JP2004220949A - Reforming device system with polymer fuel electrolyte cell and driving method of the same - Google Patents

Reforming device system with polymer fuel electrolyte cell and driving method of the same Download PDF

Info

Publication number
JP2004220949A
JP2004220949A JP2003007879A JP2003007879A JP2004220949A JP 2004220949 A JP2004220949 A JP 2004220949A JP 2003007879 A JP2003007879 A JP 2003007879A JP 2003007879 A JP2003007879 A JP 2003007879A JP 2004220949 A JP2004220949 A JP 2004220949A
Authority
JP
Japan
Prior art keywords
reforming
reformer
fuel cell
flow rate
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003007879A
Other languages
Japanese (ja)
Other versions
JP4342803B2 (en
Inventor
Jun Komiya
純 小宮
Hiroshi Fujiki
広志 藤木
Shigeo Satokawa
重夫 里川
Toshiyasu Miura
俊泰 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2003007879A priority Critical patent/JP4342803B2/en
Publication of JP2004220949A publication Critical patent/JP2004220949A/en
Application granted granted Critical
Publication of JP4342803B2 publication Critical patent/JP4342803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reforming device system with a polymer fuel electrolyte cell capable of continuously driving for a long period by using a reforming catalyst deteriorated with passage of time as it is, and to provide a driving method of the same. <P>SOLUTION: The reforming device system with the polymer electrolyte fuel cell is composed of a reforming device having a desulfurizer, a reformer, a CO converter, and a CO remover fitted in that order; the solid polymer fuel cell utilizing hydrogen produced at the reforming device; a supplying system supplying hydrocarbon group fuel for reformation and water for reformation to a reforming part of the reformer; a reformer heating part; a supplying system supplying air to the CO remover and the fuel cell; a cell cooling system; control valves controlling flow rates of gases arranged to respective flow paths of the supply systems; and a control device increasing a flow volume of the water for reformation so as to correspond with the level of the deterioration of the reforming catalyst by estimating the level of the deterioration of the reforming catalyst depending on the information of accumulated volume of the hydrocarbon group fuel and /or the number of times of start and stop. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池付改質装置システムすなわち固体高分子形燃料電池を組み合わせてなる改質装置システム及びその運転方法に関する。
【0002】
【従来の技術】
水素は固体高分子形燃料電池(PEFC)の燃料としても用いられる。水素の工業的製造法の一つである水蒸気改質法では、水蒸気改質器での接触反応(=触媒反応)により炭化水素が水素リッチな改質ガスへ変えられる。図1は水蒸気改質器を模式的に示す図である。水蒸気改質器は、概略、バーナーあるいは燃焼触媒を配置した加熱部と改質触媒を配置した改質部とにより構成される。
【0003】
改質部では炭化水素が水蒸気と反応して水素リッチな改質ガスが生成される。改質部での改質反応は吸熱反応であるので、反応の進行のために熱を供給することが必要である。このため加熱部における燃料ガスの空気による燃焼により発生した燃焼熱(ΔH)が改質部に供給される。改質部への燃焼熱の供給は、加熱部及び改質部間の伝熱面を介して間接的に行われる。本明細書においては、改質部へ供給する炭化水素を原料ガスまたは改質用炭化水素系燃料と指称し、加熱部に供給する炭化水素を燃料ガスまたは加熱用炭化水素系燃料と指称している。
【0004】
図2は、上記のような水蒸気改質器(以下適宜改質器と言う)を用い、原料ガスからPEFCに至るまでの態様例を示す図である。上流側から順次、脱硫器、改質器、CO変成器、CO除去器すなわちCO選択酸化器、PEFCが配置され、脱硫器、改質器、CO変成器及びCO除去器で改質装置が構成される。CO除去器を経た改質ガスはPEFCの燃料極に供給される。本明細書においては、このように改質装置にPEFCを連結したシステムを適宜固体高分子形燃料電池付改質装置システム、あるいはPEFC付改質装置システムと指称している。
【0005】
都市ガスやLPG(液化石油ガス)にはメルカプタン類、サルファイド類、あるいはチオフェンなどの付臭剤が数ppm程度添加されており、また天然ガスにも産地如何により差はあるが硫黄化合物が含まれている。改質触媒は、硫黄化合物により被毒して性能劣化を来たすので、硫黄化合物による被毒を回避するため、原料ガスは硫黄化合物を除去するため脱硫器へ導入される。
【0006】
次いで、別途設けられた水蒸気発生器からの水蒸気を添加、混合して改質器の改質部へ導入し、改質部中での原料ガスの水蒸気による改質反応により水素リッチな改質ガスが生成される。原料ガスがメタンである場合の改質反応は「CH+2HO→CO+4H」で示される。他の炭化水素の場合もほぼ同様である。
【0007】
改質部で生成する改質ガス中には未反応のメタン、未反応の水蒸気、生成二酸化炭素(CO)のほか、一酸化炭素(CO)が副生して8〜15%(%=容量%、以下同じ)程度含まれている。このため改質ガスは、副生COをCOとHに変えて除去するためにCO変成器にかけられる。CO変成器中での反応、すなわちシフト反応「CO+HO→CO+H」で必要な水蒸気としては改質部において未反応の残留水蒸気が利用される。
【0008】
CO変成器から出る改質ガスは、未反応のメタンと余剰水蒸気を除けば、水素と二酸化炭素からなっている。このうち水素が目的とする成分であるが、CO変成器を経て得られる改質ガスについても、COは完全には除去されず、1%程度以下ではあるが、尚COが含まれている。
【0009】
PEFCに供給する燃料水素中のCOの許容濃度は100ppm(ppm=容量ppm、以下同じ)程度、その燃料極等の構成材料の如何によっては10ppm程度であり、これを超えると電池性能が著しく劣化する。このため、改質ガスはCO変成器によりCO濃度を1%程度以下まで低下させた後、CO除去器にかけられる。CO除去器では空気等の酸化剤が添加され、COの酸化反応によりCOをCOに変えることでCOを除去し、CO濃度を100ppm以下、10ppm以下、あるいは5ppm以下というように低減させる。
【0010】
ところで、PEFC付改質装置システムにおいては、(1)PEFCでの水素利用率(PEFCで消費される水素流量/改質ガス中の全水素流量×100)は、PEFCの性能如何により異なるが、例えば85%以下というように一定値以下であり、(2)そのような条件下で、PEFCの運転負荷率を100%以下、つまり最大負荷率(最大発電電力量)を100%とし、その範囲内で電力の需要量に応じてPEFCでの発電電力量を調整するという運転条件で運転される。
【0011】
そして、上記のようなPEFC付改質装置システムの運転に際しては、通常、(a)改質用炭化水素系燃料の流量、(b)改質用水すなわち水蒸気の流量、(c)改質温度(改質器出口温度)及び(d)CO除去器におけるCO選択酸化用空気の流量の運転パラメータを運転負荷率に応じて予め設定し、それら設定値は変更せずに、その後も継続して運転される。ここで、上記(c)改質温度を所定値に制御する方法は、改質用炭化水素系燃料又は加熱用炭化水素系燃料の流量を操作することによる方式が一般的である。
【0012】
【発明が解決しようとする課題】
図3〜4は従来におけるその運転例を示す図である。図3(a)は初期運転状態、図3(b)は経時変化状態すなわち運転を継続した後の運転状態を示し、各箇所における運転条件を例示している。図4は、改質器における平衡改質温度、メタン転化率、初期運転状態のアプローチ温度、劣化状態すなわち経時変化状態のアプローチ温度等の関係を示す図である。
【0013】
図3(a)のとおり、初期運転状態における製造水素流量は1.0Nm/h(Nm/h=Normal cubic meter per hour)であり、PEFCスタックでの水素利用率は、PEFCスタックにとって許容される範囲、例えば75%程度で運転される。運転を継続すると、図3(b)のとおり、製造水素流量が例えば0.80Nm/hに減少し、この状態におけるPEFCでの水素利用率は93.4%に上昇してしまう。当該製造水素量の減少は、改質触媒の経時劣化に起因している。
【0014】
特開平5−3041号公報には、燃料改質系の触媒劣化に対応して、燃料改質系への主燃料(原料ガス)流量と水蒸気流量を増加することで安定した電気出力を得る燃料電池装置の制御方法が記載されている。ここでは、燃料改質系出口の水素濃度の初期値と現在値との偏差から主燃料流量及び水蒸気流量のそれぞれを演算する機能を加えた制御系により、主燃料流量と水蒸気流量を制御している。また、特開2000−188121号公報では、原燃料ガス改質装置入口温度、燃料ガス脱硫装置入口温度、あるいは改質用水蒸気エジェクタ入口温度から改質装置等の劣化を診断し、改質触媒の取替時期の判定を行うことを可能とするとしている。
【0015】
【特許文献1】特開平5−3041号公報
【特許文献2】特開2000−188121号公報
【0016】
ところで、PEFC付改質装置システムにおいて、改質部の改質触媒へ供給する原料ガス中の硫黄化合物をppbレベルまで低減しても、硫黄分は改質触媒に蓄積する。すなわち、原料ガス中の硫黄化合物を例えば10ppbまで低減しても、その運転を数万時間というように継続すると改質触媒に硫黄分が蓄積し、触媒性能が低下する。以下、この原因による改質触媒の経時劣化を「蓄積硫黄による劣化」と指称する。
【0017】
加えて、改質触媒は、起動−停止の繰り返しによる熱履歴によるシンタリングによっても性能劣化を来たす。例えば、家庭用コージェネレーションシステムに適用したPEFC付改質装置システムでは、起動−停止を頻繁に繰り返すのに加え、窒素などの不活性ガスによるパージができないため、システム内に空気が入り、改質触媒が酸化する。システムを起動し運転状態になるとシステム内は還元状態となるが、改質触媒は酸化−還元の繰り返し、また温度の昇降によるシンタリングによっても性能劣化を来たす。以下、このような原因による改質触媒の経時劣化を「サイクル回数による劣化」と指称する。
【0018】
これら要因による改質触媒の経時劣化に伴い平衡改質温度が低下してくると、すなわちアプローチ温度が増大してくると、製造水素流量が減少し、結果的にPEFCでの水素利用率が初期運転状態よりも上昇する(図4)。こうして改質触媒の活性劣化の度合が進み、PEFCでの水素利用率がその上限、一例として水素利用率75%程度で運転されるPEFCで、その性能劣化の下限が85%程度である場合、これを超えると、PEFCは電圧低下を来たして作動不能となり、システム全体の運転停止に至る。
【0019】
そこで、本発明は、PEFC付改質装置システムにおいて、以上の要因により生じる改質触媒の経時劣化の度合を推定し、改質触媒をそのまま使用して長期間にわたり継続して運転できるようにしてなるPEFC付改質装置システム及びその運転方法を提供することを目的とするものである。
【0020】
【課題を解決するための手段】
本発明は(A)脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムであって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用水流量を増加させる制御を行う制御装置を備えてなることを特徴とする固体高分子形燃料電池付改質装置システム及びその運転方法を提供する。
【0021】
また、本発明は(B)脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムであって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用水流量と改質用炭化水素系燃料流量を増加させる制御を行う制御装置を備えてなることを特徴とする固体高分子形燃料電池付改質装置システム及びその運転方法を提供する。
【0022】
さらに、本発明は(C)脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムであって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用炭化水素系燃料流量と燃料電池での最大発電電力量を減少させる制御を行う制御装置を備えてなることを特徴とする固体高分子形燃料電池付改質装置システム及びその運転方法を提供する。
【0023】
【発明の実施の形態】
本発明においては、PEFC付改質装置システムについて、累積改質用炭化水素系燃料量の運転情報及び起動−停止回数の運転情報のいずれか一方または両方の運転情報から改質触媒の劣化度合を推定する。ここで、累積改質用炭化水素系燃料量とは、改質器の改質部に充填した改質触媒を取り替えることなく、当該改質触媒に対して本システムの最初の起動時以降、改質部に供給した改質用炭化水素系燃料の総量であり、起動−停止回数とは、改質器の改質部に充填した改質触媒を取り替えることなく、当該改質触媒を用い、本システムの最初の起動−停止時以降、起動−停止を繰り返したその回数である。
【0024】
そして、当該改質触媒の劣化度合に見合うように設定S/C比と改質用炭化水素系燃料流量の必要増加分(または減少分)を制御装置で演算処理し、改質用水流量、改質用水流量と改質用炭化水素系燃料流量、または改質用炭化水素系燃料流量とPEFCでの最大発電電力量を制御することにより、PEFCで必要な所要水素製造能力を長期にわたり維持するものである。なお、上記改質用炭化水素系燃料流量の必要減少分は本発明(C)で利用される。
【0025】
本PEFC付改質装置システムは各種使用態様で運転されるので、それら使用態様に対応して累積改質用炭化水素系燃料量の運転情報及び起動−停止回数の運転情報のいずれか一方または両方の運転情報から改質触媒の劣化度合を推定して制御することができる。すなわち、例えば昼夜を問わず連続運転する場合には起動−停止を殆ど行わずに連続して運転する態様となるので、この場合には累積改質用炭化水素系燃料量の運転情報により改質触媒の劣化度合を推定して制御する。
【0026】
また、例えば昼間に運転し夜間に停止する、いわゆるデイリィスタート−ストップ運転をする場合には起動−停止を頻繁に行って運転する態様となるので、この場合には起動−停止回数の運転情報により改質触媒の劣化度合を推定して制御する。この運転態様では、累積改質用炭化水素系燃料量も改質触媒の劣化度合を推定する上で有用な運転情報となるので、起動−停止回数の運転情報に加え、累積改質用炭化水素系燃料量の運転情報から改質触媒の劣化度合を推定して制御することができる。
【0027】
本発明によれば、PEFCの負担を増加させることなく、改質触媒の経時劣化が許容できる長期自動運転ができるだけでなく、CO変成器中のシフト触媒やCO除去器中のCO除去触媒の経時劣化についても許容できる長期自動運転が可能となる。図5は本発明のPEFC付改質装置システムの態様を示す図、図6はそのうち制御装置が関連する部分を示す図である。図5では炭化水素系燃料として天然ガスを用いる場合を例にしているが、都市ガス、LPG等、他の炭化水素系燃料を用いる場合も同様である。
【0028】
図5中、矢印を付した実線は各流体用の流路(すなわち導管)及び流体の流れ方向を示し、V1〜V6は各導管に配置され、各導管を流れる流体の流量を制御する調整弁(=流量制御弁)すなわちバルブである。改質器における改質温度として改質出口温度を用いる。改質出口温度は改質器の改質部の出口の温度Tであり、T1はその計測器である。天然ガス及び空気はポンプ等の昇圧装置を介して供給され、また、改質器の加熱部用燃料としてはシステム起動後にはPEFCからの燃料極オフガスを利用することができる。
【0029】
図5のとおり、改質用天然ガスの供給側から、順次、脱硫器、改質器(改質部+加熱部)、CO変成器、CO除去器、PEFCスタックが配置され、これらのうち脱硫器、改質器、CO変成器及びCO除去器で改質装置が構成される。改質装置においては、改質器の改質部に改質用天然ガスと改質用水を供給する導管、すなわちそれらの供給系が配置され、改質器の加熱部、PEFCの空気極に空気を供給する導管、すなわちそれらの供給系が配置される。
【0030】
PEFCにおいては、ポンプにより駆動循環される水を冷媒とする電池冷却用導管、すなわち電池冷却系が配置される。PEFCを冷却した循環水は改質用の水と間接熱交換して、改質用の水(本明細書及び図面中、改質用水と略記している)を加熱する。PEFCを冷却し熱回収した循環水は50〜80℃程度の温水であるため、該間接熱交換後の改質用水は必要に応じてボイラーなどで水蒸気としてから改質部に供給される。改質用水は改質器に供給され、水蒸気改質反応に使用される。各供給系、電池冷却系とは、それら各流体を流通させる導管、流量制御弁及びポンプ等の駆動手段を含む意味である。
【0031】
改質用天然ガスは、天然ガスタンク等の天然ガス源から、導管(昇圧装置を含む)を通して脱硫器、次いで改質器の改質部に供給される。天然ガス源からの天然ガスの一部は該導管から分岐して改質器の加熱部での燃料として用いられる。改質部には、改質用天然ガスと共に改質用水が供給される。上記のとおり、改質用水は、電池冷却系の循環冷却水との間接熱交換により加熱され、必要に応じてボイラーなどで水蒸気としてから改質部に供給される。改質部での生成改質ガスはCO変成器、CO除去器を経てPEFCの燃料極に供給される。
【0032】
図5〜6のとおり、本PEFC付改質装置システムにおいては、それら構成に加えて、記憶装置、劣化診断装置、温度計測器T1からの改質出口温度Tの情報及びPEFCからの負荷情報の伝達機構を付設した制御部(CPU)が配置されており、これらにより制御装置が構成されている。
【0033】
記憶装置においては、本システムでの使用改質触媒について、加速試験あるいは実機改質器による基礎実験により計測したデータ、具体的には、以下で述べるような〈運転時間による改質触媒の活性低下〉傾向及び〈サイクル回数による改質触媒の活性低下〉傾向を記憶させるとともに、PEFC付改質装置システムの運転時間に対応する累積改質用炭化水素系燃料量及び起動−停止回数のうちのいずれか一方または両方を記憶させる。
【0034】
〈運転時間による改質触媒の活性低下〉
図8は、蓄積硫黄による改質触媒の活性の低下(=メタン転化率の低下)を示したグラフ図である。横軸は運転時間、縦軸はメタン転化率である。試験条件は、改質触媒:アルミナにRuを担持した触媒(Ru担持量=2wt%、SCJ社製、製品名=RUA)、触媒量:20cc、改質触媒入口温度:450℃、改質触媒出口温度:680℃、GHSV:1360h−1、S/C比:2.0である。本試験は加速試験であり、より多くの改質触媒を充填した実機改質器による場合より過酷な条件で実施している。
【0035】
図8のとおり、メタン転化率は、運転開始時に初期劣化はあるが、以降、2000時間経過時まではほぼ79%である。それ以降、硫黄被毒によって触媒活性が劣化し、4000時間の運転経過時のメタン転化率は70%程度である。本試験は加速試験であるので、より多くの改質触媒を充填した実機改質器による場合にはその低下が現れる時間はさらに長時間となる。このメタン転化率の低下は改質触媒の「蓄積硫黄による劣化」に起因している。
【0036】
〈サイクル回数による改質触媒の活性低下〉
図9は、起動−停止に伴う温度の昇降に起因する改質触媒の活性の低下(=メタン転化率の低下)を示したグラフ図である。横軸はサイクル回数、縦軸はメタン転化率である。試験条件は以下のとおりである。改質触媒は上記試験の場合と同じで、触媒量:20cc、原料ガス流量:0.45NL/min(NL/min=Normal Liter per minute)、改質触媒による反応温度:500℃、GHSV:2000h−1、S/C比:2.5である。本試験は加速試験であり、より多くの改質触媒を充填した実機改質器による場合より過酷な条件で実施している。
【0037】
図9のとおり、メタン転化率は、ある時点での停止−起動時とその次の停止−起動時との間で上下し、少ないサイクル回数間では殆ど変化はないが、試験開始時以降、数百回というように数多くの起動−停止を繰り返した時点でみると、メタン転化率が僅かではあるが低下している。本試験は加速試験であるので、より多くの改質触媒を充填した実機改質器による場合にはその低下が現れるサイクル回数はさらに多くなる。
【0038】
劣化診断装置においては、記憶装置に記憶させた〈運転時間による改質触媒の活性低下〉傾向及び〈サイクル回数による改質触媒の活性低下〉傾向の一方又は両方のデータに基づき、本システムにおける累積改質用炭化水素系燃料量及び起動−停止回数のうちの一方または両方による改質触媒の劣化度合を推定する。つまり、ここで「蓄積硫黄による劣化」すなわち累積改質用炭化水素系燃料量による硫黄被毒による劣化と「サイクル回数による劣化」すなわち起動−停止回数による劣化の一方または両方を推定するものである。
【0039】
以下、図5〜7を参照して、本発明のPEFC付改質装置システム及びその運転方法の態様をさらに詳しく説明する。図7は本発明における制御フローの態様を示す図である。以下では、累積改質用炭化水素系燃料量の運転情報及び起動−停止回数の運転情報の両方の運転情報から改質触媒の劣化度合を推定して制御する場合を説明しているが、いずれか一方の運転情報により改質触媒の劣化度合を推定して制御する場合についても同様に行われる。
【0040】
▲1▼記憶装置に本システムの運転時間及び起動−停止回数を計測して記憶させる。制御部(CPU)では、記憶装置に記憶させた運転時間と起動−停止回数を読み取る。運転時間は累積改質用炭化水素系燃料量に対応している。
▲2▼、▲1▼で読み取った運転時間と起動−停止回数のデータを制御部から劣化診断装置に送信する。
▲3▼劣化診断装置では、送信されたデータから、改質触媒の劣化度合を推定、診断し、診断結果を制御部に送信する。
▲4▼制御部は、推定された改質触媒の劣化度合に対応する運転条件、つまりS/C比と炭化水素系燃料流量の必要増加分(あるいは必要減少分)を記憶装置から読み取り、運転条件変更の必要の有無を判断する。ここで、炭化水素系燃料流量の必要減少分は、後述(C)の制御で利用するものである。
【0041】
▲5▼運転条件の変更が必要と判断された場合には、下記(A)〜(C)のいずれかの制御を行う。ここで(A)は前記発明(A)の固体高分子形燃料電池付改質装置システム及びその運転方法の態様に相当し、(B)は前記発明(B)の固体高分子形燃料電池付改質装置システム及びその運転方法の態様に相当し、(C)は前記発明(C)の固体高分子形燃料電池付改質装置システム及びその運転方法の態様に相当している。
【0042】
〈(A)水蒸気流量を増加させる制御〉
改質触媒が劣化し、改質用炭化水素系燃料の水素への転化率が低下して水素製造量が減少しても、改質用水流量を増加させるとメタン転化率は低下せず、PEFCでの発電に必要な製造水素量を維持することができる。そこで、本制御態様では改質用水流量を増加させるよう制御する。ここで、改質用炭化水素系燃料の水素への転化率は、改質用炭化水素系燃料がメタンの場合にはメタンの水素への転化率、すなわちメタン転化率である。
【0043】
図10は、(A)の制御態様に対応するプロセス流量変化、つまり改質用炭化水素系燃料流量すなわち原料ガス流量は変化させず、改質触媒の劣化に対応して改質用水流量を制御する態様を示す図である。改質触媒の劣化に伴いメタン転化率の低下分が例えば10%となったとき、改質用水を18.5Ncc/min(Ncc/min=Normal cubic centimeter per minute)に増加させる。これによりPEFCで必要な所要水素量を維持することができる。
【0044】
〈(B)改質用水流量と改質用炭化水素系燃料流量を増加させる制御〉
改質触媒が劣化して、改質用炭化水素系燃料の水素への転化率が低下しても、改質用水流量と改質用炭化水素系燃料流量を増加させるとメタン転化率は低下せず、PEFCでの発電に必要な所要製造水素量を維持することができる。そこで、本制御態様では改質用水流量と改質用炭化水素系燃料流量を増加させる制御を行う。
【0045】
図11は、(B)の制御態様に対応するプロセス流量変化、すなわち改質触媒の劣化に対応して改質用水流量と改質用炭化水素系燃料流量を増加させるよう制御する態様を示す図である。改質触媒の劣化に伴いメタン転化率の低下分が例えば10%となったとき、改質用水流量を14.1Ncc/minに増加させ、改質用炭化水素系燃料量を4.4NL/minに増加させる。これによりPEFCでの発電に必要な所要水素量を維持することができる。本態様では、前記〈(A)水蒸気流量を増加させる制御〉よりも少ない改質用水流量でPEFCでの発電に必要な所要水素量を維持できるので、より効率的な運転ができる。
【0046】
〈(C)改質用炭化水素系燃料流量を減少させ、且つ、PEFCでの最大発電電力量を減少させる制御〉
前記(A)及び(B)は、改質触媒の劣化に対応して、改質用水流量を増加させる制御、または改質用水流量と改質用炭化水素系燃料流量を増加させる制御であり、PEFCでの最大発電電力量は一定である。(A)及び(B)の制御態様においては、改質用水流量や改質用炭化水素系燃料流量を増加させるとポンプなどへの負荷を増大させる。そこで、本(C)の制御では、改質触媒の劣化に対応して、改質用炭化水素系燃料流量を減少させ、且つ、PEFCでの最大発電電力量を減少させる。これにより、ポンプやPEFCへの負担を軽減させることができるので、より実用的な運転方法となる。
【0047】
図12は、(C)の制御態様に対応するプロセス流量変化、すなわち改質触媒の劣化に対応して、改質用炭化水素系燃料流量を減少させ、且つ、PEFCでの最大発電電力量を減少させる態様を示す図である。改質触媒の劣化に伴いメタン転化率の低下分が例えば10%となったとき、改質用炭化水素系燃料流量を3.6NL/minに減少させ、且つ、PEFCでの最大発電電力量を82%に減少させる。これによりポンプやPEFCへの負担を軽減させることができるので、これら機器類を長時間にわたり安定して運転することができる。
【0048】
ここで、PEFCスタックの具体例として、定格での最大発電電力量を1kWとし、出力0.3〜1.0kWの範囲で発電するよう設計される。このように予め設定した最大発電電力量を1kWとした場合、本制御では当該最大発電電力量を82%、つまり0.82kWに減少させる。これにより、PEFCの最大発電電力量は少なくなるが、PEFCスタック内での消費水素量が減少するので、改質触媒が劣化しても水素利用率を一定に保つことができる。
【0049】
すなわち、PEFCスタックにおける水素利用率は、ある一定範囲、スタックの設計条件の如何にもよるが、通常、80%以下に設定されており、このため、当該一定範囲を超えた水素利用率で運転された場合、セル中の一部に水素が欠乏するなどの現象が生じ、電圧低下などによりPEFCスタックは動作不能となってしまう。本(C)の制御によれば、改質触媒の劣化に伴い、最大発電電力量を絞る制御を行うことで、PEFCスタックの水素利用率を一定に保つことにより、PEFCスタックの動作不能を回避し、安定して発電を続けることができる。
【0050】
▲6▼記憶装置に、現在の、すなわち▲5▼運転条件の変更が必要と判断された場合に変更した上記(A)〜(C)のいずれかの制御による運転条件を記憶させる。以降、この運転条件を標準として運転を続ける。一方、前記▲4▼の運転条件変更の必要の有無の判断で、▲7▼運転条件の変更が必要でないと判断された場合には、運転条件一定のまま運転を継続する。
【0051】
こうして、同一改質出口温度に対する所要の水素製造能力を長期にわたり維持することができる。なお、前記▲4▼の運転条件変更の必要の有無の判断で、▲9▼改質触媒の劣化度合が設定値を超えたと推定された場合(ここでは、メタン転化率の増加分約10%以上)には、本PEFC付改質装置システムの運転を停止する。
【0052】
本発明においては、一定のメタン転化率(一定の水素製造量)を維持するために、改質出口温度を一定に保つよう制御することが望ましく、この制御は改質器の加熱用炭化水素系燃料流量を制御することにより行うことができる。以上の態様において、例えば改質用水を増加させると、その蒸発に必要な熱量が増加し、改質出口温度が低下する。この温度低下は計測器T1で計測される。計測器T1で計測される改質出口温度の情報は制御部(CPU)に送信され、ここで設定改質出口温度と比較し、計測改質出口温度が設定改質出口温度より低ければ、その程度に対応して調整弁V2の開度を大きくし、計測改質出口温度が設定改質出口温度より高ければ、その程度に対応して調整弁V2の開度を小さくするよう制御する。
【0053】
また、メタン転化率の変化は、改質用水流量、改質用炭化水素系燃料流量、累積改質用炭化水素系燃料量、あるいは起動−停止回数の情報から推定することができる。そこで、それらの情報を基にメタン転化率の変化を推定し、そのメタン転化率の変化に対応して改質器の加熱用炭化水素系燃料流量を制御することにより、改質出口温度を上げるように制御すれば、メタン転化率を一定に保つことができる。該推定の前提となる情報としては、特に累積改質用炭化水素系燃料量及び起動−停止回数の情報が有用である。
【0054】
また、改質用水流量と改質用炭化水素系燃料流量との運転条件と、メタン転化率(改質触媒の劣化情報から推定できる)の情報から、CO変成器を経た改質ガス中のCO濃度を推測することができる。そこで、そのCO濃度に対応したCO除去用すなわちCO選択酸化用の空気を、ある程度安全度を見積った条件で、減少させることにより、「CO除去用空気による余分な水素の消費を抑制すること」及び「確実にCOを除去すること」を両立させることができる。当該CO除去用空気の供給量の減少は調整弁V3(図5)を絞ることにより行われる。
【0055】
本発明における改質器は、基本的にバーナーあるいは燃焼触媒を配置した加熱部と改質触媒を配置した改質部とにより構成される。改質触媒としては炭化水素系燃料を改質し水素リッチなガスを生成する機能を有する触媒であればいずれも使用されるが、例えばNi系触媒(例えばアルミナにNiを担持した触媒)やRu系触媒(例えばアルミナにRuを担持した触媒)を挙げることができる。加熱部に燃焼触媒を配置する場合には、例えば白金等の貴金属触媒やアルミナヘキサネート等の燃焼触媒が用いられる。
【0056】
改質器には、水蒸気発生器を別個に配置した形式のほか、水蒸気発生器を一体に構成した形式のもの、つまり改質器に水蒸気発生部が含まれるものもあるが、本発明はそれらいずれの改質器についても適用される。改質用炭化水素系燃料としては、メタン、エタン、プロパン、ブタン、都市ガス、LPG、天然ガス、その他の炭化水素ガス(2種以上の炭化水素の混合ガスを含む)を挙げることができる。
【0057】
【実施例】
以下、実施例に基づき本発明をさらに詳しく説明するが、本発明が実施例に限定されないことはもちろんである。
【0058】
〈実施例1〉
本実施例では図13に示すように構成したPEFC付改質装置システムを使用した。本システムは、図5〜6のように、PEFC付改質装置システムに劣化診断装置、記憶装置を含む制御装置をセットしたものである。改質装置は、順次、脱硫器、改質器、CO変成器及びCO除去器が連結されて構成されているが、図13中脱硫器、制御装置の記載は省略している。
【0059】
制御装置の制御部(CPU)には、本実施例での使用改質触媒について、その経時劣化に対応して改質用水流量を増加させる制御を行うよう仕組んだ。改質触媒の劣化に伴いメタン転化率は低下するが、本実施例での使用改質触媒について予め実測したデータに基づき前述図10のような関係を設定し、メタン転化率の低下分に対応して改質用水を増加させるように仕組んだものである。
【0060】
改質器の加熱部ではバーナーを用い、改質部ではアルミナにRuを担持した触媒(Ru担持量=2wt%、SCJ社製、製品名=RUA)を用い、CO変成器では銅−亜鉛系触媒(Cu/Zn系触媒)を用い、CO除去器ではアルミナにPtを担持した触媒を用いた。運転条件については、初期運転条件として、改質部でのS/C比を3.0、設定改質温度を680℃として実施した。PEFCでの設定水素消費量は0.75Nm/hのものを使用した。改質用炭化水素系燃料として天然ガスを用い、CO除去器へ供給する酸化剤として空気を用いた。これら条件は、他の箇所の運転条件を含めて図13(a)に示している。
【0061】
上記運転条件で本システムの運転を開始し、以降、運転−停止−運転を繰り返しながら長期間にわたり運転した。この結果、PEFCが作動不能となることなく、運転を続けることができた。図13(b)は、運転時間5800時間、起動−停止回数330回の時点における運転状態である。初期運転状態での改質用水流量は11.5cc/minであるのに対して、本発明の制御により、改質用水流量が18.5cc/minに増加し、改質器の改質部へ供給される水蒸気流量が増加している。
【0062】
〈実施例2〉
実施例1と同様にして組み立てたPEFC付改質装置システムを使用した。制御装置の制御部に、改質触媒の経時劣化に対応して改質用水流量と改質用炭化水素系燃料流量を増加させる制御を行うよう仕組んだ以外は実施例1と同じである。すなわち、改質触媒の劣化に伴いメタン転化率が低下するが、本実施例では、制御部に、本実施例での使用改質触媒について予め実測したデータに基づき前述図11のような関係を設定し、メタン転化率の低下分に対応して改質用水及び改質用炭化水素系燃料を増加させるように仕組んだものである。
【0063】
図14は本システムの構成を示し、初期運転状態での各箇所での条件は図14(a)に示している。この運転条件で本システムの運転を開始し、以降、運転−停止−起動を繰り返しながら長期間にわたり運転した。この結果、PEFCが作動不能となることなく、運転を続けることができた。図14(b)は、運転時間5800時間、起動−停止回数330回の時点における運転状態である。初期運転状態での改質用水流量、改質用天然ガス流量は、それぞれ11.5cc/min、4.0NL/minであるのに対して、図14(b)のとおり、本発明の制御により、改質用水流量が14.1cc/minに増加し、改質用天然ガス流量が4.32NL/minに増加している。
【0064】
〈実施例3〉
本実施例では図14(a)に示すように配置したPEFC付改質装置システムを使用したが、改質器の改質部は高温ガスにより間接的に加熱した。改質部に加速試験により劣化させた改質触媒を充填した改質器を用い、前記(C)炭化水素系燃料流量を減少させ、且つ、PEFCでの最大発電電力量を減少させる制御を行う運転を実施した。
【0065】
運転条件は、改質用炭化水素系燃料として脱硫済み都市ガス13Aを使用し、改質器の改質部は高温ガスにより間接的に加熱した点以外は実施例1と同じくし、この運転条件で本システムを運転した。また、改質部に改質触媒、すなわち加速試験による劣化前の改質触媒を充填した改質器を用い、上記と同じ運転条件で本システムを運転した。表1はその結果である。
【0066】
表1中、初期状態とは、加速試験による劣化前の改質触媒を用いた場合を示し、触媒劣化後とは、加速試験による劣化後の改質触媒を用いた場合を示している。表1のとおり、改質部に供給する改質用炭化水素系燃料を4.8NL/mから4.0へ減少させたことで、製造水素流量は0.68Nm/hまで減少したが、PEFCで発電する最大発電電力量を下げているためPEFCでの水素利用率は74%に維持することができた。また、改質用炭化水素系燃料の供給量を減少させる操作を行っているため、ポンプ等の補機類への負担も最小に抑えることができた。
【0067】
【表1】

Figure 2004220949
【0068】
【発明の効果】
本発明によれば、固体高分子形燃料電池付改質装置システムにおいて、改質器の改質部に充填した改質触媒を取り替えることなく、当該改質装置システムを長期間にわたり継続して運転することができる。
【図面の簡単な説明】
【図1】水蒸気改質器を模式的に示す図
【図2】水蒸気改質装置を用い、原料ガスからPEFCに至るまでの態様例を示す図
【図3】従来におけるPEFC付改質装置システムの運転例を示す図
【図4】図3に示すシステムの改質器における平衡改質温度、メタン転化率、アプローチ温度等の関係を示す図
【図5】本発明のPEFC付改質装置システムの態様を示す図
【図6】図5のシステムのうち制御装置が関連する部分を示す図
【図7】本発明のPEFC付改質装置システムの運転態様を示す図
【図8】硫黄による改質触媒の活性低下を示したグラフ図
【図9】起動−停止に伴う温度の昇降による改質触媒の活性低下を示したグラフ図
【図10】改質触媒の劣化に対応するプロセス流量の増加量を示す図
【図11】改質触媒の劣化に対応するプロセス流量の増加量を示す図
【図12】改質触媒の劣化に対応するプロセス流量の減少量を示す図
【図13】実施例1で使用したPEFC付改質装置システムを示す図
【図14】実施例2で使用したPEFC付改質装置システムを示す図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reformer system with a polymer electrolyte fuel cell, that is, a reformer system comprising a combination of a polymer electrolyte fuel cell and an operation method thereof.
[0002]
[Prior art]
Hydrogen is also used as a fuel for polymer electrolyte fuel cells (PEFC). In a steam reforming method, which is one of the industrial methods for producing hydrogen, hydrocarbons are converted to a hydrogen-rich reformed gas by a catalytic reaction (= catalytic reaction) in a steam reformer. FIG. 1 is a diagram schematically showing a steam reformer. The steam reformer generally includes a heating unit in which a burner or a combustion catalyst is arranged and a reforming unit in which a reforming catalyst is arranged.
[0003]
In the reforming section, the hydrocarbon reacts with the steam to generate a hydrogen-rich reformed gas. Since the reforming reaction in the reforming section is an endothermic reaction, it is necessary to supply heat for the progress of the reaction. For this reason, the combustion heat (ΔH) generated by the combustion of the fuel gas by the air in the heating section is supplied to the reforming section. The supply of combustion heat to the reforming section is performed indirectly via a heat transfer surface between the heating section and the reforming section. In this specification, the hydrocarbon supplied to the reforming section is referred to as a raw material gas or a hydrocarbon fuel for reforming, and the hydrocarbon supplied to the heating section is referred to as a fuel gas or a hydrocarbon fuel for heating. I have.
[0004]
FIG. 2 is a diagram showing an example of an embodiment from a raw material gas to a PEFC using the above-described steam reformer (hereinafter, appropriately referred to as a reformer). A desulfurizer, a reformer, a CO converter, a CO remover, ie, a CO selective oxidizer, and a PEFC are arranged in order from the upstream side, and a reformer is composed of a desulfurizer, a reformer, a CO converter, and a CO remover. Is done. The reformed gas that has passed through the CO remover is supplied to the fuel electrode of the PEFC. In this specification, such a system in which the PEFC is connected to the reformer is appropriately referred to as a reformer system with a polymer electrolyte fuel cell or a reformer system with a PEFC.
[0005]
City gas and LPG (liquefied petroleum gas) contain odorants such as mercaptans, sulfides, or thiophene in the order of several ppm, and natural gas also contains sulfur compounds, depending on the place of production. ing. Since the reforming catalyst is poisoned by the sulfur compound and deteriorates in performance, the raw material gas is introduced into the desulfurizer to remove the sulfur compound in order to avoid poisoning by the sulfur compound.
[0006]
Next, steam from a separately provided steam generator is added, mixed and introduced into the reforming section of the reformer, and the hydrogen-rich reformed gas is subjected to the reforming reaction of the raw material gas with steam in the reforming section. Is generated. When the source gas is methane, the reforming reaction is "CH 4 + 2H 2 O → CO 2 + 4H 2 ". The same applies to other hydrocarbons.
[0007]
Unreacted methane, unreacted steam, and generated carbon dioxide (CO2) are contained in the reformed gas generated in the reforming section. 2 ), And about 8 to 15% (% =% by volume, the same applies hereinafter) of carbon monoxide (CO). For this reason, the reformed gas converts the by-product CO into CO 2 And H 2 And subjected to a CO converter to remove it. The reaction in the CO converter, that is, the shift reaction “CO + H 2 O → CO 2 + H 2 , Unreacted residual steam in the reforming section is used.
[0008]
The reformed gas exiting the CO converter consists of hydrogen and carbon dioxide except for unreacted methane and excess steam. Of these, hydrogen is the target component, but also in the reformed gas obtained through the CO converter, CO is not completely removed, but still contains about 1% or less of CO.
[0009]
The permissible concentration of CO in the fuel hydrogen supplied to the PEFC is about 100 ppm (ppm = capacity ppm, the same applies hereinafter) and about 10 ppm depending on the constituent materials such as the fuel electrode. I do. For this reason, the reformed gas is subjected to a CO remover after the CO concentration is reduced to about 1% or less by a CO shift converter. In the CO remover, an oxidizing agent such as air is added, and CO is oxidized by CO oxidation reaction. 2 To remove CO, and reduce the CO concentration to 100 ppm or less, 10 ppm or less, or 5 ppm or less.
[0010]
By the way, in the reformer system with PEFC, (1) the hydrogen utilization rate in PEFC (hydrogen flow rate consumed in PEFC / total hydrogen flow rate in reformed gas × 100) differs depending on the performance of PEFC. For example, under certain conditions, the operating load factor of the PEFC is 100% or less, that is, the maximum load factor (maximum generated power amount) is 100%. It is operated under the operating condition that the amount of power generated by the PEFC is adjusted according to the amount of power demand.
[0011]
When the above-described reformer system with PEFC is operated, usually, (a) the flow rate of the reforming hydrocarbon-based fuel, (b) the flow rate of the reforming water or steam, and (c) the reforming temperature ( The operating parameters of the reformer outlet temperature) and (d) the flow rate of the CO selective oxidizing air in the CO remover are set in advance in accordance with the operating load factor, and the set values are not changed and the operation is continued thereafter. Is done. Here, the (c) method of controlling the reforming temperature to a predetermined value is generally a method by controlling the flow rate of the reforming hydrocarbon fuel or the heating hydrocarbon fuel.
[0012]
[Problems to be solved by the invention]
3 and 4 are diagrams showing examples of the conventional operation. FIG. 3A shows an initial operation state, and FIG. 3B shows a time-varying state, that is, an operation state after continuation of operation, and exemplifies operation conditions in each part. FIG. 4 is a diagram showing a relationship among an equilibrium reforming temperature, a methane conversion rate, an approach temperature in an initial operation state, an approach temperature in a degraded state, that is, an approach temperature in a aging state, and the like in a reformer.
[0013]
As shown in FIG. 3A, the production hydrogen flow rate in the initial operation state is 1.0 Nm. 3 / H (Nm 3 / H = Normal cubic meter per hour), and the hydrogen utilization rate in the PEFC stack is operated in an allowable range for the PEFC stack, for example, about 75%. When the operation is continued, as shown in FIG. 3B, the production hydrogen flow rate becomes, for example, 0.80 Nm. 3 / H, and the hydrogen utilization rate in the PEFC in this state increases to 93.4%. The decrease in the amount of produced hydrogen is due to the deterioration of the reforming catalyst with time.
[0014]
Japanese Patent Application Laid-Open No. Hei 5-3041 discloses a fuel for obtaining a stable electric output by increasing a main fuel (raw material gas) flow rate and a steam flow rate to a fuel reforming system in response to catalyst deterioration of the fuel reforming system. A method for controlling a battery device is described. Here, the main fuel flow rate and the steam flow rate are controlled by a control system having a function of calculating each of the main fuel flow rate and the steam flow rate from the deviation between the initial value and the current value of the hydrogen concentration at the outlet of the fuel reforming system. I have. In Japanese Patent Application Laid-Open No. 2000-188121, deterioration of a reformer or the like is diagnosed based on the inlet temperature of a raw fuel gas reformer, the inlet temperature of a fuel gas desulfurizer, or the inlet temperature of a reforming steam ejector. It is possible to determine the replacement time.
[0015]
[Patent Document 1] JP-A-5-3041
[Patent Document 2] JP-A-2000-188121
[0016]
By the way, in the reformer system with the PEFC, even if the sulfur compound in the raw material gas supplied to the reforming catalyst in the reforming section is reduced to the ppb level, the sulfur content accumulates in the reforming catalyst. That is, even if the sulfur compound in the raw material gas is reduced to, for example, 10 ppb, if the operation is continued for tens of thousands of hours, the sulfur content accumulates in the reforming catalyst, and the catalytic performance decreases. Hereinafter, the deterioration over time of the reforming catalyst due to this cause will be referred to as “deterioration due to accumulated sulfur”.
[0017]
In addition, the performance of the reforming catalyst also deteriorates due to sintering due to heat history due to repeated start-stop. For example, in a reformer system with a PEFC applied to a home cogeneration system, in addition to frequent start-stop, purging with an inert gas such as nitrogen cannot be performed. The catalyst oxidizes. When the system is started and put into an operating state, the inside of the system is in a reduced state, but the performance of the reforming catalyst deteriorates also due to repeated oxidation-reduction and sintering due to temperature rise and fall. Hereinafter, the deterioration over time of the reforming catalyst due to such causes will be referred to as “deterioration due to the number of cycles”.
[0018]
When the equilibrium reforming temperature decreases with the deterioration of the reforming catalyst over time due to these factors, that is, when the approach temperature increases, the production hydrogen flow rate decreases, and as a result, the hydrogen utilization rate in the PEFC is initially reduced. It rises from the operating state (FIG. 4). In this way, the degree of the activity deterioration of the reforming catalyst progresses, and when the hydrogen utilization rate in the PEFC is the upper limit, for example, the PEFC operated at the hydrogen utilization rate of about 75%, and the lower limit of the performance degradation is about 85%, Beyond this, the PEFC will drop in voltage and become inoperable, leading to shutdown of the entire system.
[0019]
Therefore, the present invention estimates the degree of deterioration of the reforming catalyst over time caused by the above factors in the reformer system with PEFC so that the reforming catalyst can be operated continuously for a long time using the reforming catalyst as it is. It is an object of the present invention to provide a reformer system with PEFC and a method of operating the same.
[0020]
[Means for Solving the Problems]
The present invention provides (A) a reformer sequentially provided with a desulfurizer, a reformer, a CO shift converter and a CO remover, a polymer electrolyte fuel cell using hydrogen produced by the reformer, and a reformer. A supply system that supplies a reforming hydrocarbon-based fuel and reforming water to the reforming section, a heating section of the reformer, a supply system that supplies air to the CO remover and the fuel cell, and a cell cooling system And a reformer system with a polymer electrolyte fuel cell having a regulating valve for controlling the flow rate of each fluid in the flow path of the supply system, wherein the amount of the hydrocarbon fuel for cumulative reforming and the number of start-stop times A solid-state control device that estimates a degree of deterioration of the reforming catalyst over time from one or both of the operation information and increases the flow rate of the reforming water to match the degree of deterioration. Provided is a reformer system with a polymer fuel cell and an operation method thereof. .
[0021]
Further, the present invention provides (B) a reforming apparatus sequentially provided with a desulfurizer, a reformer, a CO shift converter and a CO remover, a polymer electrolyte fuel cell using hydrogen produced by the reformer, Supply system for supplying reforming hydrocarbon-based fuel and reforming water to the reforming section of the reformer, heating system for the reformer, supply system for supplying CO remover and air to the fuel cell, and cell cooling system And a reforming system with a polymer electrolyte fuel cell having a regulating valve for controlling the flow rate of each fluid in the flow path of the supply system, wherein the amount of the hydrocarbon fuel for cumulative reforming and the startup- A control for estimating the degree of deterioration of the reforming catalyst over time from operation information of one or both of the number of stops, and performing control to increase the flow rate of the reforming water and the flow rate of the reforming hydrocarbon-based fuel to match the degree of deterioration. Reforming apparatus with a polymer electrolyte fuel cell, comprising: Stem and provides a method of operating.
[0022]
Further, the present invention provides (C) a reformer sequentially provided with a desulfurizer, a reformer, a CO shift converter and a CO remover, a polymer electrolyte fuel cell utilizing hydrogen produced by the reformer, Supply system for supplying reforming hydrocarbon-based fuel and reforming water to the reforming section of the reformer, heating system for the reformer, supply system for supplying CO remover and air to the fuel cell, and cell cooling system And a reforming system with a polymer electrolyte fuel cell having a regulating valve for controlling the flow rate of each fluid in the flow path of the supply system, wherein the amount of the hydrocarbon fuel for cumulative reforming and the startup- Estimate the degree of deterioration of the reforming catalyst over time from operation information of one or both of the number of stops, and reduce the reforming hydrocarbon-based fuel flow rate and the maximum power generation amount in the fuel cell to match the degree of deterioration. Solid polymer fuel characterized by comprising a control device for controlling Providing reformer system and an operating method with battery.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, for the reformer system with PEFC, the degree of deterioration of the reforming catalyst is determined from one or both of the operation information of the cumulative reforming hydrocarbon fuel amount and the operation information of the number of start-stop times. presume. Here, the amount of the hydrocarbon-based fuel for cumulative reforming refers to the amount of the reforming catalyst that has been charged to the reforming section of the reformer after the first startup of the present system without replacement of the reforming catalyst. This is the total amount of the reforming hydrocarbon-based fuel supplied to the reforming section, and the number of start-stop times is defined as the number of times the reforming catalyst filled in the reforming section of the reformer is used without replacing the reforming catalyst. This is the number of times that start-stop has been repeated since the first start-stop of the system.
[0024]
The required increase (or decrease) in the set S / C ratio and the flow rate of the reforming hydrocarbon-based fuel is calculated by the controller so as to match the degree of deterioration of the reforming catalyst. Maintain the required hydrogen production capacity required for PEFC over a long period of time by controlling the flow rate of quality water and the flow rate of hydrocarbon fuel for reforming, or the flow rate of hydrocarbon fuel for reforming and the maximum amount of power generated by PEFC It is. The required decrease in the flow rate of the reforming hydrocarbon fuel is used in the present invention (C).
[0025]
Since the present reformer system with PEFC is operated in various use modes, either one or both of the operation information of the amount of the hydrocarbon fuel for cumulative reforming and the operation information of the number of start-stop times are corresponding to the use modes. , The degree of deterioration of the reforming catalyst can be estimated and controlled based on the operation information. That is, for example, in the case of continuous operation regardless of day and night, the operation is continuously performed with almost no start-stop. In this case, the reforming is performed based on the operation information of the cumulative reforming hydrocarbon-based fuel amount. The degree of catalyst deterioration is estimated and controlled.
[0026]
Further, for example, in the case of a so-called daily start-stop operation in which the vehicle is driven during the daytime and stopped at night, the start-stop operation is frequently performed. To estimate and control the degree of deterioration of the reforming catalyst. In this operation mode, the cumulative reforming hydrocarbon-based fuel amount is also useful operation information for estimating the degree of deterioration of the reforming catalyst. The degree of deterioration of the reforming catalyst can be estimated and controlled from the operation information of the system fuel amount.
[0027]
ADVANTAGE OF THE INVENTION According to this invention, not only the long-term automatic operation which can tolerate the time-dependent deterioration of a reforming catalyst can be performed without increasing the burden of PEFC, but also the time-lapse of the shift catalyst in a CO shift converter and the CO removing catalyst in a CO remover. Long-term automatic operation that can tolerate deterioration is possible. FIG. 5 is a diagram showing an embodiment of the reformer system with PEFC of the present invention, and FIG. 6 is a diagram showing a portion of the reformer system with the control device. FIG. 5 shows an example in which natural gas is used as the hydrocarbon-based fuel, but the same applies when other hydrocarbon-based fuels such as city gas and LPG are used.
[0028]
In FIG. 5, solid lines with arrows indicate flow paths (i.e., conduits) for the respective fluids and flow directions of the fluids, and V1 to V6 are arranged in the respective conduits, and are regulating valves for controlling the flow rate of the fluid flowing through the respective conduits. (= Flow control valve), that is, a valve. The reforming outlet temperature is used as the reforming temperature in the reformer. The reforming outlet temperature is the temperature T at the outlet of the reforming section of the reformer, and T1 is its measuring device. Natural gas and air are supplied via a pressure increasing device such as a pump, and the fuel electrode off-gas from the PEFC can be used as the fuel for the heating section of the reformer after the system is started.
[0029]
As shown in FIG. 5, from the supply side of the natural gas for reforming, a desulfurizer, a reformer (reforming unit + heating unit), a CO shift converter, a CO remover, and a PEFC stack are sequentially arranged. A reformer is constituted by a reactor, a reformer, a CO shift converter, and a CO remover. In the reformer, a conduit for supplying natural gas for reforming and water for reforming to the reforming section of the reformer, that is, a supply system thereof, is disposed, and air is supplied to the heating section of the reformer and the air electrode of the PEFC. Are provided, i.e. their supply systems.
[0030]
In the PEFC, a battery cooling conduit using water driven and circulated by a pump as a coolant, that is, a battery cooling system is arranged. The circulating water that has cooled the PEFC performs indirect heat exchange with the reforming water to heat the reforming water (abbreviated as reforming water in the present specification and drawings). Since the circulating water obtained by cooling and recovering the heat of the PEFC is warm water of about 50 to 80 ° C., the reforming water after the indirect heat exchange is supplied to the reforming section as steam by a boiler as necessary. Reforming water is supplied to a reformer and used for a steam reforming reaction. The respective supply systems and battery cooling systems are meant to include drive means such as conduits, flow control valves, and pumps through which the respective fluids flow.
[0031]
The natural gas for reforming is supplied from a natural gas source such as a natural gas tank through a conduit (including a pressure increasing device) to a desulfurizer and then to a reforming section of the reformer. A portion of the natural gas from the natural gas source branches off from the conduit and is used as fuel in the heating section of the reformer. Reforming water is supplied to the reforming section together with the reforming natural gas. As described above, the reforming water is heated by indirect heat exchange with the circulating cooling water of the battery cooling system, and is supplied to the reforming section as steam, if necessary, using a boiler or the like. The reformed gas generated in the reforming section is supplied to the fuel electrode of the PEFC through a CO shift converter and a CO remover.
[0032]
As shown in FIGS. 5 and 6, in the present reformer system with PEFC, in addition to those components, the storage device, the deterioration diagnosis device, the information on the reforming outlet temperature T from the temperature measuring device T1, and the load information from the PEFC. A control unit (CPU) provided with a transmission mechanism is arranged, and these constitute a control device.
[0033]
In the storage device, data on the reforming catalyst used in this system, measured by an acceleration test or a basic experiment using an actual reformer, specifically, ) Tendency and <reduction of the activity of the reforming catalyst by the number of cycles> tendency, and any one of the cumulative amount of hydrocarbon fuel for reforming and the number of start-stop times corresponding to the operation time of the reformer system with PEFC. One or both are stored.
[0034]
<Decrease in activity of reforming catalyst due to operation time>
FIG. 8 is a graph showing a decrease in the activity of the reforming catalyst (= a decrease in the methane conversion rate) due to the accumulated sulfur. The horizontal axis is the operation time, and the vertical axis is the methane conversion. Test conditions were as follows: reforming catalyst: a catalyst in which Ru was supported on alumina (Ru supported amount = 2 wt%, manufactured by SCJ, product name = RUA), catalyst amount: 20 cc, reforming catalyst inlet temperature: 450 ° C, reforming catalyst Outlet temperature: 680 ° C, GHSV: 1360h -1 , S / C ratio: 2.0. This test is an accelerated test, and is performed under more severe conditions than when using an actual reformer packed with more reforming catalyst.
[0035]
As shown in FIG. 8, the methane conversion rate is initially 79% at the start of the operation, but is approximately 79% after 2000 hours. Thereafter, the catalytic activity deteriorates due to sulfur poisoning, and the methane conversion rate after 4000 hours of operation is about 70%. Since this test is an accelerated test, the time during which the decrease appears in the case of an actual reformer filled with a larger amount of reforming catalyst is longer. This decrease in the methane conversion rate is caused by “deterioration due to accumulated sulfur” of the reforming catalyst.
[0036]
<Decrease in activity of reforming catalyst due to number of cycles>
FIG. 9 is a graph showing a decrease in the activity of the reforming catalyst (= a decrease in the methane conversion rate) due to a rise and fall in the temperature during start-stop. The horizontal axis is the number of cycles, and the vertical axis is the methane conversion. The test conditions are as follows. The reforming catalyst is the same as in the above test, the amount of the catalyst: 20 cc, the flow rate of the raw material gas: 0.45 NL / min (NL / min = Normal Liter per minute), the reaction temperature by the reforming catalyst: 500 ° C., GHSV: 2000 h -1 , S / C ratio: 2.5. This test is an accelerated test, and is performed under more severe conditions than when using an actual reformer packed with more reforming catalyst.
[0037]
As shown in FIG. 9, the methane conversion rate fluctuates between a stop-start at a certain point in time and the next stop-start, and hardly changes during a small number of cycles. When a large number of start-stop operations, such as 100 times, are repeated, the methane conversion rate has decreased, albeit slightly. Since this test is an accelerated test, the number of cycles at which the decrease appears in the actual reformer packed with a larger amount of the reforming catalyst is further increased.
[0038]
In the deterioration diagnosis device, based on one or both of the data of <the activity of the reforming catalyst due to the operation time> tendency and <the activity of the reforming catalyst due to the number of cycles> stored in the storage device, the accumulated The degree of deterioration of the reforming catalyst due to one or both of the amount of the reforming hydrocarbon-based fuel and the number of start-stop times is estimated. That is, here, one or both of “deterioration due to accumulated sulfur”, that is, deterioration due to sulfur poisoning due to the amount of hydrocarbon fuel for cumulative reforming, and “deterioration due to cycle number”, ie, deterioration due to the number of start-stop times, are estimated. .
[0039]
Hereinafter, the aspects of the reformer system with PEFC and the method of operating the same according to the present invention will be described in more detail with reference to FIGS. FIG. 7 is a diagram showing an aspect of the control flow in the present invention. In the following, a case is described in which the degree of deterioration of the reforming catalyst is estimated and controlled from both the operation information of the cumulative reforming hydrocarbon-based fuel amount and the operation information of the number of start-stop operations. The same applies to the case where the degree of deterioration of the reforming catalyst is estimated and controlled based on one of the operation information.
[0040]
(1) The operating time and the number of start-stop times of the system are measured and stored in a storage device. The control unit (CPU) reads the operation time and the number of start-stop times stored in the storage device. The operation time corresponds to the amount of the hydrocarbon fuel for cumulative reforming.
The data of the operation time and the number of start-stop times read in (2) and (1) are transmitted from the control unit to the deterioration diagnosis device.
(3) The deterioration diagnosis device estimates and diagnoses the degree of deterioration of the reforming catalyst from the transmitted data, and transmits the diagnosis result to the control unit.
{Circle around (4)} The control unit reads the operating conditions corresponding to the estimated degree of deterioration of the reforming catalyst, that is, the necessary increase (or necessary decrease) of the S / C ratio and the hydrocarbon-based fuel flow rate from the storage device, and executes the operation. Judge whether it is necessary to change the conditions. Here, the required decrease in the flow rate of the hydrocarbon-based fuel is used in control (C) described later.
[0041]
(5) If it is determined that the operating conditions need to be changed, one of the following controls (A) to (C) is performed. Here, (A) corresponds to the embodiment of the reformer system with a polymer electrolyte fuel cell of the invention (A) and the mode of operation thereof, and (B) is the configuration of the reformer system with a polymer electrolyte fuel cell of the invention (B). (C) corresponds to the reformer system with a polymer electrolyte fuel cell of the invention (C) and the mode of operation thereof.
[0042]
<(A) Control to increase flow rate of water vapor>
Even if the reforming catalyst deteriorates and the conversion rate of the hydrocarbon fuel for reforming to hydrogen decreases and the amount of hydrogen production decreases, the methane conversion rate does not decrease when the flow rate of the reforming water is increased. Can maintain the amount of production hydrogen required for power generation in the fuel cell. Therefore, in this control mode, control is performed so as to increase the flow rate of the reforming water. Here, the conversion rate of the hydrocarbon fuel for reforming to hydrogen is the conversion rate of methane to hydrogen when the hydrocarbon fuel for reforming is methane, that is, the methane conversion rate.
[0043]
FIG. 10 shows that the process flow rate change corresponding to the control mode (A), that is, the reforming hydrocarbon fuel flow rate, that is, the raw material gas flow rate is not changed, and the reforming water flow rate is controlled in accordance with the deterioration of the reforming catalyst. FIG. When the methane conversion rate decreases by, for example, 10% due to the deterioration of the reforming catalyst, the reforming water is increased to 18.5 Ncc / min (Ncc / min = Normal cubic centimeter per minute). This makes it possible to maintain the required amount of hydrogen required by the PEFC.
[0044]
<(B) Control to increase flow rate of reforming water and flow rate of reforming hydrocarbon fuel>
Even if the reforming catalyst deteriorates and the conversion rate of the reforming hydrocarbon fuel to hydrogen decreases, the methane conversion rate decreases when the reforming water flow rate and the reforming hydrocarbon fuel flow rate increase. Therefore, the required production hydrogen amount required for power generation by the PEFC can be maintained. Therefore, in this control mode, control is performed to increase the flow rate of the reforming water and the flow rate of the reforming hydrocarbon-based fuel.
[0045]
FIG. 11 is a diagram showing a mode in which control is performed so as to increase the flow rate of the reforming water and the flow rate of the hydrocarbon fuel for reforming in response to the process flow rate change corresponding to the control mode of (B), that is, the deterioration of the reforming catalyst. It is. When the methane conversion rate decreases by, for example, 10% due to the deterioration of the reforming catalyst, the reforming water flow rate is increased to 14.1 Ncc / min, and the reforming hydrocarbon-based fuel amount is 4.4 NL / min. To increase. This makes it possible to maintain the required amount of hydrogen required for power generation by the PEFC. In this embodiment, the required amount of hydrogen required for power generation by the PEFC can be maintained at a smaller flow rate of the reforming water than in the above <(A) Control for increasing the steam flow rate>, so that more efficient operation can be performed.
[0046]
<(C) Control to reduce the flow rate of the hydrocarbon fuel for reforming and to reduce the maximum amount of power generated by the PEFC>
(A) and (B) are controls for increasing the reforming water flow rate or controlling to increase the reforming water flow rate and the reforming hydrocarbon-based fuel flow rate in response to the deterioration of the reforming catalyst; The maximum amount of power generated by PEFC is constant. In the control modes (A) and (B), increasing the reforming water flow rate or the reforming hydrocarbon-based fuel flow rate increases the load on a pump or the like. Therefore, in the control of (C), the flow rate of the hydrocarbon fuel for reforming is reduced and the maximum amount of power generated by the PEFC is reduced in response to the deterioration of the reforming catalyst. As a result, the burden on the pump and the PEFC can be reduced, so that a more practical operation method is provided.
[0047]
FIG. 12 shows that, in response to the change in the process flow rate corresponding to the control mode of (C), that is, the deterioration of the reforming catalyst, the flow rate of the hydrocarbon fuel for reforming is reduced, and the maximum power generation amount in the PEFC is reduced. It is a figure which shows the aspect which reduces. When the methane conversion rate decreases by, for example, 10% due to the deterioration of the reforming catalyst, the reforming hydrocarbon-based fuel flow rate is reduced to 3.6 NL / min, and the maximum power generation amount in the PEFC is reduced. Reduce to 82%. As a result, the load on the pump and the PEFC can be reduced, so that these devices can be stably operated for a long time.
[0048]
Here, as a specific example of the PEFC stack, the maximum generated power at the rated power is set to 1 kW, and the power is designed to generate power in the range of 0.3 to 1.0 kW. When the preset maximum generated power amount is 1 kW in this manner, the present control reduces the maximum generated power amount to 82%, that is, 0.82 kW. As a result, the maximum amount of power generated by the PEFC decreases, but the amount of hydrogen consumed in the PEFC stack decreases, so that the hydrogen utilization can be kept constant even if the reforming catalyst deteriorates.
[0049]
That is, the hydrogen utilization rate in the PEFC stack is usually set to 80% or less, depending on a certain range and the design conditions of the stack. Therefore, the operation at the hydrogen utilization rate exceeding the certain range is performed. In such a case, a phenomenon such as a lack of hydrogen in a part of the cell occurs, and the PEFC stack becomes inoperable due to a voltage drop or the like. According to the control of (C), the control of reducing the maximum amount of generated power is performed in accordance with the deterioration of the reforming catalyst, thereby keeping the hydrogen utilization rate of the PEFC stack constant, thereby avoiding the inability of the PEFC stack to operate. Power generation can be stably continued.
[0050]
(6) The current operating condition, that is, (5) the operating condition changed by the control of any of the above (A) to (C) when it is determined that the operating condition needs to be changed is stored in the storage device. Thereafter, the operation is continued with the operating conditions as a standard. On the other hand, if it is determined in (4) that the operating conditions do not need to be changed, it is determined that (7) the operating conditions do not need to be changed, and the operation is continued with the operating conditions kept constant.
[0051]
In this way, the required hydrogen production capacity for the same reforming outlet temperature can be maintained for a long time. It should be noted that in the determination of the necessity of the change of the operation conditions in the above (4), it is estimated that the deterioration degree of the reforming catalyst has exceeded the set value (in this case, the increase in the methane conversion rate is about 10%). In the above, the operation of the reformer system with PEFC is stopped.
[0052]
In the present invention, in order to maintain a constant methane conversion rate (a constant hydrogen production amount), it is desirable to control the reforming outlet temperature to be constant, and this control is performed by controlling the heating hydrocarbon system of the reformer. This can be achieved by controlling the fuel flow rate. In the above embodiment, for example, when the amount of the reforming water is increased, the amount of heat required for the evaporation increases, and the reforming outlet temperature decreases. This temperature drop is measured by the measuring device T1. The information on the reforming outlet temperature measured by the measuring device T1 is transmitted to the control unit (CPU), where it is compared with the set reforming outlet temperature, and if the measured reforming outlet temperature is lower than the set reforming outlet temperature, the If the measured reforming outlet temperature is higher than the set reforming outlet temperature, the opening of the regulating valve V2 is controlled to be reduced correspondingly.
[0053]
The change in the methane conversion rate can be estimated from information on the reforming water flow rate, the reforming hydrocarbon fuel flow rate, the cumulative reforming hydrocarbon fuel quantity, or the number of start-stop times. Therefore, the change in the methane conversion rate is estimated based on the information, and the reforming outlet temperature is increased by controlling the flow rate of the hydrocarbon fuel for heating of the reformer in accordance with the change in the methane conversion rate. With such control, the methane conversion can be kept constant. As information on which the estimation is based, information on the amount of the hydrocarbon fuel for cumulative reforming and the number of start-stop times is particularly useful.
[0054]
Further, based on the operating conditions of the reforming water flow rate and the reforming hydrocarbon-based fuel flow rate, and information on the methane conversion rate (which can be estimated from the deterioration information of the reforming catalyst), the CO in the reformed gas passed through the CO converter is obtained. The concentration can be inferred. Therefore, by reducing the air for CO removal corresponding to the CO concentration, that is, the air for selective oxidation of CO under the condition of estimating the degree of safety to some extent, "suppressing the consumption of excess hydrogen by the CO removal air". And "reliably removing CO" can be achieved at the same time. The reduction in the supply amount of the CO removal air is performed by restricting the regulating valve V3 (FIG. 5).
[0055]
The reformer according to the present invention basically includes a heating section in which a burner or a combustion catalyst is arranged and a reforming section in which a reforming catalyst is arranged. As the reforming catalyst, any catalyst having a function of reforming a hydrocarbon-based fuel to generate a hydrogen-rich gas can be used. For example, a Ni-based catalyst (eg, a catalyst in which Ni is supported on alumina) or Ru A system catalyst (for example, a catalyst in which Ru is supported on alumina) can be exemplified. When a combustion catalyst is disposed in the heating section, a noble metal catalyst such as platinum or a combustion catalyst such as alumina hexanate is used.
[0056]
In the reformer, in addition to the type in which the steam generator is separately arranged, there is also a type in which the steam generator is integrally configured, that is, a type in which the steam generator is included in the reformer. It is applied to any reformer. Examples of the hydrocarbon fuel for reforming include methane, ethane, propane, butane, city gas, LPG, natural gas, and other hydrocarbon gases (including a mixed gas of two or more hydrocarbons).
[0057]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but it is needless to say that the present invention is not limited to Examples.
[0058]
<Example 1>
In this example, a reformer system with PEFC configured as shown in FIG. 13 was used. In this system, as shown in FIGS. 5 and 6, a deterioration diagnosis device and a control device including a storage device are set in a reformer system with PEFC. The reformer is configured by sequentially connecting a desulfurizer, a reformer, a CO shift converter, and a CO remover, but the description of the desulfurizer and the control device is omitted in FIG.
[0059]
The control unit (CPU) of the control device was designed to control the reforming catalyst used in the present embodiment to increase the flow rate of the reforming water in response to the deterioration with time. Although the methane conversion rate decreases with the deterioration of the reforming catalyst, the relationship as shown in FIG. 10 is set based on the data actually measured in advance for the reforming catalyst used in the present embodiment, and the methane conversion rate corresponds to the decrease in the methane conversion rate. It is designed to increase the amount of reforming water.
[0060]
A burner is used in the heating section of the reformer, and a catalyst (Ru supported amount = 2 wt%, manufactured by SCJ, product name = RUA) is used in the reforming section, and a copper-zinc system is used in the CO converter. A catalyst (Cu / Zn-based catalyst) was used, and a catalyst in which Pt was supported on alumina was used in the CO remover. As for the operating conditions, the S / C ratio in the reforming section was 3.0 and the set reforming temperature was 680 ° C. as the initial operating conditions. Set hydrogen consumption in PEFC is 0.75Nm 3 / H. Natural gas was used as the hydrocarbon fuel for reforming, and air was used as the oxidant to be supplied to the CO remover. These conditions are shown in FIG. 13A, including the operating conditions of other parts.
[0061]
The operation of the present system was started under the above operating conditions, and thereafter, the operation was performed for a long time while repeating the operation-stop-operation. As a result, the operation could be continued without the PEFC becoming inoperable. FIG. 13B shows the operating state at the time of the operation time of 5800 hours and the number of times of start-stop is 330 times. While the reforming water flow rate in the initial operation state is 11.5 cc / min, the control of the present invention increases the reforming water flow rate to 18.5 cc / min, and feeds the reforming water to the reforming section of the reformer. The supplied steam flow rate is increasing.
[0062]
<Example 2>
The reformer system with PEFC assembled in the same manner as in Example 1 was used. Example 2 is the same as Example 1 except that the control unit of the control device is configured to perform control to increase the flow rate of the reforming water and the flow rate of the reforming hydrocarbon-based fuel in response to the deterioration with time of the reforming catalyst. That is, although the methane conversion rate decreases with the deterioration of the reforming catalyst, in the present embodiment, the control unit obtains the relationship as shown in FIG. 11 based on data previously measured for the reforming catalyst used in the present embodiment. It is designed to increase the amount of reforming water and reforming hydrocarbon-based fuel in accordance with the decrease in methane conversion.
[0063]
FIG. 14 shows the configuration of this system, and the conditions at each point in the initial operation state are shown in FIG. The operation of this system was started under these operating conditions, and thereafter, the system was operated for a long period of time while repeating operation-stop-start. As a result, the operation could be continued without the PEFC becoming inoperable. FIG. 14B shows the operating state at the time when the operating time is 5800 hours and the number of start-stop times is 330 times. While the reforming water flow rate and the reforming natural gas flow rate in the initial operation state are 11.5 cc / min and 4.0 NL / min, respectively, as shown in FIG. , The reforming water flow rate has increased to 14.1 cc / min, and the reforming natural gas flow rate has increased to 4.32 NL / min.
[0064]
<Example 3>
In this example, the reformer system with PEFC arranged as shown in FIG. 14A was used, but the reformer of the reformer was indirectly heated by the high-temperature gas. Using the reformer in which the reforming section is filled with the reforming catalyst degraded by the acceleration test, the (C) control for decreasing the flow rate of the hydrocarbon-based fuel and decreasing the maximum power generation amount in the PEFC is performed. Operation was carried out.
[0065]
The operating conditions were the same as in Example 1 except that desulfurized city gas 13A was used as the hydrocarbon fuel for reforming, and the reforming section of the reformer was indirectly heated by high-temperature gas. Operated this system. The present system was operated under the same operating conditions as described above, using a reformer in which a reforming section was filled with a reforming catalyst, that is, a reforming catalyst before deterioration by an accelerated test. Table 1 shows the results.
[0066]
In Table 1, the initial state indicates the case where the reforming catalyst before deterioration by the accelerated test is used, and the state after catalyst deterioration indicates the case where the reformed catalyst after deterioration by the accelerated test is used. As shown in Table 1, by reducing the hydrocarbon fuel for reforming supplied to the reforming section from 4.8 NL / m to 4.0, the production hydrogen flow rate was 0.68 Nm. 3 / H, but since the maximum amount of power generated by the PEFC was reduced, the hydrogen utilization rate in the PEFC could be maintained at 74%. In addition, since the operation of reducing the supply amount of the hydrocarbon fuel for reforming is performed, the burden on auxiliary equipment such as a pump can be minimized.
[0067]
[Table 1]
Figure 2004220949
[0068]
【The invention's effect】
According to the present invention, in a reformer system with a polymer electrolyte fuel cell, the reformer system can be continuously operated for a long time without replacing the reforming catalyst filled in the reforming section of the reformer. can do.
[Brief description of the drawings]
FIG. 1 schematically shows a steam reformer.
FIG. 2 is a diagram showing an example of a mode from a raw material gas to PEFC using a steam reformer.
FIG. 3 is a diagram showing an operation example of a conventional reformer system with PEFC.
FIG. 4 is a diagram showing a relationship between an equilibrium reforming temperature, a methane conversion rate, an approach temperature, and the like in the reformer of the system shown in FIG.
FIG. 5 is a diagram showing an embodiment of the reformer system with PEFC of the present invention.
FIG. 6 is a diagram showing a portion of the system of FIG. 5 to which a control device is related;
FIG. 7 is a diagram showing an operation mode of the reformer system with PEFC of the present invention.
FIG. 8 is a graph showing a decrease in activity of the reforming catalyst due to sulfur.
FIG. 9 is a graph showing a decrease in the activity of the reforming catalyst due to a rise and fall in temperature during start-stop
FIG. 10 is a diagram showing an increase in a process flow rate corresponding to deterioration of a reforming catalyst.
FIG. 11 is a diagram showing an increase in a process flow rate corresponding to deterioration of a reforming catalyst.
FIG. 12 is a diagram showing a decrease amount of a process flow rate corresponding to deterioration of a reforming catalyst.
FIG. 13 is a diagram showing a reformer system with PEFC used in Example 1.
FIG. 14 is a diagram showing a reformer system with PEFC used in Example 2.

Claims (12)

脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムであって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用水流量を増加させる制御を行う制御装置を備えてなることを特徴とする固体高分子形燃料電池付改質装置システム。A reformer equipped with a desulfurizer, reformer, CO shifter and CO remover in order, a polymer electrolyte fuel cell using hydrogen produced by the reformer, and a reformer in the reformer And a supply system for supplying a hydrocarbon-based fuel and reforming water, a heating system of the reformer, a CO remover and a supply system for supplying air to the fuel cell, and a cell cooling system. A reforming system with a polymer electrolyte fuel cell having an adjusting valve for controlling the flow rate of each fluid in the flow path of the fuel cell, wherein one or both of the amount of hydrocarbon fuel for cumulative reforming and the number of start-stop times A control device for estimating the degree of deterioration of the reforming catalyst over time from the operation information of the fuel cell and controlling the flow rate of the reforming water to be increased so as to match the degree of deterioration. Reformer system. 脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムであって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用水流量と改質用炭化水素系燃料流量を増加させる制御を行う制御装置を備えてなることを特徴とする固体高分子形燃料電池付改質装置システム。A reformer equipped with a desulfurizer, reformer, CO shifter and CO remover in order, a polymer electrolyte fuel cell using hydrogen produced by the reformer, and a reformer in the reformer And a supply system for supplying a hydrocarbon-based fuel and reforming water, a heating system of the reformer, a CO remover and a supply system for supplying air to the fuel cell, and a cell cooling system. A reforming system with a polymer electrolyte fuel cell having an adjusting valve for controlling the flow rate of each fluid in the flow path of the fuel cell, wherein one or both of the amount of hydrocarbon fuel for cumulative reforming and the number of start-stop times A control device for estimating the degree of deterioration of the reforming catalyst over time from the operation information of the fuel cell and increasing the flow rate of the reforming water and the flow rate of the reforming hydrocarbon-based fuel to match the degree of deterioration. Reformer system with polymer electrolyte fuel cell. 脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムであって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用炭化水素系燃料流量と燃料電池での最大発電電力量を減少させる制御を行う制御装置を備えてなることを特徴とする固体高分子形燃料電池付改質装置システム。A reformer equipped with a desulfurizer, reformer, CO shifter and CO remover in order, a polymer electrolyte fuel cell using hydrogen produced by the reformer, and a reformer in the reformer And a supply system for supplying a hydrocarbon-based fuel and reforming water, a heating system of the reformer, a CO remover and a supply system for supplying air to the fuel cell, and a cell cooling system. A reforming system with a polymer electrolyte fuel cell having an adjusting valve for controlling the flow rate of each fluid in the flow path of the fuel cell, wherein one or both of the amount of hydrocarbon fuel for cumulative reforming and the number of start-stop times Estimating the degree of deterioration of the reforming catalyst over time from the operation information of the fuel cell, and comprising a control device that performs control to reduce the reforming hydrocarbon-based fuel flow rate and the maximum power generation amount in the fuel cell to match the degree of deterioration. Reformer system with polymer electrolyte fuel cell . 請求項1乃至3のいずれか1項に記載の固体高分子形燃料電池付改質装置システムにおいて、改質出口温度を改質器の加熱用炭化水素系燃料流量により制御することにより一定に保つようにしてなることを特徴とする固体高分子形燃料電池付改質装置システム。The reformer system with a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the reforming outlet temperature is kept constant by controlling the reforming unit's heating hydrocarbon-based fuel flow rate. A reformer system with a polymer electrolyte fuel cell, characterized in that: 請求項1乃至3のいずれか1項に記載の固体高分子形燃料電池付改質装置システムにおいて、改質器の加熱用炭化水素系燃料流量により、改質出口温度を累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から演算した所定の改質出口温度に制御するようにしてなることを特徴とする固体高分子形燃料電池付改質装置システム。4. The reformer system with a solid polymer fuel cell according to claim 1, wherein the reforming outlet temperature is controlled by a heating hydrocarbon-based fuel flow rate of the reformer. 4. A reforming system with a polymer electrolyte fuel cell, wherein the temperature is controlled to a predetermined reforming outlet temperature calculated from operation information of one or both of the system fuel amount and the number of start-stop times. 請求項1乃至5のいずれか1項に記載の固体高分子形燃料電池付改質装置システムにおいて、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から得られるCO変成器を経た改質ガス中のCO濃度の低下に対応して、改質装置におけるCO除去器へのCO除去用空気の供給量を減少させるようにしてなることを特徴とする固体高分子形燃料電池付改質装置システム。The reformer system with a polymer electrolyte fuel cell according to any one of claims 1 to 5, wherein the amount of hydrocarbon fuel for cumulative reforming and / or the number of start-stop times or both of the operation information is determined. A solid material characterized in that the supply amount of CO removal air to the CO remover in the reformer is reduced in response to the decrease in the CO concentration in the reformed gas that has passed through the obtained CO converter. Reformer system with polymer fuel cell. 脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系と、それらを制御する制御装置を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムの運転方法であって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用水流量を増加させる制御を行うことを特徴とする固体高分子形燃料電池付改質装置システムの運転方法。A reformer equipped with a desulfurizer, reformer, CO shifter and CO remover in order, a polymer electrolyte fuel cell using hydrogen produced by the reformer, and a reformer in the reformer Supply system for supplying hydrocarbon fuel for fuel and reforming water, heating unit of reformer, CO remover and supply system for supplying air to the fuel cell, battery cooling system, and control device for controlling them And a method of operating a reforming system with a polymer electrolyte fuel cell having a regulating valve for controlling the flow rate of each fluid in the flow path of the supply system, wherein the amount of the hydrocarbon fuel for cumulative reforming is And estimating the degree of deterioration of the reforming catalyst over time from operation information of one or both of the number of times of start and stop, and performing control to increase the flow rate of the reforming water to match the degree of deterioration. An operation method of a reformer system with a molecular fuel cell. 脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系と、それらを制御する制御装置を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムの運転方法であって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用水流量と改質用炭化水素系燃料流量を増加させる制御を行うことを特徴とする固体高分子形燃料電池付改質装置システムの運転方法。A reformer equipped with a desulfurizer, reformer, CO shifter and CO remover in order, a polymer electrolyte fuel cell using hydrogen produced by the reformer, and a reformer in the reformer Supply system for supplying hydrocarbon fuel for fuel and reforming water, heating unit of reformer, CO remover and supply system for supplying air to the fuel cell, battery cooling system, and control device for controlling them And a method of operating a reforming system with a polymer electrolyte fuel cell having a regulating valve for controlling the flow rate of each fluid in the flow path of the supply system, wherein the amount of the hydrocarbon fuel for cumulative reforming is And estimating the degree of deterioration of the reforming catalyst over time from operation information of one or both of the number of times of start and stop, and increasing the flow rate of the reforming water and the flow rate of the reforming hydrocarbon-based fuel to match the degree of deterioration. Reforming system with a polymer electrolyte fuel cell Temu method of operation. 脱硫器、改質器、CO変成器及びCO除去器を順次備える改質装置と、改質装置で製造した水素を利用する固体高分子形燃料電池と、改質器の改質部に改質用炭化水素系燃料と改質用水を供給する供給系と、改質器の加熱部、CO除去器及び該燃料電池に空気を供給する供給系と、電池冷却系と、それらを制御する制御装置を備え、且つ、それら供給系の流路に各流体の流量を制御する調整弁を有する固体高分子形燃料電池付改質装置システムの運転方法であって、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から改質触媒の経時劣化度合を推定し、当該劣化度合に見合うように改質用炭化水素系燃料流量と燃料電池での最大発電電力量を減少させる制御を行うことを特徴とする固体高分子形燃料電池付改質装置システムの運転方法。A reformer equipped with a desulfurizer, reformer, CO shifter and CO remover in order, a polymer electrolyte fuel cell using hydrogen produced by the reformer, and a reformer in the reformer Supply system for supplying hydrocarbon fuel for fuel and reforming water, heating unit of reformer, CO remover and supply system for supplying air to the fuel cell, battery cooling system, and control device for controlling them And a method of operating a reforming system with a polymer electrolyte fuel cell having a regulating valve for controlling the flow rate of each fluid in the flow path of the supply system, wherein the amount of the hydrocarbon fuel for cumulative reforming is Estimate the degree of deterioration of the reforming catalyst over time from operation information of one or both of the number of times of start and stop, and adjust the flow rate of the hydrocarbon fuel for reforming and the maximum amount of power generated by the fuel cell to match the degree of deterioration. Polymer electrolyte fuel cell characterized by performing control to reduce fuel consumption The method of operating Tsukearatameshitsu system. 請求項7乃至9のいずれか1項に記載の固体高分子形燃料電池付改質装置システムの運転方法において、改質出口温度を改質器の加熱用炭化水素系燃料流量で制御することにより一定に保つことを特徴とする固体高分子形燃料電池付改質装置システムの運転方法。The operating method of the reforming system with a polymer electrolyte fuel cell according to any one of claims 7 to 9, wherein the reforming outlet temperature is controlled by a flow rate of a hydrocarbon fuel for heating of the reformer. A method for operating a reformer system with a polymer electrolyte fuel cell, characterized in that the system is kept constant. 請求項7乃至9のいずれか1項に記載の固体高分子形燃料電池付改質装置システムの運転方法において、改質器の加熱用炭化水素系燃料流量により、改質出口温度を累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から演算した所定の改質出口温度に制御することを特徴とする固体高分子形燃料電池付改質装置システムの運転方法。10. The operating method of the reformer system with a solid polymer electrolyte fuel cell according to claim 7, wherein the reforming outlet temperature is controlled by the flow rate of the hydrocarbon fuel for heating of the reformer. Operation of a reformer system with a polymer electrolyte fuel cell, characterized in that the reforming outlet temperature is controlled to a predetermined reforming outlet temperature calculated from operation information of one or both of the amount of hydrocarbon-based fuel and the number of start-stop times. Method. 請求項7乃至11のいずれか1項に記載の固体高分子形燃料電池付改質装置システムの運転方法において、累積改質用炭化水素系燃料量及び起動−停止回数のいずれか一方または両方の運転情報から得られるCO変成器を経た改質ガス中のCO濃度の低下に対応して、改質装置におけるCO除去器へのCO除去用空気の供給量を減少させることを特徴とする固体高分子形燃料電池付改質装置システムの運転方法。The operating method of the reformer system with a solid polymer electrolyte fuel cell according to any one of claims 7 to 11, wherein one or both of the amount of the hydrocarbon fuel for cumulative reforming and the number of start-stop times is provided. A solid height characterized by reducing a supply amount of CO removal air to a CO remover in a reformer in response to a decrease in a CO concentration in a reformed gas passed through a CO converter obtained from operation information. An operation method of a reformer system with a molecular fuel cell.
JP2003007879A 2003-01-16 2003-01-16 Reformer system with polymer electrolyte fuel cell and method for operating the same Expired - Lifetime JP4342803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007879A JP4342803B2 (en) 2003-01-16 2003-01-16 Reformer system with polymer electrolyte fuel cell and method for operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007879A JP4342803B2 (en) 2003-01-16 2003-01-16 Reformer system with polymer electrolyte fuel cell and method for operating the same

Publications (2)

Publication Number Publication Date
JP2004220949A true JP2004220949A (en) 2004-08-05
JP4342803B2 JP4342803B2 (en) 2009-10-14

Family

ID=32897844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007879A Expired - Lifetime JP4342803B2 (en) 2003-01-16 2003-01-16 Reformer system with polymer electrolyte fuel cell and method for operating the same

Country Status (1)

Country Link
JP (1) JP4342803B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009153A1 (en) * 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus and method for operation thereof, and fuel cell system
JP2006169068A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system using the same
JP2006190586A (en) * 2005-01-07 2006-07-20 Idemitsu Kosan Co Ltd Method of using co selective oxidation reactor
JP2007193980A (en) * 2006-01-17 2007-08-02 Casio Comput Co Ltd Power generation system
CN100463261C (en) * 2005-08-02 2009-02-18 三星Sdi株式会社 Fuel cell system and operating method of the same
JP2009161359A (en) * 2007-12-28 2009-07-23 Honda Motor Co Ltd System and method for removing carbon monoxide
EP1921704A3 (en) * 2006-11-10 2009-12-23 Samsung Electronics Co., Ltd. Fuel Cell System and Method of Controlling the Same
WO2010114049A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
EP2416423A1 (en) * 2009-03-31 2012-02-08 Toto Ltd. Solid electrolyte fuel cell
US8273489B2 (en) 2006-06-12 2012-09-25 Fuji Electric Co., Ltd. Hydrogen generator and fuel cell system including the same
WO2013027960A2 (en) * 2011-08-25 2013-02-28 주식회사 효성 Gaseous fuel supplying apparatus of a fuel cell system, and a fuel cell system including same
KR101769309B1 (en) * 2009-12-28 2017-08-21 재단법인 포항산업과학연구원 Fuel reforming method
WO2024005081A1 (en) * 2022-06-30 2024-01-04 旭化成株式会社 Device and method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006009153A1 (en) * 2004-07-20 2006-01-26 Matsushita Electric Industrial Co., Ltd. Hydrogen formation apparatus and method for operation thereof, and fuel cell system
US8262756B2 (en) 2004-07-20 2012-09-11 Panasonic Corporation Hydrogen generator, method of operating hydrogen generator, and fuel cell system
JP2006169068A (en) * 2004-12-17 2006-06-29 Matsushita Electric Ind Co Ltd Hydrogen generator and fuel cell system using the same
JP2006190586A (en) * 2005-01-07 2006-07-20 Idemitsu Kosan Co Ltd Method of using co selective oxidation reactor
CN100463261C (en) * 2005-08-02 2009-02-18 三星Sdi株式会社 Fuel cell system and operating method of the same
US8101306B2 (en) 2005-08-02 2012-01-24 Samsung Sdi Co., Ltd. Fuel cell system with fuel reforming units
JP2007193980A (en) * 2006-01-17 2007-08-02 Casio Comput Co Ltd Power generation system
US8273489B2 (en) 2006-06-12 2012-09-25 Fuji Electric Co., Ltd. Hydrogen generator and fuel cell system including the same
US7923158B2 (en) 2006-11-10 2011-04-12 Samsung Electronics Co., Ltd. Fuel cell system and method of controlling the same
EP1921704A3 (en) * 2006-11-10 2009-12-23 Samsung Electronics Co., Ltd. Fuel Cell System and Method of Controlling the Same
JP2009161359A (en) * 2007-12-28 2009-07-23 Honda Motor Co Ltd System and method for removing carbon monoxide
JP4622005B2 (en) * 2009-03-31 2011-02-02 Toto株式会社 Solid oxide fuel cell
EP2416423A1 (en) * 2009-03-31 2012-02-08 Toto Ltd. Solid electrolyte fuel cell
JP2010238619A (en) * 2009-03-31 2010-10-21 Toto Ltd Solid electrolyte fuel cell
WO2010114049A1 (en) * 2009-03-31 2010-10-07 Toto株式会社 Solid electrolyte fuel cell
EP2416423A4 (en) * 2009-03-31 2014-04-23 Toto Ltd Solid electrolyte fuel cell
US8980496B2 (en) 2009-03-31 2015-03-17 Toto Ltd. Solid oxide fuel cell
KR101769309B1 (en) * 2009-12-28 2017-08-21 재단법인 포항산업과학연구원 Fuel reforming method
WO2013027960A2 (en) * 2011-08-25 2013-02-28 주식회사 효성 Gaseous fuel supplying apparatus of a fuel cell system, and a fuel cell system including same
WO2013027960A3 (en) * 2011-08-25 2013-04-18 주식회사 효성 Gaseous fuel supplying apparatus of a fuel cell system, and a fuel cell system including same
WO2024005081A1 (en) * 2022-06-30 2024-01-04 旭化成株式会社 Device and method

Also Published As

Publication number Publication date
JP4342803B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
JP4130603B2 (en) Operation method of hydrogen production system
JP4105758B2 (en) Fuel cell system
JP4991571B2 (en) Hydrogen generator, fuel cell system, and operation method thereof
JP4342803B2 (en) Reformer system with polymer electrolyte fuel cell and method for operating the same
US9090464B2 (en) Hydrogen generation apparatus and fuel cell system
KR101355238B1 (en) Solid oxide fuel cell system and method of operating the same
JP2009040679A (en) Hydrogen generation device, fuel cell system, and method for operation of hydrogen generation device
CN102177086A (en) Hydrogen generator, fuel cell system, and method of operating hydrogen generator
JP4870909B2 (en) Fuel cell power generator
JP2003002605A (en) Method for operating and stopping steam reformer
JP4827405B2 (en) Hydrogen generator and fuel cell system using the same
JP2004047438A (en) Operation control method of fuel cell generator
JP2006219328A (en) Hydrogen generation apparatus and fuel cell system using the same
JP4556305B2 (en) Fuel reformer and hydrogen production method
JP2001085039A (en) Fuel cell system
JPH09298065A (en) Fuel cell generating device
JP2001151502A (en) Fuel reforming device
JP4446672B2 (en) Operation control system for carbon monoxide remover and operation control system for fuel cell system
JP4896901B2 (en) Solid oxide fuel cell system
JP5592760B2 (en) Fuel cell power generation system
JP2004185961A (en) Operation method of fuel cell power generation device
JP2004296102A (en) Fuel cell system and fuel cell system stopping method
JP4917791B2 (en) Fuel cell system
JP2004178842A (en) Fuel cell generator and its operation method
JP2004210609A (en) Fuel reforming apparatus and fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4342803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term