JP2004185961A - Operation method of fuel cell power generation device - Google Patents

Operation method of fuel cell power generation device Download PDF

Info

Publication number
JP2004185961A
JP2004185961A JP2002351020A JP2002351020A JP2004185961A JP 2004185961 A JP2004185961 A JP 2004185961A JP 2002351020 A JP2002351020 A JP 2002351020A JP 2002351020 A JP2002351020 A JP 2002351020A JP 2004185961 A JP2004185961 A JP 2004185961A
Authority
JP
Japan
Prior art keywords
gas
fuel cell
digestion
supply
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351020A
Other languages
Japanese (ja)
Inventor
Makoto Ito
伊藤  誠
Yasumoto Kubota
康幹 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002351020A priority Critical patent/JP2004185961A/en
Publication of JP2004185961A publication Critical patent/JP2004185961A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operation method economically operable by minimizing the consumption of auxiliary gas such as a city gas, in a fuel cell power generation device using a digestion gas as a main raw fuel gas. <P>SOLUTION: A supply device of the digestion gas to a reformer has a buffer tank for relaxing pressure in response to variation of the generation quantity of the digestion gas, normally supplies the digestion gas according to the electricity output of the fuel cell under a predetermined supply pressure of the digestion gas by controlling the opening of a digestion gas supply flow regulation valve. In an abnormal time when the digestion gas supply pressure is decreased, the supply device gradually increases the supply quantity of the city gas when the opening of the digestion gas supply flow regulation valve is increased to be set to a predetermined set upper-limit opening, supplies the digestion gas and the city gas so as to set the total flow thereof to a quantity matching to required electricity output of the fuel cell to continue the operation of the fuel cell, and gradually reduces the city gas supply quantity to continue the operation of the fuel cell when the opening of the digestion gas supply flow regulation valve is reduced by increase of the city gas supply quantity or recovery of the digestion gas supply pressure and set to a predetermined set lower-limit opening. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、燃料電池発電装置の運転方法に関し、特に、主原燃料ガスとして消化ガスを用い、補助的原燃料ガスとして都市ガスやLPGなどの第二の原燃料ガスを用いる場合の原燃料ガスの供給制御方法に関する。
【0002】
【従来の技術】
燃料電池発電装置は、燃料ガスと酸化剤ガスとの電気化学的反応によって電気を取り出す装置である。そして、燃料電池の電気化学的反応に必要な燃料ガスと酸化剤ガスの量は、燃料電池から取り出す電流に比例する。
【0003】
前記電気化学的反応に水素ガスを使用するリン酸型燃料電池や固体高分子型燃料電池においては、例えば、原燃料として使用される都市ガスやメタン発酵ガス(消化ガス)などの炭化水素ガスと水蒸気とを反応させて、水素リッチガスに改質して燃料電池に供給する。燃料電池発電装置は、炭化水素ガスから水素リッチガスに改質する改質器を備え、この改質器は改質反応を継続するために高温にコントロールされてる。
【0004】
なお、改質器における炭化水素ガスと水蒸気の反応は、吸熱反応であるため、燃料電池には、電気化学的反応で消費する水素量より多めの改質ガスを供給し、燃料電池からのオフガスを改質器に還流して燃焼させ、改質器における熱源とするのが一般的である。
【0005】
前述のような燃料電池発電装置においては、原燃料を改質して得られる水素の量は炭化水素の組成によって異なるために、使用する原燃料の種類によって、原燃料流量の設定値を決める必要がある。特に前記メタン発酵ガス(消化ガスまたはバイオガス)を原燃料とする場合等においては、原燃料の組成が変動するため、供給される消化ガス中のメタンガス成分の濃度を検出し、このメタンガス検出濃度に応じて、原燃料としてのバイオガス供給流量を調整する必要がある。この種の、原燃料にバイオガスを用いる燃料電池発電装置の構成は、例えば、特許文献1に開示されている。
【0006】
図4は、前記特許文献1の公報における図1として(図4においては、部番を一部変更)記載された燃料電池発電設備のシステム構成図である。図4の構成について、同公報の記載を概ね引用して、以下に述べる。
【0007】
即ち、図4に示す燃料電池発電設備は、下水汚泥からメタン発酵処理により得られる消化ガスを導く原燃料供給配管1aと、この原燃料供給配管1aを通して供給される消化ガス中に含まれる硫黄成分を除去する脱硫器64と、この脱硫器64により硫黄成分が除去された消化ガスを例えば水蒸気で触媒反応させることにより一酸化炭素と水素ガスに改質する改質器22と、この改質器22から出力される一酸化炭素および水素ガスのうち、被毒ガス成分となる一酸化炭素を二酸化炭素に変成するために、当該一酸化炭素を例えば水蒸気などで触媒反応させて二酸化炭素と水素ガスに変成する変成器66と、燃料電池本体21とが設けられている。
【0008】
前記原燃料供給配管1aには消化ガス中のガス濃度を検出する検出器6aが設置されている。また、原燃料供給配管1aの所要とする位置に燃料ガス入口遮断弁7aおよび燃料ガス流量調整弁32が設けられ、さらに前記改質器22の入力側に触媒を反応させるために例えば水蒸気を供給する水蒸気供給ライン9aが設けられ、この水蒸気供給ライン9aには水蒸気の流量を調整供給するための改質用蒸気流量調整弁10aが設置されている。
【0009】
さらに、検出器6aの出力側には消化ガスに含まれる所要のガス濃度を評価演算するガス濃度評価演算部11aが設けられている。このガス濃度評価演算部11aは、検出器6aの出力である各種のガス濃度データを収集するガス濃度収集手段12aと、ガス濃度収集手段12aにより収集された消化ガス中のメタン系炭化水素の成分濃度から総発電量を算出し、この総発電量から必要となる燃料ガス流量を決定し、燃料ガス流量調整弁32を調整する燃料流量演算手段13aと、この燃料流量演算手段13aによって決定される燃料ガス流量から改質用蒸気流量を決定し、改質用蒸気流量調整弁10aを調整する改質用蒸気流量演算手段14aと、被毒成分である一酸化炭素、硫黄、窒素、塩類、酸素等のうち少なくとも1つ以上の被毒成分濃度が許容範囲を越えたとき、燃料電池発電設備を構成する機器のうち必要な機器を停止させる設備停止手段15aとによって構成されている。
【0010】
また、図4において、60は水蒸気分離器であって、水から蒸気を分離し水蒸気供給ライン9に供給する。この蒸気を得る手段は、水蒸気分離器60である必要はなく、従来周知の種々の方法によって得ることができる。17aは燃料電池本体5を構成する空気極から出力される排気を水に熱交換する熱交換機、18aはタンク、19aはポンプである。
【0011】
以上は概ね、特許文献1に記載された図4の説明であるが、燃料電池の水回収装置や純水装置など一部の系統は省略されており、また、燃料電池の冷却系統や排熱回収系統等、システムの細部構成については、種々の変形例がある。なお、前記改質用蒸気供給流量は、通常、原燃料供給量と所定のS/C(原燃料中の炭素原子に対する水蒸気のモル数比)とに基づき決定され消化ガスの場合、メタンガスが主であるので、2.5〜4.0である。なお、LPGの場合には、3.0〜4.5である。
【0012】
ところで、上記特許文献1に記載されたシステムは、原燃料ガスとして、消化ガスのみを用いるシステム例であるが、補助的原燃料ガスとして都市ガスやLPGなどの第二の原燃料ガスを用いるシステム例も提案されている。この種の、燃料電池発電装置の構成は、例えば、特許文献2に開示されており、図5は、特許文献2に記載された燃料電池発電装置のシステム例を示す。
【0013】
図5の装置は、消化ガスを余すことなく燃料電池の燃料ガスとして有効に利用することが可能な燃料電池発電設備を提供することを目的としたもので、燃料電池発電設備1には、都市ガス配管5と消化ガス配管4とを合流させ、都市ガスと消化ガスとの混合ガスを原燃料として改質器9に供給する原燃料配管3が備えられている。これにより、消化ガスにおける発生量の変動や未達分を都市ガスで補い、都市ガスと消化ガスとの混合ガスにより燃料電池発電設備1の燃料ガス要求量を十分に満たすことができるようにしている。
【0014】
また、特許文献2の記載によれば、図5の装置においては、消化ガス発生装置2は消化ガス流量調節弁6に対して流量設定信号を出力するように構成されている。以上の構成により、通常時は消化ガス発生装置2から出力される流量設定信号に応じて、消化ガス流量調節弁6は消化ガス発生装置2から送られる消化ガスのすべてを燃料電池発電設備1に供給するようにガス流量を制御する。一方、都市ガス流量調節弁7は、燃料電池発電設備1の必要とする燃料ガス消費量と消化ガス流量調節弁6を経由して供給される消化ガス量の差分を補うようにガス流量を制御する。
【0015】
上記のようにして、消化ガスにおける発生量の変動や未達分を都市ガスで補うことができ、原燃料配管3を通じて都市ガスと消化ガスとの混合ガスを原燃料として十分に改質器9に供給することができる。その結果、燃料電池発電設備1の燃料ガス消費量を満足させることができ、消化ガスの発生量における時間的・季節的な変動に左右されることなく、燃料電池発電設備1の出力(電気及び熱)要求を確実に満たすことができる。
【0016】
【特許文献1】
特開平11−126629号公報(第3−5頁、図1)
【特許文献2】
特開平11−45726号公報(第4−5頁、図1)
【0017】
【発明が解決しようとする課題】
ところで、前記特許文献2に記載された図5に示す装置の場合、消化ガス発生量は、燃料電池で消費される燃料ガス量より少ないことを前提としている。即ち、消化ガス発生量<燃料電池定格出力(=消化ガス処理能力)であって、消化ガスの不足分を都市ガスで補充している。また、消化ガス流量指令は、消化ガス発生設備から消費したいガス量に基づき燃料電池に入力するようにしている。
【0018】
燃料ガスとして、消化ガスを主体として燃料電池を運転する場合、常時は、できる限り都市ガスなどの補助ガスを消費せずに、消化ガスのみで発電可能なようにすることが、経済性の観点から望ましい。即ち、消化ガスの定格発生量と燃料電池の定格出力とが見合うように適合させて、補助ガスの消費量を最小限にすることが望ましい。前記特許文献2に記載された装置は、前記要請に応えるものではない。
【0019】
この発明は、上記の点に鑑みてなされたもので、この発明の課題は、主原燃料ガスとして消化ガスを使用する燃料電池発電装置において、都市ガス等の補助ガスの消費量を最小限にして経済的な運転が可能な運転方法を提供することにある。
【0020】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、主原燃料ガスとしての消化ガスと、補助的原燃料ガスとしての都市ガスやLPGなどの第二の原燃料ガスとを改質して水素リッチな改質ガスを生成する改質器と、この改質ガスと酸化剤ガスとを電気化学的に反応させて発電する燃料電池とを備えた燃料電池発電装置の運転方法において、前記消化ガスの改質器への供給装置は、消化ガスの発生量の変動に伴う圧力を緩和するバッファタンクを有し、常時は、前記消化ガスを所定の供給圧力の下で、前記燃料電池の電気出力に応じて、消化ガス供給流量調節弁の開度制御を行って供給し、前記消化ガスの供給圧力が減少した際の異常時には、前記消化ガス供給流量調節弁の開度が増大して所定の設定上限開度になった際に、前記第二の原燃料ガスを漸増供給し、消化ガスと第二の原燃料ガスとの合計流量が、燃料電池の所要電気出力に見合う量となるように供給して燃料電池の運転を継続し、前記第二の原燃料ガスの供給量の増大もしくは消化ガスの供給圧力の回復により、前記消化ガス供給流量調節弁の開度が減少し、所定の設定下限開度になった際には、前記第二の原燃料ガスの供給量を漸減して燃料電池の運転を継続することとする(請求項1の発明)。
【0021】
前記請求項1の発明による運転方法によれば、常時の消化ガス発生量の変動は、概ね、バッファタンクで緩和されて消化ガスのみで運転が可能となり、異常時のみ、都市ガス等の第二の原燃料ガスを供給し、かつ消化ガス供給流量調節弁の開度に基づいて、効率のよいガス供給制御が可能となる。従って、都市ガス等の補助ガスの消費量を最小限にして燃料電池発電装置の経済的な運転が可能となる。詳細は後述する。
【0022】
また、前記発明の実施態様としては、下記請求項2ないし5の発明が好ましい。即ち、前記請求項1に記載の運転方法において、前記所定の設定上限開度は92%開度とし、所定の設定下限開度は60%開度とする(請求項2の発明)。
【0023】
さらに、前記請求項1または2に記載の運転方法において、前記所定の設定上限開度と下限開度との間に、所定の第三の設定中間開度を設け、前記消化ガス供給流量調節弁の開度の減少に伴い、前記第三の設定中間開度に到達した際には、前記第二の原燃料ガスの供給流量の漸増を停めて一定値に維持する(請求項3の発明)。
【0024】
さらにまた、前記請求項3に記載の運転方法において、前記所定の設定上限開度と下限開度との間に、さらに所定の第四の設定中間開度を設け、前記消化ガス供給流量調節弁の開度の減少により前記下限開度開度に到達後、さらに、消化ガスの供給圧力が減少して開度が増大し前記第四の設定中間開度に到達した際には、前記第二の原燃料ガスの供給流量の漸減を停めて一定値に維持する(請求項4の発明)。
【0025】
前記請求項3および4の発明は、いずれも、第二の原燃料ガスの供給流量の増減の繰り返しをできる限り少なくして、制御の円滑化を図ることを目的としているが、詳細は後述する。
【0026】
また、改質用スチームの流量制御に関する実施態様としては、下記請求項5の発明が好ましい。即ち、前記請求項1ないし4のいずれかに記載の運転方法において、前記改質器は、原燃料ガスを水蒸気(スチーム)と混合して改質するものとし、前記第二の原燃料ガスを補充供給して消化ガスと共に燃料電池に供給する際の前記スチーム流量は、各原燃料ガス毎に予め設定したS/C(原燃料ガス中の炭素原子に対するスチームのモル数比)と、各原燃料ガスの供給流量割合とに基づき演算して求めた流量とする。
【0027】
【発明の実施の形態】
図面に基づき、本発明の実施例について以下にのべる。
【0028】
図3は、本発明の実施例の燃料電池発電装置の運転方法に関わるシステム系統図を示す。図3において、図4および図5に示した部材と同一機能を有する部材には、同一番号を付して詳細説明を省略する。なお、図3において、65は、原燃料ガスとスチームを混合して改質器22に供給するためのエゼクタを示し、68は、燃料電池排空気および改質器における燃焼排ガス中の水分を回収する水回収装置を示す。また、4aは、消化ガス(バイオガス)の導入ライン、5aは第二の原燃料ガスとしての都市ガスの導入ラインであり、各ガスは、流量計および流量調節弁を介して導入される。さらに、図示しない消化ガスの供給装置(図5の消化ガス発生装置2に相当)は、前述のように、消化ガスの発生量の変動に伴う圧力を緩和するバッファタンクを備える。
【0029】
図3において、脱硫器64は、CO変成器66の出口ガスをリサイクルすることによって、水添脱硫触媒によって、原燃料ガス中の硫黄化合物が除去する。改質器22には、水蒸気改質用の触媒(貴金属系またはニッケル系触媒等)が充填され、高温の燃焼ガスを発生して改質器に充填される触媒を外部より加熱するバーナが設けられている。燃料ガスと、水蒸気分離器60にて発生した水蒸気の混合ガスを水蒸気改質して水素リッチな改質ガスを生成し、これをCO変成器66へ送る。
【0030】
CO変成器66には、CO変成用触媒(銅−亜鉛系触媒等)が充填されており、改質器22から送出される高温の改質ガスにより180℃〜300℃程度の運転温度に保たれ、改質ガスを通流して、水蒸気により改質ガス中のCOを酸化し(シフト反応)、COの濃度を約1%程度まで低減させる。この変成ガスを燃料電池本体21に導入する。
【0031】
上記図3に示すような装置を運転する場合の本件発明の運転方法について、図1および図2に基づき、以下に説明する。図1は、請求項1ないし3の発明に係る基本的な運転動作説明図であり、図2は、請求項4の発明に係る運転動作説明図である。
【0032】
図1において、(a)図は、消化ガス流量調節弁開度の時間経過の一例を示す模式的説明図、(b)図は、消化ガスのみの運転及び消化ガスと都市ガス併用運転を行なう場合の各燃料ガスが分担する燃料電池電流の時間経過の一例を示す模式的説明図、(c)図は、都市ガス供給流量の時間経過の一例を示す模式的説明図である。
【0033】
図1(a)に示すように、常時は、消化ガスを所定の供給圧力の下で、燃料電池の電気出力に応じて、消化ガス供給流量調節弁の開度制御を行って供給しているが、何らかの異常要因で、消化ガスの供給圧力が減少した場合、消化ガス供給流量調節弁の開度が増大する。この増大が進行して所定の設定上限開度▲1▼(例えば、92%開度)に到達すると、図1(c)に示すように、都市ガスの供給を開始し、その供給流量を漸増する。
【0034】
この場合、図1(b)に示すように、消化ガスと都市ガスの合計流量が、燃料電池の所要電気出力に見合う量となるように供給して、燃料電池の運転を継続する。なお、都市ガスを漸増する際の勾配、即ちガス供給増加速度は、調節弁の応答速度を考慮すると、所定の増加速度、例えば都市ガスの燃料電池電流換算値と前記燃料電池の定格電流との割合(%)に基づいて、0.2%/秒とするのが望ましい。
【0035】
前記都市ガスの供給量の増大もしくは消化ガスの供給圧力の回復により、前記消化ガス供給流量調節弁の開度が平坦になった後、減少する。開度の減少が進行して、第三の設定中間開度▲2▼(例えば、82%開度)に到達した際には、図1(c)に示すように、都市ガスの供給流量の漸増を停めて一定値に維持する。さらに、消化ガス供給流量調節弁の開度が減少し、所定の設定下限開度▲3▼(例えば、60%開度)に到達した際には、都市ガスの供給量を漸減して燃料電池の運転を継続する。最終的には、都市ガスの供給量をゼロとし、その後は、再度消化ガスのみで、運転を継続する。
【0036】
次に、図2について説明する。図2の運転動作において、前述の図1の経過における所定の設定下限開度▲3▼までの経過は、図1の運転動作と同様である。図2においては、さらに所定の第四の設定中間開度▲4▼(例えば、81%開度)を設け、消化ガス供給流量調節弁の開度の減少により下限開度開度▲3▼に到達後に、何らかの異常要因により、消化ガスの供給圧力が再び減少して開度が増大し、前記第四の設定中間開度▲4▼に到達した場合には、都市ガスの供給流量の漸減を停めて一定値に維持する。その後、なお開度が増大して、所定の設定上限開度▲1▼に到達した場合には、図1の場合と同様に、都市ガスの供給流量を漸増する。
【0037】
上記のように、第三の設定中間開度▲2▼または第四の設定中間開度▲4▼を設けて、都市ガスの供給流量の漸増または漸減を停めて一定値に維持することにより、都市ガスの供給流量の増減の繰り返しをできる限り少なくして、制御の円滑化を図ることができる。
【0038】
【発明の効果】
上記のとおり、この発明によれば、主原燃料ガスとしての消化ガスと、補助的原燃料ガスとしての都市ガスやLPGなどの第二の原燃料ガスとを改質して水素リッチな改質ガスを生成する改質器と、この改質ガスと酸化剤ガスとを電気化学的に反応させて発電する燃料電池とを備えた燃料電池発電装置の運転方法において、前記消化ガスの改質器への供給装置は、消化ガスの発生量の変動に伴う圧力を緩和するバッファタンクを有し、常時は、前記消化ガスを所定の供給圧力の下で、前記燃料電池の電気出力に応じて、消化ガス供給流量調節弁の開度制御を行って供給し、前記消化ガスの供給圧力が減少した際の異常時には、前記消化ガス供給流量調節弁の開度が増大して所定の設定上限開度になった際に、前記第二の原燃料ガスを漸増供給し、消化ガスと第二の原燃料ガスとの合計流量が、燃料電池の所要電気出力に見合う量となるように供給して燃料電池の運転を継続し、前記第二の原燃料ガスの供給量の増大もしくは消化ガスの供給圧力の回復により、前記消化ガス供給流量調節弁の開度が減少し、所定の設定下限開度になった際には、前記第二の原燃料ガスの供給量を漸減して燃料電池の運転を継続することとしたので、
主原燃料ガスとして消化ガスを使用する燃料電池発電装置において、第二の原燃料ガスとしての都市ガス等の補助ガスの消費量を最小限にして、経済的な運転が可能となる。
【図面の簡単な説明】
【図1】この発明の実施例に関わる基本的な運転動作説明図
【図2】この発明の実施例に関わり第四の設定中間開度を設けた場合の運転動作説明図
【図3】この発明の燃料電池発電装置の運転方法の実施例に関わるシステム系統図
【図4】従来の燃料電池発電装置の一例のシステム系統図
【図5】従来の燃料電池発電装置の図4とは異なるシステム系統図
【符号の説明】
4a:消化ガス(バイオガス)の導入ライン、5a:都市ガスの導入ライン、21:燃料電池本体、22:改質器、60:水蒸気分離器、64:脱硫器、66:CO変成器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of operating a fuel cell power generation apparatus, and particularly to a raw fuel gas in the case of using a digestive gas as a main raw fuel gas and a second raw fuel gas such as city gas or LPG as an auxiliary raw fuel gas. To a supply control method.
[0002]
[Prior art]
A fuel cell power generation device is a device that extracts electricity by an electrochemical reaction between a fuel gas and an oxidizing gas. Then, the amounts of the fuel gas and the oxidizing gas required for the electrochemical reaction of the fuel cell are proportional to the current taken from the fuel cell.
[0003]
In a phosphoric acid fuel cell or a polymer electrolyte fuel cell using hydrogen gas for the electrochemical reaction, for example, a hydrocarbon gas such as city gas or methane fermentation gas (digestion gas) used as a raw fuel is used. By reacting with steam, it is reformed into a hydrogen-rich gas and supplied to the fuel cell. The fuel cell power generator includes a reformer for reforming a hydrocarbon gas into a hydrogen-rich gas, and this reformer is controlled to a high temperature in order to continue the reforming reaction.
[0004]
Since the reaction between the hydrocarbon gas and water vapor in the reformer is an endothermic reaction, a larger amount of reformed gas than the amount of hydrogen consumed in the electrochemical reaction is supplied to the fuel cell, and the off-gas from the fuel cell is supplied. Is generally refluxed to the reformer and burned, and used as a heat source in the reformer.
[0005]
In the above-described fuel cell power generator, since the amount of hydrogen obtained by reforming the raw fuel differs depending on the composition of the hydrocarbon, it is necessary to determine the set value of the raw fuel flow rate depending on the type of the raw fuel used. There is. Particularly, when the methane fermentation gas (digestion gas or biogas) is used as a raw fuel, the composition of the raw fuel fluctuates. Therefore, the concentration of the methane gas component in the supplied digestion gas is detected. It is necessary to adjust the supply flow rate of biogas as raw fuel according to the conditions. Such a configuration of a fuel cell power generator using biogas as a raw fuel is disclosed in, for example, Patent Document 1.
[0006]
FIG. 4 is a system configuration diagram of the fuel cell power generation equipment described as FIG. 1 in FIG. 1 of the Patent Document 1 (in FIG. 4, part numbers are partially changed). The configuration of FIG. 4 will be described below, generally citing the description of the publication.
[0007]
That is, the fuel cell power generation equipment shown in FIG. 4 includes a raw fuel supply pipe 1a for guiding digested gas obtained by methane fermentation from sewage sludge, and a sulfur component contained in the digested gas supplied through the raw fuel supply pipe 1a. 64, a reformer 22 that reforms the digested gas from which the sulfur component has been removed by the desulfurizer 64 into carbon monoxide and hydrogen gas by performing a catalytic reaction with, for example, steam, and the reformer 22. Of the carbon monoxide and hydrogen gas output from 22, in order to convert carbon monoxide, which is a poisonous gas component, to carbon dioxide, the carbon monoxide is subjected to a catalytic reaction with, for example, steam to form carbon dioxide and hydrogen gas. A transformer 66 to be transformed and the fuel cell main body 21 are provided.
[0008]
The raw fuel supply pipe 1a is provided with a detector 6a for detecting a gas concentration in the digested gas. Further, a fuel gas inlet shutoff valve 7a and a fuel gas flow rate regulating valve 32 are provided at required positions of the raw fuel supply pipe 1a. Further, for example, steam is supplied to the input side of the reformer 22 in order to cause a catalyst to react. The steam supply line 9a is provided with a reforming steam flow control valve 10a for adjusting and supplying the flow rate of steam.
[0009]
Further, on the output side of the detector 6a, there is provided a gas concentration evaluation calculation unit 11a for evaluating and calculating a required gas concentration contained in the digested gas. The gas concentration evaluation calculation unit 11a includes a gas concentration collection unit 12a that collects various types of gas concentration data output from the detector 6a, and a component of the methane-based hydrocarbon in the digested gas collected by the gas concentration collection unit 12a. The total power generation amount is calculated from the concentration, the required fuel gas flow rate is determined from the total power generation amount, and the fuel flow rate calculating means 13a for adjusting the fuel gas flow rate adjusting valve 32 and the fuel flow rate calculating means 13a are determined. A reforming steam flow rate calculating means 14a for determining the reforming steam flow rate from the fuel gas flow rate and adjusting the reforming steam flow rate adjusting valve 10a; and carbon monoxide, sulfur, nitrogen, salts, oxygen When at least one of the poisoning component concentrations exceeds the allowable range, the equipment stop means 15a stops necessary equipment among the equipment constituting the fuel cell power generation equipment. It is.
[0010]
In FIG. 4, reference numeral 60 denotes a steam separator, which separates steam from water and supplies it to the steam supply line 9. The means for obtaining this steam need not be the steam separator 60, but can be obtained by various known methods. Reference numeral 17a denotes a heat exchanger for exchanging exhaust gas output from the air electrode constituting the fuel cell main body 5 with water, 18a denotes a tank, and 19a denotes a pump.
[0011]
Although the above is generally the description of FIG. 4 described in Patent Literature 1, some systems such as a water recovery device and a pure water device of a fuel cell are omitted, and a cooling system and exhaust heat of the fuel cell are also omitted. There are various modified examples of the detailed configuration of the system such as the recovery system. The reforming steam supply flow rate is usually determined based on the raw fuel supply amount and a predetermined S / C (molar ratio of water vapor to carbon atoms in the raw fuel). In the case of digestion gas, methane gas is mainly used. Therefore, it is 2.5 to 4.0. In addition, in the case of LPG, it is 3.0-4.5.
[0012]
By the way, the system described in Patent Document 1 is an example of a system using only digestion gas as a raw fuel gas, but a system using a second raw fuel gas such as city gas or LPG as an auxiliary raw gas. Examples have also been proposed. This type of configuration of the fuel cell power generation device is disclosed in, for example, Patent Document 2, and FIG. 5 shows a system example of the fuel cell power generation device described in Patent Document 2.
[0013]
The apparatus shown in FIG. 5 is intended to provide a fuel cell power generation facility that can effectively use digestive gas as fuel gas for a fuel cell without leaving any waste gas. A raw fuel pipe 3 is provided which joins a gas pipe 5 and a digestive gas pipe 4 and supplies a mixed gas of city gas and digestive gas to a reformer 9 as a raw fuel. This makes it possible to compensate for the fluctuations and unattained amounts of the generated gas in the digested gas with the city gas, so that the mixed gas of the city gas and the digested gas can sufficiently satisfy the fuel gas demand of the fuel cell power generation equipment 1. I have.
[0014]
According to the description of Patent Document 2, in the apparatus of FIG. 5, the digestion gas generator 2 is configured to output a flow rate setting signal to the digestion gas flow rate control valve 6. With the above configuration, the digestion gas flow control valve 6 sends all of the digestion gas sent from the digestion gas generator 2 to the fuel cell power generation facility 1 in accordance with the flow rate setting signal output from the digestion gas generator 2 during normal times. Control the gas flow to supply. On the other hand, the city gas flow control valve 7 controls the gas flow so as to compensate for the difference between the fuel gas consumption required by the fuel cell power generation facility 1 and the amount of digestion gas supplied via the digestion gas flow control valve 6. I do.
[0015]
As described above, the fluctuations and unachieved amounts of the digested gas can be compensated for by the city gas, and the mixed gas of the city gas and the digested gas can be sufficiently supplied to the reformer 9 through the raw fuel pipe 3 as the raw fuel. Can be supplied to As a result, the fuel gas consumption of the fuel cell power plant 1 can be satisfied, and the output (electricity and electric power) of the fuel cell power plant 1 can be satisfied without being influenced by temporal and seasonal fluctuations in the amount of digested gas generated. Heat) requirements can be reliably met.
[0016]
[Patent Document 1]
JP-A-11-126629 (page 3-5, FIG. 1)
[Patent Document 2]
JP-A-11-45726 (page 4-5, FIG. 1)
[0017]
[Problems to be solved by the invention]
By the way, in the case of the apparatus shown in FIG. 5 described in Patent Document 2, it is assumed that the amount of digested gas generated is smaller than the amount of fuel gas consumed by the fuel cell. That is, the amount of digested gas generation <the rated output of the fuel cell (= digested gas processing capacity), and the shortage of digested gas is replenished with city gas. Further, the digestion gas flow rate command is input to the fuel cell based on the amount of gas to be consumed from the digestion gas generation equipment.
[0018]
When operating a fuel cell mainly using digestive gas as fuel gas, it is always economical to make it possible to generate electricity only with digestive gas without consuming auxiliary gas such as city gas as much as possible. Desirable. In other words, it is desirable that the rated generation amount of the digestion gas and the rated output of the fuel cell be matched so as to minimize the consumption of the auxiliary gas. The device described in Patent Document 2 does not meet the demand.
[0019]
The present invention has been made in view of the above points, and an object of the present invention is to minimize the consumption of auxiliary gas such as city gas in a fuel cell power generator using digestive gas as a main raw fuel gas. It is an object of the present invention to provide a driving method capable of economical driving.
[0020]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention reforms a digestion gas as a main raw fuel gas and a second raw fuel gas such as city gas or LPG as an auxiliary raw fuel gas to form a hydrogen-rich gas. A method for operating a fuel cell power generation apparatus comprising: a reformer that generates a reformed gas; and a fuel cell that generates power by electrochemically reacting the reformed gas and an oxidizing gas. The supply device to the reformer has a buffer tank that relieves pressure due to fluctuations in the amount of digestion gas generated, and always supplies the digestion gas under a predetermined supply pressure to the electric output of the fuel cell. Accordingly, the digestion gas supply flow rate control valve is controlled by opening and supplied, and in the event of an abnormality when the supply pressure of the digestion gas decreases, the opening degree of the digestion gas supply flow rate control valve increases to a predetermined setting. When the upper limit opening is reached, the second raw fuel gas is The supply of the digested gas and the second raw fuel gas is increased so that the total flow rate of the digested gas and the second raw fuel gas becomes an amount corresponding to the required electric output of the fuel cell, and the operation of the fuel cell is continued. When the supply amount of the digestion gas is increased or the supply pressure of the digestion gas is restored, the opening degree of the digestion gas supply flow rate control valve decreases, and when a predetermined lower limit opening degree is reached, the second raw fuel gas The operation of the fuel cell is continued by gradually decreasing the supply amount (the invention of claim 1).
[0021]
According to the operating method of the first aspect of the present invention, the fluctuation of the amount of digested gas generated at all times is generally reduced by the buffer tank and the operation can be performed only with the digested gas. , And efficient gas supply control can be performed based on the opening of the digestion gas supply flow rate control valve. Therefore, the economical operation of the fuel cell power generator can be achieved while minimizing the consumption of auxiliary gas such as city gas. Details will be described later.
[0022]
As embodiments of the invention, the following inventions 2 to 5 are preferable. That is, in the operating method according to the first aspect, the predetermined set upper limit opening is set to 92% opening, and the predetermined set lower limit opening is set to 60% opening (the invention of claim 2).
[0023]
Further, in the operation method according to claim 1 or 2, a predetermined third set intermediate opening is provided between the predetermined set upper limit opening and lower limit opening, and the digestion gas supply flow rate control valve is provided. When the third intermediate opening degree is reached with the decrease in the opening degree, the supply flow rate of the second raw fuel gas is stopped from being gradually increased and maintained at a constant value (the invention of claim 3). .
[0024]
Further, in the operating method according to claim 3, a predetermined fourth set intermediate opening is further provided between the predetermined set upper limit opening and the lower limit opening, and the digestion gas supply flow rate regulating valve is provided. After reaching the lower limit opening degree by the decrease of the opening degree, further, when the supply pressure of the digestion gas decreases and the opening degree increases and reaches the fourth set intermediate opening degree, Then, the gradual decrease of the supply flow rate of the raw fuel gas is stopped and maintained at a constant value (the invention of claim 4).
[0025]
The third and fourth aspects of the invention aim at smoothing the control by minimizing the increase and decrease of the supply flow rate of the second raw fuel gas as much as possible, the details of which will be described later. .
[0026]
As an embodiment relating to the flow rate control of the reforming steam, the invention of the following claim 5 is preferable. That is, in the operating method according to any one of claims 1 to 4, the reformer is configured to reform the raw fuel gas by mixing the raw fuel gas with steam (steam), and the second raw fuel gas is reformed. The steam flow rate when the replenishment is supplied and supplied to the fuel cell together with the digestion gas is determined by a preset S / C (molar ratio of steam to carbon atoms in the raw fuel gas) for each raw fuel gas, The flow rate is calculated based on the supply flow rate of the fuel gas.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0028]
FIG. 3 is a system diagram showing a method of operating the fuel cell power generator according to the embodiment of the present invention. 3, members having the same functions as those shown in FIGS. 4 and 5 are denoted by the same reference numerals, and detailed description thereof will be omitted. In FIG. 3, reference numeral 65 denotes an ejector for mixing the raw fuel gas and steam and supplying the mixed gas to the reformer 22, and reference numeral 68 denotes a fuel cell exhaust air and water in the combustion exhaust gas in the reformer. 1 shows a water recovery device to be used. Reference numeral 4a denotes a digestion gas (biogas) introduction line, and reference numeral 5a denotes a city gas introduction line as a second raw fuel gas. Each gas is introduced through a flow meter and a flow control valve. Further, the digestion gas supply device (not shown) (corresponding to the digestion gas generation device 2 in FIG. 5) includes the buffer tank that relieves the pressure accompanying the fluctuation in the generation amount of the digestion gas as described above.
[0029]
In FIG. 3, the desulfurizer 64 recycles the outlet gas of the CO shift converter 66, and thereby removes sulfur compounds in the raw fuel gas by the hydrodesulfurization catalyst. The reformer 22 is provided with a burner that is filled with a catalyst for steam reforming (a noble metal-based or nickel-based catalyst or the like) and generates a high-temperature combustion gas to externally heat the catalyst filled in the reformer. Have been. The mixed gas of the fuel gas and the steam generated by the steam separator 60 is steam reformed to generate a hydrogen-rich reformed gas, which is sent to the CO converter 66.
[0030]
The CO shift converter 66 is filled with a CO shift catalyst (copper-zinc catalyst or the like), and is maintained at an operating temperature of about 180 ° C. to 300 ° C. by a high-temperature reforming gas sent from the reformer 22. Then, through the reformed gas, CO in the reformed gas is oxidized by the steam (shift reaction), and the CO concentration is reduced to about 1%. This metamorphic gas is introduced into the fuel cell main body 21.
[0031]
The operation method of the present invention when operating the apparatus as shown in FIG. 3 will be described below with reference to FIGS. 1 and 2. FIG. 1 is an explanatory diagram of a basic driving operation according to the first to third aspects of the invention, and FIG. 2 is an explanatory diagram of a driving operation according to the fourth aspect of the invention.
[0032]
In FIG. 1, FIG. 1A is a schematic explanatory view showing an example of a time course of the opening degree of the digestion gas flow control valve, and FIG. 1B is an operation using only the digestion gas and a combined gas and city gas operation. FIG. 4 is a schematic explanatory diagram showing an example of a time course of a fuel cell current shared by each fuel gas in the case, and FIG. 4C is a schematic explanatory diagram showing an example of a time course of a city gas supply flow rate.
[0033]
As shown in FIG. 1A, the digestion gas is always supplied under a predetermined supply pressure by controlling the opening degree of the digestion gas supply flow rate control valve according to the electric output of the fuel cell. However, when the supply pressure of the digestion gas decreases due to some abnormal factor, the opening degree of the digestion gas supply flow rate control valve increases. When this increase progresses and reaches a predetermined set upper limit opening degree {circle around (1)} (for example, 92% opening degree), as shown in FIG. 1 (c), the supply of city gas is started and the supply flow rate is gradually increased. I do.
[0034]
In this case, as shown in FIG. 1B, supply is performed so that the total flow rate of the digestive gas and the city gas becomes an amount corresponding to the required electric output of the fuel cell, and the operation of the fuel cell is continued. In addition, the gradient at the time of gradually increasing the city gas, that is, the gas supply increasing speed is a predetermined increasing speed in consideration of the response speed of the control valve, for example, between the fuel cell current conversion value of the city gas and the rated current of the fuel cell. Based on the rate (%), it is desirable to set the rate to 0.2% / sec.
[0035]
Due to the increase in the supply amount of the city gas or the recovery of the supply pressure of the digestion gas, the opening degree of the digestion gas supply flow control valve becomes flat and then decreases. When the opening degree decreases and reaches the third set intermediate opening degree {circle around (2)} (for example, 82% opening degree), as shown in FIG. Stop the gradual increase and maintain a constant value. Further, when the opening degree of the digestion gas supply flow control valve decreases and reaches a predetermined lower limit opening degree {circle around (3)} (for example, a 60% opening degree), the supply amount of the city gas is gradually reduced and the fuel cell Continue driving. Eventually, the supply of city gas will be reduced to zero, and after that, operation will be continued using only digestive gas again.
[0036]
Next, FIG. 2 will be described. In the operation shown in FIG. 2, the progress up to the predetermined lower limit opening degree (3) in the course of FIG. 1 is the same as the operation shown in FIG. In FIG. 2, a predetermined fourth set intermediate opening degree (4) (for example, 81% opening degree) is further provided, and the opening degree of the digestion gas supply flow rate control valve is reduced to the lower limit opening degree (3). After the arrival, due to some abnormal factor, the supply pressure of the digestion gas decreases again and the opening increases, and when the fourth set intermediate opening (4) is reached, the supply flow rate of the city gas is gradually reduced. Stop and maintain a constant value. Thereafter, when the opening degree further increases and reaches a predetermined upper limit opening degree {circle around (1)}, the supply flow rate of the city gas is gradually increased as in the case of FIG.
[0037]
As described above, the third set intermediate opening degree (2) or the fourth set intermediate opening degree (4) is provided to stop the gradual increase or decrease of the supply flow rate of the city gas and maintain it at a constant value. The repetition of the increase and decrease of the supply flow rate of the city gas can be minimized, and the control can be facilitated.
[0038]
【The invention's effect】
As described above, according to the present invention, the digestion gas as the main raw fuel gas and the second raw fuel gas such as city gas or LPG as the auxiliary raw fuel gas are reformed to form a hydrogen-rich reforming gas. A method for operating a fuel cell power generation apparatus, comprising: a reformer for generating a gas; and a fuel cell for generating electricity by electrochemically reacting the reformed gas and an oxidizing gas. The supply device to the has a buffer tank that relieves the pressure due to the change in the amount of digestion gas generated, always, under a predetermined supply pressure of the digestion gas, according to the electric output of the fuel cell, The digestion gas supply flow rate control valve is supplied by controlling the opening degree, and when an abnormality occurs when the supply pressure of the digestion gas decreases, the opening degree of the digestion gas supply flow rate control valve increases to a predetermined set upper limit opening degree. , The second raw fuel gas is gradually supplied The operation of the fuel cell is continued by supplying the total flow rate of the digested gas and the second raw fuel gas to an amount corresponding to the required electric output of the fuel cell, and the supply amount of the second raw fuel gas When the opening degree of the digestion gas supply flow rate control valve decreases due to an increase in or the recovery of the supply pressure of the digestion gas, and reaches a predetermined set lower limit opening degree, the supply amount of the second raw fuel gas is reduced. As we decided to continue the operation of the fuel cell gradually,
In a fuel cell power generator using digestive gas as the main raw fuel gas, economical operation becomes possible by minimizing the consumption of auxiliary gas such as city gas as the second raw fuel gas.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a basic operation relating to an embodiment of the present invention. FIG. 2 is an explanatory diagram of an operational operation when a fourth set intermediate opening is provided according to an embodiment of the present invention. FIG. 4 is a system diagram of an example of a conventional fuel cell power generation device. FIG. 5 is a system diagram of a conventional fuel cell power generation device different from FIG. 4. System diagram [Explanation of symbols]
4a: digestion gas (biogas) introduction line, 5a: city gas introduction line, 21: fuel cell main body, 22: reformer, 60: steam separator, 64: desulfurizer, 66: CO shifter.

Claims (5)

主原燃料ガスとしての消化ガスと、補助的原燃料ガスとしての都市ガスやLPGなどの第二の原燃料ガスとを改質して水素リッチな改質ガスを生成する改質器と、この改質ガスと酸化剤ガスとを電気化学的に反応させて発電する燃料電池とを備えた燃料電池発電装置の運転方法において、
前記消化ガスの改質器への供給装置は、消化ガスの発生量の変動に伴う圧力を緩和するバッファタンクを有し、常時は、前記消化ガスを所定の供給圧力の下で、前記燃料電池の電気出力に応じて、消化ガス供給流量調節弁の開度制御を行って供給し、
前記消化ガスの供給圧力が減少した際の異常時には、前記消化ガス供給流量調節弁の開度が増大して所定の設定上限開度になった際に、前記第二の原燃料ガスを漸増供給し、消化ガスと第二の原燃料ガスとの合計流量が、燃料電池の所要電気出力に見合う量となるように供給して燃料電池の運転を継続し、前記第二の原燃料ガスの供給量の増大もしくは消化ガスの供給圧力の回復により、前記消化ガス供給流量調節弁の開度が減少し、所定の設定下限開度になった際には、前記第二の原燃料ガスの供給量を漸減して燃料電池の運転を継続することを特徴とする燃料電池発電装置の運転方法。
A reformer for reforming a digestive gas as a main raw fuel gas and a second raw fuel gas such as city gas or LPG as an auxiliary raw fuel gas to generate a hydrogen-rich reformed gas; In a method of operating a fuel cell power generation device including a fuel cell that generates electricity by electrochemically reacting a reformed gas and an oxidizing gas,
The supply device of the digestion gas to the reformer has a buffer tank that relieves the pressure accompanying the fluctuation of the amount of the digestion gas generated, and always supplies the digestion gas under a predetermined supply pressure to the fuel cell. In accordance with the electrical output of the digestion gas supply flow control valve opening degree control and supply,
In the event of an abnormality when the supply pressure of the digestion gas decreases, when the opening of the digestion gas supply flow rate control valve increases and reaches a predetermined upper limit opening, the second raw fuel gas is gradually supplied. The supply of the digested gas and the second raw fuel gas is continued so that the total flow rate of the digested gas and the second raw fuel gas is equal to the required electric output of the fuel cell, and the operation of the fuel cell is continued. When the opening of the digestion gas supply flow rate control valve decreases due to an increase in the amount or recovery of the supply pressure of the digestion gas, and reaches a predetermined set lower limit opening, the supply amount of the second raw fuel gas is reduced. A method of operating a fuel cell power generator, characterized in that the operation of the fuel cell is continued by gradually decreasing the value of
請求項1に記載の運転方法において、前記所定の設定上限開度は92%開度とし、所定の設定下限開度は60%開度とすることを特徴とする燃料電池発電装置の運転方法。2. The operating method according to claim 1, wherein the predetermined upper limit opening is 92%, and the predetermined lower limit opening is 60%. 請求項1または2に記載の運転方法において、前記所定の設定上限開度と下限開度との間に、所定の第三の設定中間開度を設け、前記消化ガス供給流量調節弁の開度の減少に伴い、前記第三の設定中間開度に到達した際には、前記第二の原燃料ガスの供給流量の漸増を停めて一定値に維持することを特徴とする燃料電池発電装置の運転方法。3. The operating method according to claim 1, wherein a predetermined third set intermediate opening is provided between the predetermined set upper limit opening and the lower limit opening, and the opening of the digestion gas supply flow rate control valve is provided. When the third set intermediate opening degree is reached with the decrease in the amount, the supply flow rate of the second raw fuel gas is gradually stopped and maintained at a constant value. how to drive. 請求項3に記載の運転方法において、前記所定の設定上限開度と下限開度との間に、さらに所定の第四の設定中間開度を設け、前記消化ガス供給流量調節弁の開度の減少により前記下限開度開度に到達後、さらに、消化ガスの供給圧力が減少して開度が増大し前記第四の設定中間開度に到達した際には、前記第二の原燃料ガスの供給流量の漸減を停めて一定値に維持することを特徴とする燃料電池発電装置の運転方法。The operating method according to claim 3, wherein a predetermined fourth set intermediate opening is further provided between the predetermined set upper limit opening and the lower limit opening, and the opening degree of the digestion gas supply flow rate regulating valve is set. After reaching the lower limit opening degree by the decrease, further, when the supply pressure of the digestion gas decreases and the opening degree increases and reaches the fourth set intermediate opening degree, the second raw fuel gas A method for operating a fuel cell power generator, characterized by stopping a gradual decrease in a supply flow rate of the fuel cell and maintaining the supply flow at a constant value. 請求項1ないし4のいずれかに記載の運転方法において、前記改質器は、原燃料ガスを水蒸気(スチーム)と混合して改質するものとし、前記第二の原燃料ガスを補充供給して消化ガスと共に燃料電池に供給する際の前記スチーム流量は、各原燃料ガス毎に予め設定したS/C(原燃料ガス中の炭素原子に対するスチームのモル数比)と、各原燃料ガスの供給流量割合とに基づき演算して求めた流量とすることを特徴とする燃料電池発電装置の運転方法。5. The operating method according to claim 1, wherein the reformer reforms the raw fuel gas by mixing the raw fuel gas with steam (steam), and replenishes and supplies the second raw fuel gas. The steam flow rate at the time of supply to the fuel cell together with the digestion gas is S / C (molar ratio of steam to carbon atoms in the raw fuel gas) preset for each raw fuel gas, and A method of operating a fuel cell power generator, wherein the flow rate is calculated based on a supply flow rate ratio.
JP2002351020A 2002-12-03 2002-12-03 Operation method of fuel cell power generation device Pending JP2004185961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351020A JP2004185961A (en) 2002-12-03 2002-12-03 Operation method of fuel cell power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351020A JP2004185961A (en) 2002-12-03 2002-12-03 Operation method of fuel cell power generation device

Publications (1)

Publication Number Publication Date
JP2004185961A true JP2004185961A (en) 2004-07-02

Family

ID=32753045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351020A Pending JP2004185961A (en) 2002-12-03 2002-12-03 Operation method of fuel cell power generation device

Country Status (1)

Country Link
JP (1) JP2004185961A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511923A (en) * 2002-12-19 2006-04-06 ユーティーシー フューエル セルズ,エルエルシー Fuel mixing control for fuel cell generators operating with multiple fuels
JP2006272160A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Control equipment of biogas plant, and control process of biogas plant
JP2013048084A (en) * 2011-07-25 2013-03-07 Metawater Co Ltd Fuel cell power generation apparatus and control method of the same
JP2013196911A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Fuel cell system
JP2018067470A (en) * 2016-10-20 2018-04-26 東京瓦斯株式会社 Fuel cell system, controller, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006511923A (en) * 2002-12-19 2006-04-06 ユーティーシー フューエル セルズ,エルエルシー Fuel mixing control for fuel cell generators operating with multiple fuels
JP4643274B2 (en) * 2002-12-19 2011-03-02 ユーティーシー パワー コーポレイション Fuel mixing control for fuel cell generators operating with multiple fuels
JP2006272160A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Control equipment of biogas plant, and control process of biogas plant
JP4696203B2 (en) * 2005-03-29 2011-06-08 株式会社Eneosセルテック Biogas plant control apparatus and biogas plant control method
JP2013048084A (en) * 2011-07-25 2013-03-07 Metawater Co Ltd Fuel cell power generation apparatus and control method of the same
JP2013196911A (en) * 2012-03-21 2013-09-30 Osaka Gas Co Ltd Fuel cell system
JP2018067470A (en) * 2016-10-20 2018-04-26 東京瓦斯株式会社 Fuel cell system, controller, and program

Similar Documents

Publication Publication Date Title
JP4325270B2 (en) Operation control method of fuel cell power generator
JP4533747B2 (en) Fuel control for steam generation in fuel processor in low temperature fuel cell power plant
KR20100030153A (en) Fuel cell system and method to supply fuel the same
JP2002241106A (en) Method for controlling injection of oxidizing agent
JP2004185961A (en) Operation method of fuel cell power generation device
JP3722868B2 (en) Fuel cell system
JP5959961B2 (en) Fuel cell power generator and control method thereof
JP3738888B2 (en) FUEL CELL POWER GENERATION DEVICE HAVING RAW FUEL SWITCHING FACILITY AND METHOD
JP2011187391A (en) Fuel cell system, and electric current control method thereof
JPH11126629A (en) Fuel cell power generating device
JP2001325975A (en) Fuel cell power generation apparatus and its control method
JP4622244B2 (en) Operation control method of fuel cell power generator
JP2002025596A (en) Phosphoric-acid fuel cell power generating facility
JP2007200771A (en) Reforming catalyst temperature control system and control method of fuel cell power generator
JP2004196611A (en) Fuel reforming apparatus and fuel cell system
JP3808636B2 (en) Fuel cell power generation system and power generation system
JPH09298065A (en) Fuel cell generating device
JP2003288936A (en) Fuel cell power generating system and its operation method
JP3758070B2 (en) Operation method of fuel cell power generator
JP2006120421A (en) Fuel cell power generation system
JP4442204B2 (en) Fuel cell power generation system
JP7315507B2 (en) FUEL CELL SYSTEM AND FUEL CELL SYSTEM OPERATING METHOD
KR100987175B1 (en) Fuel Cell System and Fuel Supply Method Thereof
JP3882999B2 (en) Fuel cell power generator and operation control method thereof
KR101295237B1 (en) Fuel cell system