JP2004220927A - Lead-acid storage battery - Google Patents

Lead-acid storage battery Download PDF

Info

Publication number
JP2004220927A
JP2004220927A JP2003007183A JP2003007183A JP2004220927A JP 2004220927 A JP2004220927 A JP 2004220927A JP 2003007183 A JP2003007183 A JP 2003007183A JP 2003007183 A JP2003007183 A JP 2003007183A JP 2004220927 A JP2004220927 A JP 2004220927A
Authority
JP
Japan
Prior art keywords
slit
expanded mesh
lead
negative electrode
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007183A
Other languages
Japanese (ja)
Inventor
Masayoshi Yuki
正義 結城
Shozo Murochi
省三 室地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003007183A priority Critical patent/JP2004220927A/en
Publication of JP2004220927A publication Critical patent/JP2004220927A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid storage battery especially suitable for an auxiliary device of which, lowering of capacity is restrained by restraining a lowering of a charge receiving property of a negative electrode and a sulfation conspicuously proceeding at a lower part of a negative electrode plate caused by the above, even under a condition of repeatedly receiving deep discharge reqired of the auxiliary device of a hybrid automobile. <P>SOLUTION: In the lead-acid storage battery using an expanded lattice body, a first expanded reticulation corresponding to an upper part of the lattice body and a second expanded reticulation corresponding to a lower part of the lattice body are arranged to the lattice body. The lattice body fulfilling a relation of LWD1>LWD2 is used, wherein, LWD1 is the length of the first expanded reticulation in the direction of a slit, and LWD2 is the length of the second expanded reticulation in the direction of a slit. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は鉛蓄電池の負極構造に関するものである。
【0002】
【従来の技術】
エキスパンド格子体は鋳造格子体に比較して生産性にすぐれているため、特に価格が重視される自動車用鉛蓄電池に広く採用されている。通常の自動車用鉛蓄電池はエンジン始動やライト点灯用の電力を車両に供給する。
【0003】
近年、環境問題の観点から、自動車の燃費向上が検討されてきている。その中でも従来からのエンジン動力に加えてモータ動力を併用する、いわゆるハイブリッド自動車が実用化されている。このハイブリッド自動車にはモータに電力を供給するためニッケル−水素蓄電池や36V系鉛蓄電池の他にエンジン始動時の電力や車両ECUに電力を供給する補機用の蓄電池を用いる。
【0004】
この補機用蓄電池は従来の自動車用の鉛蓄電池がそのまま使用されていた。ところが、従来の自動車と比較して、車両ECUや補機への供給電力量は増大する傾向にあり、より放電深度は深くなる。その結果、特に負極での充電受入性が低下し、負極に放電生成物である硫酸鉛が蓄積し、蓄電池の容量が低下する、いわゆるサルフェーションという現象が非常に発生しやすいという課題があった。また、このサルフェーションは電解液の成層化によって促進されていた。
【0005】
このような負極の充電受入性の低下を抑制するために、特許文献1には負極活物質中に添加するリグニンとカーボンの添加量をそれぞれ0.5〜1.0重量%および1.0〜2.0重量%とすることが示されている。そしてこのような添加量とすることによって、充電受入性を低下させることなく、リグニンの防縮剤(エキスパンダー)としての長期間維持できるというものである。
【0006】
しかしながら、リグニンの電解液の溶出と分解は避けられない。特にハイブリッド自動車に用いる補機用蓄電池のように、深い放電を繰り返して行う蓄電池では通常の自動車に用いられる始動用鉛蓄電池に比較してリグニンとカーボンの効果が急激に失われる。そして深い放電によって電解液の下部の成層化が進行し、電解液下部に対応した負極下部周辺の電解液中の硫酸濃度が上昇する。この硫酸濃度の上昇は負極活物質の硫酸鉛化を促進するとともに、硫酸鉛の還元反応(充電反応)を阻害する。その結果、負極板の下部でサルフェーションが急速に進行し、蓄電池容量が低下するという課題が依然としてあった。
【0007】
【特許文献1】
特開平9−21336号公報
【0008】
【発明が解決しようとする課題】
本発明は前記したハイブリッド自動車の補機用蓄電池に要求される深い放電を繰返し受ける条件下でも負極の充電受入性の低下とこれにより特に負極板下部で顕著に進行するサルフェーションを抑制し、蓄電池の容量低下を抑制した特に補機用蓄電池に好適な鉛蓄電池を提供するものである。
【0009】
【課題を解決するための手段】
前記した課題を解決するために、本発明の請求項1に係る発明は、導電体シートにスリットを千鳥状に形成し、スリットを展開したエキスパンド網目を格子体に備えた鉛蓄電池において、この格子体は第1のエキスパンド網目と第2のエキスパンド網目を備え、第1のエキスパンド網目と第2のエキスパンド網目の間に前記したスリットの形成方向に連続する第1の非スリット部を設け、第1のエキスパンド網目の第1のエキスパンド網目に対向する一端に第2の非スリット部を備え、第2の非スリット部に一体に集電耳を備えるとともに、第1のエキスパンド網目の前記スリット方向の長さ寸法をLWD1、第2のエキスパンド網目の前記スリット方向の長さ寸法をLWD2としたときに、LWD1>LWD2である格子体を負極に用いた鉛蓄電池を示すものである。
【0010】
さらに、本発明の請求項2に係る発明は、請求項1の鉛蓄電池において、前記負極板と正極板とをセパレータを介して積層した極板群を備え、極板群から遊離した遊離電解液を有し、極板下部がこの遊離電解液に浸漬された制御弁式の鉛蓄電池を示すものである。
【0011】
また、本発明の請求項3に係る発明は、請求項2の鉛蓄電池において、遊離電解液面を第2のエキスパンド網目の範囲内としたことを特徴とするものである。
【0012】
そして、本発明の請求項4に係る発明は、請求項1、2もしくは3の鉛蓄電池において、円周上に凸状加工刃を形成した円盤状カッターの複数を間隔を設けて積層してなるカッターロールの一対間に前記導電体シートを通過させ、前記導電体シートに複数条の断続スリットを形成するとともに、断続スリット間の線条部を前記凸状加工刃の先端形状に応じて、前記導電体シート面の上下方向に突出させ、スリットの断続部を交互に切断してスリットを千鳥状とし、導電体シートを幅方向に展開してなるエキスパンド網目を備えた鉛蓄電池を示すものである。
【0013】
【発明の実施の形態】
本発明の実施の形態による鉛蓄電池の構成を説明する。
【0014】
図1は本発明の鉛蓄電池に用いる負極格子体101を示す図である。
【0015】
負極格子体101は鉛もしくは鉛合金といった耐硫酸性の導電体シートに千鳥状に形成したスリットを展開した第1のエキスパンド網目102と第2のエキスパンド網目103を備えている。また、第1のエキスパンド網目102と第2のエキスパンド網目103間にはスリット形成方向に連続する第1の非スリット部104が形成されている。
【0016】
さらに第1のエキスパンド網目102の第2のエキスパンド網目103に対向する一端に第2の非スリット部105が設けられ、この第2の非スリット部105と一体に集電耳106が形成されている。
【0017】
本発明では格子体下部に対応し、第1のエキスパンド網目102に比較して集電耳106から離れた第2のエキスパンド網目103を構成する単位網目のスリット方向の長さ(LWD2)を第1のエキスパンド網目102を構成する単位網目のスリット方向の長さ(LWD1)未満、すなわち、LWD2<LWD1とする。
【0018】
その後、負極格子体101に活物質107を充填して負極板108とし、この負極板108を用い、以降は常法により鉛蓄電池を構成することにより、本発明の鉛蓄電池を得ることができる。本発明の鉛蓄電池ではLWD2<LWD1とすることにより、負極板下部での活物質と格子体の接触面積を負極板上部に比較して増大させる。その結果、負極板下部の集電効率は向上し、負極板下部に存在する硫酸鉛の還元反応(充電反応)を促進し、負極板下部における硫酸鉛の蓄積(サルフェーション)を解消することによって、蓄電池容量の低下を抑制する。
【0019】
本発明の課題は電解液の成層化によって発生するため、本発明は極板群から遊離した遊離電解液を備えた鉛蓄電池に適用することが好ましい。正極で発生した酸素ガスを負極で吸収する制御弁式の鉛蓄電池において、極板群から遊離した電解液を有する蓄電池では遊離電解液に浸漬された極板群下部においてサルフェーションが進行しやすい。したがって、このような鉛蓄電池においては図2に示したように、電槽200に極板群が収納された状態で遊離電解液201の液面201Lが第2のエキスパンド網目103の範囲内となるよう、電池を構成することが好ましい。
【0020】
本発明の鉛蓄電池の負極格子体101は以下により得ることができる。
【0021】
すなわち、図3に示したように、円周上に凸状加工刃301を形成した円盤状カッタ302の複数をこの円盤状カッタ302の厚み以上に相当する間隔を設けて積層することによって構成したカッターロール303の一対を凸状加工刃301同士が対向するよう、一方のカッターロール303の円盤状カッタ302が他方のカッターロール303の円盤状カッタ302間に嵌め合った配置とする。
【0022】
そしてカッターロール303の対を図3で示した矢印方向に回転させ、カッターロール303対間に導電体シート304を送りこみ、凸状加工刃301で導電体シート304をせん断して図4に示したような第1のスリット401と第1の断続部402で構成される第1の断続スリット403を複数条形成する。また同時に第1の断続スリット403に隣接した第1の非スリット部104を介して第2のスリット404および第2の断続部405で構成される第2の断続スリット406を作成する。これらの断続スリットを形成する過程で互いに平行に隣接しあう第1のスリット401間に挟まれた第1の線条部407および互いに平行に隣接しあう第2のスリット間に挟まれた第2の線条部408は凸状加工刃301の先端形状に対応して導電体シート304面から上下方向に円弧状に塑性変形により突出する。
【0023】
なお、第1のスリット401と第2のスリット404のスリット長はそれぞれ、凸状加工刃301の刃数によって設定できる。すなわち、同一径の円盤状カッタ302において、凸状加工刃301の刃数を多くするとスリット長は短く、刃数を多くするとスリット長さは長くなる。
【0024】
本発明のように、同一の導電体シート304上に異なるスリット長の断続スリットを形成するために、同一カッターロール303内にそれぞれのスリット長に対応した刃数の円盤状カッタ302を配置する。また、第1の非スリット部104はカッターロール303の第1の非スリット部104に対応した位置に円盤状カッタ302を配置しないことで作成することができる。
【0025】
そして第1の断続部402と第2の断続部405を交互に切断することによって、図5に示したような第1の千鳥状スリット501と第2の千鳥状スリット503を形成する。その後、これらの千鳥状スリットを形成した導電体シート304を幅方向に展開し、第1の千鳥状スリット601に隣接して設けた第2の非スリット部105から集電耳106を打抜き加工することにより、図1に示した負極格子体101を得ることができる。なお、第1の千鳥状スリット601は展開されて第1のエキスパンド網目102を第2の千鳥状スリット602は展開されて第2のエキスパンド網目103となる。このようなロータリ方式のエキスパンドによれば、第1と第2のエキスパンド網目を同時に形成できるので、これらのエキスパンド網目の位置ずれを防止できるとともに、設備の長さを短縮できるというレシプロ方式のエキスパンド網目にはない利点がある。
【0026】
その後、これらのエキスパンド網目に負極用活物質ペーストを充填し、熟成乾燥して得た負極板を用いて本発明の鉛蓄電池を得ることができる。
【0027】
【実施例】
〈実施例1〉
前記した発明の実施の形態に従い、本発明の鉛蓄電池を作成した。また、比較例の鉛蓄電池として第1のエキスパンド網目102のスリット展開方向の寸法(LWD1)と第2のエキスパンド網目103のスリット展開方向の寸法(LWD2)の関係を本発明のLWD1>LWD2に替えてLWD1≦LWD2としたものを作成した。
【0028】
なお、本発明例の電池および比較例の電池ともに第1のエキスパンド網目102のLWD1寸法を14.0mmの一定とし第2のエキスパンド網目寸法LWD2のみを様々に変化させた。
【0029】
なお、本実施例の鉛蓄電池はすべて12V40Ahの自動車用鉛蓄電池としたが、電池構成を以下に示すような液式と制御弁式の蓄電池とした。なお、制御弁式蓄電池では極板群から遊離した遊離電解液を実質上有さないものと、極板群下部を浸漬する遊離電解液を有するものを作成した。なお、負極板の高さは110.0mmとし、第2のエキスパンド網目103の高さ寸法(図1および図2に示すh寸法)を40.0mmとした。
【0030】
▲1▼液式鉛蓄電池
袋状ポリエチレンセパレータに収納した正極板を負極板と重ね合わせて極板群を構成した。電解液は極板全面を浸漬している。電解液面より上部の空間は排気栓を介して電池外と連通している。
【0031】
▲2▼制御弁式蓄電池(遊離電解液なし)
ガラスマットセパレータを介して正極板と負極板とを重ね合わせて極板群を構成した。電解液量は極板群が保持可能な量に制限し、電槽内部に付着する程度の電解液を除き、実質上極板群から遊離した遊離電解液が存在しない構成とした。
電池外装には安全弁を設け、制御弁式鉛蓄電池とした。
【0032】
▲3▼制御弁式蓄電池(遊離電解液あり)
ガラスマットセパレータを介して正極板と負極板とを重ね合わせて極板群を構成した。電解液量は極板群が保持可能な量よりも多く設定し、極板群から遊離した遊離電解液が極板下部を浸漬する構成とした。なお、遊離電解液面201Lの電槽底面からの液面高さ(図2に示すh寸法)を30.0mmとし、遊離電解液面201Lが第2のエキスパンド網目103の範囲内となるよう設定した。この電池についても電池外装には安全弁を設け、制御弁式鉛蓄電池とした。
【0033】
これら本実施例の鉛蓄電池の構成を表1に示す。
【0034】
【表1】

Figure 2004220927
【0035】
表1に示した各電池を以下に示す条件で寿命試験を行った。
【0036】
寿命試験条件
▲1▼放電(4.0A120分)
▲2▼充電(13.8V定電圧充電60分(最大電流25A))
上記▲1▼および▲2▼の放電−充電サイクルの10サイクル毎に15.0Aで試験電池を放電したときの放電開始1秒目の放電電圧を計測し、この放電電圧が10.0Vにまで低下した時点を寿命サイクルとした。
【0037】
上記の寿命試験結果を図6に示す。図6に示した結果からLWD1>LWD2とすることにより、液式の試験電池と遊離電解液を有した制御弁式の試験電池において寿命サイクル数が大幅に増加することがわかる。一方、遊離電解液を有さない制御弁式蓄電池においてはLWD1>LWD2とすることにより寿命サイクル数は伸長する傾向は認められるものの、他の構成に比較してその効果は若干低下していた。
【0038】
また、寿命試験終了後に各試験電池を分解調査したところ、いずれも負極板のサルフェーションが進行していた。比較例の電池で、特に液式の試験電池(電池A1および電池A2)では負極板下部のサルフェーションが顕著であった。一方、遊離電解液を有さない制御弁式の蓄電池の比較例の電池B1および電池B2では負極板全面にサルフェーションが進行する傾向があった。
【0039】
本発明例の電池においても負極板のサルフェーションは若干進行しているものの、その程度は比較例の電池に比較して軽微であった。本発明例の電池ではサルフェーションが顕著に進行する負極板下部における活物質と格子体との接触面積を負極板上部よりも増大させることにより、負極板下部での充電受入性が改善できる。その結果、負極板下部でのサルフェーションを抑制し、サルフェーションによる寿命低下を抑制することができる。
【0040】
制御弁式であり、極板群下部を浸漬する遊離電解液が存在させた比較例の電池C1および電池C2では液式の比較例の電池に比較してサルフェーションの進行度合いが著しくまた、より短寿命であった。これは極板群上部と下部で極板と電解液との接触状態および正極で発生する酸素ガスとの接触状態に差異が生じたことによると推測できる。特に寿命試験中の放電操作中には遊離電解液に浸漬された極板群下部での放電深さが遊離電解液から露出した極板群上部に比較して深くなり、電解液の成層化とあいまって急激にサルフェーションが進行すると考えられる。このような極板群下部が遊離電解液に浸漬された制御弁式蓄電池においても、本発明の構成により、サルフェーションを効果的に抑制、寿命特性を顕著に伸長することができる。
【0041】
〈実施例2〉
実施例1における電池A6および電池C6について、第2のエキスパンド網目103の高さ寸法hを変化させて表2に示す電池を作成し、実施例1と同条件の寿命試験を行った。なお、制御弁式蓄電池の場合には遊離電解液の液面高さ寸法hは30.0mmで一定とした。これらの電池の寿命試験結果を図7に示す。
【0042】
【表2】
Figure 2004220927
【0043】
図7に示した結果から、遊離電解液を有する制御弁式蓄電池の場合、第2のエキスパンド網目の高さ寸法hは遊離電解液面201Lの高さhよりも低い位置とした場合に、本発明の効果の度合いが低下する傾向にあることがわかる。したがって、特に極板群下部を浸漬する遊離電解液を有した制御弁式蓄電池においては、第2のエキスパンド網目103の高さ寸法hを遊離電解液面201Lの高さhより高くすることが好ましい。
【0044】
ただし、第2のエキスパンド網目103の高さ寸法hを高くしていった場合、第2のエキスパンド網目103でのサルフェーションが進行しやすくなる傾向がある。この傾向は第1のエキスパンド網目102の高さ寸法hと第2のエキスパンド網目の高さ寸法hの和に占めるに対する第2のエキスパンド網目の高さ寸法hの比率が0.7を超えて大きくなった場合に発生する。この比率が70%を超えた場合、負極板上部の充電受入性も向上するため、負極板上部で優先的に充電が行われるようになり、かえって負極板下部のサルフェーションが進行しやすくなるためである。すなわち、負極板下部の集電効率を相対的に負極板上部よりも高める必要がある。また、この比率が0.1以下では本発明の効果は顕著ではない。
【0045】
したがって、本発明の効果をより顕著に得るためには、上記の比率は0.1〜0.7の範囲内で設定することが良い。
【0046】
【発明の効果】
以上説明したような、本発明の構成によればハイブリッド自動車の補機用蓄電池に要求される深い放電を繰返し受ける条件下でも負極の充電受入性の低下とこれにより特に負極板下部で顕著に進行するサルフェーションを抑制し、蓄電池の容量低下を抑制した特に補機用蓄電池に好適な鉛蓄電池を提供するものであり、工業上、極めて有用である。
【図面の簡単な説明】
【図1】負極格子体を示す図
【図2】負極板と遊離電解液面を示す図
【図3】負極格子体を形成する過程を示す図
【図4】スリットを形成した導電体シートを示す図
【図5】千鳥状スリットを形成した導電体シートを示す図
【図6】実施例1における寿命試験結果を示す図
【図7】実施例2における寿命試験結果を示す図
【符号の説明】
101 負極格子体
102 第1のエキスパンド網目
103 第2のエキスパンド網目
104 第1の非スリット部
105 第2の非スリット部
106 集電耳
107 活物質
108 負極板
200 電槽
201 遊離電解液
201L 液面
301 凸状加工刃
302 円盤状カッタ
303 カッターロール
304 導電体シート
401 第1のスリット
402 第1の断続部
403 第1の断続スリット
404 第2のスリット
405 第2の断続部
406 第2の断続スリット
407 第1の線条部
408 第2の線条部
601 第1の千鳥状スリット
602 第2の千鳥状スリット[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode structure of a lead storage battery.
[0002]
[Prior art]
Expanded grids have higher productivity than cast grids, and are widely used in lead-acid batteries for automobiles, where price is particularly important. A typical automotive lead-acid battery supplies power to the vehicle for starting the engine and turning on the lights.
[0003]
2. Description of the Related Art In recent years, from the viewpoint of environmental problems, improvement in fuel efficiency of automobiles has been studied. Among them, a so-called hybrid vehicle that uses a motor power in addition to a conventional engine power has been put to practical use. In order to supply power to the motor, this hybrid vehicle uses a nickel-hydrogen storage battery or a 36V lead storage battery, as well as a storage battery for an auxiliary machine that supplies power at the time of engine start or power to a vehicle ECU.
[0004]
As the auxiliary battery, a conventional lead battery for automobiles has been used as it is. However, the amount of electric power supplied to the vehicle ECU and the auxiliary devices tends to increase as compared with the conventional automobile, and the depth of discharge becomes deeper. As a result, there has been a problem that the so-called sulfation phenomenon, in which lead sulfate, which is a discharge product, accumulates at the negative electrode, and the capacity of the storage battery is reduced, in particular, is extremely likely to occur. The sulfation was promoted by the stratification of the electrolyte.
[0005]
In order to suppress such a decrease in charge acceptability of the negative electrode, Patent Literature 1 discloses that the amounts of lignin and carbon added to the negative electrode active material are 0.5 to 1.0% by weight and 1.0 to 1.0%, respectively. It is shown to be 2.0% by weight. With such an addition amount, lignin can be maintained as a shrink-preventing agent (expander) for a long period of time without lowering charge acceptability.
[0006]
However, elution and decomposition of the lignin electrolyte are inevitable. In particular, in a storage battery that repeatedly performs deep discharge, such as a storage battery for an auxiliary device used in a hybrid vehicle, the effects of lignin and carbon are rapidly lost as compared with a lead storage battery for a startup used in a normal vehicle. Then, stratification of the lower portion of the electrolytic solution proceeds due to the deep discharge, and the sulfuric acid concentration in the electrolytic solution around the lower portion of the negative electrode corresponding to the lower portion of the electrolytic solution increases. This increase in the sulfuric acid concentration promotes the conversion of the negative electrode active material into lead sulfate and inhibits the reduction reaction (charge reaction) of lead sulfate. As a result, there still remains a problem that sulfation progresses rapidly below the negative electrode plate and the storage battery capacity is reduced.
[0007]
[Patent Document 1]
JP-A-9-21336
[Problems to be solved by the invention]
The present invention suppresses the decrease in charge acceptability of the negative electrode and the sulfation, which particularly progresses remarkably in the lower part of the negative electrode plate, even under the condition of repeatedly receiving the deep discharge required for the auxiliary battery of the hybrid vehicle described above. It is an object of the present invention to provide a lead storage battery which suppresses a decrease in capacity and is particularly suitable for an auxiliary storage battery.
[0009]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 of the present invention is directed to a lead-acid battery in which a grid is provided with an expanded mesh formed by forming slits in a conductive sheet in a zigzag pattern and expanding the slits. The body includes a first expanded mesh and a second expanded mesh, and a first non-slit portion is provided between the first expanded mesh and the second expanded mesh, the first non-slit portion being continuous in a direction in which the slit is formed. A second non-slit portion is provided at one end of the expanded mesh that faces the first expanded mesh, and a current collecting ear is provided integrally with the second non-slit portion, and the length of the first expanded mesh in the slit direction is increased. When the length dimension is LWD1 and the length dimension in the slit direction of the second expanded mesh is LWD2, a lattice body satisfying LWD1> LWD2 was used for the negative electrode. Shows a storage battery.
[0010]
The invention according to claim 2 of the present invention is the lead storage battery according to claim 1, further comprising an electrode group in which the negative electrode plate and the positive electrode plate are stacked with a separator interposed therebetween, and a free electrolyte released from the electrode group. And a control valve type lead-acid battery having a lower electrode plate immersed in the free electrolyte.
[0011]
According to a third aspect of the present invention, in the lead storage battery of the second aspect, the free electrolyte surface is set within a range of the second expanded mesh.
[0012]
According to a fourth aspect of the present invention, in the lead-acid battery of the first, second or third aspect, a plurality of disk-shaped cutters each having a convex processing blade formed on the circumference are stacked at intervals. The conductor sheet is passed between a pair of cutter rolls, and a plurality of intermittent slits are formed in the conductor sheet, and a linear portion between the intermittent slits is formed according to the tip shape of the convex processing blade. This shows a lead-acid battery provided with an expanded mesh formed by projecting the conductive sheet surface in the vertical direction and alternately cutting the intermittent portions of the slit to form a staggered slit, and expanding the conductive sheet in the width direction. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of the lead storage battery according to the embodiment of the present invention will be described.
[0014]
FIG. 1 is a diagram showing a negative electrode grid body 101 used in the lead storage battery of the present invention.
[0015]
The negative electrode grid body 101 includes a first expanded network 102 and a second expanded network 103 in which slits formed in a zigzag pattern are developed on a conductive sheet of sulfuric acid such as lead or a lead alloy. In addition, a first non-slit portion 104 that is continuous in the slit forming direction is formed between the first expanded mesh 102 and the second expanded mesh 103.
[0016]
Further, a second non-slit portion 105 is provided at one end of the first expanded mesh 102 facing the second expanded mesh 103, and a current collecting ear 106 is formed integrally with the second non-slit portion 105. .
[0017]
In the present invention, the length (LWD2) of the unit network in the slit direction corresponding to the lower portion of the lattice body and constituting the second expanded network 103 farther from the current collecting ear 106 than the first expanded network 102 is set to the first width. Is smaller than the length (LWD1) in the slit direction of the unit mesh constituting the expanded mesh 102, that is, LWD2 <LWD1.
[0018]
Thereafter, the negative electrode grid body 101 is filled with the active material 107 to form a negative electrode plate 108. The negative electrode plate 108 is used, and thereafter, a lead storage battery is formed by an ordinary method, whereby the lead storage battery of the present invention can be obtained. In the lead storage battery of the present invention, by setting LWD2 <LWD1, the contact area between the active material and the lattice at the lower part of the negative electrode plate is increased as compared with the upper part of the negative electrode plate. As a result, the current collection efficiency at the lower part of the negative electrode plate is improved, the reduction reaction (charge reaction) of lead sulfate existing at the lower part of the negative electrode plate is promoted, and the accumulation (sulfation) of lead sulfate at the lower part of the negative electrode plate is eliminated. Suppress reduction in storage battery capacity.
[0019]
Since the object of the present invention is caused by the stratification of the electrolytic solution, the present invention is preferably applied to a lead storage battery provided with a free electrolytic solution released from the electrode group. In a control valve type lead-acid battery in which oxygen gas generated in a positive electrode is absorbed by a negative electrode, in a storage battery having an electrolyte solution released from the electrode group, sulfation easily proceeds at a lower part of the electrode group immersed in the free electrolyte. Therefore, in such a lead storage battery, as shown in FIG. 2, the liquid surface 201L of the free electrolyte 201 is in the range of the second expanded mesh 103 in a state where the electrode group is stored in the battery case 200. Thus, it is preferable to configure the battery.
[0020]
The negative electrode grid body 101 of the lead storage battery of the present invention can be obtained as follows.
[0021]
That is, as shown in FIG. 3, a plurality of disc-shaped cutters 302 each having a convex processing blade 301 formed on the circumference are stacked at intervals corresponding to the thickness of the disc-shaped cutter 302 or more. A pair of cutter rolls 303 is arranged such that the disc-shaped cutter 302 of one cutter roll 303 is fitted between the disc-shaped cutters 302 of the other cutter roll 303 so that the convex processing blades 301 face each other.
[0022]
Then, the pair of cutter rolls 303 is rotated in the direction of the arrow shown in FIG. 3, the conductive sheet 304 is fed between the pair of cutter rolls 303, and the conductive sheet 304 is sheared by the convex processing blade 301, as shown in FIG. A plurality of first intermittent slits 403 constituted by such a first slit 401 and a first intermittent portion 402 are formed. At the same time, a second intermittent slit 406 composed of the second slit 404 and the second intermittent portion 405 is created via the first non-slit portion 104 adjacent to the first intermittent slit 403. In the process of forming these intermittent slits, a first linear portion 407 sandwiched between first slits 401 adjacent to each other in parallel and a second linear portion 407 sandwiched between second slits adjacent to each other in parallel. The linear portion 408 projects from the surface of the conductive sheet 304 in an arc in the vertical direction by plastic deformation corresponding to the tip shape of the convex processing blade 301.
[0023]
The slit lengths of the first slit 401 and the second slit 404 can be respectively set by the number of the convex processing blades 301. That is, in the disk-shaped cutter 302 having the same diameter, the slit length is short when the number of the convex processing blades 301 is large, and the slit length is long when the number of the blades is large.
[0024]
As in the present invention, in order to form intermittent slits having different slit lengths on the same conductive sheet 304, a disk-shaped cutter 302 having the number of blades corresponding to each slit length is arranged in the same cutter roll 303. Further, the first non-slit portion 104 can be formed by not disposing the disc-shaped cutter 302 at a position corresponding to the first non-slit portion 104 of the cutter roll 303.
[0025]
Then, the first intermittent portion 402 and the second intermittent portion 405 are alternately cut to form the first staggered slit 501 and the second staggered slit 503 as shown in FIG. Thereafter, the conductive sheet 304 having the staggered slits is developed in the width direction, and the current collecting ear 106 is punched from the second non-slit portion 105 provided adjacent to the first staggered slit 601. Thereby, the negative electrode grid body 101 shown in FIG. 1 can be obtained. The first zigzag slit 601 is expanded to form the first expanded mesh 102 and the second zigzag slit 602 is expanded to form the second expanded mesh 103. According to such a rotary-type expanding network, the first and second expanding networks can be formed at the same time, so that displacement of these expanding networks can be prevented and the length of the equipment can be shortened. There are advantages that are not.
[0026]
Thereafter, the expanded mesh is filled with the negative electrode active material paste, and the lead storage battery of the present invention can be obtained using the negative electrode plate obtained by aging and drying.
[0027]
【Example】
<Example 1>
According to the embodiment of the present invention described above, a lead storage battery of the present invention was prepared. Further, as the lead storage battery of the comparative example, the relationship between the dimension (LWD1) of the first expanded mesh 102 in the slit expanding direction and the dimension (LWD2) of the second expanded mesh 103 in the slit expanding direction was changed to LWD1> LWD2 of the present invention. LWD1 ≦ LWD2.
[0028]
The LWD1 dimension of the first expanded mesh 102 was kept constant at 14.0 mm for both the battery of the present invention and the battery of the comparative example, and only the second expanded mesh dimension LWD2 was variously changed.
[0029]
The lead-acid batteries of this embodiment were all 12V40Ah automotive lead-acid batteries, but the battery configuration was a liquid-type and control-valve-type storage battery as shown below. In addition, a control valve type storage battery was prepared which has substantially no free electrolyte released from the electrode group and a battery having a free electrolyte immersed in the lower part of the electrode group. The height of the negative electrode plate was 110.0 mm, and the height of the second expanded mesh 103 (h2 dimension shown in FIGS. 1 and 2 ) was 40.0 mm.
[0030]
{Circle around (1)} A positive electrode plate housed in a bag type polyethylene separator of a liquid type lead-acid battery was overlapped with a negative electrode plate to form an electrode plate group. The electrolyte is immersed in the entire surface of the electrode plate. The space above the electrolyte surface communicates with the outside of the battery via an exhaust plug.
[0031]
(2) Control valve type storage battery (no free electrolyte)
A positive electrode plate and a negative electrode plate were overlapped via a glass mat separator to form an electrode plate group. The amount of the electrolytic solution was limited to an amount that the electrode group could hold. Except for the amount of the electrolytic solution adhering to the inside of the battery case, the configuration was such that substantially no free electrolytic solution was released from the electrode group.
A safety valve was provided on the battery exterior to provide a control valve type lead-acid battery.
[0032]
(3) Control valve type storage battery (with free electrolyte)
A positive electrode plate and a negative electrode plate were overlapped via a glass mat separator to form an electrode plate group. The amount of the electrolyte was set to be larger than the amount that the electrode group can hold, and the free electrolyte released from the electrode group was immersed in the lower part of the electrode. Incidentally, the free liquid surface height from the container bottom surface of the electrolytic solution surface 201L to (h L dimensions shown in FIG. 2) and 30.0 mm, so that the free electrolyte solution surface 201L is in the range of the second expandable mesh 103 Set. This battery was also provided with a safety valve on the exterior of the battery to form a control valve type lead storage battery.
[0033]
Table 1 shows the configuration of the lead storage battery of the present embodiment.
[0034]
[Table 1]
Figure 2004220927
[0035]
Each battery shown in Table 1 was subjected to a life test under the following conditions.
[0036]
Life test condition (1) Discharge (4.0 A for 120 minutes)
(2) Charging (13.8V constant voltage charging 60 minutes (maximum current 25A))
The discharge voltage at the first second of discharge when the test battery was discharged at 15.0 A every 10 cycles of the discharge-charge cycles of (1) and (2) above was measured, and this discharge voltage was reduced to 10.0 V. The time when the temperature decreased was defined as the life cycle.
[0037]
FIG. 6 shows the results of the above life test. From the results shown in FIG. 6, it can be seen that when LWD1> LWD2, the number of life cycles in the liquid-type test battery and the control valve-type test battery having the free electrolyte is greatly increased. On the other hand, in the case of the control valve type storage battery having no free electrolyte, the effect of LWD1> LWD2 tends to increase the number of life cycles, but its effect is slightly reduced as compared with other configurations.
[0038]
When the test batteries were disassembled and inspected after the life test was completed, the sulfation of the negative electrode plate was in progress. In the battery of the comparative example, particularly in the liquid type test batteries (battery A1 and battery A2), the sulfation at the lower portion of the negative electrode plate was remarkable. On the other hand, in the battery B1 and the battery B2 of the comparative example of the control valve type storage battery having no free electrolyte, the sulfation tends to progress over the entire negative electrode plate.
[0039]
In the battery of the present invention as well, although the sulfation of the negative electrode plate slightly progressed, the degree was slight compared to the battery of the comparative example. In the battery of the present invention, the charge acceptance at the lower portion of the negative electrode plate can be improved by increasing the contact area between the active material and the lattice at the lower portion of the negative electrode plate where sulfation progresses remarkably than at the upper portion of the negative electrode plate. As a result, sulfation at the lower portion of the negative electrode plate can be suppressed, and a reduction in life due to sulfation can be suppressed.
[0040]
Batteries C1 and C2 of the comparative example in which the free electrolyte immersed in the lower part of the electrode plate group was a control valve type, and the progress of sulfation was remarkable and shorter than those of the liquid type comparative example. Life was over. This can be presumed to be due to a difference in the contact state between the electrode plate and the electrolytic solution in the upper and lower electrode groups and the contact state with the oxygen gas generated in the positive electrode. In particular, during the discharge operation during the life test, the discharge depth at the lower part of the electrode group immersed in the free electrolyte becomes deeper than the upper part of the electrode group exposed from the free electrolyte, and the stratification of the electrolyte and It is thought that the sulfation progresses rapidly. Even in such a control valve type storage battery in which the lower part of the electrode plate group is immersed in a free electrolyte, the configuration of the present invention can effectively suppress sulfation and significantly extend the life characteristics.
[0041]
<Example 2>
The batteries A6 and cell C6 in Example 1, by changing the height h 2 of the second expanded mesh 103 to create a cell shown in Table 2, were life test under the same conditions as in Example 1. Incidentally, the liquid surface height h L of free electrolyte when valve-regulated battery was constant at 30.0 mm. FIG. 7 shows the life test results of these batteries.
[0042]
[Table 2]
Figure 2004220927
[0043]
From the results shown in FIG. 7, when the valve-regulated battery having free electrolyte, when the height dimension h 2 of the second expandable mesh is that a position lower than the height h L of the free electrolyte surface 201L It can be seen that the degree of the effect of the present invention tends to decrease. Therefore, particularly in the valve-regulated battery having a free electrolyte immersing the lower electrode plate assembly, to be higher than the height h L of the second height h 2 of free electrolyte surface 201L of the expanded mesh 103 Is preferred.
[0044]
However, if you went by increasing the height h 2 of the second expandable mesh 103, there is a tendency that the sulfation of the second expanded mesh 103 is likely to progress. This tendency height ratio of the dimension h 2 of the second expanded mesh for occupying the sum of the height h 2 of the height h 3 of the first expandable mesh 102 second expanded mesh 0.7 Occurs when it gets larger. When this ratio exceeds 70%, the charge acceptability of the upper part of the negative electrode plate is also improved, so that the charge is preferentially performed at the upper part of the negative electrode plate, and the sulfation at the lower part of the negative electrode plate is more likely to proceed. is there. That is, it is necessary to relatively increase the current collection efficiency at the lower part of the negative electrode plate as compared with the upper part of the negative electrode plate. When the ratio is 0.1 or less, the effect of the present invention is not remarkable.
[0045]
Therefore, in order to obtain the effect of the present invention more remarkably, the above ratio is preferably set within a range of 0.1 to 0.7.
[0046]
【The invention's effect】
As described above, according to the configuration of the present invention, even under the condition of repeatedly receiving the deep discharge required for the auxiliary battery of the hybrid vehicle, the charge acceptability of the negative electrode decreases, and thus the remarkable progress particularly occurs at the lower part of the negative electrode plate. The present invention provides a lead storage battery that suppresses sulfation and suppresses a decrease in the capacity of the storage battery, and is particularly suitable for a storage battery for auxiliary equipment, and is extremely useful in industry.
[Brief description of the drawings]
FIG. 1 is a view showing a negative electrode grid body. FIG. 2 is a view showing a negative electrode plate and a free electrolyte surface. FIG. 3 is a view showing a process of forming a negative electrode grid body. FIG. 5 is a diagram showing a conductor sheet having staggered slits formed. FIG. 6 is a diagram showing a life test result in Example 1. FIG. 7 is a diagram showing a life test result in Example 2. ]
Reference Signs List 101 Negative electrode grid body 102 First expanded mesh 103 Second expanded mesh 104 First non-slit portion 105 Second non-slit portion 106 Current collecting ear 107 Active material 108 Negative plate 200 Battery case 201 Free electrolyte 201L Liquid level 301 Convex processing blade 302 Disc-shaped cutter 303 Cutter roll 304 Conductive sheet 401 First slit 402 First interrupted portion 403 First interrupted slit 404 Second slit 405 Second interrupted portion 406 Second interrupted slit 407 First linear portion 408 Second linear portion 601 First staggered slit 602 Second staggered slit

Claims (4)

導電体シートにスリットを千鳥状に形成し、前記スリットを展開したエキスパンド網目を格子体に備えた鉛蓄電池であって、
前記格子体は第1のエキスパンド網目と第2のエキスパンド網目を備え、
前記第1のエキスパンド網目と前記第2のエキスパンド網目の間に前記スリットの形成方向に連続する第1の非スリット部を設け、
前記第1のエキスパンド網目の前記第1のエキスパンド網目に対向する一端に第2の非スリット部を備え、
前記第2の非スリット部に一体に集電耳を備えるとともに、
前記第1のエキスパンド網目の前記スリット方向の長さ寸法をLWD1、前記第2のエキスパンド網目の前記スリット方向の長さ寸法をLWD2としたときに、LWD1>LWD2である格子体を負極に用いた鉛蓄電池。
A lead storage battery in which a slit is formed in a conductor sheet in a staggered manner, and an expanded mesh having the slit developed is provided in a lattice body,
The lattice body includes a first expanded mesh and a second expanded mesh,
A first non-slit portion is provided between the first expanded mesh and the second expanded mesh in a direction in which the slit is formed,
A second non-slit portion is provided at one end of the first expanded mesh facing the first expanded mesh,
The second non-slit portion is provided with a current collecting ear integrally,
When the length of the first expanded mesh in the slit direction is LWD1 and the length of the second expanded mesh in the slit direction is LWD2, a lattice body satisfying LWD1> LWD2 was used for the negative electrode. Lead storage battery.
前記負極板と正極板とをセパレータを介して積層した極板群を備え、
前記極板群から遊離した遊離電解液を有し、前記極板下部が前記遊離電解液に浸漬された制御弁式である請求項1記載の鉛蓄電池。
An electrode group comprising the negative electrode plate and the positive electrode plate laminated via a separator,
2. The lead-acid battery according to claim 1, further comprising a free electrolytic solution released from the electrode group, wherein the lower part of the electrode plate is a control valve type immersed in the free electrolytic solution. 3.
前記遊離電解液面を前記第2のエキスパンド網目の範囲内としたことを特徴とする請求項2に記載の鉛蓄電池。The lead-acid battery according to claim 2, wherein the free electrolyte surface is within a range of the second expanded mesh. 円周上に凸状加工刃を形成した円盤状カッターの複数を間隔を設けて積層してなるカッターロールの一対間に前記導電体シートを通過させ、前記導電体シートに複数条の断続スリットを形成するとともに、
前記断続スリット間の線条部を前記凸状加工刃の先端形状に応じて、前記導電体シート面の上下方向に突出させ、
前記スリットの断続部を交互に切断して前記スリットを千鳥状とし、前記導電体シートを幅方向に展開してなるエキスパンド網目を備えた請求項1、2もしくは3に記載の鉛蓄電池。
The conductor sheet is passed between a pair of cutter rolls formed by laminating a plurality of disc-shaped cutters each having a convex processing blade formed on the circumference at intervals, and a plurality of intermittent slits are formed in the conductor sheet. While forming
The linear portion between the intermittent slits is made to protrude in the vertical direction of the conductor sheet surface according to the tip shape of the convex processing blade,
4. The lead-acid battery according to claim 1, wherein the intermittent portions of the slits are alternately cut to form the slits in a zigzag pattern, and an expanded mesh formed by expanding the conductive sheet in a width direction.
JP2003007183A 2003-01-15 2003-01-15 Lead-acid storage battery Pending JP2004220927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007183A JP2004220927A (en) 2003-01-15 2003-01-15 Lead-acid storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007183A JP2004220927A (en) 2003-01-15 2003-01-15 Lead-acid storage battery

Publications (1)

Publication Number Publication Date
JP2004220927A true JP2004220927A (en) 2004-08-05

Family

ID=32897356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007183A Pending JP2004220927A (en) 2003-01-15 2003-01-15 Lead-acid storage battery

Country Status (1)

Country Link
JP (1) JP2004220927A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132477A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Lead-acid storage battery and electric vehicle
WO2015107587A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Lead-acid battery
CN113544883A (en) * 2019-01-16 2021-10-22 昭和电工材料株式会社 Grid base material, electrode and lead storage battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012132477A1 (en) * 2011-03-31 2012-10-04 パナソニック株式会社 Lead-acid storage battery and electric vehicle
CN102738434A (en) * 2011-03-31 2012-10-17 松下蓄电池(沈阳)有限公司 Lead storage battery
JP5106712B2 (en) * 2011-03-31 2012-12-26 パナソニック株式会社 Lead-acid battery and electric vehicle
WO2015107587A1 (en) * 2014-01-15 2015-07-23 パナソニックIpマネジメント株式会社 Lead-acid battery
CN113544883A (en) * 2019-01-16 2021-10-22 昭和电工材料株式会社 Grid base material, electrode and lead storage battery

Similar Documents

Publication Publication Date Title
US6949313B2 (en) Battery with a microcorrugated, microthin sheet of highly porous corroded metal
JP5079324B2 (en) Lead acid battery
EP2559084B1 (en) Battery, battery plate assembly, and method of assembly
JP5016306B2 (en) Lead acid battery
KR20130058753A (en) Improved lead acid battery separators, batteries and related methods
AU7004098A (en) Lead-acid cells and batteries
US11824204B2 (en) Battery and battery plate assembly with absorbent separator
MX2012009957A (en) Battery grids and methods for manufacturing same.
US20190393512A1 (en) Battery grid
JP5935069B2 (en) Lead-acid battery grid and lead-acid battery
JP2004220927A (en) Lead-acid storage battery
JP2002164080A (en) Lead-acid battery
JP2007018812A (en) Lattice body for lead-acid battery and its manufacturing method
US20130183572A1 (en) Lead-acid battery design having versatile form factor
JP2007305370A (en) Lead storage cell
JP2021163618A (en) Lead-acid battery
JP4529707B2 (en) Lead acid battery
JP4857894B2 (en) Lead acid battery
JP3620249B2 (en) Lead acid battery
JP4904674B2 (en) Lead acid battery
JP3637603B2 (en) Lead acid battery
JP2001291527A (en) Lead-acid battery
JP2003346892A (en) Bipolar storage battery
JP2003132895A (en) Expand grid for battery and lead battery using the same
KR20070023674A (en) Lead storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090707