JP2004207089A - Storage element - Google Patents

Storage element Download PDF

Info

Publication number
JP2004207089A
JP2004207089A JP2002375802A JP2002375802A JP2004207089A JP 2004207089 A JP2004207089 A JP 2004207089A JP 2002375802 A JP2002375802 A JP 2002375802A JP 2002375802 A JP2002375802 A JP 2002375802A JP 2004207089 A JP2004207089 A JP 2004207089A
Authority
JP
Japan
Prior art keywords
negative
positive
electrode
electrode body
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002375802A
Other languages
Japanese (ja)
Other versions
JP4158518B2 (en
Inventor
Tomohiro Matsuura
智浩 松浦
Hisanao Kojima
小島  久尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002375802A priority Critical patent/JP4158518B2/en
Publication of JP2004207089A publication Critical patent/JP2004207089A/en
Application granted granted Critical
Publication of JP4158518B2 publication Critical patent/JP4158518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage element having a configuration suitable for preventing internal short circuit. <P>SOLUTION: A secondary battery 1 comprises a winding type electrode body 10, a container 20 for housing the electrode body 10, and an electrode 30, 40 connected to an electrode sheet 12, 14 at each end of the electrode body 10. The electrode 30, 40 comprises a terminal part 36, 46 extending in a direction perpendicular to the winding shaft of the electrode body 10 and passing through a cover body 24 of the housing 20, and a flange part 34, 44 inside the cover body 24, extending along the outer periphery of the electrode body 10. A shock absorbing material 50 is arranged between the flange part 33, 44 and the outer periphery of the electrode body 10 to ease the phenomena in which the electrode body 10 is locally and strongly depressed by the flange part 34, 44 in case the battery 1 drops. This enables internal short circuit of the battery 1 to be suppressed. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、捲回型の電極体を備えた蓄電素子に関する。なお、本明細書中において「蓄電素子」とは、電池(リチウムイオン電池、ニッケル水素電池等)およびキャパシタ(電気二重層キャパシタ等)の双方を包含する概念である。
【0002】
【従来の技術】正極シートと負極シートがセパレータを介して捲回された電極体(捲回型電極体)を、電解液とともに容器に収容した蓄電素子が知られている。このような蓄電素子の一つの形態として、有底筒状のケースの内部に電極体を縦に(電極体の捲回軸がケースの底面にほぼ直立するように)収容し、そのケースの上端開口部を蓋体で塞いで容器を構成したものがある。電極体からの電流の取り出しは、正極シートおよび負極シートのそれぞれに電気的に接続された一対の端子を通じて、典型的には容器の底面側および蓋体側(すなわち、捲回型電極体の軸方向の両端側)から行われる。
【0003】
ところで、蓄電素子は落下等の物理的な衝撃に曝されることがある。かかる場合に蓄電素子が内部短絡を起こすことを防止するため、特許文献1には、容器に電極体を縦に収容した上記形態の二次電池につき、その電極体の軸方向の一端面と電池蓋(蓋体)との間に絶縁体を配置する技術が開示されている。電池落下時の内部短絡を防止することに関する他の先行技術文献としては特許文献2が挙げられる。
【0004】
【特許文献1】
特開平9−283112号公報
【特許文献2】
特開2001−357893号公報
【0005】
【発明が解決しようとする課題】一方、捲回型電極体を備える蓄電素子の他の一つの形態として、この電極体を、捲回軸が横倒しになる向きで容器に収容したものがある。かかる蓄電素子(以下、「横型蓄電素子」ということもある。)は、典型的には、その電極体の側方(捲回型電極体の捲回軸にほぼ直交する方向)から一対の端子を通じて電流を取り出す構成を有する。このような形態の蓄電素子の落下時等の内部短絡を防止するにあたっては、電流の取り出し方向等が異なる特許文献1の技術をそのまま適用しても得られる効果は少ない。
そこで本発明は、落下時の内部短絡を防止するのに適した構成の横型蓄電素子を提供することを目的とする。
【0006】
【課題を解決するための手段と作用と効果】捲回型電極体の側方から電流を取り出す場合には、この取出構造を形成する都合上、電極体を囲んで配置された一または二以上の部材(例えば、正極および/または負極)によって、この電極体の外周と対向する部分に顕著な凹凸が生じがちである。本発明者は、かかる凹凸によって電極体の外周(すなわち電極シートの積層方向)に局所的に大きな応力が加わるという現象を防止または抑制することにより、上記課題を解決し得ることを見出した。
【0007】
本発明により提供される一つの横型蓄電素子は、(a).正極シートと負極シートがセパレータを介して捲回されている捲回型電極体を備える。また、(b).捲回型電極体の一方の端部で正極シートに接する正接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる正端子部と、該正接触部と該正端子部の間にあって捲回型電極体の外周に沿って延びている正フランジ部とを有する正極を備えることができる。また、(c).捲回型電極体の他方の端部で負極シートに接する負接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる負端子部と、該負接触部と該該負端子部の間にあって捲回型電極体の外周に沿って延びている負フランジ部とを有する負極を備えることができる。さらに、(d).捲回型電極体と、正極の正接触部と正フランジ部と、負極の負接触部と負フランジ部とを収容する容器を備えることができる。そして、正極の正フランジ部と捲回型電極体の外周の間ならびに負極の負フランジ部と捲回型電極体の外周の間に配置されている緩衝材を備えることができる。
正フランジ部および負フランジ部と電極体の外周との間に緩衝材を介在させることにより、蓄電素子の落下時等にフランジ部(特にその外縁)が電極体に押付けられる場合にも、その押付けられる力(圧縮応力)を分散させることができる。その結果、電極体に対して局所的に高い圧迫力が加えられることが回避され、蓄電素子の内部短絡を防止または抑制することができる。
【0008】
このような蓄電素子のうち好ましいものでは、前記緩衝材が一体形状である。この緩衝材は、正極の正フランジ部と捲回型電極体の外周の間から、負極の負フランジ部と捲回型電極体の外周の間にまで延びている。このような構成は、蓄電素子の製造時に緩衝材の位置決めが容易である等の理由から好ましい。
なお、正フランジ部と電極体外周との間に配置される緩衝材と、負フランジ部と電極体外周との間に配置される緩衝材とを別々の部材(別体)としてもよい。
【0009】
本発明により提供される他の一つの横型蓄電素子は、上述した(a).〜(d).の構成を備えることができる。かかる構成において、正極の正端子部と負極の負端子部は、容器を画定する壁を貫通して容器外に露出している。そして、正極の正端子部と負極の負端子部が貫通する容器の壁の内面には、正極の正フランジ部と負極の負フランジ部とを受入れる窪みが形成されている。さらに他の一つの態様は、上述した(a).〜(d).の構成を備えるとともに正極の正端子部と負極の負端子部が容器を画定する壁を貫通して容器外に露出している横型蓄電素子であって、正極の正端子部と負極の負端子部が貫通する容器の壁と捲回型電極体との間に、正極の正フランジ部と負極の負フランジ部とを受入れる窪みが形成された絶縁部材が配置されている。
かかる窪みを形成することによって、蓄電素子の落下等によりフランジ部と電極体とを相対的に近づける方向への応力が加わった場合、正負のフランジ部(典型的にはその端部)が電極体の外周に局所的に強く接触するという現象を緩和することができる。このことによって蓄電素子の内部短絡を防止または抑制することができる。
【0010】
このような横型蓄電素子の好ましい態様の一つでは、前記窪みの深さが、正極の正フランジ部および負極の負フランジ部の厚さにほぼ等しい。ここで「ほぼ等しい」とは、窪みの深さが、フランジ部の厚さに対して±30%以内(より好ましくは10%以内)の範囲にあることをいう。
他の一つの好ましい態様では、前記窪みに収容された正負のフランジ部の内面(電極体外周に対向する面)と、前記窪み以外での容器内面が、ほぼ同一面上にある。ここで「ほぼ同一面上」とは、窪み以外での容器内面とフランジ部の内面との間の段差の高さが、フランジ部の厚さに対して±30%以内(より好ましくは10%以内)の範囲にあることをいう。
【0011】
【発明の実施の形態】また、この発明は下記の形態で実施することができる。
【0012】
(形態1) 正極の正フランジ部は、その負フランジ部側かつ内面側(電極体外周側)の端部を、捲回電極との局所接触を防止できる半径の円弧形状(R形状)に形成することができる。また、負極の負フランジ部は、その正フランジ部側かつ内面側(電極体外周側)の端部を、捲回型電極体との局所接触を防止できる半径の円弧形状に形成することができる。正フランジ部および負フランジ部の少なくとも一方をこのような形状とすることにより、フランジ部が電極体側に押付けられたときに電極体に局所的な応力が加わるという現象を、よりよく緩和することができる。あるいは、正フランジ部の形状を、負フランジ部側に近づくにつれて電極体外周から離隔する方向に反った形状としてもよい。また、負フランジ部の形状を、正フランジ部側に近づくにつれて電極体外周から離隔する方向に反った形状としてもよい。
【0013】
(形態2) 容器の大まかな形状は偏平な直方体状であり、有底筒状のケースと、そのケースの開口部を塞ぐ蓋体とを含んで構成されている。その容器の内部に、偏平状に捲回された捲回型電極体が収容されている。正極の正端子部と負極の負端子部は、容器の蓋体を貫通して容器外に露出している。その蓋体と捲回型電極体との間に正負のフランジ部が延びている。かかる構成の蓄電素子(好ましくはリチウムイオン二次電池または電気二重層キャパシタ)は、本発明が好ましく適用される蓄電素子の一例である。
【0014】
【実施例】
(第一実施例)
正負のフランジ部と電極体外周との間に緩衝材が配置されたリチウムイオン二次電池の一例につき説明する。
図1は、本実施例に係る二次電池を示す分解斜視図である。また、図2は、図1のII−II線断面を模式的に示す断面図である。これらの図に示されるように、二次電池1は、一対の電極シート(正極シート12および負極シート14)がセパレータを介して偏平状に捲回された捲回型電極体10と、電極体10を収容する偏平な直方体状(角型または平型ともいう。)の容器20と、電極体10の軸方向両端部に接続された正極30および負極40とを備える。正極30および負極40は、電極体10の軸方向両端からそれぞれ電極体10の外周に沿って延びる正フランジ部34および負フランジ部44を有し、さらに容器20を貫通して外方に延びている。正フランジ部34および負フランジ部44と電極体10の外周との間には、一体形状の緩衝材50が共通的に配置されている。
【0015】
まず、捲回型電極体10について説明する。この電極体は、長尺状の正極集電体の両面に正極活物質層が形成された正極シートと、長尺状の負極集電体の両面に負極活物質層が形成された負極シートと、二枚の長尺状のセパレータシートとを備える。これらのシートを、正極シート、セパレータ、負極シート、セパレータの順に積層し、捲回機等を用いて長尺方向に捲回する。この捲回体を径方向にプレスすることにより、偏平状に捲回された電極体を作製することができる。
このような捲回型電極体において、正極シートと負極シートとは捲回軸方向に対して互いに位置をずらして積層されている。その結果、図1および2に模式的に示すように、電極体10の軸方向の一端は主として正極シート12から構成され、軸方向の他端は主として負極シート14から構成されている。この一端および他端に正極30および負極40がそれぞれ接続されている。また、電極体10の外周は、図示しない絶縁シート(ここではセパレータシートと同じものを用いた)により覆われている。これにより、電極体10と容器20とが導通することを回避している。
【0016】
なお、上記正極集電体としてはアルミニウム箔等を、上記負極集電体としては銅箔等を用いることができる。上記セパレータとしては多孔質ポリオレフィン(ポリエチレン、ポリプロピレン等)シートを用いることができる。上記正極活物質層を構成する正極活物質としては、LiMn24、LiCoO2、LiNiO2等の、従来のリチウムイオン二次電池に用いられる正極活物質の一種または二種以上を特に限定なく使用することができる。また、上記負極活物質層を構成する負極活物質としては、アモルファスカーボン、グラファイトカーボン等の、従来のリチウムイオン二次電池に用いられる負極活物質の一種または二種以上を特に限定なく使用することができる。これらの活物質層には、従来公知の結着剤、導電化剤等を適宜含有させることができる。
【0017】
容器20はアルミニウム製であって、有底四角筒状のケース22と、ケース22の上端開口部を封止する蓋体24とを備える。捲回型電極体10は、その捲回軸が横倒しとなるようにして容器20に収容されている。電極体10には図示しない電解液が含浸されている。この電解液としては、ジエチルカーボネートとエチレンカーボネートとの7:3(質量比)混合溶媒に1mol/リットルのLiPF6を溶解させたもの等を用いることができる。
【0018】
正極30は、アルミニウム板を所定形状に成形したものである。この正極30は、大まかにいって、電極体10の軸方向の一端に沿ってその偏平方向(図2の上下方向)に延びる正接触部32と、電極体10の捲回軸にほぼ直交する方向(ここでは図1および図2の上側)に延びる正端子部36と、正接触部32と正端子部36の間にあって電極体10の外周に沿って延びている正フランジ部34とを有する。正接触部32のうち正フランジ部34と反対側の一端は、電極体10の一方の端部で正極シート12に溶接等により接続されている。また、図2によく示されるように、正フランジ部34は、正接触部32の他端(図1および図2の上端)から電極体10の外周に回り込み、この外周に沿って電極体10と蓋体24との間を、電極体10の他端側(負フランジ部側)に延びている。
【0019】
負極40は、銅板を正極30とほぼ同形状に成形したものであって、負接触部42、負フランジ部44および負端子部46を有する。この負極40は、正極30とほぼ対称となるように電極体10に取り付けられている。負接触部42のうち負フランジ部44と反対側の一端は、電極体10の他方の端部で負極シート14に溶接等により接続されている。負フランジ部44は、負接触部42の他端(図1および図2の上端)から電極体10の外周に回り込み、この外周に沿って電極体10と蓋体24との間を、電極体10の他端側(正フランジ部側)に延びている。
【0020】
正端子部36および負端子部46は、蓋体24を貫通して容器20の外方に延びている。これら正負の端子部36,46を介して、電極体10の側方(捲回軸にほぼ直交する方向)から電流を取り出すことができる。また、正負のフランジ部34,44は、電極体10の軸方向の一端および他端から互いに近づく方向に延びている。これらのフランジ部34,44と電極体10の外周との間に緩衝材50が配置されている。以下、この緩衝材50につき説明する。
【0021】
緩衝材の構成材料としては、蓄電素子の種類に応じて、その蓄電素子を構成する電解液や、蓄電素子の使用により生じる反応生成物に対して耐性を有する材料を適宜選択して用いることができる。通常は絶縁性材料を選択することが好ましい。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂や、エチレン−プロピレン−ジエン共重合体(EPDM)等が好ましく選択される。また、PPS(ポリフェニレンスルフィド樹脂)、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、PEEK(ポリエーテルエーテルケトン樹脂)、PES(ポリエーテルスルホン樹脂)等を用いてもよい。このような材料を板状、シート状、フィルム状等に成形したものを緩衝材として用いることができる。このような材料を主体に構成された発泡体、多孔質体、不織布、織布等を用いてもよい。
【0022】
緩衝材の厚さは特に限定されない。一般に、緩衝材の厚さを大きくすると、より大きな衝撃に対しても優れた短絡防止効果を発揮し得る。一方、緩衝材の厚さを過剰に大きくすると蓄電素子が大型化する傾向にある。これらのバランスから、通常は緩衝材の厚さを凡そ0.2〜2mm程度とすることが適当である。緩衝材の幅は、偏平状に捲回された電極体の厚さに対して例えば0.5〜1.2倍程度とすることができる。また、蓄電素子の組み立てが容易であること等から、容器開口部の幅よりも緩衝材の幅を小さくすることが好ましい。緩衝材の長さは、本実施例のような一体形状の緩衝材では、正フランジ部と電極体外周との間から負フランジ部と電極体外周との間まで届く長さとする。電極体の軸長とほぼ同等の長さを有する緩衝材を用いることが好ましい。
【0023】
この緩衝材は、厚み方向に貫通する孔および/または外周の切欠きを有する形状とすることができる。これにより、蓄電素子(容器)の内外で流体を流通させる際に、その流体の流通性に及ぼす緩衝材の影響を少なくすることができる。例えば、蓄電素子の過充電時等において発生し得るガスを容器外部へと逃すためのガス抜き経路を、より適切に確保することができる。また、蓄電素子製造時に容器内に電解液を注入する操作が容易となり得る。
本実施例では、緩衝材50として厚さ約0.5mmのポリエチレンシートを用いた。この緩衝材50の幅は、偏平型電極体10の横断面における短軸の長さ(電極体10の厚み)とほぼ同等である。また、緩衝材50の長さは電極体10の軸長とほぼ同等である。この緩衝材50には、気体の流通が可能な貫通孔(図示せず)が多数設けられている。
【0024】
二次電池1を製造する際には、例えば図1に示すように、電極体10と正極30と負極40と絶縁材50とを組み立てる。正フランジ部34および負フランジ部44の上にそれぞれ絶縁部材60を配置し、その上から蓋体24を被せる。絶縁部材60および蓋体24には、正端子部36および負端子部46をそれぞれ貫通させる貫通孔が設けられている。正負の端子部36,46の外周にはネジ溝が設けられている。蓋体24を貫通した端子部36,46の周囲に絶縁パッキン62を配置し、ナット38,48をネジ止めして端子部36,46と蓋体24との間をシールする。なお、絶縁パッキン62の下面には図示しない環状凸部が形成されている。この環状凸部は、蓋体24の貫通孔に挿入されて、当該貫通孔の内壁面と端子部36,46とを隔てて(絶縁して)いる。ケース22の上端開口部から、電極体10と、正極30の正接触部22および正フランジ部24と、負極40の負接触部42および負フランジ部44とをケース22に収容する。ケース22の上端開口部に蓋体24をレーザ溶接等により取り付けて容器20を構成する。このようにして二次電池1を得ることができる。なお、電解液は、蓋体24に設けられた電解液注入孔(図示せず)を通じて容器20内に注入され、電極体10に含浸される。また、図2では絶縁パッキン62およびナット38,48の図示を省略している。
【0025】
本実施例の二次電池1が落下した場合における緩衝材50の作用を説明する。例えば、二次電池1が蓋体24側から落下して着地面に衝突すると、それまでの落下運動の慣性によってフランジ部34,44が電極体10の外周に押付けられる。このとき、フランジ部34,44と電極体10との間に配置された緩衝材50によって、電極体10に加わる圧縮応力を分散させることができる。例えば、正フランジ部34の負フランジ部側かつ内面側の端部(内面端部)34a、および/または、負フランジ部44の正フランジ部側かつ内面側の端部(内面端部)44aが電極体10を局所的に強く圧迫するという現象を緩和することができる。その結果、二次電池1が内部短絡(例えば、電極体10の内部での短絡、端子30,40と電極体10の間での短絡等)を生じることが回避される。
【0026】
なお、本実施例の変形例として、図3に示すように、フランジ部34,44の内面端部34a,44aをR形状(丸みをもたせた形状)としてもよい。また、正フランジ部34の負フランジ部側および/または負フランジ部44の正フランジ部側を、電極体10外周から離隔する方向に(蓋体24側に)反った形状としてもよい。このような形状のフランジ部34,44によると、落下時等に電極体10に加わる圧縮応力を分散させるという効果がさらに高められる。
【0027】
(第二実施例)
本実施例は、正フランジ部および負フランジ部と電極体との間にそれぞれ一つづつ緩衝材が配置されたリチウムイオン二次電池の一例である。以下、第一実施例に係る部材と同様の機能を果たす部材については同じ符号を付し、その説明を省略する。
図4は、本実施例の二次電池の要部を示す斜視図である。図示するように、本実施例の二次電池を構成する正極30のフランジ部34と電極体10との間には第一緩衝材52が配置されている。また、負極40のフランジ部44と電極体10との間には、第一緩衝材52とは別体の第二緩衝材53が配置されている。これらの緩衝材52,53の大まかな形状は長方形であって、その主要部の厚さは約1mmである。第一緩衝材52は、電極体10の軸方向の一端付近から、正フランジ部34の負フランジ側端部を超えて負フランジ側に延びている。また、第二緩衝材53は、電極体10の軸方向の一端付近から、負フランジ部34の正フランジ側端部を超えて正フランジ部側に延びている。第一緩衝材52の負フランジ部側かつ内面側の端部(内面端部)52aは、その電極体10側がR形状となるように形成されている。同様に、第二緩衝材53の正フランジ部側かつ内面側の端部(内面端部)53aもR形状に形成されている。電極体10と端子30,40と緩衝材52,53とをこのように組み立てたものを、第一実施例と同様に(図1参照)容器20に収容して二次電池を得ることができる。
【0028】
本実施例の構成によると、フランジ部34,44と電極体10との間(特に、それらの内面端部34a,44aと電極体10との間)にそれぞれ緩衝材52,53が配置されていることにより、二次電池の落下時等に電極体10にかかる応力を分散させることができる。このことによって二次電池の内部短絡を抑制することができる。また、図4に示すように、第一緩衝材52と第二緩衝材53とは電極体10の軸方向に離れて配置されているので、二次電池の内外で流体(電池の過充電時等において発生し得るガス、電池製造時に注入される電解液等)を流通させる際に、その流体の流れが緩衝材52,53によって妨げられにくいという利点がある。
なお、本実施例の変形例として、内面端部52a,53aをR形状としない形状の緩衝材52,53を用いてもよい。例えば、緩衝材52,53が比較的柔軟である場合(例えばEPDMを主体に構成されている場合)には、このような形状のものを好ましく採用することができる。また、図3に示す二次電池1と同様に、フランジ部34,44の内面端部34a,44aをR形状としてもよい。これにより、内部短絡を防止する効果をさらに高めることができる。
【0029】
(第三実施例)
本実施例は、正フランジ部および負フランジ部を受入れる窪みを有する緩衝材(絶縁部材)を用いて構成されたリチウムイオン二次電池の一例である。
図5に示すように、本実施例の二次電池3は、第一実施例の二次電池1とは異なる形状の緩衝材50を有する。この緩衝材50は絶縁性材料からなり、その長手方向の両端部にある薄肉部502と、それらの薄肉部502の間(長手方向の中央部)にある厚肉部504とを備える。この緩衝材50は、一方の薄肉部502が正フランジ部34と電極体10との間に、他方の薄肉部502が負フランジ部44と電極体10との間にそれぞれ位置し、厚肉部504が正フランジ部34と負フランジ部44との間(電極体10の軸方向の中央部)に位置するように配置されている。すなわち、緩衝材50には、薄肉部502と厚肉部504との厚さの違いによって薄肉部502の部分に窪みが形成されており、これらの窪み(薄肉部502)に正フランジ部34および負フランジ部44がそれぞれ収容されている。また、正フランジ部34と負フランジ部44との間では、厚肉部504が蓋体24側に突出して蓋体24の内表面にほぼ当接している。その他の部分については、第一実施例の二次電池1とほぼ同様の構成を有する。
このような構成の二次電池3によると、第一実施例の構成に比べて、さらに良好な短絡防止効果を得ることができる。
【0030】
なお、緩衝材50の形状は、図5に示すよりも厚肉部504の蓋体24側への突出の程度が少ない(すなわち、薄肉部502と形成される窪みがより浅い)形状としてもよい。緩衝材50の形状は、この厚肉部504が少なくともフランジ部34,44の内面よりも蓋体24側に突出した形状とすることが好ましく、フランジ部34,44の上面(蓋体24側の面)よりも蓋体24側に突出した形状とすることがより好ましい。緩衝材50をかかる形状とするには、例えば、薄肉部502と厚肉部504との厚さの違いをフランジ部34,44の厚さよりも大きくすればよい。
【0031】
(第四実施例)
本実施例は、正フランジ部および負フランジ部を受入れる窪みを有する容器を用いて構成されたリチウムイオン二次電池の一例である。
図6に示すように、本実施例の二次電池4では、フランジ部34,44と電極体10との間に緩衝材50が配置されていない。電極体10の外周とフランジ部34,44の内面との間には厚さ約1mmの隙間が設けられている。また、蓋体24は、長手方向の両端部にある薄肉部242、それらの薄肉部242の間(長手方向の中央部)にある厚肉部244とを備えている。一方の薄肉部242は正フランジ部34の上方に、他方の薄肉部242は負フランジ部44の上方にそれぞれ位置している。薄肉部242とフランジ部34,44との間にはそれぞれ絶縁部材60が配置されている。また、蓋体24の厚肉部244はフランジ部34,44の間に位置している。すなわち、容器20を構成する蓋体24の内面には、薄肉部242と厚肉部244との厚さの違いによって薄肉部242の部分に窪みが形成されており、これらの窪み(薄肉部242)に正フランジ部34および負フランジ部44がそれぞれ収容されている。その他の部分については、第一実施例の二次電池1とほぼ同様の構成を有する。
本実施例の構成では、前記窪みに収容されたフランジ部34,44の内面(電極体側の面)と、窪み以外の部分である厚肉部244の内面とが、ほぼ同一面上にある。このことによって、フランジ部34,44のある部分とない部分との間に顕著な段差がある場合に比べて、電極体10に局所的な応力が加わるという現象を緩和することができる。したがって二次電池4の内部短絡をよりよく防止または抑制することができる。
【0032】
なお、蓋体24の形状は、図6に示すよりも厚肉部244の突出の程度が少ない形状としてもよい。厚肉部244が少なくともフランジ部34,44の上面(蓋体24側の面)よりも電極体10側に突出した形状とすることが好ましく、厚肉部244がフランジ部34,44の下面(電極体10側の面)よりも電極体10側に突出した形状とすることがより好ましい。蓋体24をかかる形状とするためには、例えば、薄肉部242と厚肉部244との厚さの違いを、フランジ部34,44の厚さと絶縁部材60との合計厚さよりも大きくすればよい。また、図7に示すように、フランジ部34,44と電極体10との間に、第一実施例と同様の緩衝材50を配置した構成とすることにより、内部短絡を防止する効果をさらに高めることができる。
【0033】
(第五実施例)
本実施例は、正フランジ部および負フランジ部を受入れる窪みを有する絶縁部材を用いて構成されたリチウムイオン二次電池の一例である。
図8に示すように、本実施例の二次電池5では、第一実施例の二次電池1(図2参照)において、正フランジ部34および負フランジ部44と蓋体24との間にそれぞれ配置された二つの絶縁部材60に代えて、正フランジ部34と蓋体24との間から負フランジ部44と蓋体24との間まで延びる一体形状の絶縁部材64を用いている。この絶縁部材64は、長手方向の両端にあってフランジ部34,44と蓋体24との間にそれぞれ配置される薄肉部642と、それらの薄肉部642の間にあって正フランジ部34と負フランジ部44との間に配置される厚肉部644とを備える。すなわち、絶縁部材64には、薄肉部642と厚肉部244との厚さの違いによって窪みが形成されており、これらの窪み(薄肉部642)にフランジ部34,44が収容されている。その他の部分については、第一実施例の二次電池1とほぼ同様の構成を有する。
本実施例の構成では、フランジ部34,44の内面と厚肉部644の内面とはほぼ同一面上にある。このことによって、フランジ部34,44のある部分とない部分との間に顕著な段差がある場合に比べて、電極体10に局所的な応力が加わるという現象を緩和することができる。したがって電池5の内部短絡をよりよく防止または抑制することができる。
【0034】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
例えば、上記実施例ではリチウムイオン二次電池につき説明したが、本発明はニッケル水素電池、ニッケルカドミウム電池等の他の種類の二次電池や、電気二重層キャパシタ等の各種蓄電素子にも適用することができる。電極を構成する活物質、集電体および端子ならびにセパレータ等の材質や電解液の組成等は、蓄電素子の種類に応じて適当に選択され得る。
また、本明細書または図面に説明した技術要素は、単独であるいは各種の組み合わせによって技術的有用性を発揮するものであり、出願時請求項記載の組み合わせに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
【図面の簡単な説明】
【図1】第一実施例に係る二次電池を示す分解斜視図である。
【図2】図1のII−II線断面を示す模式的断面図である。
【図3】第一実施例の変形例を示す模式的断面図である。
【図4】第二実施例に係る二次電池の要部を示す斜視図である。
【図5】第三実施例に係る二次電池を示す模式的断面図である。
【図6】第四実施例に係る二次電池を示す模式的断面図である。
【図7】第四実施例の変形例に係る二次電池を示す模式的断面図である。
【図8】第五実施例に係る二次電池を示す模式的断面図である。
【符号の説明】
1,3,4,5:リチウムイオン二次電池(蓄電素子)
10:捲回型電極体
20:容器
24:蓋体
30:正極
32:正接触部
34:正フランジ部
36:正端子部
40:負極
42:負接触部
44:負フランジ部
46:負端子部
50,52,53:緩衝材
60,64:絶縁部材
242,502,642:薄肉部(窪み)
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power storage device having a wound electrode body. In this specification, the term “electric storage element” is a concept that includes both batteries (such as lithium-ion batteries and nickel-metal hydride batteries) and capacitors (such as electric double layer capacitors).
[0002]
2. Description of the Related Art There is known an electric storage element in which an electrode body (wound electrode body) in which a positive electrode sheet and a negative electrode sheet are wound via a separator is housed in a container together with an electrolytic solution. As one form of such a power storage element, an electrode body is vertically accommodated in a cylindrical case having a bottom (so that a winding axis of the electrode body is substantially upright on a bottom surface of the case), and an upper end of the case is provided. There is a container in which an opening is closed with a lid to constitute a container. The current is taken out of the electrode body through a pair of terminals electrically connected to the positive electrode sheet and the negative electrode sheet, typically on the bottom side and the lid side of the container (that is, in the axial direction of the wound electrode body). From both ends).
[0003]
By the way, the power storage element may be exposed to a physical impact such as a drop. In order to prevent the storage element from causing an internal short circuit in such a case, Patent Literature 1 discloses a secondary battery of the above-described configuration in which an electrode body is vertically housed in a container, and one end face in the axial direction of the electrode body and the battery. A technique of disposing an insulator between a lid (lid) is disclosed. Another prior art document relating to preventing an internal short circuit at the time of a battery drop is Patent Document 2.
[0004]
[Patent Document 1]
JP-A-9-283112
[Patent Document 2]
JP 2001-357893 A
[0005]
On the other hand, as another form of a power storage element having a wound electrode body, there is one in which the electrode body is housed in a container in a direction in which a winding axis is turned sideways. Typically, such a power storage element (hereinafter, also referred to as a “horizontal power storage element”) typically includes a pair of terminals from the side of the electrode body (in a direction substantially orthogonal to the winding axis of the wound electrode body). Through which the current is extracted. In order to prevent an internal short circuit when the storage element of such a form falls or the like, there is little effect obtained by directly applying the technique of Patent Document 1 having a different current extraction direction or the like.
Therefore, an object of the present invention is to provide a horizontal power storage element having a configuration suitable for preventing an internal short circuit at the time of drop.
[0006]
When a current is taken out from the side of the wound electrode body, at least one or two or more arranged around the electrode body are taken into account for forming this take-out structure. (For example, a positive electrode and / or a negative electrode) tends to cause significant unevenness in a portion facing the outer periphery of the electrode body. The present inventor has found that the above problem can be solved by preventing or suppressing the phenomenon that a large stress is locally applied to the outer periphery of the electrode body (that is, the laminating direction of the electrode sheet) due to such unevenness.
[0007]
One horizontal power storage element provided by the present invention includes (a) a wound electrode body in which a positive electrode sheet and a negative electrode sheet are wound via a separator. (B) a positive contact portion in contact with the positive electrode sheet at one end of the wound electrode body; a positive terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body; A positive electrode having a positive flange portion extending between the positive terminal portion and the positive terminal portion and extending along the outer periphery of the wound electrode body can be provided. (C) a negative contact portion in contact with the negative electrode sheet at the other end of the wound electrode body, a negative terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body, and And a negative flange portion between the negative terminal portion and the negative flange portion extending along the outer periphery of the wound electrode body. Further, (d) a container for accommodating the wound electrode body, the positive contact portion and the positive flange portion of the positive electrode, and the negative contact portion and the negative flange portion of the negative electrode can be provided. Further, a cushioning material may be provided between the positive flange of the positive electrode and the outer periphery of the wound electrode body and between the negative flange of the negative electrode and the outer periphery of the wound electrode body.
By interposing a cushioning material between the positive flange portion and the negative flange portion and the outer periphery of the electrode body, even when the flange portion (especially the outer edge) is pressed against the electrode body at the time of dropping of the power storage element, for example, The applied force (compressive stress) can be dispersed. As a result, it is possible to avoid locally applying a high compressive force to the electrode body, and it is possible to prevent or suppress an internal short circuit of the power storage element.
[0008]
In a preferable one of such power storage elements, the cushioning member has an integral shape. The cushioning material extends from between the positive flange of the positive electrode and the outer periphery of the wound electrode body to between the negative flange of the negative electrode and the outer periphery of the wound electrode body. Such a configuration is preferable because the positioning of the cushioning material is easy during the manufacture of the electric storage element.
Note that the cushioning member arranged between the positive flange portion and the outer periphery of the electrode body and the cushioning member arranged between the negative flange portion and the outer periphery of the electrode body may be separate members (separate bodies).
[0009]
Another horizontal power storage element provided by the present invention can have the above-described configurations (a) to (d). In such a configuration, the positive terminal portion of the positive electrode and the negative terminal portion of the negative electrode penetrate a wall defining the container and are exposed outside the container. A recess is formed on the inner surface of the wall of the container, through which the positive terminal of the positive electrode and the negative terminal of the negative electrode penetrate, to receive the positive flange of the positive electrode and the negative flange of the negative electrode. Still another embodiment has the above-described configurations (a) to (d) and has the positive terminal portion of the positive electrode and the negative terminal portion of the negative electrode exposed outside the container through the wall defining the container. Between the wall of the container and the wound electrode body through which the positive terminal part of the positive electrode and the negative terminal part of the negative electrode penetrate, the positive flange part of the positive electrode and the negative flange part of the negative electrode An insulating member having a recess formed therein is arranged.
By forming such a depression, when a stress is applied in a direction to relatively bring the flange portion and the electrode body closer due to dropping of the power storage element or the like, the positive and negative flange portions (typically, ends thereof) become the electrode body. Phenomenon of strong local contact with the outer periphery of the substrate can be mitigated. This can prevent or suppress an internal short circuit of the power storage element.
[0010]
In one preferred embodiment of such a lateral power storage element, the depth of the depression is substantially equal to the thickness of the positive flange portion of the positive electrode and the negative flange portion of the negative electrode. Here, “substantially equal” means that the depth of the depression is within ± 30% (more preferably, within 10%) of the thickness of the flange portion.
In another preferred embodiment, the inner surfaces of the positive and negative flange portions accommodated in the recess (the surface facing the outer periphery of the electrode body) and the inner surface of the container other than the recess are substantially on the same plane. Here, “substantially on the same plane” means that the height of the step between the inner surface of the container and the inner surface of the flange except for the depression is within ± 30% (more preferably 10%) of the thickness of the flange. Within).
[0011]
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention can be implemented in the following embodiments.
[0012]
(Mode 1) The positive flange portion of the positive electrode is formed such that its end on the negative flange portion side and on the inner surface side (the outer peripheral side of the electrode body) is formed in an arc shape (R shape) having a radius capable of preventing local contact with the wound electrode. can do. In addition, the negative flange portion of the negative electrode can be formed such that the end portion on the positive flange portion side and the inner surface side (the outer peripheral side of the electrode body) is formed in an arc shape having a radius capable of preventing local contact with the wound electrode body. . By making at least one of the positive flange portion and the negative flange portion have such a shape, the phenomenon that local stress is applied to the electrode body when the flange portion is pressed against the electrode body side can be better mitigated. it can. Alternatively, the shape of the positive flange portion may be a shape that warps in a direction away from the outer periphery of the electrode body as approaching the negative flange portion side. Further, the shape of the negative flange portion may be a shape that warps in a direction away from the outer periphery of the electrode body as approaching the positive flange portion side.
[0013]
(Embodiment 2) The general shape of the container is a flat rectangular parallelepiped, and includes a cylindrical case with a bottom and a lid for closing the opening of the case. A flat-type wound electrode body is accommodated in the container. The positive terminal portion of the positive electrode and the negative terminal portion of the negative electrode penetrate the lid of the container and are exposed outside the container. Positive and negative flanges extend between the lid and the wound electrode body. A power storage device having such a configuration (preferably, a lithium ion secondary battery or an electric double layer capacitor) is an example of a power storage device to which the present invention is preferably applied.
[0014]
【Example】
(First embodiment)
An example of a lithium ion secondary battery in which a cushioning material is disposed between the positive and negative flange portions and the outer periphery of the electrode body will be described.
FIG. 1 is an exploded perspective view showing the secondary battery according to the present embodiment. FIG. 2 is a sectional view schematically showing a section taken along line II-II of FIG. As shown in these figures, the secondary battery 1 includes a wound electrode body 10 in which a pair of electrode sheets (a positive electrode sheet 12 and a negative electrode sheet 14) are flatly wound via a separator, and an electrode body. A flat rectangular parallelepiped (square or flat) container 20 for accommodating the electrode 10 and a positive electrode 30 and a negative electrode 40 connected to both axial ends of the electrode body 10 are provided. The positive electrode 30 and the negative electrode 40 have a positive flange portion 34 and a negative flange portion 44 extending along the outer periphery of the electrode body 10 from both ends in the axial direction of the electrode body 10, and further extend outward through the container 20. I have. An integral cushioning material 50 is commonly arranged between the positive flange portion 34 and the negative flange portion 44 and the outer periphery of the electrode body 10.
[0015]
First, the wound electrode body 10 will be described. This electrode body has a positive electrode sheet in which a positive electrode active material layer is formed on both surfaces of a long positive electrode current collector, and a negative electrode sheet in which a negative electrode active material layer is formed on both surfaces of a long negative electrode current collector. And two long separator sheets. These sheets are laminated in the order of a positive electrode sheet, a separator, a negative electrode sheet, and a separator, and are wound in the longitudinal direction using a winding machine or the like. By pressing the wound body in the radial direction, a flatly wound electrode body can be manufactured.
In such a wound electrode body, the positive electrode sheet and the negative electrode sheet are stacked while being displaced from each other in the winding axis direction. As a result, as schematically shown in FIGS. 1 and 2, one end of the electrode body 10 in the axial direction is mainly composed of the positive electrode sheet 12, and the other end in the axial direction is mainly composed of the negative electrode sheet 14. A positive electrode 30 and a negative electrode 40 are connected to one end and the other end, respectively. The outer periphery of the electrode body 10 is covered with an insulating sheet (not shown, the same as the separator sheet here). Thereby, conduction between the electrode body 10 and the container 20 is avoided.
[0016]
Note that an aluminum foil or the like can be used as the positive electrode current collector, and a copper foil or the like can be used as the negative electrode current collector. As the separator, a porous polyolefin (polyethylene, polypropylene, etc.) sheet can be used. As the positive electrode active material constituting the positive electrode active material layer, LiMn Two O Four , LiCoO Two , LiNiO Two One or more of the positive electrode active materials used in conventional lithium ion secondary batteries can be used without any particular limitation. Further, as the negative electrode active material constituting the negative electrode active material layer, one or two or more types of negative electrode active materials used in conventional lithium ion secondary batteries, such as amorphous carbon and graphite carbon, are used without particular limitation. Can be. These active material layers may appropriately contain conventionally known binders, conductive agents, and the like.
[0017]
The container 20 is made of aluminum, and includes a case 22 having a bottomed rectangular tube shape, and a lid 24 that seals an upper end opening of the case 22. The wound electrode body 10 is accommodated in the container 20 such that the wound axis is turned over. Electrode body 10 is impregnated with an electrolytic solution (not shown). As the electrolytic solution, 1 mol / L of LiPF was mixed with a 7: 3 (mass ratio) mixed solvent of diethyl carbonate and ethylene carbonate. 6 Can be used.
[0018]
The positive electrode 30 is obtained by forming an aluminum plate into a predetermined shape. The positive electrode 30 is roughly orthogonal to a positive contact portion 32 extending along one axial end of the electrode body 10 in a flat direction (vertical direction in FIG. 2) and a winding axis of the electrode body 10. The positive terminal portion 36 extends in the direction (here, the upper side in FIGS. 1 and 2), and the positive flange portion 34 is provided between the positive contact portion 32 and the positive terminal portion 36 and extends along the outer periphery of the electrode body 10. . One end of the positive contact portion 32 opposite to the positive flange portion 34 is connected to the positive electrode sheet 12 at one end of the electrode body 10 by welding or the like. As shown in FIG. 2, the normal flange portion 34 wraps around the outer periphery of the electrode body 10 from the other end (the upper end in FIGS. 1 and 2) of the positive contact portion 32, and extends along the outer periphery. And the cover 24 extend toward the other end of the electrode body 10 (negative flange side).
[0019]
The negative electrode 40 is formed by molding a copper plate into substantially the same shape as the positive electrode 30, and has a negative contact portion 42, a negative flange portion 44, and a negative terminal portion 46. The negative electrode 40 is attached to the electrode body 10 so as to be substantially symmetric with the positive electrode 30. One end of the negative contact portion 42 opposite to the negative flange portion 44 is connected to the negative electrode sheet 14 by welding or the like at the other end of the electrode body 10. The negative flange portion 44 wraps around the outer periphery of the electrode body 10 from the other end of the negative contact portion 42 (the upper end in FIGS. 1 and 2), and extends between the electrode body 10 and the lid 24 along the outer periphery. 10 extends to the other end side (the front flange portion side).
[0020]
The positive terminal portion 36 and the negative terminal portion 46 extend outside the container 20 through the lid 24. Through these positive and negative terminal portions 36 and 46, a current can be extracted from the side of the electrode body 10 (direction substantially perpendicular to the winding axis). The positive and negative flange portions 34 and 44 extend in a direction approaching each other from one end and the other end in the axial direction of the electrode body 10. A cushioning material 50 is arranged between these flange portions 34 and 44 and the outer periphery of the electrode body 10. Hereinafter, the cushioning member 50 will be described.
[0021]
As a constituent material of the cushioning material, depending on the type of the storage element, an electrolyte solution forming the storage element or a material having resistance to a reaction product generated by use of the storage element may be appropriately selected and used. it can. Usually, it is preferable to select an insulating material. For example, polyolefin resins such as polyethylene and polypropylene, and ethylene-propylene-diene copolymer (EPDM) are preferably selected. Further, PPS (polyphenylene sulfide resin), polyimide resin, polyamide imide resin, fluororesin, PEEK (polyether ether ketone resin), PES (polyether sulfone resin), or the like may be used. A material obtained by forming such a material into a plate shape, a sheet shape, a film shape, or the like can be used as a cushioning material. A foam, a porous body, a nonwoven fabric, a woven fabric, or the like mainly composed of such a material may be used.
[0022]
The thickness of the cushioning material is not particularly limited. In general, when the thickness of the cushioning material is increased, an excellent short-circuit prevention effect can be exhibited even with a larger impact. On the other hand, when the thickness of the cushioning material is excessively increased, the size of the electric storage element tends to increase. From these balances, it is usually appropriate to set the thickness of the cushioning material to about 0.2 to 2 mm. The width of the cushioning material can be, for example, about 0.5 to 1.2 times the thickness of the flat wound electrode body. In addition, it is preferable that the width of the cushioning material is smaller than the width of the container opening because the storage element can be easily assembled. The length of the cushioning material is such that, in the case of the one-piece cushioning material as in this embodiment, the length reaches from between the positive flange portion and the outer periphery of the electrode body to between the negative flange portion and the outer periphery of the electrode body. It is preferable to use a buffer having a length substantially equal to the axial length of the electrode body.
[0023]
This cushioning material can be formed in a shape having a hole penetrating in the thickness direction and / or a notch on the outer periphery. Thus, when a fluid flows inside and outside the electric storage element (container), the influence of the buffer material on the flowability of the fluid can be reduced. For example, it is possible to more appropriately secure a gas release path for releasing gas that may be generated when the power storage element is overcharged to the outside of the container. Further, the operation of injecting the electrolytic solution into the container at the time of manufacturing the electric storage element can be facilitated.
In the present embodiment, a polyethylene sheet having a thickness of about 0.5 mm was used as the cushioning material 50. The width of the cushioning material 50 is substantially equal to the length of the short axis (thickness of the electrode body 10) in the cross section of the flat electrode body 10. The length of the buffer 50 is substantially equal to the axial length of the electrode body 10. The cushioning member 50 is provided with a large number of through holes (not shown) through which gas can flow.
[0024]
When manufacturing the secondary battery 1, for example, as shown in FIG. 1, the electrode body 10, the positive electrode 30, the negative electrode 40, and the insulating material 50 are assembled. The insulating member 60 is disposed on each of the positive flange portion 34 and the negative flange portion 44, and the lid 24 is put on the insulating member 60 from above. The insulating member 60 and the lid 24 are provided with through holes for penetrating the positive terminal portion 36 and the negative terminal portion 46, respectively. Screw grooves are provided on the outer periphery of the positive and negative terminal portions 36 and 46. The insulating packing 62 is arranged around the terminal portions 36 and 46 penetrating the lid 24, and nuts 38 and 48 are screwed to seal between the terminal portions 36 and 46 and the lid 24. An annular projection (not shown) is formed on the lower surface of the insulating packing 62. The annular projection is inserted into the through hole of the lid 24 and separates (insulates) the inner wall surface of the through hole from the terminal portions 36 and 46. The electrode body 10, the positive contact portion 22 and the positive flange portion 24 of the positive electrode 30, and the negative contact portion 42 and the negative flange portion 44 of the negative electrode 40 are housed in the case 22 from the upper end opening of the case 22. The container 20 is configured by attaching the lid 24 to the upper end opening of the case 22 by laser welding or the like. Thus, the secondary battery 1 can be obtained. The electrolyte is injected into the container 20 through an electrolyte injection hole (not shown) provided in the lid 24, and is impregnated in the electrode 10. In FIG. 2, the illustration of the insulating packing 62 and the nuts 38 and 48 is omitted.
[0025]
The operation of the cushioning member 50 when the secondary battery 1 of the present embodiment falls will be described. For example, when the secondary battery 1 falls from the lid 24 side and collides with the landing surface, the flange portions 34 and 44 are pressed against the outer periphery of the electrode body 10 by the inertia of the falling movement until then. At this time, the compressive stress applied to the electrode body 10 can be dispersed by the cushioning material 50 disposed between the flange portions 34 and 44 and the electrode body 10. For example, the end (inner end) 34a on the negative flange side and the inner surface side of the positive flange 34 and / or the end (inner end) 44a on the positive flange side and the inner surface side of the negative flange 44 are formed. The phenomenon that the electrode body 10 is strongly pressed locally can be reduced. As a result, it is possible to prevent the secondary battery 1 from causing an internal short circuit (for example, a short circuit inside the electrode body 10, a short circuit between the terminals 30, 40 and the electrode body 10).
[0026]
As a modified example of the present embodiment, as shown in FIG. 3, the inner surface end portions 34a, 44a of the flange portions 34, 44 may be R-shaped (rounded shape). Further, the negative flange portion side of the positive flange portion 34 and / or the positive flange portion side of the negative flange portion 44 may have a shape that is warped (toward the lid 24 side) in a direction away from the outer periphery of the electrode body 10. According to the flange portions 34 and 44 having such a shape, the effect of dispersing the compressive stress applied to the electrode body 10 at the time of dropping or the like is further enhanced.
[0027]
(Second embodiment)
The present embodiment is an example of a lithium ion secondary battery in which one buffer member is disposed between each of the positive and negative flange portions and the electrode body. Hereinafter, members performing the same functions as the members according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
FIG. 4 is a perspective view illustrating a main part of the secondary battery of the present embodiment. As shown in the drawing, a first cushioning material 52 is disposed between the flange portion 34 of the positive electrode 30 and the electrode body 10 constituting the secondary battery of the present embodiment. In addition, a second buffer material 53 separate from the first buffer material 52 is disposed between the flange portion 44 of the negative electrode 40 and the electrode body 10. The rough shape of these cushioning materials 52 and 53 is rectangular, and the thickness of the main part is about 1 mm. The first buffer material 52 extends from the vicinity of one axial end of the electrode body 10 to the negative flange side beyond the negative flange side end of the positive flange portion 34. In addition, the second buffer material 53 extends from the vicinity of one end of the electrode body 10 in the axial direction, beyond the end of the negative flange portion 34 on the positive flange side, toward the positive flange portion. An end (inner end) 52a of the first buffer member 52 on the negative flange side and on the inner surface side is formed such that the electrode body 10 side has an R shape. Similarly, the end (inner end) 53a on the front flange side and the inner surface side of the second cushioning member 53 is also formed in an R shape. The assembly of the electrode body 10, the terminals 30, 40, and the cushioning materials 52, 53 in this manner is housed in the container 20 in the same manner as in the first embodiment (see FIG. 1) to obtain a secondary battery. .
[0028]
According to the configuration of the present embodiment, the cushioning members 52 and 53 are disposed between the flange portions 34 and 44 and the electrode body 10 (particularly, between the inner surface ends 34a and 44a and the electrode body 10). Accordingly, the stress applied to the electrode body 10 when the secondary battery falls or the like can be dispersed. Thereby, the internal short circuit of the secondary battery can be suppressed. Further, as shown in FIG. 4, since the first cushioning member 52 and the second cushioning member 53 are arranged apart from each other in the axial direction of the electrode body 10, the fluid inside and outside the secondary battery (when the battery is overcharged) And the like, when flowing a gas which can be generated in a battery or the like, or an electrolytic solution injected at the time of manufacturing a battery, there is an advantage that the flow of the fluid is hardly hindered by the buffer materials 52 and 53.
As a modification of the present embodiment, cushioning materials 52, 53 having inner surfaces 52a, 53a that do not have an R-shape may be used. For example, when the cushioning members 52 and 53 are relatively flexible (for example, when mainly composed of EPDM), such a shape can be preferably adopted. Further, similarly to the secondary battery 1 shown in FIG. 3, the inner surface end portions 34a, 44a of the flange portions 34, 44 may have an R shape. Thereby, the effect of preventing an internal short circuit can be further enhanced.
[0029]
(Third embodiment)
This embodiment is an example of a lithium ion secondary battery configured using a cushioning material (insulating member) having a recess for receiving a positive flange portion and a negative flange portion.
As shown in FIG. 5, the secondary battery 3 of the present embodiment has a cushioning material 50 having a shape different from that of the secondary battery 1 of the first embodiment. The cushioning member 50 is made of an insulating material, and includes thin portions 502 at both ends in the longitudinal direction and a thick portion 504 between the thin portions 502 (central portion in the longitudinal direction). The cushioning member 50 has one thin portion 502 located between the positive flange portion 34 and the electrode body 10, and the other thin portion 502 located between the negative flange portion 44 and the electrode body 10. 504 is arranged between the positive flange portion 34 and the negative flange portion 44 (the central portion in the axial direction of the electrode body 10). That is, in the cushioning material 50, depressions are formed in the thin portion 502 due to the difference in thickness between the thin portion 502 and the thick portion 504, and the front flange portion 34 and the depression are formed in these depressions (the thin portion 502). Each of the negative flange portions 44 is housed. Further, between the positive flange portion 34 and the negative flange portion 44, the thick portion 504 protrudes toward the lid 24 and substantially contacts the inner surface of the lid 24. Other parts have substantially the same configuration as the secondary battery 1 of the first embodiment.
According to the secondary battery 3 having such a configuration, a better short-circuit prevention effect can be obtained as compared with the configuration of the first embodiment.
[0030]
The shape of the cushioning material 50 may be a shape in which the thick portion 504 projects less toward the lid 24 side than that shown in FIG. 5 (that is, the recess formed with the thin portion 502 is shallower). . The shape of the cushioning material 50 is preferably such that the thick portion 504 protrudes toward the lid 24 at least from the inner surfaces of the flanges 34 and 44, and the upper surfaces of the flanges 34 and 44 (the side of the lid 24). It is more preferable to have a shape protruding toward the lid 24 side from the (surface). In order to make the cushioning member 50 have such a shape, for example, the difference in thickness between the thin portion 502 and the thick portion 504 may be made larger than the thickness of the flange portions 34 and 44.
[0031]
(Fourth embodiment)
The present embodiment is an example of a lithium ion secondary battery configured using a container having a recess for receiving a positive flange portion and a negative flange portion.
As shown in FIG. 6, in the secondary battery 4 of the present embodiment, no cushioning material 50 is disposed between the flanges 34 and 44 and the electrode body 10. A gap having a thickness of about 1 mm is provided between the outer periphery of the electrode body 10 and the inner surfaces of the flange portions 34 and 44. The lid 24 includes a thin portion 242 at both ends in the longitudinal direction, and a thick portion 244 between the thin portions 242 (central portion in the longitudinal direction). One thin portion 242 is located above the positive flange portion 34, and the other thin portion 242 is located above the negative flange portion 44. An insulating member 60 is disposed between the thin portion 242 and the flange portions 34 and 44, respectively. The thick part 244 of the lid 24 is located between the flange parts 34 and 44. That is, on the inner surface of the lid 24 constituting the container 20, depressions are formed in the thin portion 242 due to the difference in thickness between the thin portion 242 and the thick portion 244, and these depressions (the thin portion 242) are formed. ) Accommodate the positive flange portion 34 and the negative flange portion 44, respectively. Other parts have substantially the same configuration as the secondary battery 1 of the first embodiment.
In the configuration of the present embodiment, the inner surfaces of the flange portions 34 and 44 (surfaces on the electrode body side) accommodated in the depressions and the inner surface of the thick portion 244 other than the depressions are substantially on the same plane. Thereby, the phenomenon that local stress is applied to the electrode body 10 can be reduced as compared with the case where there is a remarkable step between the portion where the flange portions 34 and 44 are present and the portion where it is not. Therefore, an internal short circuit of the secondary battery 4 can be better prevented or suppressed.
[0032]
Note that the shape of the lid 24 may be a shape in which the degree of protrusion of the thick portion 244 is smaller than that shown in FIG. It is preferable that the thick portion 244 has a shape protruding toward the electrode body 10 more than at least the upper surface (the surface on the lid 24 side) of the flange portions 34 and 44, and the thick portion 244 has a lower surface ( It is more preferable to have a shape protruding toward the electrode body 10 from the surface of the electrode body 10). In order to make the lid 24 have such a shape, for example, the difference in thickness between the thin portion 242 and the thick portion 244 is made larger than the total thickness of the flange portions 34 and 44 and the insulating member 60. Good. Also, as shown in FIG. 7, the effect of preventing an internal short circuit is further provided by adopting a configuration in which the cushioning material 50 similar to that of the first embodiment is disposed between the flange portions 34 and 44 and the electrode body 10. Can be enhanced.
[0033]
(Fifth embodiment)
The present embodiment is an example of a lithium ion secondary battery configured using an insulating member having a recess for receiving a positive flange portion and a negative flange portion.
As shown in FIG. 8, in the secondary battery 5 of the present embodiment, in the secondary battery 1 of the first embodiment (see FIG. 2), between the positive flange portion 34 and the negative flange portion 44 and the lid 24. Instead of the two insulating members 60 disposed respectively, an integral insulating member 64 extending from between the positive flange portion 34 and the lid 24 to between the negative flange portion 44 and the lid 24 is used. The insulating member 64 includes a thin portion 642 disposed between the flange portions 34 and 44 and the lid 24 at both ends in the longitudinal direction, and a positive flange portion 34 and a negative flange portion between the thin portions 642. And a thick portion 644 disposed between the first portion 44 and the second portion 44. That is, in the insulating member 64, depressions are formed due to the difference in thickness between the thin portion 642 and the thick portion 244, and the flange portions 34 and 44 are accommodated in these depressions (the thin portion 642). Other parts have substantially the same configuration as the secondary battery 1 of the first embodiment.
In the configuration of the present embodiment, the inner surfaces of the flange portions 34 and 44 and the inner surface of the thick portion 644 are substantially flush with each other. Thereby, the phenomenon that local stress is applied to the electrode body 10 can be reduced as compared with the case where there is a remarkable step between the portion where the flange portions 34 and 44 are present and the portion where it is not. Therefore, an internal short circuit of the battery 5 can be better prevented or suppressed.
[0034]
As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and alterations of the specific examples illustrated above.
For example, in the above embodiment, a lithium ion secondary battery was described, but the present invention is also applied to other types of secondary batteries such as nickel-metal hydride batteries and nickel cadmium batteries, and various types of power storage devices such as electric double layer capacitors. be able to. The material of the active material, the current collector, the terminal, the separator, and the like constituting the electrode, the composition of the electrolytic solution, and the like can be appropriately selected depending on the type of the power storage element.
Further, the technical elements described in the present specification or the drawings exhibit technical utility singly or in various combinations, and are not limited to the combinations described in the claims at the time of filing. The technology illustrated in the present specification or the drawings achieves a plurality of objects at the same time, and has technical utility by achieving one of the objects.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a secondary battery according to a first embodiment.
FIG. 2 is a schematic cross-sectional view showing a cross section taken along line II-II of FIG.
FIG. 3 is a schematic sectional view showing a modification of the first embodiment.
FIG. 4 is a perspective view showing a main part of a secondary battery according to a second embodiment.
FIG. 5 is a schematic sectional view showing a secondary battery according to a third embodiment.
FIG. 6 is a schematic sectional view showing a secondary battery according to a fourth embodiment.
FIG. 7 is a schematic sectional view showing a secondary battery according to a modification of the fourth embodiment.
FIG. 8 is a schematic sectional view showing a secondary battery according to a fifth embodiment.
[Explanation of symbols]
1,3,4,5: Lithium ion secondary battery (storage element)
10: Wound electrode body
20: Container
24: Lid
30: positive electrode
32: Positive contact part
34: Front flange part
36: Positive terminal
40: negative electrode
42: negative contact
44: Negative flange
46: negative terminal
50, 52, 53: cushioning material
60, 64: insulating member
242, 502, 642: Thin part (dent)

Claims (6)

(a).正極シートと負極シートがセパレータを介して捲回されている捲回型電極体と、
(b).捲回型電極体の一方の端部で正極シートに接する正接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる正端子部と、該正接触部と該正端子部の間にあって捲回型電極体の外周に沿って延びている正フランジ部とを有する正極と、
(c).捲回型電極体の他方の端部で負極シートに接する負接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる負端子部と、該負接触部と該該負端子部の間にあって捲回型電極体の外周に沿って延びている負フランジ部とを有する負極と、
(d).捲回型電極体と、正極の正接触部および正フランジ部と、負極の負接触部および負フランジ部とを収容する容器と、
(e).正極の正フランジ部と捲回型電極体の外周の間ならびに負極の負フランジ部と捲回型電極体の外周の間に配置されている緩衝材と、
を有する蓄電素子。
(a) .A wound electrode body in which the positive electrode sheet and the negative electrode sheet are wound via a separator,
(b) .A positive contact portion in contact with the positive electrode sheet at one end of the wound electrode body, a positive terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body, and the positive contact portion. A positive electrode having a positive flange portion between the positive terminal portions and extending along the outer periphery of the wound electrode body;
(c) .A negative contact portion in contact with the negative electrode sheet at the other end of the wound electrode body, a negative terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body, and the negative contact portion. A negative electrode having a negative flange portion extending between the negative terminal portions and extending along the outer periphery of the wound electrode body;
(d) .Wound type electrode body, a container accommodating the positive contact portion and the positive flange portion of the positive electrode, and the negative contact portion and the negative flange portion of the negative electrode,
(e) .A cushioning material disposed between the positive flange of the positive electrode and the outer periphery of the wound electrode body and between the negative flange of the negative electrode and the outer periphery of the wound electrode body,
A power storage element having:
前記緩衝材は一体形状であって、正極の正フランジ部と捲回型電極体の外周の間から、負極の負フランジ部と捲回型電極体の外周の間にまで延びていることを特徴とする請求項1に記載の蓄電素子。The cushioning material has an integral shape, and extends from between the positive flange portion of the positive electrode and the outer periphery of the wound electrode body to between the negative flange portion of the negative electrode and the outer periphery of the wound electrode body. The power storage device according to claim 1. (a).正極シートと負極シートがセパレータを介して捲回されている捲回型電極体と、
(b).捲回型電極体の一方の端部で正極シートに接する正接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる正端子部と、該正接触部と該正端子部の間にあって捲回型電極体の外周に沿って延びている正フランジ部とを有する正極と、
(c).捲回型電極体の他方の端部で負極シートに接する負接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる負端子部と、該負接触部と該該負端子部の間にあって捲回型電極体の外周に沿って延びている負フランジ部とを有する負極と、
(d).捲回型電極体と、正極の正接触部と正フランジ部と、負極の負接触部と負フランジ部とを収容する容器とを備え、
正極の正端子部と負極の負端子部は、容器を画定する壁を貫通して容器外に露出しており、
正極の正端子部と負極の負端子部が貫通する容器の壁の内面には、正極の正フランジ部と負極の負フランジ部とを受入れる窪みが形成されていることを特徴とする蓄電素子。
(a) .A wound electrode body in which the positive electrode sheet and the negative electrode sheet are wound via a separator,
(b) .A positive contact portion in contact with the positive electrode sheet at one end of the wound electrode body, a positive terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body, and the positive contact portion. A positive electrode having a positive flange portion between the positive terminal portions and extending along the outer periphery of the wound electrode body;
(c) .A negative contact portion in contact with the negative electrode sheet at the other end of the wound electrode body, a negative terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body, and the negative contact portion. A negative electrode having a negative flange portion extending between the negative terminal portions and extending along the outer periphery of the wound electrode body;
(d) .Wound type electrode body, comprising a container for accommodating the positive contact portion and the positive flange portion of the positive electrode, and the negative contact portion and the negative flange portion of the negative electrode,
The positive terminal portion of the positive electrode and the negative terminal portion of the negative electrode are exposed outside the container through the wall defining the container,
A power storage element characterized in that a recess for receiving a positive flange portion of a positive electrode and a negative flange portion of a negative electrode is formed on an inner surface of a wall of a container through which a positive terminal portion of a positive electrode and a negative terminal portion of a negative electrode pass.
(a).正極シートと負極シートがセパレータを介して捲回されている捲回型電極体と、
(b).捲回型電極体の一方の端部で正極シートに接する正接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる正端子部と、該正接触部と該正端子部の間にあって捲回型電極体の外周に沿って延びている正フランジ部とを有する正極と、
(c).捲回型電極体の他方の端部で負極シートに接する負接触部と、捲回型電極体の捲回軸にほぼ直交する方向に延びる負端子部と、該負接触部と該該負端子部の間にあって捲回型電極体の外周に沿って延びている負フランジ部とを有する負極と、
(d).捲回型電極体と、正極の正接触部と正フランジ部と、負極の負接触部と負フランジ部とを収容する容器とを備え、
正極の正端子部と負極の負端子部は、容器を画定する壁を貫通して容器外に露出しており、
正極の正端子部と負極の負端子部が貫通する容器の壁と、捲回型電極体との間には、正極の正フランジ部と負極の負フランジ部とを受入れる窪みが形成された絶縁部材が配置されていることを特徴とする蓄電素子。
(a) .A wound electrode body in which the positive electrode sheet and the negative electrode sheet are wound via a separator,
(b) .A positive contact portion in contact with the positive electrode sheet at one end of the wound electrode body, a positive terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body, and the positive contact portion. A positive electrode having a positive flange portion between the positive terminal portions and extending along the outer periphery of the wound electrode body;
(c) .A negative contact portion in contact with the negative electrode sheet at the other end of the wound electrode body, a negative terminal portion extending in a direction substantially perpendicular to a winding axis of the wound electrode body, and the negative contact portion. A negative electrode having a negative flange portion extending between the negative terminal portions and extending along the outer periphery of the wound electrode body;
(d) .Wound type electrode body, comprising a container for accommodating the positive contact portion and the positive flange portion of the positive electrode, and the negative contact portion and the negative flange portion of the negative electrode,
The positive terminal portion of the positive electrode and the negative terminal portion of the negative electrode are exposed outside the container through the wall defining the container,
A hollow for receiving the positive flange portion of the positive electrode and the negative flange portion of the negative electrode is formed between the wall of the container through which the positive terminal portion of the positive electrode and the negative terminal portion of the negative electrode penetrate, and the wound electrode body. A power storage element, wherein a member is disposed.
前記窪みの深さが、正極の正フランジ部および負極の負フランジ部の厚さにほぼ等しいことを特徴とする請求項3または4に記載の蓄電素子。The power storage device according to claim 3, wherein a depth of the depression is substantially equal to a thickness of a positive flange of the positive electrode and a thickness of a negative flange of the negative electrode. 前記窪みに収容された正負のフランジ部の内面と、前記窪み以外での容器内面とがほぼ同一面上にある請求項3,4または5に記載の蓄電素子。6. The electric storage device according to claim 3, wherein the inner surfaces of the positive and negative flange portions accommodated in the depression and the inner surface of the container other than the depression are substantially on the same plane.
JP2002375802A 2002-12-26 2002-12-26 Electricity storage element Expired - Lifetime JP4158518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375802A JP4158518B2 (en) 2002-12-26 2002-12-26 Electricity storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375802A JP4158518B2 (en) 2002-12-26 2002-12-26 Electricity storage element

Publications (2)

Publication Number Publication Date
JP2004207089A true JP2004207089A (en) 2004-07-22
JP4158518B2 JP4158518B2 (en) 2008-10-01

Family

ID=32813421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375802A Expired - Lifetime JP4158518B2 (en) 2002-12-26 2002-12-26 Electricity storage element

Country Status (1)

Country Link
JP (1) JP4158518B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303500A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Square battery
JP2006147370A (en) * 2004-11-19 2006-06-08 Toyota Motor Corp Film-armored energy storage device and terminal for energy storage device
KR100612364B1 (en) 2004-10-28 2006-08-16 삼성에스디아이 주식회사 Secondary battery
JP2006236790A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Square secondary battery
JP2008192414A (en) * 2007-02-02 2008-08-21 Nec Tokin Corp Sealed battery
JP2009087901A (en) * 2007-10-03 2009-04-23 Nec Tokin Corp Sealed battery
JP2010021067A (en) * 2008-07-11 2010-01-28 Hitachi Vehicle Energy Ltd Wound secondary battery
JP2010073408A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery and method of manufacturing the same
EP2244328A2 (en) * 2009-04-21 2010-10-27 SB LiMotive Co., Ltd. Rechargeable battery having a current collecting plate
CN102035017A (en) * 2009-10-07 2011-04-27 Sb锂摩托有限公司 Rechargeable battery
JP2011228409A (en) * 2010-04-16 2011-11-10 Seiko Instruments Inc Electrochemical cell and method for manufacturing the same
JP2011243560A (en) * 2010-05-20 2011-12-01 Sb Limotive Co Ltd Secondary battery
WO2011158676A1 (en) * 2010-06-14 2011-12-22 株式会社Gsユアサ Battery
WO2012090744A1 (en) * 2010-12-28 2012-07-05 株式会社Gsユアサ Power storage device
KR101201745B1 (en) 2009-08-17 2012-11-15 에스비리모티브 주식회사 Rechargeable battery
JP2013033662A (en) * 2011-08-02 2013-02-14 Hitachi Vehicle Energy Ltd Secondary battery
JP2013077464A (en) * 2011-09-30 2013-04-25 Gs Yuasa Corp Power storage device
JP2013114940A (en) * 2011-11-29 2013-06-10 Gs Yuasa Corp Electricity storage element
JP2014007036A (en) * 2012-06-22 2014-01-16 Toyota Industries Corp Power storage device and secondary battery
JP2015046404A (en) * 2014-11-05 2015-03-12 株式会社Gsユアサ Battery
WO2018062338A1 (en) * 2016-09-30 2018-04-05 三洋電機株式会社 Angular secondary battery and method for manufacturing same
WO2018138227A1 (en) 2017-01-30 2018-08-02 Lithium Energy and Power GmbH & Co. KG Energy storage device
WO2020110976A1 (en) * 2018-11-28 2020-06-04 三洋電機株式会社 Battery and manufacturing method thereof
JP2020102419A (en) * 2018-12-25 2020-07-02 本田技研工業株式会社 Solid-state battery cell structure and manufacturing method of solid-state battery
US10734655B2 (en) 2012-05-10 2020-08-04 Gs Yuasa International Ltd. Electric storage device
US10826029B2 (en) 2015-09-18 2020-11-03 Gs Yuasa International Ltd. Energy storage device
WO2022118432A1 (en) * 2020-12-03 2022-06-09 株式会社 東芝 Battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102617641B1 (en) * 2021-04-28 2023-12-27 한국앤컴퍼니 주식회사 Battery cover for heavy trucks with enhanced vibration resistance

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303500A (en) * 2003-03-31 2004-10-28 Sanyo Electric Co Ltd Square battery
KR100612364B1 (en) 2004-10-28 2006-08-16 삼성에스디아이 주식회사 Secondary battery
JP2006147370A (en) * 2004-11-19 2006-06-08 Toyota Motor Corp Film-armored energy storage device and terminal for energy storage device
JP4553751B2 (en) * 2005-02-25 2010-09-29 三洋電機株式会社 Square type secondary battery
JP2006236790A (en) * 2005-02-25 2006-09-07 Sanyo Electric Co Ltd Square secondary battery
JP2008192414A (en) * 2007-02-02 2008-08-21 Nec Tokin Corp Sealed battery
JP2009087901A (en) * 2007-10-03 2009-04-23 Nec Tokin Corp Sealed battery
JP2010021067A (en) * 2008-07-11 2010-01-28 Hitachi Vehicle Energy Ltd Wound secondary battery
JP2010073408A (en) * 2008-09-17 2010-04-02 Toyota Motor Corp Battery and method of manufacturing the same
EP2244328A2 (en) * 2009-04-21 2010-10-27 SB LiMotive Co., Ltd. Rechargeable battery having a current collecting plate
EP2244328A3 (en) * 2009-04-21 2010-12-08 SB LiMotive Co., Ltd. Rechargeable battery having a current collecting plate
KR101201745B1 (en) 2009-08-17 2012-11-15 에스비리모티브 주식회사 Rechargeable battery
CN102035017A (en) * 2009-10-07 2011-04-27 Sb锂摩托有限公司 Rechargeable battery
US9577226B2 (en) 2009-10-07 2017-02-21 Samsung Sdi Co., Ltd. Rechargeable battery with buffer sheet between electrode assembly and battery case
US8492022B2 (en) 2009-10-07 2013-07-23 Samsung Sdi Co., Ltd. Rechargeable battery with buffer sheet between electrode assembly and battery case
JP2011228409A (en) * 2010-04-16 2011-11-10 Seiko Instruments Inc Electrochemical cell and method for manufacturing the same
US8501346B2 (en) 2010-05-20 2013-08-06 Samsung Sdi Co., Ltd. Rechargeable battery
JP2011243560A (en) * 2010-05-20 2011-12-01 Sb Limotive Co Ltd Secondary battery
JPWO2011158676A1 (en) * 2010-06-14 2013-08-19 株式会社Gsユアサ battery
WO2011158676A1 (en) * 2010-06-14 2011-12-22 株式会社Gsユアサ Battery
CN103262300A (en) * 2010-12-28 2013-08-21 株式会社杰士汤浅国际 Power storage device
KR101888214B1 (en) 2010-12-28 2018-08-13 가부시키가이샤 지에스 유아사 Power storage device
WO2012090744A1 (en) * 2010-12-28 2012-07-05 株式会社Gsユアサ Power storage device
KR20140027052A (en) * 2010-12-28 2014-03-06 가부시키가이샤 지에스 유아사 Power storage device
US9034514B2 (en) 2010-12-28 2015-05-19 Gs Yuasa International Ltd. Electric storage device
CN103262300B (en) * 2010-12-28 2015-09-16 株式会社杰士汤浅国际 Electricity accumulating unit
JP5894934B2 (en) * 2010-12-28 2016-03-30 株式会社Gsユアサ Electricity storage element
JP2013033662A (en) * 2011-08-02 2013-02-14 Hitachi Vehicle Energy Ltd Secondary battery
JP2013077464A (en) * 2011-09-30 2013-04-25 Gs Yuasa Corp Power storage device
JP2013114940A (en) * 2011-11-29 2013-06-10 Gs Yuasa Corp Electricity storage element
US10734655B2 (en) 2012-05-10 2020-08-04 Gs Yuasa International Ltd. Electric storage device
JP2014007036A (en) * 2012-06-22 2014-01-16 Toyota Industries Corp Power storage device and secondary battery
JP2015046404A (en) * 2014-11-05 2015-03-12 株式会社Gsユアサ Battery
US10826029B2 (en) 2015-09-18 2020-11-03 Gs Yuasa International Ltd. Energy storage device
WO2018062338A1 (en) * 2016-09-30 2018-04-05 三洋電機株式会社 Angular secondary battery and method for manufacturing same
JPWO2018062338A1 (en) * 2016-09-30 2019-07-18 三洋電機株式会社 Square secondary battery and method of manufacturing the same
JP7160435B2 (en) 2016-09-30 2022-10-25 三洋電機株式会社 Prismatic secondary battery and manufacturing method thereof
US11289780B2 (en) 2016-09-30 2022-03-29 Sanyo Electric Co., Ltd. Square secondary battery and method of manufacturing same
WO2018138227A1 (en) 2017-01-30 2018-08-02 Lithium Energy and Power GmbH & Co. KG Energy storage device
JP2018125065A (en) * 2017-01-30 2018-08-09 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
CN112997346A (en) * 2018-11-28 2021-06-18 三洋电机株式会社 Battery and method for manufacturing same
JPWO2020110976A1 (en) * 2018-11-28 2021-10-07 三洋電機株式会社 Batteries and their manufacturing methods
WO2020110976A1 (en) * 2018-11-28 2020-06-04 三洋電機株式会社 Battery and manufacturing method thereof
JP7402175B2 (en) 2018-11-28 2023-12-20 三洋電機株式会社 Battery and its manufacturing method
JP2020102419A (en) * 2018-12-25 2020-07-02 本田技研工業株式会社 Solid-state battery cell structure and manufacturing method of solid-state battery
US11437675B2 (en) 2018-12-25 2022-09-06 Honda Motor Co., Ltd. Cell structure of solid state battery
JP7245044B2 (en) 2018-12-25 2023-03-23 本田技研工業株式会社 Solid-state battery cell structure and solid-state battery manufacturing method
WO2022118432A1 (en) * 2020-12-03 2022-06-09 株式会社 東芝 Battery

Also Published As

Publication number Publication date
JP4158518B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP4158518B2 (en) Electricity storage element
US8323826B2 (en) Sealed secondary battery
KR100614381B1 (en) Li Ion Secondary Battery
US7655353B2 (en) Battery
US8852793B2 (en) Secondary battery
KR100709873B1 (en) Secondary battery
US8828571B2 (en) Secondary battery
US8609272B2 (en) Secondary battery with finishing tapes
US20070160904A1 (en) Battery and method of making the same
KR101530803B1 (en) Secondary battery
US10381612B2 (en) Energy storage device
JP2013026214A (en) Secondary battery
JP2017059508A (en) Power storage device
KR20050074198A (en) Secondary battery
JP2017157342A (en) Power storage element
US11081759B2 (en) Secondary battery
JP2017157352A (en) Manufacturing method of power storage element, and power storage element
WO2018159581A1 (en) Electricity storage element
JP2018536252A (en) Electricity storage element
US20060204842A1 (en) Rechargeable battery and method of assembling for the same
JP2004319101A (en) Storage element
JP2018045846A (en) Power storage element
KR101174919B1 (en) Lithium rechargeable battery
JP4110924B2 (en) Square lithium ion secondary battery
JP2001257004A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080707

R151 Written notification of patent or utility model registration

Ref document number: 4158518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120725

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130725

Year of fee payment: 5

EXPY Cancellation because of completion of term