えば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基等があげられる。
【0047】
一般式(1)中のXは光エネルギーの可視部から近赤外領域に吸収を有して励起電子を生じさせるクロモファー部位として働き、式中のビニル基のπ電子と共役して電子をカルボン酸基、ホスホン酸基、ホスフィン酸基、ヒドロキシ基、ヒドロキサム酸基等の酸性基に伝える働きを示すことが望ましい。さらにXのクロモファー部位に置換アミノ基等の電子供与基を有すると電荷移動が起こりやすくなる。この場合、色素から無機半導体多孔質体への電子の注入が高効率になり特に好ましい。
【0048】
次に、一般式(1)中のRについて説明する。Rは水素原子もしくは1価の有機残基を表す。前記Xの説明で述べた置換基のうち1価で結合が可能なものが該当する。
【0049】
次に、一般式(1)中のAについて説明する。Aは増感色素の構造中で無機酸化物多孔質半導体表面に連結することができる酸性置換基として存在する。光励起された色素の励起電子は無機酸化物多孔質半導体の電導帯にこの酸性置換基を通じて電子注入を行うことができる。Aは具体的には、カルボン酸基、ホスホン酸基、ホスフィン酸基、ヒドロキシ基、ヒドロキサム酸基をあげることができる。本発明においてはAが結合する同一炭素原子上に極めて強い電子吸引性を有する −C(=O)C(2n+1)基が結合することで、増感色素のクロモファー残基で発生した励起電子を効果的に無機酸化物多孔質半導体側へ注入することができる。Aは、水素原子の一部が、陽イオンもしくは置換されてもよいアルキル基、置換されてもよいアリール基、置換されてもよいシリル基で置換されてもよい。ここでいう性陽イオンとは、酸性基と塩を形成しうる各種の陽イオンを意味し、具体的には、4級アンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオン等があげられる。
【0050】
4級アンモニウムイオンの例としては、テトラメチルアンモニウムイオン、テトラエチルアンモニウムイオン、テトラプロピルアンモニウムイオン、テトラブチルアンモニウムイオン等のテトラアルキルアンモニウムイオンや、ピリジニウムカチオン、イミダゾリウムカチオンといった含窒素複素芳香族のイオン等があげられる。
【0051】
また、アルカリ金属イオンとしては、ナトリウムイオン、カリウムイオン、リチウムイオン、アルカリ土類金属イオンとしては、マグネシウムイオン、カルシウムイオン等があげられる。
また、Aのアルキル基、アリール基、シリル基は、前述の置換基の説明と同じものが例示できる。
これらアルキル基、アリール基、シリル基を含んだ化合物の場合、酸化チタン電極等に増感色素を吸着させる時に染色溶剤中に適切量の水と必要に応じて酸又はアルカリを含ませて適切な温度条件でエステル加水分解を行いながら電極表面に吸着させることができる。
【0052】
以下、表2に、本発明の光電変換用増感色素として用いることができる化合物の代表例を示すが、本発明は、なんらこれらに限定されるものではない(ただし、表2中、Meはメチル基を、Phはフェニル基を表す。)。さらに、本明細書では化合物の代表構造式として2重結合構造に起因するシス−トランス異性体の一部を示すが、これは存在し得る同異性体の全てを含んでいる。
表2
【0053】
【表2】
Figure 2004220974
【0054】
Figure 2004220974
【0055】
Figure 2004220974
【0056】
Figure 2004220974
【0057】
Figure 2004220974
【0058】
Figure 2004220974
【0059】
Figure 2004220974
【0060】
Figure 2004220974
【0061】
Figure 2004220974
【0062】
Figure 2004220974
【0063】
Figure 2004220974
【0064】
Figure 2004220974
【0065】
Figure 2004220974
【0066】
ところで、本発明において用いられる光電変換用増感色素は、一般式(1)で表される増感色素がカバーしきれない領域の太陽光吸収を補うために他の増感色素と組み合わせて用いる事ができる。ここにおいて他の増感色素としてはアゾ系色素、キナクリドン系色素、ジケトピロロピロール系色素、スクワリリウム系色素、シアニン系色素、メロシアニン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、クロロフィル系色素、ルテニウム錯体系色素、インジゴ系色素、ペリレン系色素、ジオキサジン系色素、アントラキノン系色素、フタロシアニン系色素、ナフタロシアニン系色素等、およびその誘導体等が挙げられる。
【0067】
以下、本発明で使用される光電変換用増感色素以外の材料について説明する。
【0068】
(無機酸化物)
本発明において用いられる光電変換用増感色素は連結基を介して無機半導体多孔質体表面に連結することによって無機半導体多孔質体が増感された光電変換材料を形成する。無機半導体は一般的に一部の領域の光に対して光電変換機能を有しているが、この表面が増感色素を連結することによって可視光および/又は近赤外光領域までの光電変換が可能となる。無機半導体多孔質体の材質としては主に無機酸化物が用いられるが、増感色素を連結することによって光電変換機能を有する無機半導体多孔質体ならこれに限らない。無機半導体としてはシリコン、ゲルマニウム、III族‐V族系半導体、金属カルコゲニド等が挙げられる。本発明で用いられる無機酸化物半導体多孔質体としては、酸化チタン、酸化スズ、酸化タングステン、酸化亜鉛、酸化インジウム、酸化ニオブ、酸化鉄、酸化ニッケル、酸化コバルト、酸化ストロンチウム、酸化タンタル、酸化アンチモン、酸化ランタノイド、酸化イットリウム、酸化バナジウム等の多孔質体を挙げることができるが、これらの表面が増感色素を連結することによって可視光および/又は近赤外光領域までの光電変換が可能となるものであればこれに限らない。無機酸化物半導体多孔質体表面が増感色素によって増感されるためには無機酸化物の電導帯が増感色素の光励起順位から電子を受け取りやすい位置に存在することが望ましい。このため前記無機酸化物半導体多孔質体の中でも酸化チタン、酸化スズ、酸化亜鉛、酸化ニオブ等が特に用いられる。さらに、価格や環境衛生性等の点から、酸化チタンが特に用いられる。本発明においては前記無機酸化物半導体多孔質体から一種又は複数の種類を選択して組み合わせることができる。
【0069】
(無機酸化物の多孔質化)
無機半導体多孔質体は多量の増感色素をその表面に連結し、ひいては高率な光電変換能力を有する目的で、多孔質化することにより広い表面積を有している。多孔質化の方法としては、粒子径が数から数十ナノメートルの酸化チタン等の無機酸化物粒子をペースト化した後に焼結する方法が広く知られているが、多孔質化して広い表面積を得る方法であればこれに限らない。
【0070】
(光電変換電極)
本発明において用いられる光電変換材料は電導性表面を有する透明基材の電導面に積層することによって光電変換電極を形成する。
【0071】
(電導性表面)
用いられる電導性表面としては、太陽光の可視から近赤外領域に対して光吸収が少ない導電材料なら特に限定されないが、ITO(インジウム−スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛等の電導性の良好な金属酸化物が好適である。
【0072】
(透明基材)
用いられる透明基材としては太陽光の可視から近赤外領域に対して光り吸収が少ない材料であれば特に限定されない。石英、並ガラス、BK7、鉛ガラス等のガラス基材、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミド、ポリエステル、ポリエチレン、ポリカーボネート、ポリビニルブチラート、ポリプロピレン、テトラアセチルセルロース、シンジオクタチックポリスチレン、ポリフェニレンスルフィド、ポリアリレート、ポリスルフォン、ポリエステルスルフォン、ポリエーテルイミド、環状ポリオレフィン、ブロム化フェノキシ、塩化ビニール等の樹脂基材等を用いることができる。
【0073】
(積層方法)
本発明において用いられる光電変換材料を電導性表面を有する透明基材の電導面に積層する方法としては、電導面にペースト化した無機酸化物粒子を塗布後乾燥又は焼結させて無機酸化物半導体多孔質体を形成し、これを透明基材ごと増感色素を溶解させた溶液中に浸すことにより無機多孔質表面と増感色素の連結器の親和性を利用して増感色素を無機多孔質表面に結合させる方法が一般的であるが、この方法に限定されない。無機酸化物粒子をペースト化させるためには無機酸化物粒子を水又は適当な有機溶剤中に分散させる。均質で表面積が大きい無機多孔質表面として積層させるには分散性の良いペーストにすることが大切なので、必要に応じて、硝酸やアセチルアセトン等の酸やポリエチレングリコール、トリトンX−100等の分散剤をペースト成分に混合し、ペイントシェーカー等を用いてペースト化する。ペーストを透明基材の電導面に塗布する方法としてはスピンコーターによる塗布方法やスクリーン印刷法、スキージーを用いた塗布方法、ディップ法、吹き付け法、ローラー法等が用いられる。塗布された無機酸化物ペーストは乾燥又は焼成後ペースト中の揮発成分が除去され透明基材の電導面上に無機酸化物半導体多孔質体を形成する。乾燥又は焼成の条件としてはたとえば400℃から500℃の温度で30分〜1時間程度の熱エネルギーを与える方法が一般的であるが、透明基材の電導面に密着性を有し、太陽光照射時に良好な起電力が得られる乾燥又は焼成方法であるならこれに限らない。
増感色素を溶解させた溶液を作るためには、溶剤としてエタノールベンジルアルコールなどのアルコール系溶剤、アセトニトリル、プロピオニトリルなどのニトリル系溶剤、クロロホルム、ジクロロメタン、クロロベンゼン等のハロゲン系溶剤、ジエチルエーテル、テトラヒドロフラン等のエーテル系溶剤、酢酸エチル、サクサンブチル等のエステル系溶剤、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶剤、炭酸ジエチル、炭酸プロピレン等の炭酸エステル系溶剤、ヘキサン、オクタン、ベンゼン、トルエン等の炭水化物系位溶剤、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、1,3‐ジメチルイミダゾリノン、Nメチルピロリドン、水等を用いることができるがこれに限らない。
透明基材の電導面上に形成される無機酸化物半導体多孔質体の膜厚は0.5μm以上200μm以下であることが望ましい。膜厚がこの範囲未満である場合有効な変換効率が得られない。又膜厚がこの範囲より厚い場合成膜時に割れや剥がれが生じる等作成が困難になる反面、無機酸化物半導体多孔質体表層と電導面との距離が増えるために発生電荷が電導面に有効に伝えられなくなるので、良好な変換効率を得にくくなる。
【0074】
(光電変換セル)
本発明において用いられる光電変換電極は、電解質層を介して導電性対極を組み合わせることによって光電変換セルを形成する。
【0075】
(電解質層)
本発明で用いられる電解質層は電解質、媒体、および添加物から構成されることが好ましい。本発明の電解質はIとヨウ化物(例としてLiI、NaI、KI、CsI、MgI、CaI、CuI、テトラアルキルアンモニウムヨーダイド、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等)の混合物、Brと臭化物(例としてLiBr等)の混合物、Inorg. Chem. 1996,35,1168−1178に記載の溶融塩等を用いることができるがこの限りではない。この中でもIとヨウ化物の組み合わせとしてLiI、ピリジニウムヨーダイド、イミダゾリウムヨーダイド等を混合した電解質が本発明では好ましいがこの組み合わせ方に限らない。
【0076】
好ましい電解質濃度は媒体中Iが0.01M以上0.5M以下でありヨウ化物の混合物が0.1M以上15M以下である。
【0077】
本発明で電解質層に用いられる媒体は、良好なイオン電導性を発現できる化合物であることが望ましい。溶液状の媒体としては、ジオキサン、ジエチルエーテルなどのエーテル化合物、エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテルなどの鎖状エーテル類、メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテルなどのアルコール類、エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンなどの多価アルコール類、アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリルなどのニトリル化合物、エチレンカーボネート、プロピレンカーボネートなどのカーボネート化合物、3‐メチル‐2‐オキサゾリジノンなどの複素環化合物、ジメチルスルホキシド、スルホランなど非プロトン極性物質、水などを用いることができる。
【0078】
又、固体状(ゲル状を含む)の媒体を用いる目的で、ポリマーを含ませることもできる。この場合、ポリアクリロニトリル、ポリフッ化ビニリデン等のポリマーを前記溶液状媒体中に添加したり、エチレン性不飽和基を有した多官能性モノマーを前記溶液状媒体中で重合させて媒体を固体状にする。
電解質層としてはこの他、CuI、CuSCN媒体を必要としない電解質および、Nature,Vol.395, 8 Oct. 1998,p583−585記載の2,2’,7,7’‐テトラキス(N,N‐ジ‐p‐メトキシフェニルアミン)9,9’‐スピロビフルオレンのような正孔輸送材料を用いることができる。
本発明に用いられる電解質層には光電変換セルの電気的出力を向上させたり、耐久性を向上させる働きをする添加物を添加することができる。電気的出力を向上させる添加物として4‐t‐ブチルピリジンや、2‐ピコリン、2,6‐ルチジン等が挙げられる。耐久性を向上させる添加物としてMgI等が挙げられる。
【0079】
(導電性対極)
本発明で用いられる電導性対極は光電変換セルの正極として機能するものである。具体的に対極に用いる導電性の材料としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、金属酸化物(ITO(インジウム‐スズ酸化物)や酸化スズ(フッ素等がドープされた物を含む)、酸化亜鉛)、または炭素等が挙げられる。対極の膜厚は、特に制限はないが、5nm以上10μm以下であることが好ましい。
【0080】
(組み立て方)
前記の光電変換電極と導電性対極を電解質層を介して組み合わせることによって光電変換セルを形成する。必要に応じて電解質層の漏れや揮発を防ぐために、光電変換セルの周囲に封止を行う。封止には熱可塑性樹脂、光硬化性樹脂、ガラスフリット等を封止材料として用いることができる。光電変換セルは必要に応じて小面積の光電変換セルを連結させて作る。光電変換セルを直列に組み合わせることによって起電圧を高くすることができる。
【0081】
【実施例】
以下に実施例を具体的に示すが本発明は以下に限定されるものではない。
(実施例1)
・化合物(1)および(2)の合成
エタノール溶剤中で4−ジメチルシンナムアルデヒド1.75g(10mmol)、トリフルオロアセト酢酸エチル 8g(43mmol)、酢酸アンモニウム0.77g(10mmol)を窒素気流下で100℃にて2時間攪拌した。反応終了後、反応液を減圧下加熱して、未反応の原料を取り除いた後、クロロホルム溶剤を主体としたシリカゲルカラムクロマトグラフィーで精製を行いエチルエステル化合物を得た(化合物(1))。さらにこれをエタノールに溶解させた後、水酸化カリウム水溶液を加えて加水分解し、さらにクロロホルム溶剤を主体としたシリカゲルカラムクロマトグラフィーで精製を行って化合物(2)を得た。マススペクトル、NMRスペクトル、IRスペクトルにより、化合物(1)および(2)の構造を確認した。
【0082】
【化4】
Figure 2004220974
【0083】
【化5】
Figure 2004220974
【0084】
・増感色素のエタノールへの溶解性確認試験
増感色素の溶解性を下記の方法で試験した。
エタノール10mlに増感色素10mgを添加し、振とうしながら溶解性を肉眼で確認した。得られた結果に下記の分類を行った。
1分以内で溶解 ◎
5分以内で溶解 ○
30分以内で溶解 △
30分たっても不溶分が残る ×
【0085】
光電変換用色素の評価について説明する。
・透明電極
フッ素ドープ酸化スズ層付ガラス基板(旭ガラス社製 タイプU−TCO)を使用した。
【0086】
・酸化チタンペーストの調整
下記処方でジルコニアビーズと混合し、ペイントシェーカーを用いて分散して酸化チタンペーストを得た。
酸化チタン(日本アエロジル社製 P25 粒子径 21nm) 6 重量部
水(硝酸添加でpH2に調整した物) 14 重量部
アセチルアセトン 0.6重量部
界面活性剤(ICN社製 Triton X−100) 0.04重量部
PEG‐#500,000 0.3重量部
【0087】
・酸化チタン多孔質層の作成
透明電極の電導面に厚さ60μmのメンディングテープを張り、1cm角のテープを除去することでマスクを作り、空いた部分にペーストを数的垂らした後にスキージーで余分なペーストを除去した。風乾後全てのマスクを除去し、450℃のオーブンで1時間焼成することで有効面積1cmの酸化チタン多孔質層を有した酸化チタン電極を得た。
【0088】
・増感色素の吸着
増感色素をアルコール、アセトン、酢酸エチル、ジメチルホルムアミド、Nメチルピロリドン等の溶剤に溶解し、必要に応じてメンブランフィルターで不溶分を除去し、この色素溶液に酸化チタン電極を浸し、室温又は必要に応じて加熱し数時間から数日の間これを放置する。着色した電極表面を使用溶剤およびアルコールで洗浄した後、4‐t‐ブチルピリジンの2mol%溶液に30分浸した後乾燥させることで増感色素の吸着した光電変換電極を得た。
【0089】
・電解質溶液の調整
下記処方で電解質溶液を得た。
溶媒 メトキシアセトニトリル
LiI 0.1M
0.05M
4‐t‐ブチルピリジン 0.5M
1‐プロピル‐2,3‐ジメチルイミダゾリウムヨージド 0.6M
【0090】
・光電変換セルの組み立て
図1の様に光電変換セルの試験サンプルを組み立てた。
導電性対極にはフッ素ドープ酸化スズ層付ガラス基板(旭ガラス社製 タイプU−TCO)の導電層上にスパッタリング法により150nmの白金層を積層した物を用いた。
樹脂フィルム製スペーサーとしては、三井・デュポンポリケミカル社製「ハイミラン」フィルムの25μm厚の物を用いた。
【0091】
・変換効率の測定方法
ORIEL社製ソーラーシュミレーター(#8116)をエアマスフィルターとを組み合わせ、光量計で100mW/cmの光量に調整して測定用光源とし、光電変換セルの試験サンプルに光照射をしながら英弘精機社製I‐Vカーブトレーサー(MP160)を使用してI‐Vカーブ特性を測定した。変換効率ηは、I‐Vカーブ特性測定から得られたVoc(開放電圧値)、Isc(短絡電流値)、ff(フィルファクター値)を用いて下式により算出した。
【0092】
【式1】
Figure 2004220974
【0093】
(実施例2)
・化合物(3)および(4)の合成方法
エタノール溶剤中で1−ピレンカルボキシアルデヒド2.3g(10mmol)、トリフルオロアセト酢酸エチル 8g(43mmol)、酢酸アンモニウム0.77g(10mmol)を窒素気流下で100℃にて2時間攪拌した。反応終了後、反応液を減圧下加熱して、未反応の原料を取り除いた後、クロロホルム溶剤を主体としたシリカゲルカラムクロマトグラフィーで精製を行いエチルエステル化合物を得た(化合物(3))。さらにこれをエタノール−THF混合溶剤に溶解させた後、水酸化カリウム水溶液を加えて加水分解し、さらにクロロホルム溶剤を主体としたシリカゲルカラムクロマトグラフィーで精製を行って化合物(4)を得た。マススペクトル、NMRスペクトル、IRスペクトルにより、化合物(3)および(4)の構造を確認した。
増感色素の評価は実施例1と同様に行った。
【化6】
Figure 2004220974
【0094】
(実施例3)
・化合物(5)の合成方法
例1での4−ジメチルシンナムアルデヒドの替わりに、4‐ジフェニルアミノベンズアルデヒドを用いた以外は合成例1と同様の操作を行い化合物(5)を得た。マススペクトル、NMRスペクトル、IRスペクトルにより、化合物(5)の構造を確認した。
増感色素の評価は実施例1と同様に行った。
【化7】
Figure 2004220974
【0095】
(結果)
図2に化合物(1)と比較化合物(101)とのシリカゲルカラム分離溶剤中での分光スペクトル比較を示す。
さらに、図3に化合物(2)と比較化合物(102)とのシリカゲルカラム分離溶剤中での分光スペクトル比較を示す。
通常の電子吸引基であるシアノ基より強い電子吸引基であるトリフルオロアセチル基を導入した結果、同じ分子骨格で長波長側まで幅広く分光吸収を有することがわかる。
表3に本発明増感色素の性能を比較例色素と比較した。変換効率およびエタノールへの溶解性が向上していることがわかる。
【0096】
比較化合物(101) (化合物(1)に対する比較化合物 )
【化8】
Figure 2004220974
【0097】
比較化合物(102) (化合物(2)に対する比較化合物 )
【化9】
Figure 2004220974
【0098】
比較化合物(103) (化合物(3)に対する比較化合物 )
【化10】
Figure 2004220974
【0099】
比較化合物(104) (化合物(4)に対する比較化合物 )
【化11】
Figure 2004220974
【0100】
比較化合物(105) (化合物(5)に対する比較化合物 )
【化12】
Figure 2004220974
【0101】
【表3】
Figure 2004220974
【0102】
【発明の効果】
本発明において一般式(1)の増感色素を用い、枯渇性のない材料でかつ高い光電変換効率を有する光電変換セルを提供することができた。さらには太陽光に対して幅広い波長領域で光電変換機能を発現でき、かつエタノール等の環境負荷の小さな溶剤に対して溶解性が高く生産性の良い増感色素を提供できた。
ひいては高効率で量産性のある光電変換材料、光電変換電極および光電変換セルを作成することができた。
【図面の簡単な説明】
【図1】図1は、光電変換セル試験サンプルを表す。
【図2】図2は、化合物(1)と比較化合物(101)とのシリカゲルカラム分離溶剤中での分光スペクトル比較を示す。
【図3】図3は、化合物(2)と比較化合物(102)とのシリカゲルカラム分離溶剤中での分光スペクトル比較を示す。
【符号の説明】
1.酸化チタン多孔質層(光電変換用増感色素が吸着済)
2.電解質溶液層
3.透明電極層(フッ素ドープ型酸化スズ)
4.Pt電極層
5.ガラス基盤
6.樹脂フィルム製スペーサー
7.変換効率測定用導線[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sensitizing dye for photoelectric conversion, a photoelectric conversion material using the same, a photoelectric conversion electrode, and a photoelectric conversion cell using the same.
[0002]
[Prior art]
For photovoltaic power generation, monocrystalline silicon solar cells, polycrystalline silicon solar cells, amorphous silicon solar cells, and compound solar cells such as cadmium telluride and indium copper selenide have been put into practical use, or have been targeted for research and development, but have become popular. In addition, it is necessary to overcome problems such as production cost, securing of raw materials, and long energy payback time. On the other hand, many solar cells using an organic material intended for a large area and low cost have been proposed so far, but have a problem that conversion efficiency is low and durability is poor.
[0003]
In such a situation, a photoelectric conversion electrode and a photoelectric conversion cell using a semiconductor microporous body sensitized by a dye, and materials and manufacturing techniques for producing the same have been disclosed (Non-Patent Document 1 and Patent Reference 1). The disclosed battery is a dye-sensitized photoelectric conversion cell including a titanium oxide porous thin layer spectrally sensitized by a ruthenium complex dye as a working electrode, an iodine-based electrolyte layer, and a counter electrode. The first advantage of this method is that an inexpensive photoelectric conversion element can be provided because an inexpensive oxide semiconductor such as titanium oxide is used. The second advantage is that the ruthenium complex dye used is widely absorbed in the visible light region. , A relatively high conversion efficiency can be obtained.
[0004]
One of the problems of such a dye-sensitized photoelectric conversion cell is that ruthenium is used as a raw material of the dye. Ruthenium has a Clark number of 0.01 ppm, which is comparable to platinum and palladium on the earth, and is inevitable when used in large quantities. Further, the price of the ruthenium complex dye becomes expensive, which hinders the widespread use of photoelectric conversion cells. For this reason, research on delruthenium-based sensitizing dyes has been active in recent years. For example, JP-A-10-92477 discloses a sensitizing dye not using ruthenium as a raw material (see Patent Document 2).
[0005]
Recently, non-ruthenium complex dyes have been actively studied as sensitizing dyes in dye-sensitized solar cells. Examples thereof include phenylxanthene dyes, phthalocyanine dyes, coumarin dyes, cyanine dyes, porphyrin dyes, and azo dyes. Since these organic dyes have a large absorption coefficient and a large degree of freedom in molecular design as compared with the ruthenium complex, high photoelectric conversion efficiency is expected. However, there was no good organic sensitizing dye because the light absorption region of the dye was narrow or the charge injection into titanium oxide was inefficient.
[0006]
In order to solve these problems, it is disclosed that a sensitizing dye having a substituted acrylic acid moiety has a relatively high conversion efficiency as a sensitizing dye having a characteristic at the adsorption end with titanium oxide (Patent Document 3, 4). A characteristic feature of these sensitizing dyes is that the carbon atom to which the carboxylic acid group at the acrylic acid terminal is bonded simultaneously has an electron-withdrawing substituent represented by a cyano group, thereby increasing the electron-withdrawing effect at the acrylic acid terminal. It is in the point. The sensitizing dye is bound to the surface of the inorganic oxide porous semiconductor such as titanium oxide at the terminal carboxylic acid group, and the excited electrons generated by the light absorption of the sensitizing dye are injected into the inorganic oxide through the carboxylic acid group. However, the electron-injection effect is promoted by increasing the electron-withdrawing effect at this portion, and thus high conversion efficiency is realized. A typical example is a sensitizing dye obtained by combining a coumarin skeleton and an acrylic acid terminal having a cyano group, and realizes a high conversion efficiency of 5% or more (see Non-Patent Document 2).
[0007]
When a cyano group is used in combination, the solubility in an organic solvent for dyeing, such as ethanol, having a small environmental load is generally lowered, and production difficulties are likely to occur when dyeing a sensitizing dye on the surface of an inorganic oxide.
It is also desirable that the sensitizing dye that performs photoelectric conversion should be able to absorb light by covering a wide range from the visible part to the near-infrared part of light, but this is generally designed by increasing the conjugate system of the dye chromophore. Is going. However, in this design, the molecular weight generally tends to increase, which easily leads to an increase in the production cost of the dye and a decrease in the solubility in the organic solvent for dyeing.
[0008]
Excited electrons generated by light absorption of the sensitizing dye are more effectively injected into the inorganic oxide porous semiconductor side, and are easily dissolved in an organic solvent for dyeing having a small environmental load, thereby providing a manufacturing advantage. There was a need for a design of an adsorption end capable of doing so. Further, there has been a demand for a dye design capable of broadly absorbing light in the visible to near-infrared region with a compact chromophore conjugate system design.
[0009]
[Non-Patent Document 1] Nature (Vol. 353, 737-740, 1991)
[Non-Patent Document 2] Chem. commun. , (6), 569-570 (2001).
[Patent Document 1] US Pat. No. 4,927,721
[Patent Document 2] JP-A-10-92477
[Patent Document 3] JP-A-2002-164089
[Patent Document 4] WO02 / 11213 pamphlet
[0010]
[Problems to be solved by the invention]
The present invention enhances the electron-attracting force of the adsorption end to the inorganic semiconductor from the existing adsorption end, thereby enhancing the effect of injecting electrons to the inorganic oxide porous semiconductor side, and resulting in dye-sensitized photoelectric conversion having high conversion efficiency performance. It is to provide a sensitizing dye for cells. Another object of the present invention is to provide a sensitizing dye capable of generating photoexcited electrons in a wide visible to near-infrared region by increasing the wavelength of the light absorption region of the chromophore having the present adsorption terminal. It is another object of the present invention to increase the solubility in a solvent having a small environmental load such as ethanol and to solve the problems in production. Further, a photoelectric conversion material in which the sensitizing dye is connected to the surface of the inorganic semiconductor porous body, a photoelectric conversion electrode in which the photoelectric conversion material is laminated on a conductive surface of a transparent substrate having a conductive surface, and a photoelectric conversion electrode Is to provide a photoelectric conversion cell comprising a combination of a conductive counter electrode via an electrolyte layer.
[0011]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to solve the above-mentioned problems, and as a result, to connect a specific sensitizing dye to the surface of the inorganic semiconductor laminated on the transparent conductive substrate to produce a good photoelectric conversion cell. Successful and led to the present invention.
That is, the present invention relates to an optical functional material having a vinyl group represented by the following general formula (1).
General formula (1)
Embedded image
Figure 2004220974
(In the formula, n is an integer of 1 to 20, X represents a chromophore organic residue, R represents a hydrogen atom or a monovalent organic residue. A represents a carboxylic acid group, a phosphonic acid group, or a phosphinic acid group. , A hydroxy group or a hydroxamic acid group, and a part of the hydrogen atoms may be substituted with a cation or an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted silyl group. A and R, and R and X may combine with each other to form a ring, and X and R may be interchanged.)
[0012]
In addition, the present invention relates to the above optical functional material, wherein X is a chromophore organic residue containing a substituted amino group.
[0013]
The present invention also relates to a sensitizing dye for photoelectric conversion, comprising the above-mentioned optical functional material.
[0014]
The present invention also relates to the above sensitizing dye, which further comprises a sensitizing dye other than that represented by the general formula (1).
[0015]
The present invention also relates to a photoelectric conversion material obtained by connecting the sensitizing dye and a porous inorganic semiconductor.
[0016]
The present invention also relates to a photoelectric conversion electrode obtained by laminating the above-mentioned photoelectric conversion material on a transparent electrode.
[0017]
The present invention also relates to a photoelectric conversion cell including the above-mentioned photoelectric conversion electrode, an electrolyte layer, and a conductive counter electrode.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0019]
In the present invention, the optical functional material is a new sensitizing effect, a heat generating effect, a coloring effect, a fading effect, a luminous effect, a phase change effect, a photoelectric conversion effect, a magneto-optical effect, a photocatalytic effect, a light modulation effect by absorbing light. , A material exhibiting functions such as an optical recording effect and a radical generation effect, or a material having a light emitting function by receiving these effects. The optical functional material is, for example, a photoelectric conversion material, a light emitting material, an optical recording material, an image forming material, a photochromic material, an electroluminescent material, a photoconductive material, a dichroic material, a radical generating material, an acid generating material, and a base generating material. , Phosphorescent materials, nonlinear optical materials, second harmonic generation materials, third harmonic generation materials, photosensitive materials, light absorbing materials, near infrared absorbing materials, photochemical hole burning materials, light sensing materials, optical marking materials, photochemistry It can be widely used for therapeutic sensitizing materials, photo phase change recording materials, photosintering recording materials, magneto-optical recording materials, dyes for photodynamic therapy, sensitizing dyes for photoelectric conversion, and the like.
[0020]
In the present specification, since the optical functional material represented by the general formula (1) is mainly used as a sensitizing dye for photoelectric conversion, this material is mainly referred to as a sensitizing dye for photoelectric conversion or a sensitizing dye. It does not deny a wide range of applications.
[0021]
In the general formula (1), -C (= O) C n F (2n + 1) A representative example of the group is -C (= O) CF 3 Group (trifluoroacetyl group). This substituent has an extremely strong electron-withdrawing effect, and has different chemical properties from general alkylacetyl groups. A representative example is trifluoroacetic acid, which exhibits properties as a strong acid, whereas acetic acid is a weak acid. Further, since it has a strong polar effect, the solubility, the refractive index and the like are greatly different.
[0022]
-C (= O) CF 3 The strong electron withdrawing effect of the group also appears in the proton shift observed by NMR. Table 1 compares the proton shift positions of hydrogen at position a in the general formula (2) between the raw material (ethyl trifluoroacetoacetate) of the sensitizing dye of the present invention and the raw material corresponding to the comparative dye. The proton shift position in the NMR measurement also changes depending on the strength of the ring current effect, but when comparing the same skeleton, it is useful as a comparison of the electron-withdrawing performance of the substituent. Further, the comparison in the general formula (2) facilitates the assignment of the proton shift of the hydrogen at the a-position, so that the comparison can be easily discussed since the electron-withdrawing effect of the substituent at the E-position. As the electron-withdrawing effect of the E-position substituent increases, the electron density of hydrogen at position a decreases, and the hydrogen exhibits nuclear magnetic resonance at a lower magnetic field (position with a large PPM value).
[0023]
As an example of the non-electron-withdrawing substituent, when a methyl group is present at the E position, the proton shift position of hydrogen at the a position is 2.3 ppm, whereas a general electron withdrawing group such as a cyano group is located at the E position. Is bonded, the proton shift position appears on the low magnetic field side of 3.3 to 3.7 ppm. In contrast, when the trifluoroacetyl group of the present invention is bonded to the E position, the proton shift position of the hydrogen at the a position is significantly 5.6 ppm on the low magnetic field side, and has an extremely strong electron withdrawing effect. You can see that it is.
[0024]
General formula (2)
Embedded image
Figure 2004220974
(In the general formula (2), E is an electron-withdrawing group or a comparative substituent, a is hydrogen on the carbon atom to which the substituent E is bonded. In Table 1, NMR proton shift positions of hydrogen at position a were compared.)
[0025]
-C (= O) C n F (2n + 1) Since the group has an effect even as a soluble group, the sensitizing dye having the group tends to show high solubility even in a solvent having a small environmental load such as ethanol.
[Table 1]
Figure 2004220974
[0026]
Furthermore, having a strong electron-withdrawing group leads to narrowing of the transition energy gap between HOMO and LUMO of photoexcitation, so that the light absorption region can be made longer with the chromophore skeleton as it is.
[0027]
First, X in the general formula (1) represents a chromophore organic residue. The chromophore organic residue referred to here is an organic residue having a π-electron planar skeleton or an unsaturated hydrocarbon residue in its structure and capable of expressing light absorption in the visible to near-infrared region by HOMO-LUMO electron transition in the molecule. There is no particular limitation as long as it is a group. A chromophore organic residue in the present invention includes those having absorption in the same light region as the organometallic complex residue. The expression of light absorption may occur only after bonding the vinyl group in the general formula (1).
[0028]
Examples of the π-electron planar skeleton include an aromatic ring residue and a heterocyclic residue of an aromatic hydrocarbon.
[0029]
The aromatic ring residue of the aromatic hydrocarbon is not particularly restricted but includes, for example, benzene, naphthalene, anthracene, naphthacene, pyrene, phenanthrene, indene, azulene, perylene, fluorene, biphenyl, terphenyl and the like.
[0030]
The heterocyclic residue is not particularly limited, for example, pyridine, pyrazine, pyrimidine, pyrazole, pyrazolidine, pyran, chromene, pyrrole, benzimidazole, imidazoline, imidazolidine, imidazole, pyrazole, triazole, triazine, diazole, morpholine , Indoline, thiophene, furan, oxazole, thiazine, thiazole, indole, benzothiazole, naphthothiazole, benzoxazole, naphthoxazole, indolenine, benzoindolenine, pyrazine, quinoline, quinazoline, carbazole, coumarin and the like.
Further, these heterocycles may be quaternized and may have a counter ion. The counter ion in this case is not particularly limited, and may be a general anion. Examples include halogen ions, perchlorate ions, boron tetrafluoride ions, hexafluorophosphorus ions, hydroxide ions, methanesulfonic acid ions, toluenesulfonic acid, and the like. When it has no counter ion, it may be neutralized with an acidic group such as a carboxyl group in a molecule or between molecules.
[0031]
Further, the heterocyclic ring includes a dye skeleton used for dyes and pigments.
The dye skeleton used includes an azo dye, a quinacridone dye, a diketopyrrolopyrrole dye, a squarylium dye, a cyanine dye, a merocyanine dye, a triphenylmethane dye, a xanthene dye, a porphyrin dye, and a chlorophyll dye. Dye skeletons such as dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, and naphthalocyanine dyes are exemplified.
[0032]
The unsaturated hydrocarbon residue is not particularly limited, but preferably has a total of unsaturated bonds in the range of 1 to 20.
[0033]
The organometallic complex of the organometallic complex residue is not particularly limited, and examples thereof include ferrocene, ruthenocene, titanocene, zirconocene, phthalocyanine, naphthalocyanine, porphyrin, ruthenium bipyridyl complex, and the like.
[0034]
The above aromatic hydrocarbon residue, heterocyclic residue, unsaturated hydrocarbon residue, and organometallic complex residue may have a substituent. Although there is no particular limitation on the substituent, for example, alkyl group, aryl group, cyano group, isocyano group, thiocyanate group, isothiocyanate group, nitro group, nitrosyl group, acyl group, halogen atom, ketone group, hydroxyl group, substituent A mercapto group which may have a group, an amino group which may have a substituent, an amide group which may have a substituent, an alkoxyl group, an alkoxyalkyl group, a carboxyl group, an alkoxycarbonyl group, a silyl group, etc. can give.
[0035]
Examples of the alkyl group include linear, branched and cyclic hydrocarbon groups having 1 to 30 carbon atoms which may have a substituent, and include a methyl group, an ethyl group, a propyl group, a butyl group, a sec-butyl group, Examples thereof include an alkyl group having 1 to 30 carbon atoms such as a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a stearyl group.
[0036]
Examples of the alkoxyl group include an alkoxyl group having 1 to 20 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a tert-butoxy group, an octyloxy group, and a tert-octyloxy group.
[0037]
Examples of the aryloxy group include aryloxy groups having 6 to 20 carbon atoms such as a phenoxy group, a 4-tert-butylphenoxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, and a 9-anthryloxy group. .
[0038]
Examples of the alkylthio group include a C1-20 alkylthio group such as a methylthio group, an ethylthio group, a tert-butylthio group, a hexylthio group, and an octylthio group.
[0039]
Examples of the arylthio group include arylthio groups having 6 to 20 carbon atoms, such as a phenylthio group, a 2-methylphenylthio group, and a 4-tert-butylphenylthio group.
[0040]
Examples of the aryl group include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 2,4-xylyl group, a p-cumenyl group, a mesityl group, a 1-naphthyl group, a 2-naphthyl group, And aryl groups having 6 to 30 carbon atoms, such as 1-anthryl group, 9-phenanthryl group, 1-acenaphthyl group, 2-azulenyl group, 1-pyrenyl group and 2-triphenylel group.
[0041]
Examples of the substituted amino group include N-methylamino group, N-ethylamino group, N, N-diethylamino group, N, N-diisopropylamino group, N, N-dibutylamino group, N-benzylamino group, , N-dibenzylamino group, N-phenylamino group, N-phenyl-N-methylamino group, N, N-diphenylamino group, N, N-bis (m-tolyl) amino group, N, N-bis (P-tolyl) amino group, N, N-bis (p-biphenylyl) amino group, bis [4- (4-methyl) biphenylyl] amino group, Np-biphenylyl-N-phenylamino group, N-α And substituted amino groups having 1 to 30 carbon atoms, such as -naphthyl-N-phenylamino group, N-β-naphthyl-N-phenylamino group, and N-phenanthryl-N-phenylamino group.
[0042]
Examples of the acyl group include acetyl, propionyl, pivaloyl, cyclohexylcarbonyl, benzoyl, toluoyl, anisoyl, and cinnamoyl.
[0043]
Examples of the aryloxycarbonyl group include a phenoxycarbonyl group and a naphthyloxycarbonyl group.
[0044]
Examples of the alkylsulfonyl group include a mesyl group, an ethylsulfonyl group, and a propylsulfonyl group.
[0045]
Examples of the arylsulfonyl group include a benzenesulfonyl group and a toluenesulfonyl group.
[0046]
Examples of the silyl group include an alkylsilyl group and an arylsilyl group, such as a trimethylsilyl group, a triethylsilyl group, and a triphenylsilyl group.
[0047]
X in the general formula (1) acts as a chromophore moiety that absorbs light from the visible part of the light energy to the near-infrared region and generates excited electrons, and conjugates with the π electron of the vinyl group in the formula to convert the electron into a carboxylic acid. It is desirable to exhibit a function of transmitting to acidic groups such as an acid group, a phosphonic acid group, a phosphinic acid group, a hydroxy group, and a hydroxamic acid group. Furthermore, when the chromophore site of X has an electron donating group such as a substituted amino group, charge transfer is likely to occur. In this case, the injection of electrons from the dye into the inorganic semiconductor porous body becomes highly efficient, which is particularly preferable.
[0048]
Next, R in the general formula (1) will be described. R represents a hydrogen atom or a monovalent organic residue. Among the substituents described in the description of X, those capable of binding monovalently correspond.
[0049]
Next, A in the general formula (1) will be described. A exists as an acidic substituent capable of linking to the inorganic oxide porous semiconductor surface in the structure of the sensitizing dye. Excited electrons of the photoexcited dye can be injected into the conduction band of the inorganic oxide porous semiconductor through this acidic substituent. A specifically includes a carboxylic acid group, a phosphonic acid group, a phosphinic acid group, a hydroxy group, and a hydroxamic acid group. In the present invention, -C (= O) C has extremely strong electron-withdrawing property on the same carbon atom to which A is bonded. n F (2n + 1) By bonding the groups, excited electrons generated in the chromophore residue of the sensitizing dye can be effectively injected into the inorganic oxide porous semiconductor. In A, a part of the hydrogen atoms may be substituted with a cation or an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted silyl group. The sex cation here means various cations that can form a salt with an acidic group, and specific examples include a quaternary ammonium ion, an alkali metal ion, and an alkaline earth metal ion.
[0050]
Examples of quaternary ammonium ions include tetraalkylammonium ions such as tetramethylammonium ion, tetraethylammonium ion, tetrapropylammonium ion and tetrabutylammonium ion, and nitrogen-containing heteroaromatic ions such as pyridinium cation and imidazolium cation. Is raised.
[0051]
The alkali metal ion includes sodium ion, potassium ion, lithium ion, and the alkaline earth metal ion includes magnesium ion, calcium ion and the like.
Examples of the alkyl group, aryl group and silyl group of A are the same as those described above for the substituent.
In the case of compounds containing these alkyl groups, aryl groups, and silyl groups, when a sensitizing dye is adsorbed to a titanium oxide electrode or the like, an appropriate amount of water and, if necessary, an acid or alkali is contained in a dyeing solvent to obtain an appropriate amount. It can be adsorbed on the electrode surface while performing ester hydrolysis under temperature conditions.
[0052]
Hereinafter, Table 2 shows typical examples of compounds that can be used as the sensitizing dye for photoelectric conversion of the present invention. However, the present invention is not limited to these compounds (however, in Table 2, Me is A methyl group and Ph represents a phenyl group). Further, in this specification, as a representative structural formula of a compound, a part of the cis-trans isomer resulting from the double bond structure is shown, and this includes all the possible isomers.
Table 2
[0053]
[Table 2]
Figure 2004220974
[0054]
Figure 2004220974
[0055]
Figure 2004220974
[0056]
Figure 2004220974
[0057]
Figure 2004220974
[0058]
Figure 2004220974
[0059]
Figure 2004220974
[0060]
Figure 2004220974
[0061]
Figure 2004220974
[0062]
Figure 2004220974
[0063]
Figure 2004220974
[0064]
Figure 2004220974
[0065]
Figure 2004220974
[0066]
By the way, the sensitizing dye for photoelectric conversion used in the present invention is used in combination with another sensitizing dye to supplement sunlight absorption in a region where the sensitizing dye represented by the general formula (1) cannot be covered. Can do things. Here, as other sensitizing dyes, azo dyes, quinacridone dyes, diketopyrrolopyrrole dyes, squarylium dyes, cyanine dyes, merocyanine dyes, triphenylmethane dyes, xanthene dyes, porphyrin dyes, Examples include chlorophyll dyes, ruthenium complex dyes, indigo dyes, perylene dyes, dioxazine dyes, anthraquinone dyes, phthalocyanine dyes, naphthalocyanine dyes, and derivatives thereof.
[0067]
Hereinafter, materials other than the sensitizing dye for photoelectric conversion used in the present invention will be described.
[0068]
(Inorganic oxide)
The sensitizing dye for photoelectric conversion used in the present invention forms a photoelectric conversion material in which the inorganic semiconductor porous material is sensitized by being connected to the surface of the inorganic semiconductor porous material via a linking group. Inorganic semiconductors generally have a photoelectric conversion function with respect to light in a part of the region, but this surface is connected to a sensitizing dye to perform photoelectric conversion up to the visible light and / or near infrared region. Becomes possible. As the material of the inorganic semiconductor porous body, an inorganic oxide is mainly used, but the inorganic oxide is not limited to the inorganic semiconductor porous body having a photoelectric conversion function by connecting a sensitizing dye. Examples of the inorganic semiconductor include silicon, germanium, group III-V based semiconductors, metal chalcogenides, and the like. Examples of the inorganic oxide semiconductor porous material used in the present invention include titanium oxide, tin oxide, tungsten oxide, zinc oxide, indium oxide, niobium oxide, iron oxide, nickel oxide, cobalt oxide, strontium oxide, tantalum oxide, and antimony oxide. , Lanthanoid oxide, yttrium oxide, vanadium oxide, and other porous materials. These surfaces can be connected to a sensitizing dye to enable photoelectric conversion up to the visible light and / or near-infrared light regions. However, the present invention is not limited to this. In order for the surface of the inorganic oxide semiconductor porous body to be sensitized by the sensitizing dye, it is desirable that the conduction band of the inorganic oxide exists at a position where electrons can be easily received from the photoexcitation order of the sensitizing dye. Therefore, among the inorganic oxide semiconductor porous bodies, titanium oxide, tin oxide, zinc oxide, niobium oxide and the like are particularly used. Further, titanium oxide is particularly used from the viewpoints of price, environmental hygiene, and the like. In the present invention, one or a plurality of the inorganic oxide semiconductor porous bodies can be selected and combined.
[0069]
(Inorganic oxide porous)
The inorganic semiconductor porous body has a large surface area by making it porous for the purpose of linking a large amount of sensitizing dye to its surface and thus having a high rate of photoelectric conversion ability. As a method for forming a porous material, a method of sintering after forming inorganic oxide particles such as titanium oxide having a particle size of several to several tens of nanometers and then sintering the same is widely known. It is not limited to this as long as it is a method of obtaining.
[0070]
(Photoelectric conversion electrode)
The photoelectric conversion material used in the present invention forms a photoelectric conversion electrode by being laminated on the conductive surface of a transparent substrate having a conductive surface.
[0071]
(Conductive surface)
The conductive surface used is not particularly limited as long as it is a conductive material having a small light absorption in the visible to near-infrared region of sunlight, but ITO (indium-tin oxide) or tin oxide (doped with fluorine or the like) Metal oxides having good electrical conductivity, such as zinc oxide.
[0072]
(Transparent substrate)
The transparent substrate to be used is not particularly limited as long as it is a material having little light absorption in the visible to near infrared region of sunlight. Glass substrate such as quartz, normal glass, BK7, lead glass, polyethylene terephthalate, polyethylene naphthalate, polyimide, polyester, polyethylene, polycarbonate, polyvinyl butyrate, polypropylene, tetraacetyl cellulose, syndiotactic polystyrene, polyphenylene sulfide, polyarylate And resin substrates such as polysulfone, polyestersulfone, polyetherimide, cyclic polyolefin, brominated phenoxy, and vinyl chloride.
[0073]
(Lamination method)
As a method of laminating the photoelectric conversion material used in the present invention on the conductive surface of a transparent substrate having a conductive surface, an inorganic oxide semiconductor is obtained by applying or drying or sintering paste-formed inorganic oxide particles on the conductive surface. By forming a porous body and immersing it together with the transparent substrate in a solution in which the sensitizing dye is dissolved, the affinity of the inorganic porous surface and the coupler of the sensitizing dye is used to convert the sensitizing dye into an inorganic porous material. The method of binding to the surface of the material is general, but not limited to this method. In order to make the inorganic oxide particles into a paste, the inorganic oxide particles are dispersed in water or a suitable organic solvent. Since it is important to form a paste with good dispersibility in order to laminate a homogeneous and large surface area inorganic porous surface, an acid such as nitric acid or acetylacetone or a dispersant such as polyethylene glycol or Triton X-100 may be used as necessary. It is mixed with a paste component and made into a paste using a paint shaker or the like. As a method of applying the paste to the conductive surface of the transparent substrate, an application method using a spin coater, a screen printing method, an application method using a squeegee, a dipping method, a spraying method, a roller method, or the like is used. After the applied inorganic oxide paste is dried or fired, volatile components in the paste are removed to form a porous inorganic oxide semiconductor on the conductive surface of the transparent substrate. As a drying or baking condition, for example, a method of applying heat energy at a temperature of 400 ° C. to 500 ° C. for about 30 minutes to 1 hour is generally used. The method is not limited to this, as long as it is a drying or firing method capable of obtaining a good electromotive force at the time of irradiation.
To make a solution in which the sensitizing dye is dissolved, alcohol solvents such as ethanol benzyl alcohol, acetonitrile, nitrile solvents such as propionitrile, chloroform, dichloromethane, halogen solvents such as chlorobenzene, diethyl ether, and the like are used as solvents. Ether solvents such as tetrahydrofuran, ester solvents such as ethyl acetate and succinbutyl, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, carbonate solvents such as diethyl carbonate and propylene carbonate, hexane, octane, benzene and toluene. A carbohydrate solvent, dimethylformamide, dimethylacetamide, dimethylsulfoxide, 1,3-dimethylimidazolinone, N-methylpyrrolidone, water and the like can be used, but are not limited thereto.
The thickness of the inorganic oxide semiconductor porous body formed on the conductive surface of the transparent substrate is desirably 0.5 μm or more and 200 μm or less. When the film thickness is less than this range, effective conversion efficiency cannot be obtained. When the film thickness is thicker than this range, it is difficult to prepare such as cracking or peeling at the time of film formation. On the other hand, since the distance between the inorganic oxide semiconductor porous body surface layer and the conductive surface increases, generated charges are effective on the conductive surface. , It is difficult to obtain good conversion efficiency.
[0074]
(Photoelectric conversion cell)
The photoelectric conversion electrode used in the present invention forms a photoelectric conversion cell by combining a conductive counter electrode via an electrolyte layer.
[0075]
(Electrolyte layer)
The electrolyte layer used in the present invention is preferably composed of an electrolyte, a medium, and an additive. The electrolyte of the present invention is I 2 And iodide (for example, LiI, NaI, KI, CsI, MgI 2 , CaI 2 , CuI, tetraalkylammonium iodide, pyridinium iodide, imidazolium iodide, etc.), Br 2 And bromide (eg, LiBr etc.), Inorg. Chem. The molten salt described in 1996, 35, 1168-1178 can be used, but is not limited thereto. Among them I 2 In the present invention, an electrolyte in which LiI, pyridinium iodide, imidazolium iodide, or the like is mixed as a combination of iodide and iodide is preferable, but not limited to this combination.
[0076]
The preferred electrolyte concentration is I in the medium 2 Is 0.01M or more and 0.5M or less, and the mixture of iodides is 0.1M or more and 15M or less.
[0077]
The medium used for the electrolyte layer in the present invention is desirably a compound that can exhibit good ionic conductivity. Examples of the solution medium include ether compounds such as dioxane and diethyl ether, chain ethers such as ethylene glycol dialkyl ether, propylene glycol dialkyl ether, polyethylene glycol dialkyl ether and polypropylene glycol dialkyl ether, methanol, ethanol, and ethylene glycol monoalkyl. Alcohols such as ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, and polypropylene glycol monoalkyl ether, polyhydric alcohols such as ethylene glycol, propylene glycol, polyethylene glycol, polypropylene glycol, and glycerin, acetonitrile, glutadonitrile, Methoxyacetonitrile, propioni Lil, nitrile compounds such as benzonitrile, ethylene carbonate, carbonate compounds such as propylene carbonate, 3-methyl-2-oxazolidinone heterocyclic compounds such as dimethyl sulfoxide, it can be used aprotic polar substances such as sulfolane, water, and the like.
[0078]
Further, for the purpose of using a solid (including gel) medium, a polymer can be included. In this case, a polymer such as polyacrylonitrile or polyvinylidene fluoride is added to the solution medium, or a polyfunctional monomer having an ethylenically unsaturated group is polymerized in the solution medium to solidify the medium. I do.
As the electrolyte layer, an electrolyte that does not require a CuI or CuSCN medium, and Nature, Vol. 395, 8 Oct. 1998, p583-585, a hole transporting material such as 2,2 ', 7,7'-tetrakis (N, N-di-p-methoxyphenylamine) 9,9'-spirobifluorene can be used. it can.
The electrolyte layer used in the present invention may contain an additive that functions to improve the electrical output of the photoelectric conversion cell or to improve the durability. Additives for improving electrical output include 4-t-butylpyridine, 2-picoline, 2,6-lutidine and the like. MgI etc. are mentioned as an additive which improves durability.
[0079]
(Conductive counter electrode)
The conductive counter electrode used in the present invention functions as the positive electrode of the photoelectric conversion cell. Specifically, conductive materials used for the counter electrode include metals (for example, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), metal oxides (ITO (indium-tin oxide), and tin oxide (fluorine, etc.). Doped, zinc oxide), carbon, and the like. The thickness of the counter electrode is not particularly limited, but is preferably 5 nm or more and 10 μm or less.
[0080]
(How to assemble)
A photoelectric conversion cell is formed by combining the above-mentioned photoelectric conversion electrode and a conductive counter electrode via an electrolyte layer. If necessary, sealing is performed around the photoelectric conversion cell in order to prevent leakage or volatilization of the electrolyte layer. For sealing, a thermoplastic resin, a photocurable resin, a glass frit, or the like can be used as a sealing material. The photoelectric conversion cells are formed by connecting small-area photoelectric conversion cells as needed. The electromotive voltage can be increased by combining the photoelectric conversion cells in series.
[0081]
【Example】
Examples will be specifically described below, but the present invention is not limited to the examples.
(Example 1)
-Synthesis of compounds (1) and (2)
In an ethanol solvent, 1.75 g (10 mmol) of 4-dimethylcinnamaldehyde, 8 g (43 mmol) of ethyl trifluoroacetoacetate, and 0.77 g (10 mmol) of ammonium acetate were stirred at 100 ° C. for 2 hours under a nitrogen stream. After completion of the reaction, the reaction solution was heated under reduced pressure to remove unreacted raw materials, and then purified by silica gel column chromatography mainly using a chloroform solvent to obtain an ethyl ester compound (Compound (1)). After further dissolving this in ethanol, an aqueous solution of potassium hydroxide was added to hydrolyze it, and further purified by silica gel column chromatography mainly using a chloroform solvent to obtain compound (2). The structures of the compounds (1) and (2) were confirmed by a mass spectrum, an NMR spectrum and an IR spectrum.
[0082]
Embedded image
Figure 2004220974
[0083]
Embedded image
Figure 2004220974
[0084]
・ Confirmation test of solubility of sensitizing dye in ethanol
The solubility of the sensitizing dye was tested in the following manner.
10 mg of the sensitizing dye was added to 10 ml of ethanol, and the solubility was visually checked while shaking. The following classification was performed on the obtained results.
Dissolves within 1 minute ◎
Dissolves within 5 minutes ○
Dissolve within 30 minutes △
Insolubles remain after 30 minutes ×
[0085]
Evaluation of the photoelectric conversion dye will be described.
・ Transparent electrode
A glass substrate with a fluorine-doped tin oxide layer (type U-TCO manufactured by Asahi Glass Co., Ltd.) was used.
[0086]
・ Adjustment of titanium oxide paste
It was mixed with zirconia beads according to the following formulation and dispersed using a paint shaker to obtain a titanium oxide paste.
Titanium oxide (Nippon Aerosil P25 particle size 21 nm) 6 parts by weight
Water (adjusted to pH 2 by adding nitric acid) 14 parts by weight
0.6 parts by weight of acetylacetone
Surfactant (Triton X-100 manufactured by ICN) 0.04 parts by weight
0.3 parts by weight of PEG- # 500,000
[0087]
・ Preparation of porous layer of titanium oxide
A mask was made by applying a 60-μm-thick mending tape to the conductive surface of the transparent electrode and removing the 1-cm square tape. The paste was dripped several times in the vacant portions, and then excess paste was removed with a squeegee. After air drying, remove all masks and bake in an oven at 450 ° C for 1 hour to obtain an effective area of 1cm 2 A titanium oxide electrode having a titanium oxide porous layer was obtained.
[0088]
・ Adsorption of sensitizing dye
Dissolve the sensitizing dye in a solvent such as alcohol, acetone, ethyl acetate, dimethylformamide, or N-methylpyrrolidone. Heat according to and leave it for several hours to several days. The colored electrode surface was washed with a solvent and an alcohol, immersed in a 2 mol% solution of 4-t-butylpyridine for 30 minutes, and dried to obtain a photoelectric conversion electrode having a sensitizing dye adsorbed thereon.
[0089]
・ Adjustment of electrolyte solution
An electrolyte solution was obtained according to the following formulation.
Solvent Methoxyacetonitrile
LiI 0.1M
I 2 0.05M
4-t-butylpyridine 0.5M
1-propyl-2,3-dimethylimidazolium iodide 0.6M
[0090]
・ Assembly of photoelectric conversion cell
A test sample of a photoelectric conversion cell was assembled as shown in FIG.
As the conductive counter electrode, a laminate in which a 150 nm platinum layer was laminated by a sputtering method on a conductive layer of a glass substrate with a fluorine-doped tin oxide layer (type U-TCO manufactured by Asahi Glass Co., Ltd.) was used.
As the resin film spacer, a 25 μm-thick “Himilan” film manufactured by DuPont-Mitsui Polychemicals was used.
[0091]
・ Method of measuring conversion efficiency
A solar simulator manufactured by ORIEL (# 8116) was combined with an air mass filter, and measured with a light meter at 100 mW / cm. 2 A light source for measurement was prepared by adjusting the light amount to IV, and an IV curve characteristic was measured using an IV curve tracer (MP160, manufactured by Eiko Seiki Co., Ltd.) while irradiating the test sample of the photoelectric conversion cell with light. The conversion efficiency η was calculated by the following equation using Voc (open-circuit voltage value), Isc (short-circuit current value), and ff (fill factor value) obtained from the IV curve characteristic measurement.
[0092]
(Equation 1)
Figure 2004220974
[0093]
(Example 2)
-Method for synthesizing compounds (3) and (4)
2.3 g (10 mmol) of 1-pyrenecarboxaldehyde, 8 g (43 mmol) of ethyl trifluoroacetoacetate, and 0.77 g (10 mmol) of ammonium acetate were stirred in an ethanol solvent at 100 ° C. for 2 hours under a nitrogen stream. After completion of the reaction, the reaction solution was heated under reduced pressure to remove unreacted raw materials, and then purified by silica gel column chromatography mainly using a chloroform solvent to obtain an ethyl ester compound (Compound (3)). Further, this was dissolved in an ethanol-THF mixed solvent, then hydrolyzed by adding an aqueous potassium hydroxide solution, and further purified by silica gel column chromatography mainly using a chloroform solvent to obtain a compound (4). The structures of the compounds (3) and (4) were confirmed by a mass spectrum, an NMR spectrum and an IR spectrum.
The sensitizing dye was evaluated in the same manner as in Example 1.
Embedded image
Figure 2004220974
[0094]
(Example 3)
-Method for synthesizing compound (5)
Compound (5) was obtained in the same manner as in Synthesis Example 1 except that 4-diphenylaminobenzaldehyde was used instead of 4-dimethylcinnamaldehyde in Example 1. The structure of the compound (5) was confirmed by a mass spectrum, an NMR spectrum and an IR spectrum.
The sensitizing dye was evaluated in the same manner as in Example 1.
Embedded image
Figure 2004220974
[0095]
(result)
FIG. 2 shows a comparison of the spectral spectra of compound (1) and comparative compound (101) in a silica gel column separation solvent.
FIG. 3 shows a comparison of the spectral spectra of the compound (2) and the comparative compound (102) in a silica gel column separation solvent.
As a result of introducing a trifluoroacetyl group which is an electron withdrawing group stronger than a cyano group which is a normal electron withdrawing group, it can be seen that the same molecular skeleton has a broad spectral absorption up to the long wavelength side.
Table 3 compares the performance of the sensitizing dye of the present invention with the dye of the comparative example. It can be seen that the conversion efficiency and the solubility in ethanol are improved.
[0096]
Comparative compound (101) (Comparative compound for compound (1))
Embedded image
Figure 2004220974
[0097]
Comparative compound (102) (Comparative compound for compound (2))
Embedded image
Figure 2004220974
[0098]
Comparative compound (103) (Comparative compound for compound (3))
Embedded image
Figure 2004220974
[0099]
Comparative compound (104) (Comparative compound for compound (4))
Embedded image
Figure 2004220974
[0100]
Comparative compound (105) (Comparative compound for compound (5))
Embedded image
Figure 2004220974
[0101]
[Table 3]
Figure 2004220974
[0102]
【The invention's effect】
By using the sensitizing dye represented by the general formula (1) in the present invention, a photoelectric conversion cell having a non-depletable material and high photoelectric conversion efficiency can be provided. Further, a sensitizing dye having a high solubility in a solvent having a small environmental load such as ethanol, which can exhibit a photoelectric conversion function in a wide wavelength region with respect to sunlight, and has high productivity was provided.
Eventually, a highly efficient and mass-produced photoelectric conversion material, photoelectric conversion electrode, and photoelectric conversion cell could be produced.
[Brief description of the drawings]
FIG. 1 shows a photoelectric conversion cell test sample.
FIG. 2 shows a comparison of the spectral spectra of compound (1) and comparative compound (101) in a silica gel column separation solvent.
FIG. 3 shows a comparison of the spectral spectra of compound (2) and comparative compound (102) in a silica gel column separation solvent.
[Explanation of symbols]
1. Titanium oxide porous layer (sensitizing dye for photoelectric conversion has been adsorbed)
2. Electrolyte solution layer
3. Transparent electrode layer (fluorine-doped tin oxide)
4. Pt electrode layer
5. Glass base
6. Resin film spacer
7. Conversion efficiency measurement conductor

Claims (7)

下記一般式(1)で示されるビニル基を有する光機能材料。
一般式(1)
Figure 2004220974
(式中、nは1〜20の整数であり、Xはクロモファー有機残基を表し、Rは水素原子もしくは1価の有機残基を表す。Aはカルボン酸基、ホスホン酸基、ホスフィン酸基、ヒドロキシ基、ヒドロキサム酸基を表し、水素原子の一部が、陽イオンもしくは置換されてもよいアルキル基、置換されてもよいアリール基、置換されてもよいシリル基で置換されてもよい。AとR、RとXは、置換基同士で結合して環を形成してもよい。さらにXとRは入れ替わっても良い。)
An optical functional material having a vinyl group represented by the following general formula (1).
General formula (1)
Figure 2004220974
(In the formula, n is an integer of 1 to 20, X represents a chromophore organic residue, R represents a hydrogen atom or a monovalent organic residue. A represents a carboxylic acid group, a phosphonic acid group, or a phosphinic acid group. , A hydroxy group or a hydroxamic acid group, and a part of the hydrogen atoms may be substituted with a cation or an optionally substituted alkyl group, an optionally substituted aryl group, or an optionally substituted silyl group. A and R, and R and X may combine with each other to form a ring, and X and R may be interchanged.)
Xが、置換アミノ基を含むクロモファー有機残基である請求項1記載の光機能材料。The optical functional material according to claim 1, wherein X is a chromophore organic residue containing a substituted amino group. 請求項1または2記載の光機能材料を含んでなる光電変換用増感色素。A sensitizing dye for photoelectric conversion, comprising the optical functional material according to claim 1. さらに、一般式(1)で表される以外の増感色素を含んでなる請求項1〜3記載の増感色素。The sensitizing dye according to claim 1, further comprising a sensitizing dye other than that represented by the general formula (1). 請求項3または4記載の増感色素と、無機半導体多孔質体とを連結させてなる光電変換材料。A photoelectric conversion material obtained by linking the sensitizing dye according to claim 3 and a porous inorganic semiconductor material. 請求項5記載の光電変換材料を透明電極に積層させてなる光電変換電極。A photoelectric conversion electrode obtained by laminating the photoelectric conversion material according to claim 5 on a transparent electrode. 請求項6記載の光電変換電極、電解質層、および導電性対極を含んでなる光電変換セル。A photoelectric conversion cell comprising the photoelectric conversion electrode according to claim 6, an electrolyte layer, and a conductive counter electrode.
JP2003008520A 2003-01-16 2003-01-16 Optical functional materials Expired - Fee Related JP4423857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008520A JP4423857B2 (en) 2003-01-16 2003-01-16 Optical functional materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008520A JP4423857B2 (en) 2003-01-16 2003-01-16 Optical functional materials

Publications (2)

Publication Number Publication Date
JP2004220974A true JP2004220974A (en) 2004-08-05
JP4423857B2 JP4423857B2 (en) 2010-03-03

Family

ID=32898288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008520A Expired - Fee Related JP4423857B2 (en) 2003-01-16 2003-01-16 Optical functional materials

Country Status (1)

Country Link
JP (1) JP4423857B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
WO2012017874A1 (en) * 2010-08-03 2012-02-09 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
WO2018061983A1 (en) 2016-09-29 2018-04-05 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
WO2018150760A1 (en) 2017-02-17 2018-08-23 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye composition, and oxide semiconductor electrode
WO2018211848A1 (en) 2017-05-19 2018-11-22 富士フイルム株式会社 Photoelectric conversion element, solar cell, method for producing photoelectric conversion element, and composition for forming photosensitive layer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004580A1 (en) 2006-07-05 2008-01-10 Nippon Kayaku Kabushiki Kaisha Dye-sensitized solar cell
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
WO2011152318A1 (en) 2010-06-02 2011-12-08 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and dye-sensitized solar cell
WO2012017874A1 (en) * 2010-08-03 2012-02-09 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, and photoelectrochemical cell
WO2013088898A1 (en) 2011-12-15 2013-06-20 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and compound
WO2013118709A1 (en) 2012-02-08 2013-08-15 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element, and dye-sensitized solar cell using photoelectric conversion element
WO2013137221A1 (en) 2012-03-16 2013-09-19 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye adsorption liquid composition for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
WO2014050578A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, and dye solution made by dissolving metal complex dye
WO2014050528A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014050911A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Metal complex dye, photoelectric conversion element, dye-sensitized solar cell, dye solution, and dye-adsorbed electrode
WO2014050527A1 (en) 2012-09-28 2014-04-03 富士フイルム株式会社 Photoelectric conversion element and dye-sensitized solar cell
WO2014077356A1 (en) 2012-11-16 2014-05-22 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-adsorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014098045A1 (en) 2012-12-17 2014-06-26 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, dye-absorbed electrode, and method for manufacturing dye-sensitized solar cell
WO2014157005A1 (en) 2013-03-25 2014-10-02 富士フイルム株式会社 Metal-complex dye, photoelectric conversion element, dye-sensitized solar cell, and dye solution containing metal-complex dye
WO2018061983A1 (en) 2016-09-29 2018-04-05 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye solution, and oxide semiconductor electrode
WO2018150760A1 (en) 2017-02-17 2018-08-23 富士フイルム株式会社 Photoelectric conversion element, dye-sensitized solar cell, metal complex dye, dye composition, and oxide semiconductor electrode
WO2018211848A1 (en) 2017-05-19 2018-11-22 富士フイルム株式会社 Photoelectric conversion element, solar cell, method for producing photoelectric conversion element, and composition for forming photosensitive layer

Also Published As

Publication number Publication date
JP4423857B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
EP1628356B1 (en) Dye-sensitized photoelectric conversion device
JP4423857B2 (en) Optical functional materials
JP5925541B2 (en) Metal complex dye for photoelectric conversion element, photoelectric conversion element, dye-sensitized solar cell, dye-adsorbing composition liquid for dye-sensitized solar cell, semiconductor electrode for dye-sensitized solar cell, and method for producing dye-sensitized solar cell
EP1296403A1 (en) Dye-sensitized photoelectric transducer
JP2010529226A (en) Novel organic dye and method for producing the same
JP4341621B2 (en) Optical functional materials
WO2013030737A1 (en) Asymmetric cyanine dyes for photovoltaic applications
JP5630156B2 (en) Indanone derivatives and their use as colorants for dye-sensitized solar cells
JP4442105B2 (en) Optical functional materials
Liang et al. New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells
JP2007246885A (en) Photo functional material
JP4230228B2 (en) Dye-sensitized photoelectric conversion element
JP4591667B2 (en) Optical functional materials
JP2014172835A (en) Optically functional material and sensitizing dye for photoelectric conversion
Zhang et al. Meso-Schiff-base substituted porphyrin dimer dyes for dye-sensitized solar cells: synthesis, electrochemical, and photovoltaic properties
JP2011026389A (en) Optically functional material
JP2008226505A (en) Phenanthrothiophene based compound, its usage, and its manufacturing method
JP2004292743A (en) Optical functional material
JP5233318B2 (en) Photoelectric conversion element and solar cell
JP5347329B2 (en) Photoelectric conversion element and solar cell
JP2007131767A (en) Optically functional material
JP2011001474A (en) Optical functional material
JP2011207784A (en) Indanone derivative, and use thereof as colorant for use in dye-sensitized solar cell
JP5740984B2 (en) Optical functional materials
JP2012131906A (en) Dye and dye sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4423857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees