JP3637603B2 - Lead acid battery - Google Patents

Lead acid battery Download PDF

Info

Publication number
JP3637603B2
JP3637603B2 JP12456694A JP12456694A JP3637603B2 JP 3637603 B2 JP3637603 B2 JP 3637603B2 JP 12456694 A JP12456694 A JP 12456694A JP 12456694 A JP12456694 A JP 12456694A JP 3637603 B2 JP3637603 B2 JP 3637603B2
Authority
JP
Japan
Prior art keywords
lattice
lead
current collecting
strap
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12456694A
Other languages
Japanese (ja)
Other versions
JPH07307148A (en
Inventor
孝夫 大前
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP12456694A priority Critical patent/JP3637603B2/en
Publication of JPH07307148A publication Critical patent/JPH07307148A/en
Application granted granted Critical
Publication of JP3637603B2 publication Critical patent/JP3637603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は鉛蓄電池の改良に関するもので、特に正および負極板にエキスパンド格子を用いた鉛蓄電池の寿命性能を改善するものである。
【0002】
【従来の技術とその課題】
現在、鉛蓄電池用格子の製法としては、鋳造方式またはエキスパンド方式が主流となっている。
【0003】
鋳造方式の長所は、任意の形状、例えば電気抵抗が小さくなる形状などを形成できる、格子の周囲をとり囲む枠(以後、額縁と呼ぶ)が形成可能なため、機械的に変形しにくい格子を作ることができる、といったことがあげられる。短所としては、バッチ式であるために生産性に劣る、ペースト充填などの後工程に連結した一貫ラインとすることが困難である、鉛−カルシウム系合金など強度の劣る合金の場合には鋳造が困難であることなどである。
【0004】
エキスパンド方式は、圧延などにより作製した鉛合金シートを展開して網目状格子とするものである。展開方式は、シートに回転する刃物で切れ目を入れた後引き伸ばすロータリー方式と、上下に運動するV字状の刃物でシートを切断しながら引き伸ばすレシプロ方式の2つが主流である。いずれも連続的に生産が可能であり、ペースト充填・乾燥工程まで一貫したラインを設置できることから、鋳造方式に比べて極めて生産性が高いという特徴を持つ。さらに、鉛−カルシウム系合金や鉛−カルシウム−錫系合金等であっても、容易に鉛合金シートを作製できる。一方短所としては、展開により形成できる格子形状がある程度限定される、格子に縦方向の額縁が形成不可能なため機械的強度が劣り変形しやすいといった点である。
【0005】
鉛蓄電池の正極格子では、格子表面のPbが体積の大きなPbO2 へと変化するため、格子に引っ張り力がかかり、格子の伸び・変形がおこりやすい。特にエキスパンド格子を用いた場合には、格子強度が劣るため変形が大きくなり、早期に電池が寿命となってしまうという問題点がある。
【0006】
【課題を解決するための手段】
本発明は、エキスパンド格子を正および負極板に用いた場合でも、格子の変形を抑制でき、寿命性能を改善する方法を提供するものである。その要旨は、鉛合金シートをエキスパンド加工して作製した格子にペーストを充填した正および負極板を備えた鉛蓄電池において、該正および負極板の集電耳部のセンター位置が極板幅Wに対して端から1/5W以上4/5W以下であり、同極性の集電耳部を接続するストラップはキャスト・オン・ストラップ法により形成されたものであり、かつセル間接続部のセンター位置と集電耳部のセンター位置とを一致させたことを特徴とするものである。
【0007】
【作用】
セル間接続部と集電耳部のセンター位置を一致させているので極板はストラップおよびセル間接続部により固定され、ストラップの位置を極板の中央寄りとすることによりストラップ位置から極板端部までの距離が短くなるので端部における極板伸びが少なくなり、極板全体の変形が抑制されることになる。
【0008】
【実施例】
エキスパンド格子を用いた電池の寿命原因は、そのほとんどが格子の変形によるものであるため、これを防止するための電池構造を種々検討した。
【0009】
図1は本発明による電池構造の一例、図2はエキスパンド格子の一例を示した図である。エキスパンド格子の集電耳1はストラップ2により同極性どうしが接続されており、さらにストラップはセル間接続部3によって隣接セルと接続されている。隣接セルとの接続は、例えば押し出し電気抵抗溶接により行われる。これは、隣あったセルのセル間接続部どうしをチップ付の電極でプレスし、隔壁に開けられた穴を通してセル間接続部をチップの形状に突き出して接合させ、接合させた状態で電流を流し、電気抵抗溶接するものである。
【0010】
ストラップの形成方法は、現在バーナー溶接およびキャスト・オン・ストラップ方式(以後、COSと略す)が主流である。バーナー溶接は集電耳部にくし状の治具を差し込み、その上にセル間接続用の部品を置き、バーナーでこれらを溶接する方法である。図3(a)にバーナー溶接によって成形したストラップ・セル間接続部を示した。この方法では、セル間接続部のセンター位置と集電耳部のセンター位置とを一致させることが作業上困難なためにストラップが大きくなり、電気抵抗が大きくなってしまう。さらにストラップと溶接部との距離が長くなることから、格子の縦方向の変形力を十分に抑えることができず、格子やストラップ自体が変形し易い、といった欠点を有している。
【0011】
一方、COSは、ストラップ・セル間接続部が形成された鋳型に溶融鉛を流し込んでおき、そこに極板の集電耳を浸せき・凝固させるものである。図1はCOSによりストラップ・セル間接続部を行ったものである。この方法は、セル間接続部のセンター位置と集電耳部のセンター位置を一致させることができるため、格子の縦方向の変形力を接続部でささえることになり、格子やストラップ自体が変形しにくい、また電気抵抗が小さい、使用鉛量を少なくできるといった長所を有している。従って、エキスパンド格子のように変形し易い格子を使用するには、COS法が適しており、さらにストラップの厚みを一定値以上に設定することで、格子の変形を抑制することができる。
【0012】
エキスパンド格子は、図2に示したように上部額縁4の下方に、鉛シートの展開により作られた網状部5がある構造となっている。鋳造格子の例を図4に示した。鋳造格子にみられる縦の額縁6が、エキスパンド格子では形成できない。そのためエキスパンド格子は、鋳造格子に比べて縦方向に変形し易い。しかし、集電耳部だけはストラップ・セル間接続部により固定されているので、集電耳の下部の網状体はほとんど変形しない。また集電耳から離れた位置の網状体ほど縦方向への変形が大きくなるものと考えられる。従って格子全体としての変形を少なくするためには、集電耳の位置を格子のセンターにもってくるのが理想である。しかし、集電耳がセンターにあると、正および負極耳が同位置にくることになり、正、負極ストラップが形成できなくなるため、図2のように集電耳の位置をややずらす必要がある。そこで、格子変形がそれほど大きくならずにすむ集電耳の位置の範囲を検討した。
【0013】
表1に示すような構成の自動車用電池(36B20,12V,28Ah/5hR)を作製し、試験を行った。
【0014】
【表1】

Figure 0003637603
【0015】
電池No.1〜4は、集電耳の位置を比較するためのもの、No.4〜6はストラップ厚みを比較するためのもの、No.4,7は溶接方法を比較するためのものである。図2にも示したように、集電耳の位置Aは極板の端から集電耳センターまでの距離であり、極板幅Wに対する割合で表している(極板の別端からいえばそれぞれ9/10W、8/10W、7/10W、6/10Wとなるが、ここでは最小値で表記した)。
【0016】
正極のエキスパンド格子に用いる鉛シートの合金組成は、Pb−0.06wt%Ca−1.5wt%Sn、負極用の鉛シートの合金組成はPb−0.06wt%Ca−0.5wt%Snである。いずれも冷間圧延法により作製し、その厚みは正極用で1.1mm、負極用で0.7mmとした。鉛シート中のCa量が0.1wt%以下の場合、Sn量が約2wt%まではSn量が多いほど引張強度が増加することが一般的に知られている。正極用鉛シートのSn量を多くし、厚みも大きくしたのはシートの強度および耐食性を上げるためである。
【0017】
これらの鉛シートは、レシプロ方式によるエキスパンド機により、図2に示した形状に展開・切断を行い格子を作製した。格子形状は上部、下部の網状部が密で、中央部が粗、さらに網状部と上部額縁との接続部が他の接続部に比べて広くとったものとした。これは、格子の電気抵抗や強度を少しでも上げるためで、公知の方法である。格子寸法は縦100mm、横100mmの大きさとした。今回はレシプロ方式により格子を作製したが、ロータリー展開によってももちろんかまわない。
【0018】
鉛シートの両面は、展開前にブラッシングにより粗面化処理されている。一般に圧延シートの表面は、平滑であるために極板としたときに格子と活物質の密着性が悪くなる。粗面化処理することでこの密着性が向上し、活物質が脱落しにくいエキスパンド格子とすることができる。
【0019】
正極用ペーストは、Y−PbOが70〜80%、金属鉛を30〜20%含む鉛粉に少量の鉛丹を添加した原料1kgに対して、比重1.17の硫酸を0.2リットルの割合で添加・練こうしたものを用いた。正極ペーストは、一般的に添加する硫酸の液量が少ないほど活物質密度が高くなるため機械的に強くなり、寿命が長くなることが知られている。エキスパンド格子では、活物質が脱落しやすいことから、硫酸の液量は0.3リットル以下とするのが望ましい。
【0020】
ペーストを充填した極板は、70℃、湿度96%の恒温恒湿槽に18時間入れて熟成を行った。高温、高湿の雰囲気中では、活物質中に四塩基性硫酸鉛が生成し、極板寿命が向上するといわれている。しかし、四塩基性硫酸鉛の生成量が多くなりすぎると、化成が困難になってしまう。従って、鉛粉に添加する硫酸イオンの量を制限して四塩基性硫酸鉛の生成量を抑制する。硫酸イオンの量は、今回は鉛粉1kgに対して5.6wt%としたが、多くても6wt%程度とするのが望ましい。
【0021】
負極板は、自動車用鉛電池に通常用いられているペーストを格子に充填して作製した。
【0022】
次に正極板を、袋状の微孔性ポリエチレンセパレータに入れた。正極板に当接する面にはリブが形成されている。セパレータはポリエチレンシートを2つ折りにし、両サイドを一対の歯車により圧着(メカニカルシール)することにより作製した。メカニカルシールは、従来から米国のテクマック社などが行っており、当業者間では一般的に知られている手法である。もちろん負極板をセパレータに入れてもかまわないが、その場合にはリブ面を逆に(正極板に当接)して使用する。リブを正極に当接する理由は、正極板の酸化作用によるセパレータの破損をおこりにくくするためである。
【0023】
セパレータに入れた正極板5枚、負極板6枚を交互に重ね合わせ、集電耳をCOS、またはバーナー溶接することでエレメントを作製した。6個のエレメントを電槽に挿入し、押し出し電気抵抗溶接によりセル間接続を行い、ふたを溶着して36B20(12V、28Ah/5hR)の電池を組み立てた。
【0024】
この電池に電解液として硫酸を注入し、電槽化成を行った。通電は最初1Aで1時間、次に10Aで20時間というように2ステップで行った。一般に化成電流密度が大きいと、正極板の化成効率が悪いことから、化成初期において格子と活物質界面での酸素ガス発生が激しくなり、該界面に隙間が生じやすくなる。隙間が生じると、放電時に濃度の高い硫酸が浸入し、不働態層が形成して早期に容量低下することがある。化成初期の電流を小さくすることで、このガス発生による隙間の形成をおこりにくくでき、早期容量低下を防止することができる。1ステップ目の電流は正極板に対して0.05〜0.5A/dm2 、電気量は正極活物質の理論化成電気量の1〜50%とするのが望ましい。化成終了後の電解液比重は1.280とした。
【0025】
次にこれらの電池を高温過充電寿命試験に供した。電池は75℃の水槽に入れ、電流4.5Aで30日間の連続通電を行った。通電終了後の5時間率容量と初期5時間率容量との比較(初期容量を100とする)および正極板の変形量の測定を行った。結果を表2に示した。
【0026】
【表2】
Figure 0003637603
【0027】
集電耳位置が1/10Wの電池No.1は、正極板が著しく変形して短絡していた。電池No.2、3、4では多少変形がみられたものの、短絡はみられなかった。ストラップの厚みが3mmと薄い電池No.5は、正極板のみならずストラップも変形していた。ストラップ厚みが5mmの電池No.6では、極板の変形が少なく、ストラップの変形は全くみられなかった。バーナー溶接した電池No.7は、セル間接続部とストラップとの間の部分が変形していた[図3(b)]。
【0028】
これらの結果から、集電耳の位置は2/10W(1/5W)以上、COS溶接品、さらに好ましくはストラップ厚みが4mm以上、とすれば極板の変形やストラップの変形などを抑えることができ、そのため電池性能も向上することがわかった。
【0029】
【発明の効果】
以上、本文中で述べたように、本発明によればエキスパンド格子を正および負極板に用いた場合でも優れた寿命性能の電池が得られ、その工業的価値は甚だ大なるものである。
【図面の簡単な説明】
【図1】本発明による電池の模式図
【図2】エキスパンド格子の一例を示す図
【図3】バーナー溶接ストラップの模式図および寿命後の状態を示す図
【図4】鋳造格子の一例を示す図
【符号の説明】
1.集電耳
2.ストラップ
3.セル間接続部
4.上部額縁
5.網状部[0001]
[Industrial application fields]
The present invention relates to an improvement of a lead-acid battery, and in particular, to improve the life performance of a lead-acid battery using an expanded grid for positive and negative electrodes.
[0002]
[Prior art and its problems]
At present, as a method for producing a lead-acid battery grid, a casting method or an expanding method is mainly used.
[0003]
The advantage of the casting method is that it can form an arbitrary shape, such as a shape that reduces electrical resistance, and can form a frame (hereinafter referred to as a frame) that surrounds the lattice. It can be made. Disadvantages include batch-type casting, which is inferior in productivity, difficult to make an integrated line connected to subsequent processes such as paste filling, and in the case of alloys with inferior strength such as lead-calcium alloys. It is difficult.
[0004]
In the expanding method, a lead alloy sheet produced by rolling or the like is developed to form a mesh lattice. There are two main types of unfolding methods: a rotary method in which a sheet is cut with a rotating blade and then stretched, and a reciprocating method in which the sheet is stretched while being cut with a V-shaped blade that moves up and down. Both can be produced continuously and can be installed in a consistent line up to the paste filling / drying process, so they are characterized by extremely high productivity compared to the casting method. Furthermore, even if it is a lead-calcium alloy or a lead-calcium-tin alloy, a lead alloy sheet can be easily produced. On the other hand, the lattice shape that can be formed by development is limited to some extent, and the frame in the vertical direction cannot be formed on the lattice, so that the mechanical strength is inferior and the shape is easily deformed.
[0005]
In the positive electrode lattice of a lead storage battery, Pb on the lattice surface changes to PbO 2 having a large volume, so that a tensile force is applied to the lattice, and the lattice is easily stretched and deformed. In particular, when an expanded lattice is used, there is a problem in that the lattice strength is inferior and the deformation becomes large, resulting in an early life of the battery.
[0006]
[Means for Solving the Problems]
The present invention provides a method of suppressing the deformation of the lattice and improving the life performance even when the expanded lattice is used for the positive and negative electrode plates. The gist of the lead storage battery is provided with positive and negative electrode plates filled with paste in a grid produced by expanding a lead alloy sheet, and the center position of the current collecting ear portions of the positive and negative electrode plates is set to the electrode plate width W. On the other hand, the strap that connects the current collecting ears of the same polarity is from 1/5 W to 4/5 W from the end, and is formed by the cast-on-strap method , and the center position of the inter-cell connection part The present invention is characterized in that the center position of the current collecting ear portion is matched .
[0007]
[Action]
Since the center position of the inter-cell connection part and the current collecting ear part are matched, the electrode plate is fixed by the strap and the inter-cell connection part. Since the distance to the portion is shortened, the electrode plate is less stretched at the end portion, and deformation of the entire electrode plate is suppressed.
[0008]
【Example】
Since most of the causes of the life of the battery using the expanded lattice are due to the deformation of the lattice, various battery structures for preventing this were studied.
[0009]
FIG. 1 shows an example of a battery structure according to the present invention, and FIG. 2 shows an example of an expanded lattice. The current collecting ears 1 of the expanded lattice are connected to each other by the strap 2 and the straps are connected to adjacent cells by the inter-cell connecting portion 3. The connection with the adjacent cell is performed by, for example, extrusion electric resistance welding. This is because the inter-cell connection portions of adjacent cells are pressed with an electrode with a chip, and the inter-cell connection portion is protruded into the shape of the chip through the hole formed in the partition, and the current is applied in the bonded state. Sinking and electric resistance welding.
[0010]
Currently, burner welding and a cast-on-strap method (hereinafter abbreviated as COS) are the mainstream methods for forming the strap. Burner welding is a method in which a comb-like jig is inserted into a current collecting ear, parts for inter-cell connection are placed thereon, and these are welded with a burner. FIG. 3A shows a strap-cell connection formed by burner welding. In this method, since it is difficult for the operation to match the center position of the inter-cell connecting portion and the center position of the current collecting ear portion, the strap becomes large and the electric resistance becomes large. Furthermore, since the distance between the strap and the welded portion becomes long, the deformation force in the vertical direction of the lattice cannot be sufficiently suppressed, and the lattice and the strap itself have a drawback that they are easily deformed.
[0011]
On the other hand, in the COS, molten lead is poured into a mold in which a strap-cell connection portion is formed, and the current collecting ears of the electrode plate are immersed and solidified there. FIG. 1 shows a connection between straps and cells by COS. In this method, since the center position of the connection part between cells and the center position of the current collecting ear part can be matched, the longitudinal deformation force of the lattice is supported by the connection part, and the lattice and the strap itself are deformed. It has the advantages of being difficult, having low electrical resistance, and reducing the amount of lead used. Therefore, the COS method is suitable for using a lattice that is easily deformed, such as an expanded lattice, and the lattice deformation can be suppressed by setting the thickness of the strap to a certain value or more.
[0012]
As shown in FIG. 2, the expanded lattice has a structure in which a net-like portion 5 made by developing a lead sheet is provided below the upper frame 4. An example of a cast grid is shown in FIG. The vertical picture frame 6 seen in the cast lattice cannot be formed with the expanded lattice. Therefore, the expanded lattice is more easily deformed in the vertical direction than the cast lattice. However, since only the current collecting ear portion is fixed by the strap-cell connection portion, the mesh body under the current collecting ear hardly deforms. In addition, it is considered that the deformation in the vertical direction increases as the mesh body is located farther from the current collecting ear. Therefore, in order to reduce the deformation of the entire grating, it is ideal to bring the position of the current collecting ear to the center of the grating. However, if the current collecting ear is in the center, the positive and negative electrode ears are in the same position, and the positive and negative electrode straps cannot be formed. Therefore, it is necessary to slightly shift the position of the current collecting ear as shown in FIG. . Therefore, the range of the position of the current collecting ear where the lattice deformation is not so large was examined.
[0013]
An automobile battery (36B20, 12V, 28Ah / 5hR) having a configuration as shown in Table 1 was produced and tested.
[0014]
[Table 1]
Figure 0003637603
[0015]
Battery No. Nos. 1 to 4 are for comparing the positions of current collecting ears. Nos. 4 to 6 are for comparing the strap thicknesses. 4 and 7 are for comparing welding methods. As shown in FIG. 2, the position A of the current collecting ear is the distance from the end of the electrode plate to the center of the current collecting ear and is expressed as a ratio to the electrode plate width W (from the other end of the electrode plate). 9 / 10W, 8 / 10W, 7 / 10W, and 6 / 10W, respectively.
[0016]
The alloy composition of the lead sheet used for the positive electrode expanded lattice is Pb-0.06 wt% Ca-1.5 wt% Sn, and the alloy composition of the lead sheet for the negative electrode is Pb-0.06 wt% Ca-0.5 wt% Sn. is there. All were produced by the cold rolling method, and the thickness was 1.1 mm for the positive electrode and 0.7 mm for the negative electrode. It is generally known that when the Ca content in the lead sheet is 0.1 wt% or less, the tensile strength increases as the Sn content increases up to about 2 wt%. The reason for increasing the Sn content and the thickness of the positive electrode lead sheet is to increase the strength and corrosion resistance of the sheet.
[0017]
These lead sheets were developed and cut into the shape shown in FIG. 2 using a reciprocating expander to produce a lattice. The lattice shape was such that the upper and lower mesh portions were dense, the center portion was rough, and the connection portion between the mesh portion and the upper frame was wider than other connection portions. This is a known method for increasing the electrical resistance and strength of the grating as much as possible. The lattice dimensions were 100 mm long and 100 mm wide. This time, the lattice was made by the reciprocating method, but of course it can be done by rotary deployment.
[0018]
Both surfaces of the lead sheet are roughened by brushing before deployment. In general, since the surface of the rolled sheet is smooth, the adhesion between the lattice and the active material becomes poor when an electrode plate is used. By roughening the surface, this adhesion is improved, and an expanded lattice in which the active material hardly falls off can be obtained.
[0019]
The positive electrode paste is 0.2 liters of sulfuric acid having a specific gravity of 1.17 with respect to 1 kg of raw material obtained by adding a small amount of red lead to lead powder containing 70 to 80% Y-PbO and 30 to 20% metallic lead. Added and kneaded in proportions. In general, it is known that the positive electrode paste is mechanically stronger and has a longer life because the active material density is higher as the amount of sulfuric acid added is smaller. In the expanded lattice, the active material is easy to fall off, so the amount of sulfuric acid is preferably 0.3 liter or less.
[0020]
The electrode plate filled with the paste was aged in a constant temperature and humidity chamber of 70 ° C. and 96% humidity for 18 hours. It is said that tetrabasic lead sulfate is generated in the active material in a high temperature and high humidity atmosphere, and the electrode plate life is improved. However, if the amount of tetrabasic lead sulfate produced is too large, chemical conversion becomes difficult. Therefore, the amount of sulfate ions added to the lead powder is limited to suppress the production of tetrabasic lead sulfate. The amount of sulfate ion is 5.6 wt% with respect to 1 kg of lead powder at this time, but it is desirable that the amount be at most about 6 wt%.
[0021]
The negative electrode plate was prepared by filling a grid with a paste usually used for a lead battery for automobiles.
[0022]
Next, the positive electrode plate was put into a bag-like microporous polyethylene separator. Ribs are formed on the surface in contact with the positive electrode plate. The separator was produced by folding a polyethylene sheet in two and crimping (mechanical sealing) both sides with a pair of gears. The mechanical seal is conventionally performed by Techmac Corporation in the United States and the like, and is a method generally known among those skilled in the art. Of course, the negative electrode plate may be placed in the separator, but in that case, the rib surface is reversed (contacted with the positive electrode plate). The reason for bringing the rib into contact with the positive electrode is to make it difficult for the separator to be damaged by the oxidizing action of the positive electrode plate.
[0023]
Five elements of the positive electrode plate and six negative electrode plates placed in the separator were alternately overlapped, and the current collecting ears were COS or burner welded to produce an element. Six elements were inserted into the battery case, the cells were connected by extrusion electric resistance welding, and the lid was welded to assemble a battery of 36B20 (12 V, 28 Ah / 5 hR).
[0024]
Sulfuric acid was injected into the battery as an electrolytic solution, and a battery case was formed. The energization was performed in two steps, first 1 A for 1 hour and then 10 A for 20 hours. In general, when the formation current density is high, the formation efficiency of the positive electrode plate is poor, and therefore, oxygen gas generation at the interface between the lattice and the active material becomes intense at the early stage of formation, and gaps are likely to be formed at the interface. When the gap is generated, sulfuric acid having a high concentration may invade during discharge, and a passive layer may be formed, resulting in an early capacity reduction. By reducing the current at the initial stage of formation, it is difficult to form a gap due to the generation of gas, and early capacity reduction can be prevented. It is desirable that the current in the first step is 0.05 to 0.5 A / dm 2 with respect to the positive electrode plate, and the amount of electricity is 1 to 50% of the theoretically formed electricity amount of the positive electrode active material. The electrolyte specific gravity after the chemical conversion was 1.280.
[0025]
These batteries were then subjected to a high temperature overcharge life test. The battery was placed in a 75 ° C. water tank and continuously energized for 30 days at a current of 4.5 A. A comparison was made between the 5-hour rate capacity after the end of energization and the initial 5-hour rate capacity (initial capacity is 100), and the deformation of the positive electrode plate was measured. The results are shown in Table 2.
[0026]
[Table 2]
Figure 0003637603
[0027]
Battery No. with current collecting ear position of 1/10 W In No. 1, the positive electrode plate was significantly deformed and short-circuited. Battery No. Although some deformation was observed in 2, 3, and 4, no short circuit was observed. Battery No. 3 with a thin strap of 3 mm. In No. 5, not only the positive electrode plate but also the strap was deformed. Battery No. with a strap thickness of 5 mm. In No. 6, there was little deformation of the electrode plate, and no deformation of the strap was observed. Burner welded battery no. 7, the part between the connection part between cells and the strap was deformed [FIG. 3 (b)].
[0028]
From these results, the position of the current collecting ear is 2/10 W (1/5 W) or more, the COS welded product, and more preferably the strap thickness is 4 mm or more, so that deformation of the electrode plate and strap deformation can be suppressed. It was found that the battery performance was improved.
[0029]
【The invention's effect】
As described above, according to the present invention, a battery having excellent life performance can be obtained even when the expanded lattice is used for the positive and negative electrode plates, and its industrial value is very large.
[Brief description of the drawings]
FIG. 1 is a schematic view of a battery according to the present invention. FIG. 2 is a view showing an example of an expanded lattice. FIG. 3 is a schematic view of a burner welding strap and a state after life. Figure [Explanation of symbols]
1. Current collecting ear 2. Strap 3. 3. Inter-cell connection part 4. Upper picture frame Reticulated part

Claims (1)

鉛合金シートをエキスパンド加工して作製した格子にペーストを充填した正および負極板を備えた鉛蓄電池において、該正および負極板の集電耳部のセンター位置が極板幅Wに対して端から1/5W以上4/5W以下の範囲にあり、同極性の集電耳部を接続するストラップが、キャスト・オン・ストラップ法により形成されたものであり、かつセル間接続部のセンター位置と集電耳部のセンター位置とを一致させたことを特徴とする鉛蓄電池。In a lead storage battery including positive and negative electrode plates filled with a paste in a grid produced by expanding a lead alloy sheet, the center position of the current collecting ear portion of the positive and negative electrode plates from the end with respect to the electrode plate width W The strap that connects the current collecting ears of the same polarity and is in the range of 1/5 W or more and 4/5 W or less is formed by the cast-on-strap method , and the center position of the inter-cell connecting part and the current collecting point A lead-acid battery characterized by matching the center position of the electric ear .
JP12456694A 1994-05-12 1994-05-12 Lead acid battery Expired - Lifetime JP3637603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12456694A JP3637603B2 (en) 1994-05-12 1994-05-12 Lead acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12456694A JP3637603B2 (en) 1994-05-12 1994-05-12 Lead acid battery

Publications (2)

Publication Number Publication Date
JPH07307148A JPH07307148A (en) 1995-11-21
JP3637603B2 true JP3637603B2 (en) 2005-04-13

Family

ID=14888658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12456694A Expired - Lifetime JP3637603B2 (en) 1994-05-12 1994-05-12 Lead acid battery

Country Status (1)

Country Link
JP (1) JP3637603B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222662A (en) * 2001-01-26 2002-08-09 Matsushita Electric Ind Co Ltd Lead storage battery
JP2004119106A (en) * 2002-09-25 2004-04-15 Matsushita Electric Ind Co Ltd Control valve lead storage battery
CN105990584A (en) * 2015-01-30 2016-10-05 松下蓄电池(沈阳)有限公司 Grid, pole plate and pole plate group used for lead storage battery, and lead storage battery

Also Published As

Publication number Publication date
JPH07307148A (en) 1995-11-21

Similar Documents

Publication Publication Date Title
JP5325358B1 (en) ELECTRODE FOR BATTERY AND METHOD FOR MANUFACTURING THE SAME
JP4501330B2 (en) Lead acid battery
US2883443A (en) Lead-acid storage battery
JP3637603B2 (en) Lead acid battery
JP2002164080A (en) Lead-acid battery
JP2003338310A (en) Lead storage battery
JP6921037B2 (en) Lead-acid battery
JP3764978B2 (en) Manufacturing method of lead acid battery
JP2002075379A (en) Lead-acid battery
JP4529707B2 (en) Lead acid battery
EP4195333A1 (en) Liquid lead storage battery
JP2011159551A (en) Lead-acid storage battery
JP4374626B2 (en) Lead acid battery
JP2000215898A5 (en)
JPH1064530A (en) Manufacture of electrode plate for lead-acid battery
JP2913482B2 (en) Lead storage battery
JP4556250B2 (en) Lead acid battery
JP2001291527A (en) Lead-acid battery
JP3163509B2 (en) Manufacturing method of hybrid bipolar plate
JPH09289025A (en) Grid for lead-acid battery
JP2006066252A (en) Lead-acid storage battery
JPH10149835A (en) Manufacture of lead alloy sheet
JP2003123768A (en) Lead-acid battery
JP4765190B2 (en) Control valve type lead acid battery
JP4977926B2 (en) Lead acid battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050103

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100121

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110121

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120121

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130121

Year of fee payment: 8

EXPY Cancellation because of completion of term