WO2018159581A1 - Electricity storage element - Google Patents

Electricity storage element Download PDF

Info

Publication number
WO2018159581A1
WO2018159581A1 PCT/JP2018/007148 JP2018007148W WO2018159581A1 WO 2018159581 A1 WO2018159581 A1 WO 2018159581A1 JP 2018007148 W JP2018007148 W JP 2018007148W WO 2018159581 A1 WO2018159581 A1 WO 2018159581A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode body
container
buffer material
spacer
electrode
Prior art date
Application number
PCT/JP2018/007148
Other languages
French (fr)
Japanese (ja)
Inventor
勇太 中村
向井 寛
Original Assignee
株式会社Gsユアサ
リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Gsユアサ, リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフト filed Critical 株式会社Gsユアサ
Publication of WO2018159581A1 publication Critical patent/WO2018159581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations

Definitions

  • the present invention relates to a power storage element.
  • a power storage element a power storage element in which an electrode body is accommodated in a container via a spacer is known (see, for example, Patent Document 1).
  • the use of a spacer having a protruding portion that covers the end of the electrode body has also been studied, but in general, the spacer has higher rigidity than the electrode body, so that the protruding portion of the spacer contacts the electrode body. If this happens, the electrode body may be damaged.
  • the subject of this invention is suppressing the damage of the electrode body resulting from the contact with the protrusion part of a spacer.
  • a power storage element is a power storage element including an electrode body, a container that houses the electrode body, and a spacer that is interposed between the container and the electrode body.
  • the spacer protrudes inward of the container and includes a protruding portion facing one surface of the electrode body.
  • the power storage element has a buffer material. The buffer material protrudes from one surface of the electrode body. Separate the part.
  • FIG. 1 is a perspective view showing an external appearance of a power storage device according to an embodiment.
  • FIG. 2 is an exploded perspective view of the energy storage device according to the embodiment.
  • FIG. 3 is a perspective view showing the configuration of the electrode body according to the embodiment.
  • FIG. 4 is a rear view of the side spacer according to the embodiment as seen from the inside.
  • FIG. 5 is a cross-sectional view of the side spacer according to the embodiment as seen from the XY plane including the VV cutting line of FIG.
  • FIG. 6 is a cross-sectional view schematically showing an arrangement relationship of the container, the electrode body, the side spacer, and the buffer material according to the embodiment.
  • FIG. 1 is a perspective view showing an external appearance of a power storage device according to an embodiment.
  • FIG. 2 is an exploded perspective view of the energy storage device according to the embodiment.
  • FIG. 3 is a perspective view showing the configuration of the electrode body according to the embodiment.
  • FIG. 4 is a rear view of the side spacer
  • FIG. 7 is a cross-sectional view schematically showing an arrangement relationship of the container, the electrode body, the side spacer, and the buffer material according to the first modification.
  • FIG. 8 is a cross-sectional view schematically showing an arrangement relationship of a container, an electrode body, a side spacer, and a buffer material according to Modification 2.
  • FIG. 9 is a cross-sectional view schematically showing an arrangement relationship of a container, an electrode body, a side spacer, and a buffer material according to Modification 3.
  • a power storage element is a power storage element including an electrode body, a container that houses the electrode body, and a spacer that is interposed between the container and the electrode body.
  • the spacer protrudes inward of the container and includes a protruding portion facing one surface of the electrode body.
  • the power storage element has a buffer material. The buffer material protrudes from one surface of the electrode body. Separate the part.
  • the spacer has, as the protrusion, a first protrusion that faces the first surface of the electrode body, and a second protrusion that faces the second surface facing the first surface of the electrode body,
  • the buffer material may separate the first surface of the electrode body from the first protrusion and may separate the second surface of the electrode body from the second protrusion.
  • the first surface and the first protrusion of the electrode body are separated from each other by the buffer material, and the second surface and the second protrusion are separated from each other. Even when two are provided, the contact between the electrode body and the protruding portion can be suppressed.
  • the buffer material includes a first buffer material interposed between the first surface of the electrode body and the first protrusion, and a second buffer material interposed between the second surface of the electrode body and the second protrusion.
  • a cushioning material may be included.
  • the first cushioning material is interposed between the first surface of the electrode body and the first projecting portion, the first surface and the first projecting portion can be reliably separated from each other. Can do.
  • the second cushioning material is interposed between the second surface of the electrode body and the second protrusion, the second surface and the second protrusion can be reliably separated. Therefore, the contact between the first surface of the electrode body and the first protrusion and the contact between the second surface of the electrode body and the second protrusion can be reliably suppressed.
  • the cushioning material may include a third cushioning material interposed between the first protrusion and the container, and a fourth cushioning material interposed between the second protrusion and the container.
  • the third buffer material interposed between the first protrusion and the container and the fourth buffer material interposed between the second protrusion and the container cause the spacer and the electrode body in the container to The backlash can be suppressed. Therefore, the impact acting on the electrode body can be further alleviated.
  • the buffer material includes a fifth buffer material interposed between the first surface of the electrode body and the first projecting portion or between the second surface of the electrode body and the second projecting portion, and the first projecting portion.
  • the sixth buffer material interposed between the protrusion provided with the fifth buffer material and the container, and the fifth buffer among the first surface and the second surface of the electrode body
  • the surface on which the material is not provided and may include a portion exposed from the first protrusion or the second protrusion and a seventh cushioning material interposed between the container and the container.
  • the positional relationship between the spacer and the electrode body in the container in the predetermined direction is maintained by the fifth buffer material, the sixth buffer material, and the seventh buffer material.
  • the first surface and the first protrusion can be reliably separated from each other, and the second surface of the electrode body and the second protrusion can be reliably separated from each other. Therefore, the contact between the electrode body and the spacer can be reliably suppressed.
  • FIG. 1 is a perspective view showing an appearance of a power storage device 10 according to the embodiment.
  • FIG. 2 is an exploded perspective view of the energy storage device 10 according to the embodiment.
  • the Z-axis direction is described as the vertical direction for convenience of explanation. However, in the actual usage, the Z-axis direction may not match the vertical direction.
  • the electricity storage element 10 is a secondary battery that can charge electricity and discharge electricity.
  • the electricity storage element 10 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery.
  • the power storage element 10 is a moving body such as an automobile such as an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV), a motorcycle, a watercraft, a snowmobile, an agricultural machine, and a construction machine. It is applied to a battery for driving or engine starting, a stationary power supply device used for power storage use, power supply use, and the like.
  • the electrical storage element 10 is not limited to a nonaqueous electrolyte secondary battery, A secondary battery other than a nonaqueous electrolyte secondary battery may be sufficient, and a capacitor may be sufficient as it.
  • the shape of the electricity storage element 10 is not limited to a square shape, and may be another shape such as a cylindrical shape. Further, the power storage element 10 may be a primary battery.
  • the electricity storage element 10 includes a container 100, a positive electrode terminal 200, a negative electrode terminal 300, an electrode body 400, a side spacer 700, and a buffer material 800.
  • the power storage element 10 in addition to the above components, is a positive current collector that electrically connects the positive electrode of the electrode body 400 and the positive electrode terminal 200, and the negative electrode and negative electrode terminal 300 of the electrode body 400.
  • a negative electrode current collector electrically connected to each other.
  • a liquid such as an electrolytic solution (non-aqueous electrolyte) is sealed inside the container 100 of the electricity storage element 10, but the illustration of the liquid is omitted.
  • the electrolyte solution enclosed with the container 100 does not impair the performance of the electrical storage element 10, there is no restriction
  • the container 100 is a square case and includes a main body 111 and a lid 110.
  • the material of the main body 111 and the lid 110 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, or aluminum alloy.
  • the main body 111 is a cylindrical body having a rectangular shape when viewed from above, and has an opening 112 at one end and a bottom 113 at the other end.
  • the electrode body 400, the side spacer 700, and the like are inserted into the main body 111 of the container 100 through the opening 112.
  • a direction in which the electrode body 400 and the side spacer 700 are inserted into the opening 112 is defined as an insertion direction (Z-axis direction).
  • the main body 111 is sealed by the lid body 110 being welded after the electrode body 400 and the like are accommodated therein.
  • the lid 110 is a plate-like member that closes the opening 112 of the main body 111. Although not shown in the figure, the lid 110 has a gas discharge valve and a liquid injection port.
  • the gas discharge valve is opened when the internal pressure of the container 100 rises, thereby releasing the gas inside the container 100.
  • the liquid injection port is an opening for injecting an electrolytic solution into the container 100.
  • the electrode body 400 includes a positive electrode plate, a negative electrode plate, and a separator, and is a member that can store electricity. A detailed configuration of the electrode body 400 will be described later.
  • the positive electrode terminal 200 is an electrode terminal electrically connected to the tab portion 410 on the positive electrode side of the electrode body 400 through a positive electrode current collector.
  • the negative electrode terminal 300 is an electrode terminal electrically connected to the tab portion 420 on the negative electrode side of the electrode body 400 through a negative electrode current collector. That is, the positive electrode terminal 200 and the negative electrode terminal 300 lead the electricity stored in the electrode body 400 to the external space of the power storage element 10, and in order to store the electricity in the electrode body 400, It is an electrode terminal made of a metal or the like having conductivity for introducing.
  • the positive electrode terminal 200 and the negative electrode terminal 300 are attached to the lid body 110 disposed above the electrode body 400 via an insulating gasket (not shown).
  • a side spacer 700 is disposed between the inner peripheral surface of the container 100.
  • the side spacer 700 plays a role of regulating the position of the electrode body 400, for example.
  • the side spacer 700 is made of, for example, an insulating material such as polycarbonate (PC), polypropylene (PP), polyethylene (PE), or polyphenylene sulfide resin (PPS).
  • FIG. 3 is a perspective view showing the configuration of the electrode assembly 400 according to the embodiment. In FIG. 3, a part of the wound state of the electrode body 400 is shown in a developed manner.
  • the electrode body 400 is a power storage element (power generation element) that can store electricity.
  • the electrode body 400 is formed by alternately stacking and winding positive electrodes 450 and negative electrodes 460 and separators 470a and 470b. That is, the electrode body 400 is formed by laminating the positive electrode 450, the separator 470a, the negative electrode 460, and the separator 470b in this order, and winding the cross section into an oval shape.
  • the positive electrode 450 is an electrode plate in which a positive electrode active material layer is formed on the surface of a positive electrode base material layer that is a long strip-shaped metal foil made of aluminum or an aluminum alloy.
  • a positive electrode active material used for a positive electrode active material layer if it is a positive electrode active material which can occlude / release lithium ion, a well-known material can be used suitably.
  • a positive electrode active material a polyanion compound such as LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, Spinel compounds such as lithium manganate, lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) and the like can be used.
  • the negative electrode 460 is an electrode plate in which a negative electrode active material layer is formed on the surface of a negative electrode base material layer that is a long strip-shaped metal foil made of copper or a copper alloy.
  • a negative electrode active material used for a negative electrode active material layer if it is a negative electrode active material which can occlude-release lithium ion, a well-known material can be used suitably.
  • lithium metal lithium metal
  • lithium alloy lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy
  • lithium Alloys that can be occluded / released
  • carbon materials eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, etc.
  • metal oxides lithium metal oxides (Li 4 Ti 5 O 12 etc.)
  • polyphosphoric acid compounds e.g, lithium metal, lithium alloy (lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy), and lithium Alloys that can be occluded / released
  • carbon materials eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon
  • the separators 470a and 470b are microporous sheets made of resin.
  • a known material can be appropriately used as long as it does not impair the performance of the power storage element 10.
  • the positive electrode 450 has a plurality of protruding portions 411 protruding outward at one end in the winding axis direction.
  • the negative electrode 460 includes a plurality of projecting portions 421 that project outward at one end in the winding axis direction.
  • the plurality of protrusions 411 and the plurality of protrusions 421 are portions where the active material is not applied and the base material layer is exposed (active material uncoated portions).
  • the winding axis is an imaginary axis that becomes a central axis when winding the positive electrode 450, the negative electrode 460, and the like.
  • the winding axis is parallel to the Z-axis direction passing through the center of the electrode body 400. It is a straight line.
  • the plurality of protrusions 411 and the plurality of protrusions 421 are arranged at the same end in the winding axis direction (the end on the plus side in the Z-axis direction in FIG. 3), and the positive electrode 450 and the negative electrode 460 are stacked.
  • the electrode body 400 is laminated at a predetermined position. Specifically, the plurality of protrusions 411 are stacked at predetermined positions in the circumferential direction at one end in the winding axis direction by stacking the positive electrodes 450 by winding.
  • the plurality of protrusions 421 are stacked at a predetermined position in the circumferential direction different from the position where the plurality of protrusions 411 are stacked at one end in the winding axis direction by stacking the negative electrode 460 by winding. Is done.
  • the electrode body 400 is formed with a tab portion 410 formed by stacking a plurality of protrusions 411 and a tab portion 420 formed by stacking a plurality of protrusions 421.
  • the tab portion 410 is gathered toward the center in the stacking direction, for example, and joined to the positive electrode current collector by, for example, ultrasonic welding or resistance welding.
  • the tab portion 420 is gathered toward the center in the stacking direction, for example, and joined to the negative electrode current collector by, for example, ultrasonic welding or resistance welding.
  • the tab portions (410, 420) are portions for introducing and deriving electricity in the electrode body 400, and other names such as “lead (portion)” and “current collector” may be attached. is there.
  • the tab portion 410 is formed by laminating the protruding portion 411 that is the portion where the base material layer is exposed, the tab portion 410 does not contribute to power generation.
  • the tab part 420 is formed by laminating the protruding part 421 that is the part where the base material layer is exposed, the tab part 420 does not contribute to power generation.
  • the portions of the electrode body 400 different from the tab portions 410 and 420 are formed by laminating portions of the base material layer coated with the active material, and thus contribute to power generation.
  • this part is referred to as a main body part 430.
  • Both end portions in the X-axis direction of the main body portion 430 become curved portions 431 and 432 whose outer peripheral surfaces are curved. Further, a portion between the curved portions 431 and 432 in the electrode body 400 becomes a flat portion 433 having a flat outer surface. Thus, the electrode body 400 is formed in an oval shape in which the flat portion 433 is disposed between the two curved portions 431 and 432.
  • the side spacer 700 on the negative electrode side is illustrated, but the configuration on the positive side spacer 700 is the same, and thus the description on the positive electrode side is omitted.
  • FIG. 4 is a rear view of the side spacer 700 according to the embodiment as viewed from the inside.
  • FIG. 5 is a cross-sectional view of the side spacer 700 according to the embodiment as viewed from the XY plane including the VV cutting line of FIG. In FIG. 5, the two-dot chain line indicates the curved portion 432 of the electrode body 400.
  • the side spacer 700 is a long member extending in the insertion direction (Z-axis direction) and is made of an insulating material such as PC, PP, PE, or PPS. Is formed.
  • the side spacer 700 is disposed so as to face a pair of short side surfaces among the inner side surfaces of the main body 111 of the container 100.
  • the side spacer 700 integrally includes a wall portion 710, a top plate 720 connected to the upper end portion of the wall portion 710, and a bottom plate 730 connected to the lower end portion of the wall portion 710.
  • the wall portion 710 is a portion that extends along the insertion direction and covers one side portion of the electrode body 400.
  • the inner side surface 711 of the inner side of the container 100 in the wall portion 710 is a surface facing the curved portion 432 of the electrode body 400, and is a smooth surface corresponding to the curved portion 432. It has a curved surface.
  • the outer surface 712 on the container 100 side of the wall 710 has a pair of corners formed in an R shape corresponding to the inner shape of the container 100.
  • the pair of R-shaped portions opposes a pair of adjacent corners inside the rectangular container 100.
  • a pair of R-shaped portions in the wall portion 710 is a corner region 713, and a portion sandwiched between the pair of corner regions 713 is a central region 714.
  • the central region 714 is a region that covers the top of the curved portion 432 of the electrode body 400
  • the corner region 713 is a region that covers the side of the top of the curved portion 432.
  • the top plate 720 and the bottom plate 730 are plate bodies in which a pair of adjacent corners has an R shape.
  • the top plate 720 is connected to the upper end portion (one end portion) of the wall portion 710 and is a protruding portion that protrudes from the inner side surface 711 of the wall portion 710 toward the inside of the container 100.
  • the top plate 720 is a first protrusion that faces the first surface (upper surface 401) on the opening 112 side of the electrode body 400 from above.
  • the bottom plate 730 is connected to the lower end portion (the other end portion) of the wall portion 710 and is a protruding portion that protrudes from the inner side surface 711 of the wall portion 710 toward the inside of the container 100.
  • the bottom plate 730 is a second protrusion that faces the second surface (lower surface 402) facing the first surface of the electrode body 400 from below.
  • the first surface (upper surface 401) and the second surface (lower surface 402) of the electrode body 400 are configured from the end surfaces of the separators 470a and 470b that form the electrode body 400.
  • the cushioning material 800 is a member formed so as to have lower rigidity than the side spacer 700.
  • a cushioning material made of a material having a lower rigidity than the side spacer 700 for example, a cushioning material such as foamed polyethylene, or a shape lower in rigidity than the side spacer 700 is formed.
  • cushioning materials One method for reducing the rigidity depending on the shape is, for example, forming a resin material in a porous manner.
  • the resin material forming the buffer material 800 include a material having insulating properties such as PC, PP, PE, or PPS, as in the case of the side spacer 700.
  • FIG. 6 is a cross-sectional view schematically showing the positional relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800 according to the embodiment.
  • the cushioning material 800 includes a first cushioning material 810, a second cushioning material 820, a third cushioning material 830, and a fourth cushioning material 840.
  • the first buffer material 810 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700.
  • the first buffer material 810 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700. Thereby, the first buffer material 810 separates the upper surface 401 of the electrode body 400 from the top plate 720 of the side spacer 700.
  • the first buffer material 810 may have any shape as long as it can be interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700.
  • the first buffer material 810 has a planar shape similar to the planar shape of the top plate 720.
  • the second buffer material 820 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700.
  • the second buffer material 820 is interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700. Thereby, the second buffer material 820 separates the lower surface 402 of the electrode body 400 from the bottom plate 730 of the side spacer 700.
  • the second buffer material 820 may have any shape as long as it can be interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700.
  • the second cushioning material 820 has a planar shape similar to the planar shape of the bottom plate 730.
  • the third buffer material 830 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700.
  • the third cushioning material 830 is interposed between the top plate 720 of the side spacer 700 and the lid 110 of the container 100. Thereby, the third cushioning material 830 separates the top plate 720 of the side spacer 700 and the lid 110 of the container 100.
  • the third buffer material 830 may have any shape as long as it can be interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700.
  • the third cushioning material 830 has a planar shape similar to the planar shape of the top plate 720.
  • the fourth buffer material 840 is a plate-shaped buffer material, and one fourth buffer material 840 is provided for each side spacer 700.
  • the fourth buffer material 840 is interposed between the bottom plate 730 of the side spacer 700 and the bottom 113 of the main body 111 of the container 100. Thereby, the fourth buffer material 840 separates the bottom plate 730 of the side spacer 700 from the main body 111 of the container 100.
  • the fourth buffer material 840 may have any shape that can be interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700.
  • the fourth buffer material 840 has a planar shape similar to the planar shape of the bottom plate 730.
  • the 1st shock absorbing material 810, the 2nd shock absorbing material 820, the 3rd shock absorbing material 830, and the 4th shock absorbing material 840 should just be formed in the thickness which can relieve the impact which arises in the container 100 at least.
  • the first buffer material 810, the second buffer material 820, the third buffer material 830, and the fourth buffer material 840 have a thickness that can absorb the impact to the extent that the electrode body 400 is not damaged even if an impact occurs in the container 100. More preferably, it is formed. For these thicknesses, appropriate values obtained by various experiments, simulations, and the like are employed.
  • the positive electrode 450 and the negative electrode 460 and the separators 470a and 470b are alternately stacked and wound to form the electrode body 400 shown in FIG.
  • an adhesive tape (not shown) is applied to the flat portion 433 of the electrode body 400 so that the electrode body 400 does not expand.
  • the tab portion 420 of the electrode body 400 is welded and fixed to the negative electrode current collector, and the tab portion 410 of the electrode body 400 is welded and fixed to the positive electrode current collector.
  • the side spacer 700 is attached to the main body 430 of the electrode body 400. Specifically, the side spacer 700 is attached to each of the curved portions 431 and 432 of the main body 430.
  • the first buffer material 810 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700, and between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700.
  • a second cushioning material 820 is interposed.
  • the side spacer 700 and the electrode body 400 are fixed by a tape member (not shown) and integrated.
  • the integrated electrode body 400 and side spacer 700 are inserted into the container 100 by being inserted from the opening 112 of the main body 111 of the container 100.
  • the third cushioning material 830 is interposed between the top plate 720 of the side spacer 700 and the lid 110 of the container 100, and the bottom plate 730 of the side spacer 700 and the bottom 113 of the main body 111 of the container 100.
  • a fourth cushioning material 840 is interposed therebetween.
  • the 1st shock absorbing material 810, the 2nd shock absorbing material 820, the 3rd shock absorbing material 830, and the 4th shock absorbing material 840 are previously adhere
  • the lid 110 is welded to the main body 111, the container 100 is assembled, and the electrolytic solution is injected from the injection port. Thereafter, the storage element 10 is manufactured by welding the injection plug to the lid 110 and closing the injection port.
  • the upper surface 401 of the electrode body 400 and the first protrusion are separated from each other by the cushioning material 800, and the lower surface 402 and the second surface of the electrode body 400 are separated from each other. Since the protruding portion (bottom plate 730) is separated, contact between the electrode body 400 and the protruding portion can be suppressed even when two protruding portions are provided. Therefore, the electrode body 400 can be prevented from being damaged due to the contact with the protruding portion of the side spacer 700.
  • the first buffer material 810 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720, the upper surface 401 of the electrode body 400 and the top plate 720 can be reliably separated.
  • the second buffer material 820 is interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730, the lower surface 402 of the electrode body 400 and the bottom plate 730 can be reliably separated. Therefore, the contact between the upper surface 401 of the electrode body 400 and the top plate 720 and the contact between the lower surface 402 of the electrode body 400 and the bottom plate 730 can be reliably suppressed.
  • the side spacer 700 and the electrode body 400 in the container 100 are provided by the third cushioning material 830 interposed between the top plate 720 and the container 100 and the fourth cushioning material 840 interposed between the bottom plate 730 and the container 100. Can be suppressed. Therefore, the impact acting on the electrode body 400 can be further alleviated.
  • the first buffer material 810 is interposed between the top plate 720 of the side spacer 700 and the upper surface 401 of the electrode body 400, and the side spacer 700.
  • a second cushioning material 820 is interposed between the bottom plate 730 of the first electrode and the lower surface 402 of the electrode body 400.
  • the side spacer 700 and the electrode body 400 can be separated from each other without necessarily interposing the buffer material between the side spacer and the electrode body.
  • the arrangement example of the cushioning material in that case will be specifically described in Modification 1.
  • FIG. 7 is a cross-sectional view schematically showing an arrangement relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800A according to the first modification.
  • the cushioning material 800 ⁇ / b> A includes a fifth cushioning material 850, a sixth cushioning material 860, and a seventh cushioning material 870.
  • the fifth buffer material 850 is a plate-shaped buffer material, and one fifth buffer material 850 is provided for each side spacer 700.
  • the fifth buffer material 850 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700. Thereby, the fifth buffer material 850 separates the upper surface 401 of the electrode body 400 from the top plate 720 of the side spacer 700. That is, the fifth buffer material 850 corresponds to the first buffer material 810.
  • the sixth buffer material 860 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700.
  • the sixth buffer material 860 is interposed between the upper surface 401 of the electrode body 400 and the lid body 110 of the container 100. That is, the sixth cushioning material 860 is interposed between the container 100 and the projection provided with the fifth cushioning material 850 among the first projection and the second projection of the side spacer 700. Thereby, the sixth buffer material 860 separates the upper surface 401 of the electrode body 400 from the container 100. That is, the sixth buffer material 860 corresponds to the third buffer material 830.
  • the seventh buffer material 870 is a plate-shaped buffer material, and one seventh buffer material 870 is provided for the electrode body 400.
  • the seventh buffer material 870 is disposed on the lower surface 402 of the electrode body 400 between the portion exposed from the bottom plate 730 and the bottom 113 of the main body 111 of the container 100. That is, the seventh buffer material 870 is the lower surface 402 of the electrode body 400 on the side where the fifth buffer material 850 is not provided, and is exposed from the bottom plate 730 (second projecting portion). It is interposed between the portion and the container 100.
  • the seventh buffer material 870 is set to a thickness that separates the lower surface 402 of the electrode body 400 from the bottom plate 730 of the side spacer 700 and separates the bottom 113 of the container 100 and the bottom plate 730 of the side spacer 700.
  • “separation” includes a state in which a load from one side is not received by the other even though the separation targets are in contact with each other.
  • the fifth buffer material 850, the sixth buffer material 860, and the seventh buffer material 870 maintain the positional relationship between the side spacer 700 and the electrode body 400 in the container 100 in a predetermined direction (for example, the vertical direction). Is done. Therefore, the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700 can be reliably separated from each other, and the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700 can be reliably separated from each other. Therefore, the contact between the electrode body 400 and the side spacer 700 can be reliably suppressed.
  • FIG. 8 is a cross-sectional view schematically showing an arrangement relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800A according to the second modification.
  • the fifth buffer material 850 is interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700.
  • the sixth buffer material 860 is interposed between the bottom plate 730 of the side spacer 700 and the bottom 113 of the main body 111 of the container 100.
  • the seventh buffer material 870 is interposed between the portion of the upper surface 401 of the electrode body 400 exposed from the top plate 720 and the lid body 110 of the container 100.
  • the seventh buffer material 870 is the upper surface 401 of the upper surface 401 and the lower surface 402 of the electrode body 400 on the side where the fifth buffer material 850 is not provided, and is exposed from the top plate 720 (first protrusion). And the container 100 is interposed.
  • the positional relationship between the side spacer 700 and the electrode body 400 in the container 100 in a predetermined direction can be maintained, and as a result, the contact between the electrode body 400 and the side spacer 700 is ensured. Can be suppressed.
  • the seventh cushioning material 870 When the seventh cushioning material 870 is disposed on the lid 110 side as in the second modification, the seventh cushioning material 870 has a shape that does not interfere with other components (lower gasket, current collector, etc.) built in the power storage element 10. It is desirable to form the buffer material 870.
  • FIG. 9 is a cross-sectional view schematically showing an arrangement relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800C according to the third modification.
  • the fourth cushioning material 840c of the cushioning material 800C has a long plate shape so as to be interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the pair of side spacers 700. Is formed. Thereby, the number of parts can be reduced.
  • the fourth buffer material 840c is formed in a shape that does not interfere with other components (lower gasket, current collector, etc.) built in the storage element 10. It is desirable to form the material 840c.
  • the fourth buffer material 840c has been described as an example, but the same applies to other buffer materials (first buffer material 810, second buffer material 820, and third buffer material 830).
  • the number of electrode bodies 400 included in the electricity storage element 10 is not limited to 1, and may be 2 or more.
  • a pair of side spacers may be attached so as to cover the side surfaces of the plurality of electrode bodies 400 together.
  • a pair of side spacers 700 can be attached to each electrode body 400.
  • the positional relationship between the positive electrode side tab portion 410 and the negative electrode side tab portion 420 of the electrode body 400 is not particularly limited.
  • the tab portion 410 and the tab portion 420 may be disposed on opposite sides in the winding axis direction.
  • the positive-side tab portion and the negative-side tab portion may be provided so as to protrude in different directions. In this case, it is only necessary that the lower insulating member, the current collector, and the like are arranged at positions corresponding to the tab portion on the positive electrode side and the tab portion on the negative electrode side, respectively.
  • the side spacer 700 that covers the side of the electrode body 400 is described as an example of the spacer.
  • any spacer may be used as long as it is interposed between the container and the electrode body.
  • Examples of other spacers include an upper spacer interposed between the upper surface of the electrode body and the lid of the container, and a lower spacer interposed between the lower surface of the electrode body and the bottom of the container.
  • the container 100 when the electrode body 400 is accommodated in the container 100 so that the winding axis is along the Z-axis direction and current is collected by the tab portions 410 and 420 protruding from the electrode body 400, the container 100 In this case, the electrode body 400 sways and the protruding portions of the side spacers easily interfere with the electrode body. In other words, as a countermeasure against interference with the protruding portion of the side spacer, adopting a configuration in which one surface of the electrode body and the protruding portion of the side spacer are separated from each other at one place is as opposed to the electrode body 400 as described above. Is preferred.
  • the present invention can be applied to power storage elements such as lithium ion secondary batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

This electricity storage element (10) is provided with an electrode body (400), a container (100) which contains the electrode body (400), and a spacer (700) which is interposed between the container (100) and the electrode body (400). The spacer (700) is provided with a projection part (720) which protrudes toward the inside of the container (100) and faces one surface (401) of the electrode body (400). This electricity storage element (10) comprises a buffering material (800); and the buffering material (800) separates the one surface (401) of the electrode body (400) and the projection part (720) from each other.

Description

蓄電素子Electricity storage element
 本発明は、蓄電素子に関する。 The present invention relates to a power storage element.
 従来、蓄電素子においては、電極体がスペーサを介して容器に収容された蓄電素子が知られている(例えば特許文献1参照)。 Conventionally, as a power storage element, a power storage element in which an electrode body is accommodated in a container via a spacer is known (see, for example, Patent Document 1).
特開2011-96660号公報JP 2011-96660 A
 近年では、電極体の端部を覆う突出部を有したスペーサの採用も検討されているが、一般的にはスペーサは電極体よりも剛性が高いため、スペーサの突出部が電極体に接触してしまうと、電極体を損傷させるおそれがある。 In recent years, the use of a spacer having a protruding portion that covers the end of the electrode body has also been studied, but in general, the spacer has higher rigidity than the electrode body, so that the protruding portion of the spacer contacts the electrode body. If this happens, the electrode body may be damaged.
 このため、本発明の課題は、スペーサの突出部との接触を起因とした電極体の損傷を抑制することである。 For this reason, the subject of this invention is suppressing the damage of the electrode body resulting from the contact with the protrusion part of a spacer.
 上記目的を達成するために、本発明の一態様に係る蓄電素子は、電極体と、電極体を収容する容器と、容器と電極体との間に介在するスペーサと、を備える蓄電素子であって、スペーサは、容器の内方に向けて突出し、電極体の一つの面に対向する突出部を備え、蓄電素子は、緩衝材を有し、緩衝材は、電極体の一つの面と突出部とを離間させる。 In order to achieve the above object, a power storage element according to one embodiment of the present invention is a power storage element including an electrode body, a container that houses the electrode body, and a spacer that is interposed between the container and the electrode body. The spacer protrudes inward of the container and includes a protruding portion facing one surface of the electrode body. The power storage element has a buffer material. The buffer material protrudes from one surface of the electrode body. Separate the part.
 本発明によれば、スペーサの突出部との接触を起因とした電極体の損傷を抑制することができる。 According to the present invention, it is possible to suppress damage to the electrode body due to contact with the protruding portion of the spacer.
図1は、実施の形態に係る蓄電素子の外観を示す斜視図である。FIG. 1 is a perspective view showing an external appearance of a power storage device according to an embodiment. 図2は、実施の形態に係る蓄電素子の分解斜視図である。FIG. 2 is an exploded perspective view of the energy storage device according to the embodiment. 図3は、実施の形態に係る電極体の構成を示す斜視図である。FIG. 3 is a perspective view showing the configuration of the electrode body according to the embodiment. 図4は、実施の形態に係るサイドスペーサを内方から見た背面図である。FIG. 4 is a rear view of the side spacer according to the embodiment as seen from the inside. 図5は、実施の形態に係るサイドスペーサを、図4のV-V切断線を含むX-Y面から見た断面図である。FIG. 5 is a cross-sectional view of the side spacer according to the embodiment as seen from the XY plane including the VV cutting line of FIG. 図6は、実施の形態に係る容器、電極体、サイドスペーサ及び緩衝材の配置関係を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing an arrangement relationship of the container, the electrode body, the side spacer, and the buffer material according to the embodiment. 図7は、変形例1に係る容器、電極体、サイドスペーサ及び緩衝材の配置関係を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an arrangement relationship of the container, the electrode body, the side spacer, and the buffer material according to the first modification. 図8は、変形例2に係る容器、電極体、サイドスペーサ及び緩衝材の配置関係を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an arrangement relationship of a container, an electrode body, a side spacer, and a buffer material according to Modification 2. 図9は、変形例3に係る容器、電極体、サイドスペーサ及び緩衝材の配置関係を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing an arrangement relationship of a container, an electrode body, a side spacer, and a buffer material according to Modification 3.
 上記目的を達成するために、本発明の一態様に係る蓄電素子は、電極体と、電極体を収容する容器と、容器と電極体との間に介在するスペーサと、を備える蓄電素子であって、スペーサは、容器の内方に向けて突出し、電極体の一つの面に対向する突出部を備え、蓄電素子は、緩衝材を有し、緩衝材は、電極体の一つの面と突出部とを離間させる。 In order to achieve the above object, a power storage element according to one embodiment of the present invention is a power storage element including an electrode body, a container that houses the electrode body, and a spacer that is interposed between the container and the electrode body. The spacer protrudes inward of the container and includes a protruding portion facing one surface of the electrode body. The power storage element has a buffer material. The buffer material protrudes from one surface of the electrode body. Separate the part.
 この構成によれば、電極体の一つの面と突出部とが緩衝材によって離間されているので、電極体と突出部との接触を抑制することができる。したがって、スペーサの突出部との接触を起因とした電極体の損傷を抑制することができる。 According to this configuration, since one surface of the electrode body and the protrusion are separated by the buffer material, contact between the electrode body and the protrusion can be suppressed. Therefore, the electrode body can be prevented from being damaged due to the contact with the protruding portion of the spacer.
 また、スペーサは、突出部として、電極体の第一の面に対向する第一突出部と、電極体における第一の面に向かい合う第二の面に対向する第二突出部とを有し、緩衝材は、電極体の第一の面と第一突出部とを離間させるとともに電極体の第二の面と第二突出部とを離間させてもよい。 In addition, the spacer has, as the protrusion, a first protrusion that faces the first surface of the electrode body, and a second protrusion that faces the second surface facing the first surface of the electrode body, The buffer material may separate the first surface of the electrode body from the first protrusion and may separate the second surface of the electrode body from the second protrusion.
 この構成によれば、緩衝材によって、電極体の第一の面と第一突出部とが離間されるとともに、第二の面と第二突出部とが離間されているので、突出部が2つ設けられている場合にも電極体と突出部との接触を抑制することができる。 According to this configuration, the first surface and the first protrusion of the electrode body are separated from each other by the buffer material, and the second surface and the second protrusion are separated from each other. Even when two are provided, the contact between the electrode body and the protruding portion can be suppressed.
 また、緩衝材は、電極体の第一の面と第一突出部との間に介在する第一緩衝材と、電極体の第二の面と第二突出部との間に介在する第二緩衝材とを含んでもよい。 The buffer material includes a first buffer material interposed between the first surface of the electrode body and the first protrusion, and a second buffer material interposed between the second surface of the electrode body and the second protrusion. A cushioning material may be included.
 この構成によれば、電極体の第一の面と第一突出部との間に第一緩衝材が介在しているので、第一の面と第一の突出部とを確実に離間させことができる。また、電極体の第二の面と第二突出部との間に第二緩衝材が介在しているので、第二の面と第二の突出部とを確実に離間させることができる。したがって、電極体の第一の面と第一突出部との接触及び電極体の第二の面と第二突出部との接触を確実に抑制することができる。 According to this configuration, since the first cushioning material is interposed between the first surface of the electrode body and the first projecting portion, the first surface and the first projecting portion can be reliably separated from each other. Can do. In addition, since the second cushioning material is interposed between the second surface of the electrode body and the second protrusion, the second surface and the second protrusion can be reliably separated. Therefore, the contact between the first surface of the electrode body and the first protrusion and the contact between the second surface of the electrode body and the second protrusion can be reliably suppressed.
 また、緩衝材は、第一突出部と前記容器との間に介在する第三緩衝材と、第二突出部と容器との間に介在する第四緩衝材とを含んでもよい。 Further, the cushioning material may include a third cushioning material interposed between the first protrusion and the container, and a fourth cushioning material interposed between the second protrusion and the container.
 この構成によれば、第一突出部と容器との間に介在する第三緩衝材及び第二突出部と容器との間に介在する第四緩衝材によって、容器内におけるスペーサと電極体とのガタツキを抑制することができる。したがって、電極体に作用する衝撃をより緩和することができる。 According to this configuration, the third buffer material interposed between the first protrusion and the container and the fourth buffer material interposed between the second protrusion and the container cause the spacer and the electrode body in the container to The backlash can be suppressed. Therefore, the impact acting on the electrode body can be further alleviated.
 また、緩衝材は、電極体の第一の面と第一突出部との間若しくは電極体の第二の面と第二突出部との間に介在する第五緩衝材と、第一突出部及び第二突出部のうち、第五緩衝材が設けられた突出部と容器との間に介在する第六緩衝材と、電極体の第一の面及び第二の面のうち、第五緩衝材が設けられていない側の面であって、第一突出部または第二突出部から露出した部分と、容器との間に介在する第七緩衝材とを含んでもよい。 The buffer material includes a fifth buffer material interposed between the first surface of the electrode body and the first projecting portion or between the second surface of the electrode body and the second projecting portion, and the first projecting portion. Among the second protrusions, the sixth buffer material interposed between the protrusion provided with the fifth buffer material and the container, and the fifth buffer among the first surface and the second surface of the electrode body The surface on which the material is not provided, and may include a portion exposed from the first protrusion or the second protrusion and a seventh cushioning material interposed between the container and the container.
 この構成によれば、第五緩衝材、第六緩衝材及び第七緩衝材によって、容器内におけるスペーサと電極体との所定方向(例えば上下方向)の位置関係が維持されるので、電極体の第一の面と第一突出部とを確実に離間させるとともに、電極体の第二の面と第二突出部とを確実に離間させることができる。したがって、電極体とスペーサとの接触を確実に抑制することができる。 According to this configuration, the positional relationship between the spacer and the electrode body in the container in the predetermined direction (for example, the vertical direction) is maintained by the fifth buffer material, the sixth buffer material, and the seventh buffer material. The first surface and the first protrusion can be reliably separated from each other, and the second surface of the electrode body and the second protrusion can be reliably separated from each other. Therefore, the contact between the electrode body and the spacer can be reliably suppressed.
 以下、図面を参照しながら、本発明の実施の形態における蓄電素子について説明する。なお、各図は、模式図であり、必ずしも厳密に図示したものではない。 Hereinafter, a power storage device according to an embodiment of the present invention will be described with reference to the drawings. Each figure is a schematic diagram and is not necessarily illustrated exactly.
 また、以下で説明する実施の形態は、本発明の一具体例を示すものである。以下の実施の形態で示される形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程の順序などは一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 The embodiment described below shows a specific example of the present invention. The shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, order of manufacturing steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 まず、図1及び図2を用いて、実施の形態における蓄電素子10の全般的な説明を行う。 First, with reference to FIG. 1 and FIG. 2, a general description of the storage element 10 in the embodiment will be given.
 図1は、実施の形態に係る蓄電素子10の外観を示す斜視図である。図2は、実施の形態に係る蓄電素子10の分解斜視図である。 FIG. 1 is a perspective view showing an appearance of a power storage device 10 according to the embodiment. FIG. 2 is an exploded perspective view of the energy storage device 10 according to the embodiment.
 また、図1及び以降の図について、説明の便宜のため、Z軸方向を上下方向として説明しているが、実際の使用態様において、Z軸方向と上下方向とが一致しない場合もある。 In FIG. 1 and the subsequent figures, the Z-axis direction is described as the vertical direction for convenience of explanation. However, in the actual usage, the Z-axis direction may not match the vertical direction.
 蓄電素子10は、電気を充電し、また、電気を放電することのできる二次電池である。具体的には、蓄電素子10は、リチウムイオン二次電池などの非水電解質二次電池である。蓄電素子10は、例えば、電気自動車(EV)、ハイブリッド電気自動車(HEV)またはプラグインハイブリッド電気自動車(PHEV)等の自動車、自動二輪車、ウォータークラフト、スノーモービル、農業機械、建設機械などの移動体の駆動用またはエンジン始動用のバッテリ、電力貯蔵用途や電源用途などに使用される据置用の電源装置等に適用される。なお、蓄電素子10は、非水電解質二次電池には限定されず、非水電解質二次電池以外の二次電池であってもよいし、キャパシタであってもよい。また、蓄電素子10の形状に関しては、角型に限定されることなく、例えば円筒型などの他の形状であってもよい。また、蓄電素子10は一次電池であってもよい。 The electricity storage element 10 is a secondary battery that can charge electricity and discharge electricity. Specifically, the electricity storage element 10 is a nonaqueous electrolyte secondary battery such as a lithium ion secondary battery. The power storage element 10 is a moving body such as an automobile such as an electric vehicle (EV), a hybrid electric vehicle (HEV), or a plug-in hybrid electric vehicle (PHEV), a motorcycle, a watercraft, a snowmobile, an agricultural machine, and a construction machine. It is applied to a battery for driving or engine starting, a stationary power supply device used for power storage use, power supply use, and the like. In addition, the electrical storage element 10 is not limited to a nonaqueous electrolyte secondary battery, A secondary battery other than a nonaqueous electrolyte secondary battery may be sufficient, and a capacitor may be sufficient as it. Further, the shape of the electricity storage element 10 is not limited to a square shape, and may be another shape such as a cylindrical shape. Further, the power storage element 10 may be a primary battery.
 図1及び図2に示すように、蓄電素子10は、容器100と、正極端子200と、負極端子300と、電極体400と、サイドスペーサ700と、緩衝材800とを備えている。なお、蓄電素子10は、図示は省略するが、上記の構成要素の他、電極体400の正極と正極端子200とを電気的に接続する正極集電体、電極体400の負極と負極端子300とを電気的に接続する負極集電体とを備えている。また、蓄電素子10の容器100の内部には電解液(非水電解質)などの液体が封入されているが、当該液体の図示は省略する。なお、容器100に封入される電解液としては、蓄電素子10の性能を損なうものでなければその種類に特に制限はなく、様々なものを選択することができる。 1 and 2, the electricity storage element 10 includes a container 100, a positive electrode terminal 200, a negative electrode terminal 300, an electrode body 400, a side spacer 700, and a buffer material 800. Although not shown in the figure, the power storage element 10, in addition to the above components, is a positive current collector that electrically connects the positive electrode of the electrode body 400 and the positive electrode terminal 200, and the negative electrode and negative electrode terminal 300 of the electrode body 400. And a negative electrode current collector electrically connected to each other. In addition, a liquid such as an electrolytic solution (non-aqueous electrolyte) is sealed inside the container 100 of the electricity storage element 10, but the illustration of the liquid is omitted. In addition, as long as the electrolyte solution enclosed with the container 100 does not impair the performance of the electrical storage element 10, there is no restriction | limiting in particular in the kind, Various things can be selected.
 容器100は、角型ケースであり、本体111と、蓋体110とを備える。本体111及び蓋体110の材質は、特に限定されないが、例えばステンレス鋼、アルミニウム、アルミニウム合金など溶接可能な金属であるのが好ましい。 The container 100 is a square case and includes a main body 111 and a lid 110. The material of the main body 111 and the lid 110 is not particularly limited, but is preferably a weldable metal such as stainless steel, aluminum, or aluminum alloy.
 本体111は、上面視矩形状の筒体であり、一端部に開口112を備えるとともに、他端部に底113を備える。組み立て時において、容器100の本体111には、開口112を介して、電極体400とサイドスペーサ700などが挿入される。この開口112に対して電極体400とサイドスペーサ700などが挿入される方向を挿入方向(Z軸方向)とする。本体111は、電極体400等を内部に収容後、蓋体110が溶接等されることにより、内部が密封されている。 The main body 111 is a cylindrical body having a rectangular shape when viewed from above, and has an opening 112 at one end and a bottom 113 at the other end. At the time of assembly, the electrode body 400, the side spacer 700, and the like are inserted into the main body 111 of the container 100 through the opening 112. A direction in which the electrode body 400 and the side spacer 700 are inserted into the opening 112 is defined as an insertion direction (Z-axis direction). The main body 111 is sealed by the lid body 110 being welded after the electrode body 400 and the like are accommodated therein.
 蓋体110は、本体111の開口112を閉塞する板状部材である。蓋体110には、図示は省略するが、ガス排出弁及び注液口が形成されている。ガス排出弁は、容器100の内圧が上昇した場合に開放されることで、容器100の内部のガスを放出する。注液口は容器100内に電解液を注液するための開口である。 The lid 110 is a plate-like member that closes the opening 112 of the main body 111. Although not shown in the figure, the lid 110 has a gas discharge valve and a liquid injection port. The gas discharge valve is opened when the internal pressure of the container 100 rises, thereby releasing the gas inside the container 100. The liquid injection port is an opening for injecting an electrolytic solution into the container 100.
 電極体400は、正極板と負極板とセパレータとを備え、電気を蓄えることができる部材である。電極体400の詳細な構成については後述する。 The electrode body 400 includes a positive electrode plate, a negative electrode plate, and a separator, and is a member that can store electricity. A detailed configuration of the electrode body 400 will be described later.
 正極端子200は、正極集電体を介して電極体400の正極側のタブ部410と電気的に接続された電極端子である。負極端子300は、負極集電体を介して電極体400の負極側のタブ部420と電気的に接続された電極端子である。つまり、正極端子200及び負極端子300は、電極体400に蓄えられている電気を蓄電素子10の外部空間に導出し、また、電極体400に電気を蓄えるために蓄電素子10の内部空間に電気を導入するための導電性を持つ金属等の電極端子である。また、正極端子200及び負極端子300は、電極体400の上方に配置された蓋体110に、絶縁性を有するガスケット(図示せず)を介して取り付けられている。 The positive electrode terminal 200 is an electrode terminal electrically connected to the tab portion 410 on the positive electrode side of the electrode body 400 through a positive electrode current collector. The negative electrode terminal 300 is an electrode terminal electrically connected to the tab portion 420 on the negative electrode side of the electrode body 400 through a negative electrode current collector. That is, the positive electrode terminal 200 and the negative electrode terminal 300 lead the electricity stored in the electrode body 400 to the external space of the power storage element 10, and in order to store the electricity in the electrode body 400, It is an electrode terminal made of a metal or the like having conductivity for introducing. The positive electrode terminal 200 and the negative electrode terminal 300 are attached to the lid body 110 disposed above the electrode body 400 via an insulating gasket (not shown).
 また、本実施の形態では、電極体400の、電極体400と蓋体110との並び方向(Z軸方向)に交差する方向の側面(本実施の形態ではX軸方向の両側面)と、容器100の内周面との間にサイドスペーサ700が配置されている。サイドスペーサ700は、例えば、電極体400の位置を規制する役割を果たしている。サイドスペーサ700は、例えば、ポリカーボネート(PC)、ポリプロピレン(PP)、ポリエチレン(PE)または、ポリフェニレンサルファイド樹脂(PPS)等の絶縁性を有する素材によって形成されている。 Further, in the present embodiment, the side surface (both side surfaces in the X-axis direction in the present embodiment) of the electrode body 400 in a direction intersecting the alignment direction (Z-axis direction) of the electrode body 400 and the lid body 110, A side spacer 700 is disposed between the inner peripheral surface of the container 100. The side spacer 700 plays a role of regulating the position of the electrode body 400, for example. The side spacer 700 is made of, for example, an insulating material such as polycarbonate (PC), polypropylene (PP), polyethylene (PE), or polyphenylene sulfide resin (PPS).
 次に、電極体400の構成について、図3を用いて説明する。 Next, the configuration of the electrode body 400 will be described with reference to FIG.
 図3は、実施の形態に係る電極体400の構成を示す斜視図である。なお、図3では、電極体400の巻回状態を一部展開して図示している。 FIG. 3 is a perspective view showing the configuration of the electrode assembly 400 according to the embodiment. In FIG. 3, a part of the wound state of the electrode body 400 is shown in a developed manner.
 電極体400は、電気を蓄えることができる蓄電要素(発電要素)である。電極体400は、正極450及び負極460と、セパレータ470a、470bとが交互に積層されかつ巻回されることで形成されている。つまり、電極体400は、正極450と、セパレータ470aと、負極460と、セパレータ470bとがこの順に積層され、かつ、断面が長円形状になるように巻回されることで形成されている。 The electrode body 400 is a power storage element (power generation element) that can store electricity. The electrode body 400 is formed by alternately stacking and winding positive electrodes 450 and negative electrodes 460 and separators 470a and 470b. That is, the electrode body 400 is formed by laminating the positive electrode 450, the separator 470a, the negative electrode 460, and the separator 470b in this order, and winding the cross section into an oval shape.
 正極450は、アルミニウムまたはアルミニウム合金などからなる長尺帯状の金属箔である正極基材層の表面に、正極活物質層が形成された極板である。なお、正極活物質層に用いられる正極活物質としては、リチウムイオンを吸蔵放出可能な正極活物質であれば、適宜公知の材料を使用できる。例えば、正極活物質として、LiMPO、LiMSiO、LiMBO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のポリアニオン化合物、チタン酸リチウム、マンガン酸リチウム等のスピネル化合物、LiMO(MはFe、Ni、Mn、Co等から選択される1種または2種以上の遷移金属元素)等のリチウム遷移金属酸化物等を用いることができる。 The positive electrode 450 is an electrode plate in which a positive electrode active material layer is formed on the surface of a positive electrode base material layer that is a long strip-shaped metal foil made of aluminum or an aluminum alloy. In addition, as a positive electrode active material used for a positive electrode active material layer, if it is a positive electrode active material which can occlude / release lithium ion, a well-known material can be used suitably. For example, as a positive electrode active material, a polyanion compound such as LiMPO 4 , LiMSiO 4 , LiMBO 3 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.), lithium titanate, Spinel compounds such as lithium manganate, lithium transition metal oxides such as LiMO 2 (M is one or more transition metal elements selected from Fe, Ni, Mn, Co, etc.) and the like can be used.
 負極460は、銅または銅合金などからなる長尺帯状の金属箔である負極基材層の表面に、負極活物質層が形成された極板である。なお、負極活物質層に用いられる負極活物質としては、リチウムイオンを吸蔵放出可能な負極活物質であれば、適宜公知の材料を使用できる。例えば、負極活物質として、リチウム金属、リチウム合金(リチウム-アルミニウム、リチウム-鉛、リチウム-錫、リチウム-アルミニウム-錫、リチウム-ガリウム、及びウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えば黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(LiTi12等)、ポリリン酸化合物などが挙げられる。 The negative electrode 460 is an electrode plate in which a negative electrode active material layer is formed on the surface of a negative electrode base material layer that is a long strip-shaped metal foil made of copper or a copper alloy. In addition, as a negative electrode active material used for a negative electrode active material layer, if it is a negative electrode active material which can occlude-release lithium ion, a well-known material can be used suitably. For example, as the negative electrode active material, lithium metal, lithium alloy (lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloy), and lithium Alloys that can be occluded / released, carbon materials (eg, graphite, non-graphitizable carbon, graphitizable carbon, low-temperature calcined carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12 etc.) ) And polyphosphoric acid compounds.
 セパレータ470a、470bは、樹脂からなる微多孔性のシートである。なお、蓄電素子10に用いられるセパレータ470a、470bの素材としては、蓄電素子10の性能を損なうものでなければ適宜公知の材料を使用できる。 The separators 470a and 470b are microporous sheets made of resin. In addition, as a material of the separators 470a and 470b used for the power storage element 10, a known material can be appropriately used as long as it does not impair the performance of the power storage element 10.
 正極450は、巻回軸方向の一端において外方に突出する複数の突出部411を有する。負極460も同様に、巻回軸方向の一端において外方に突出する複数の突出部421を有する。これら、複数の突出部411及び複数の突出部421は、活物質が塗工されず基材層が露出した部分(活物質未塗工部)である。 The positive electrode 450 has a plurality of protruding portions 411 protruding outward at one end in the winding axis direction. Similarly, the negative electrode 460 includes a plurality of projecting portions 421 that project outward at one end in the winding axis direction. The plurality of protrusions 411 and the plurality of protrusions 421 are portions where the active material is not applied and the base material layer is exposed (active material uncoated portions).
 なお、巻回軸とは、正極450及び負極460等を巻回する際の中心軸となる仮想的な軸であり、本実施の形態では、電極体400の中心を通るZ軸方向に平行な直線である。 The winding axis is an imaginary axis that becomes a central axis when winding the positive electrode 450, the negative electrode 460, and the like. In the present embodiment, the winding axis is parallel to the Z-axis direction passing through the center of the electrode body 400. It is a straight line.
 複数の突出部411と複数の突出部421とは、巻回軸方向の同一側の端(図3におけるZ軸方向プラス側の端)に配置され、正極450及び負極460が積層されることにより、電極体400の所定の位置で積層される。具体的には、複数の突出部411は、正極450が巻回によって積層されることにより、巻回軸方向の一端において周方向の所定の位置で積層される。また、複数の突出部421は、負極460が巻回によって積層されることにより、巻回軸方向の一端において、複数の突出部411が積層される位置とは異なる周方向の所定の位置で積層される。 The plurality of protrusions 411 and the plurality of protrusions 421 are arranged at the same end in the winding axis direction (the end on the plus side in the Z-axis direction in FIG. 3), and the positive electrode 450 and the negative electrode 460 are stacked. The electrode body 400 is laminated at a predetermined position. Specifically, the plurality of protrusions 411 are stacked at predetermined positions in the circumferential direction at one end in the winding axis direction by stacking the positive electrodes 450 by winding. In addition, the plurality of protrusions 421 are stacked at a predetermined position in the circumferential direction different from the position where the plurality of protrusions 411 are stacked at one end in the winding axis direction by stacking the negative electrode 460 by winding. Is done.
 その結果、電極体400には、複数の突出部411が積層されることで形成されたタブ部410と、複数の突出部421が積層されることで形成されたタブ部420とが形成される。タブ部410は、例えば積層方向の中央に向かって寄せ集められて、例えば超音波溶接や抵抗溶接等によって正極集電体に接合される。また、タブ部420は、例えば積層方向の中央に向かって寄せ集められて、例えば超音波溶接や抵抗溶接等によって負極集電体に接合される。 As a result, the electrode body 400 is formed with a tab portion 410 formed by stacking a plurality of protrusions 411 and a tab portion 420 formed by stacking a plurality of protrusions 421. . The tab portion 410 is gathered toward the center in the stacking direction, for example, and joined to the positive electrode current collector by, for example, ultrasonic welding or resistance welding. The tab portion 420 is gathered toward the center in the stacking direction, for example, and joined to the negative electrode current collector by, for example, ultrasonic welding or resistance welding.
 なお、タブ部(410、420)は、電極体400において、電気の導入及び導出を行う部分であり、「リード(部)」、「集電部」等の他の名称が付される場合もある。 The tab portions (410, 420) are portions for introducing and deriving electricity in the electrode body 400, and other names such as “lead (portion)” and “current collector” may be attached. is there.
 ここで、タブ部410は、基材層が露出した部分である突出部411が積層されることで形成されているため、発電に寄与しない部分となる。同様に、タブ部420は、基材層が露出した部分である突出部421が積層されることで形成されているため、発電に寄与しない部分となる。一方、電極体400のタブ部410、420と異なる部分は、基材層に活物質が塗工された部分が積層されることで形成されているため、発電に寄与する部分となる。以降、当該部分を本体部430と称する。本体部430のX軸方向における両端部は、その外周面が湾曲した湾曲部431、432となる。また、電極体400における湾曲部431、432の間の部分は、外側面が平坦な平坦部433となる。このように、電極体400は、2つの湾曲部431、432の間に平坦部433が配置された長円状に形成されている。 Here, since the tab portion 410 is formed by laminating the protruding portion 411 that is the portion where the base material layer is exposed, the tab portion 410 does not contribute to power generation. Similarly, since the tab part 420 is formed by laminating the protruding part 421 that is the part where the base material layer is exposed, the tab part 420 does not contribute to power generation. On the other hand, the portions of the electrode body 400 different from the tab portions 410 and 420 are formed by laminating portions of the base material layer coated with the active material, and thus contribute to power generation. Hereinafter, this part is referred to as a main body part 430. Both end portions in the X-axis direction of the main body portion 430 become curved portions 431 and 432 whose outer peripheral surfaces are curved. Further, a portion between the curved portions 431 and 432 in the electrode body 400 becomes a flat portion 433 having a flat outer surface. Thus, the electrode body 400 is formed in an oval shape in which the flat portion 433 is disposed between the two curved portions 431 and 432.
 次に、サイドスペーサ700の具体的な構成について説明する。ここでは、負極側のサイドスペーサ700を例示するが、正極側のサイドスペーサ700についても同様の構成であるので、正極側の説明については省略する。 Next, a specific configuration of the side spacer 700 will be described. Here, the side spacer 700 on the negative electrode side is illustrated, but the configuration on the positive side spacer 700 is the same, and thus the description on the positive electrode side is omitted.
 図4は実施の形態に係るサイドスペーサ700を内方から見た背面図である。図5は、実施の形態に係るサイドスペーサ700を、図4のV-V切断線を含むX-Y面から見た断面図である。なお図5において、二点鎖線は電極体400の湾曲部432を示している。 FIG. 4 is a rear view of the side spacer 700 according to the embodiment as viewed from the inside. FIG. 5 is a cross-sectional view of the side spacer 700 according to the embodiment as viewed from the XY plane including the VV cutting line of FIG. In FIG. 5, the two-dot chain line indicates the curved portion 432 of the electrode body 400.
 図4及び図5に示すように、サイドスペーサ700は、挿入方向(Z軸方向)に延在する長尺状の部材であり、PC、PP、PE、またはPPS等の絶縁性を有する素材によって形成されている。サイドスペーサ700は、容器100の本体111における内側面のうち、一対の短側面に対向するように配置されている。 As shown in FIGS. 4 and 5, the side spacer 700 is a long member extending in the insertion direction (Z-axis direction) and is made of an insulating material such as PC, PP, PE, or PPS. Is formed. The side spacer 700 is disposed so as to face a pair of short side surfaces among the inner side surfaces of the main body 111 of the container 100.
 サイドスペーサ700は、壁部710と、壁部710の上端部に連結された天板720と、壁部710の下端部に連結された底板730とを一体的に有する。 The side spacer 700 integrally includes a wall portion 710, a top plate 720 connected to the upper end portion of the wall portion 710, and a bottom plate 730 connected to the lower end portion of the wall portion 710.
 壁部710は、挿入方向に沿って延在して電極体400の一側部を覆う部位である。具体的には、図5に示すように、壁部710における容器100の内方側の内側面711は、電極体400の湾曲部432に対向する面であり、当該湾曲部432に対応した滑らかな湾曲面となっている。サイドスペーサ700が電極体400に組み付けられると、壁部710の内側面711は、電極体400に湾曲部432に当接する。 The wall portion 710 is a portion that extends along the insertion direction and covers one side portion of the electrode body 400. Specifically, as shown in FIG. 5, the inner side surface 711 of the inner side of the container 100 in the wall portion 710 is a surface facing the curved portion 432 of the electrode body 400, and is a smooth surface corresponding to the curved portion 432. It has a curved surface. When the side spacer 700 is assembled to the electrode body 400, the inner side surface 711 of the wall portion 710 comes into contact with the curved portion 432 on the electrode body 400.
 また、壁部710における容器100側の外側面712は、容器100の内部形状に対応して一対の角部がR形状に形成されている。この一対のR形状部分は、矩形状の容器100内部の隣り合う一対の角部に対向する。壁部710における一対のR形状部分を角部領域713とし、一対の角部領域713に挟まれて隣接する部分を中央領域714とする。中央領域714は、電極体400の湾曲部432における頂部を覆う領域であり、角部領域713は、湾曲部432における頂部の側方を覆う領域である。 Also, the outer surface 712 on the container 100 side of the wall 710 has a pair of corners formed in an R shape corresponding to the inner shape of the container 100. The pair of R-shaped portions opposes a pair of adjacent corners inside the rectangular container 100. A pair of R-shaped portions in the wall portion 710 is a corner region 713, and a portion sandwiched between the pair of corner regions 713 is a central region 714. The central region 714 is a region that covers the top of the curved portion 432 of the electrode body 400, and the corner region 713 is a region that covers the side of the top of the curved portion 432.
 天板720及び底板730は、隣り合う一対の角部がR形状となった板体である。天板720は、壁部710の上端部(一端部)に連結されており、壁部710の内側面711から容器100の内方に向けて突出する突出部である。具体的には、天板720は、電極体400における開口112側の第一の面(上面401)に対して、上方から対向する第一突出部である。底板730は、壁部710の下端部(他端部)に連結されており、壁部710の内側面711から容器100の内方に向けて突出する突出部である。具体的には、底板730は、電極体400における第一の面に向かい合う第二の面(下面402)に対して、下方から対向する第二突出部である。なお、本実施の形態では、電極体400の第一の面(上面401)と、第二の面(下面402)は、電極体400をなすセパレータ470a、470bの端面から構成されている。 The top plate 720 and the bottom plate 730 are plate bodies in which a pair of adjacent corners has an R shape. The top plate 720 is connected to the upper end portion (one end portion) of the wall portion 710 and is a protruding portion that protrudes from the inner side surface 711 of the wall portion 710 toward the inside of the container 100. Specifically, the top plate 720 is a first protrusion that faces the first surface (upper surface 401) on the opening 112 side of the electrode body 400 from above. The bottom plate 730 is connected to the lower end portion (the other end portion) of the wall portion 710 and is a protruding portion that protrudes from the inner side surface 711 of the wall portion 710 toward the inside of the container 100. Specifically, the bottom plate 730 is a second protrusion that faces the second surface (lower surface 402) facing the first surface of the electrode body 400 from below. In the present embodiment, the first surface (upper surface 401) and the second surface (lower surface 402) of the electrode body 400 are configured from the end surfaces of the separators 470a and 470b that form the electrode body 400.
 緩衝材800は、サイドスペーサ700よりも剛性が低くなるように形成された部材である。具体的には、サイドスペーサ700よりも剛性の低い特性を有する材料、例えば、発泡ポリエチレン等のクッション性を有する材料で形成された緩衝材や、その形状によってサイドスペーサ700よりも剛性が低く形成された緩衝材などが挙げられる。形状によって剛性を低くする手法の一つとしては、例えば、樹脂材料を多孔質に形成することが挙げられる。緩衝材800をなす樹脂材料には、サイドスペーサ700と同様に、PC、PP、PE、またはPPS等の絶縁性を有する素材などが挙げられる。 The cushioning material 800 is a member formed so as to have lower rigidity than the side spacer 700. Specifically, a cushioning material made of a material having a lower rigidity than the side spacer 700, for example, a cushioning material such as foamed polyethylene, or a shape lower in rigidity than the side spacer 700 is formed. And cushioning materials. One method for reducing the rigidity depending on the shape is, for example, forming a resin material in a porous manner. Examples of the resin material forming the buffer material 800 include a material having insulating properties such as PC, PP, PE, or PPS, as in the case of the side spacer 700.
 図6は、実施の形態に係る容器100、電極体400、サイドスペーサ700及び緩衝材800の配置関係を模式的に示す断面図である。 FIG. 6 is a cross-sectional view schematically showing the positional relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800 according to the embodiment.
 図2及び図6に示すように、緩衝材800は、第一緩衝材810と、第二緩衝材820と、第三緩衝材830と、第四緩衝材840とを含む。 2 and 6, the cushioning material 800 includes a first cushioning material 810, a second cushioning material 820, a third cushioning material 830, and a fourth cushioning material 840.
 第一緩衝材810は、板状の緩衝材であり、各サイドスペーサ700に対して一つ設けられている。第一緩衝材810は、電極体400の上面401と、サイドスペーサ700の天板720との間に介在している。これにより、第一緩衝材810は、電極体400の上面401と、サイドスペーサ700の天板720とを離間させる。第一緩衝材810は、電極体400の上面401と、サイドスペーサ700の天板720との間に介在できる形状であれば如何様でもよい。本実施の形態では、第一緩衝材810は、天板720の平面形状と相似な平面形状となっている。 The first buffer material 810 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700. The first buffer material 810 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700. Thereby, the first buffer material 810 separates the upper surface 401 of the electrode body 400 from the top plate 720 of the side spacer 700. The first buffer material 810 may have any shape as long as it can be interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700. In the present embodiment, the first buffer material 810 has a planar shape similar to the planar shape of the top plate 720.
 第二緩衝材820は、板状の緩衝材であり、各サイドスペーサ700に対して一つ設けられている。第二緩衝材820は、電極体400の下面402と、サイドスペーサ700の底板730との間に介在している。これにより、第二緩衝材820は、電極体400の下面402と、サイドスペーサ700の底板730とを離間させる。第二緩衝材820は、電極体400の上面401と、サイドスペーサ700の天板720との間に介在できる形状であれば如何様でもよい。本実施の形態では、第二緩衝材820は、底板730の平面形状と相似な平面形状となっている。 The second buffer material 820 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700. The second buffer material 820 is interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700. Thereby, the second buffer material 820 separates the lower surface 402 of the electrode body 400 from the bottom plate 730 of the side spacer 700. The second buffer material 820 may have any shape as long as it can be interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700. In the present embodiment, the second cushioning material 820 has a planar shape similar to the planar shape of the bottom plate 730.
 第三緩衝材830は、板状の緩衝材であり、各サイドスペーサ700に対して一つ設けられている。第三緩衝材830は、サイドスペーサ700の天板720と、容器100の蓋体110との間に介在している。これにより、第三緩衝材830は、サイドスペーサ700の天板720と、容器100の蓋体110とを離間させる。第三緩衝材830は、電極体400の上面401と、サイドスペーサ700の天板720との間に介在できる形状であれば如何様でもよい。本実施の形態では、第三緩衝材830は、天板720の平面形状と相似な平面形状となっている。 The third buffer material 830 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700. The third cushioning material 830 is interposed between the top plate 720 of the side spacer 700 and the lid 110 of the container 100. Thereby, the third cushioning material 830 separates the top plate 720 of the side spacer 700 and the lid 110 of the container 100. The third buffer material 830 may have any shape as long as it can be interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700. In the present embodiment, the third cushioning material 830 has a planar shape similar to the planar shape of the top plate 720.
 第四緩衝材840は、板状の緩衝材であり、各サイドスペーサ700に対して一つ設けられている。第四緩衝材840は、サイドスペーサ700の底板730と、容器100の本体111の底113との間に介在している。これにより、第四緩衝材840は、サイドスペーサ700の底板730と、容器100の本体111とを離間させる。第四緩衝材840は、電極体400の下面402と、サイドスペーサ700の底板730と間に介在できる形状であれば如何様でもよい。本実施の形態では、第四緩衝材840は、底板730の平面形状と相似な平面形状となっている。 The fourth buffer material 840 is a plate-shaped buffer material, and one fourth buffer material 840 is provided for each side spacer 700. The fourth buffer material 840 is interposed between the bottom plate 730 of the side spacer 700 and the bottom 113 of the main body 111 of the container 100. Thereby, the fourth buffer material 840 separates the bottom plate 730 of the side spacer 700 from the main body 111 of the container 100. The fourth buffer material 840 may have any shape that can be interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700. In the present embodiment, the fourth buffer material 840 has a planar shape similar to the planar shape of the bottom plate 730.
 そして、第一緩衝材810、第二緩衝材820、第三緩衝材830及び第四緩衝材840は、容器100内で生じる衝撃を少なくとも緩和できる厚みに形成されていればよい。さらに、第一緩衝材810、第二緩衝材820、第三緩衝材830及び第四緩衝材840は、容器100内に衝撃が発生したとしても電極体400を損傷させない程度まで衝撃を吸収できる厚みに形成されていることがより好ましい。これらの厚みには、種々の実験、シミュレーションなどにより求められた適切な値が採用される。 And the 1st shock absorbing material 810, the 2nd shock absorbing material 820, the 3rd shock absorbing material 830, and the 4th shock absorbing material 840 should just be formed in the thickness which can relieve the impact which arises in the container 100 at least. Further, the first buffer material 810, the second buffer material 820, the third buffer material 830, and the fourth buffer material 840 have a thickness that can absorb the impact to the extent that the electrode body 400 is not damaged even if an impact occurs in the container 100. More preferably, it is formed. For these thicknesses, appropriate values obtained by various experiments, simulations, and the like are employed.
 次に、蓄電素子10の製造方法を説明する。 Next, a method for manufacturing the electricity storage element 10 will be described.
 まず、電極体形成工程では、正極450及び負極460と、セパレータ470a、470bとを交互に積層して巻回して、図3に示す電極体400を形成する。 First, in the electrode body forming step, the positive electrode 450 and the negative electrode 460 and the separators 470a and 470b are alternately stacked and wound to form the electrode body 400 shown in FIG.
 巻回が完了すると、電極体400が展開しないように、当該電極体400の平坦部433に接着テープ(図示省略)を貼り付ける。 When the winding is completed, an adhesive tape (not shown) is applied to the flat portion 433 of the electrode body 400 so that the electrode body 400 does not expand.
 次いで、負極集電体に対して、電極体400のタブ部420を溶接して固定するとともに、正極集電体に対して、電極体400のタブ部410を溶接して固定する。 Next, the tab portion 420 of the electrode body 400 is welded and fixed to the negative electrode current collector, and the tab portion 410 of the electrode body 400 is welded and fixed to the positive electrode current collector.
 次いで、電極体400の本体部430に対してサイドスペーサ700を取り付ける。具体的には、本体部430の湾曲部431、432毎に個別にサイドスペーサ700を取り付ける。このとき、電極体400の上面401と、サイドスペーサ700の天板720との間に第一緩衝材810を介在させるとともに、電極体400の下面402と、サイドスペーサ700の底板730との間に第二緩衝材820を介在させる。 Next, the side spacer 700 is attached to the main body 430 of the electrode body 400. Specifically, the side spacer 700 is attached to each of the curved portions 431 and 432 of the main body 430. At this time, the first buffer material 810 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700, and between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700. A second cushioning material 820 is interposed.
 その後、サイドスペーサ700と電極体400とを図示しないテープ部材によって固定し、一体化する。 Thereafter, the side spacer 700 and the electrode body 400 are fixed by a tape member (not shown) and integrated.
 次いで、一体化された電極体400及びサイドスペーサ700を、容器100の本体111の開口112から挿入することで容器100に収容する。このとき、サイドスペーサ700の天板720と、容器100の蓋体110との間に第三緩衝材830を介在させるとともに、サイドスペーサ700の底板730と、容器100の本体111の底113との間に第四緩衝材840を介在させる。なお、第一緩衝材810、第二緩衝材820、第三緩衝材830及び第四緩衝材840を予めサイドスペーサ700に接着していれば、各緩衝材の組み付けを容易に行うことができる。 Next, the integrated electrode body 400 and side spacer 700 are inserted into the container 100 by being inserted from the opening 112 of the main body 111 of the container 100. At this time, the third cushioning material 830 is interposed between the top plate 720 of the side spacer 700 and the lid 110 of the container 100, and the bottom plate 730 of the side spacer 700 and the bottom 113 of the main body 111 of the container 100. A fourth cushioning material 840 is interposed therebetween. In addition, if the 1st shock absorbing material 810, the 2nd shock absorbing material 820, the 3rd shock absorbing material 830, and the 4th shock absorbing material 840 are previously adhere | attached on the side spacer 700, assembly | attachment of each shock absorbing material can be performed easily.
 次いで、本体111に蓋体110を溶接して、容器100を組み立て、注液口から電解液を注液する。その後、注液栓を蓋体110に溶接して注液口を塞ぐことで、蓄電素子10が製造される。 Next, the lid 110 is welded to the main body 111, the container 100 is assembled, and the electrolytic solution is injected from the injection port. Thereafter, the storage element 10 is manufactured by welding the injection plug to the lid 110 and closing the injection port.
 以上のように、本実施の形態によれば、緩衝材800によって、電極体400の上面401と第一突出部(天板720)とが離間されるとともに、電極体400の下面402と第二突出部(底板730)とが離間されているので、突出部が2つ設けられている場合にも電極体400と突出部との接触を抑制することができる。したがって、サイドスペーサ700の突出部との接触を起因とした電極体400の損傷を抑制することができる。 As described above, according to the present embodiment, the upper surface 401 of the electrode body 400 and the first protrusion (the top plate 720) are separated from each other by the cushioning material 800, and the lower surface 402 and the second surface of the electrode body 400 are separated from each other. Since the protruding portion (bottom plate 730) is separated, contact between the electrode body 400 and the protruding portion can be suppressed even when two protruding portions are provided. Therefore, the electrode body 400 can be prevented from being damaged due to the contact with the protruding portion of the side spacer 700.
 また、電極体400の上面401と天板720との間に第一緩衝材810が介在しているので、電極体400の上面401と天板720とを確実に離間させことができる。また、電極体400の下面402と底板730との間に第二緩衝材820が介在しているので、電極体400の下面402と底板730とを確実に離間させることができる。したがって、電極体400の上面401と天板720との接触及び電極体400の下面402と底板730との接触を確実に抑制することができる。 In addition, since the first buffer material 810 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720, the upper surface 401 of the electrode body 400 and the top plate 720 can be reliably separated. Further, since the second buffer material 820 is interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730, the lower surface 402 of the electrode body 400 and the bottom plate 730 can be reliably separated. Therefore, the contact between the upper surface 401 of the electrode body 400 and the top plate 720 and the contact between the lower surface 402 of the electrode body 400 and the bottom plate 730 can be reliably suppressed.
 また、天板720と容器100との間に介在する第三緩衝材830及び底板730と容器100との間に介在する第四緩衝材840によって、容器100内におけるサイドスペーサ700と電極体400とのガタツキを抑制することができる。したがって、電極体400に作用する衝撃をより緩和することができる。 Further, the side spacer 700 and the electrode body 400 in the container 100 are provided by the third cushioning material 830 interposed between the top plate 720 and the container 100 and the fourth cushioning material 840 interposed between the bottom plate 730 and the container 100. Can be suppressed. Therefore, the impact acting on the electrode body 400 can be further alleviated.
 [変形例1]
 上記実施の形態では、サイドスペーサ700と電極体400とを離間させるために、サイドスペーサ700の天板720と電極体400の上面401との間に第一緩衝材810を介在させ、サイドスペーサ700の底板730と電極体400の下面402との間に第二緩衝材820を介在させている。しかし、緩衝材を必ずしもサイドスペーサと電極体との間に介在させなくとも、サイドスペーサ700と電極体400とを離間させることは可能である。その場合の緩衝材の配置例について、変形例1で具体的に説明する。
[Modification 1]
In the above embodiment, in order to separate the side spacer 700 and the electrode body 400, the first buffer material 810 is interposed between the top plate 720 of the side spacer 700 and the upper surface 401 of the electrode body 400, and the side spacer 700. A second cushioning material 820 is interposed between the bottom plate 730 of the first electrode and the lower surface 402 of the electrode body 400. However, the side spacer 700 and the electrode body 400 can be separated from each other without necessarily interposing the buffer material between the side spacer and the electrode body. The arrangement example of the cushioning material in that case will be specifically described in Modification 1.
 なお、以下の説明において、上記実施の形態と同一の部分は、同一の符号を付してその説明を省略する場合がある。 In the following description, the same parts as those in the above embodiment may be denoted by the same reference numerals and the description thereof may be omitted.
 図7は、変形例1に係る容器100、電極体400、サイドスペーサ700及び緩衝材800Aの配置関係を模式的に示す断面図である。図7に示すように、緩衝材800Aは、第五緩衝材850と、第六緩衝材860と、第七緩衝材870とを含む。 FIG. 7 is a cross-sectional view schematically showing an arrangement relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800A according to the first modification. As shown in FIG. 7, the cushioning material 800 </ b> A includes a fifth cushioning material 850, a sixth cushioning material 860, and a seventh cushioning material 870.
 第五緩衝材850は、板状の緩衝材であり、各サイドスペーサ700に対して一つ設けられている。第五緩衝材850は、電極体400の上面401と、サイドスペーサ700の天板720との間に介在している。これにより、第五緩衝材850は、電極体400の上面401と、サイドスペーサ700の天板720とを離間させる。つまり、第五緩衝材850は、上記第一緩衝材810に対応している。 The fifth buffer material 850 is a plate-shaped buffer material, and one fifth buffer material 850 is provided for each side spacer 700. The fifth buffer material 850 is interposed between the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700. Thereby, the fifth buffer material 850 separates the upper surface 401 of the electrode body 400 from the top plate 720 of the side spacer 700. That is, the fifth buffer material 850 corresponds to the first buffer material 810.
 第六緩衝材860は、板状の緩衝材であり、各サイドスペーサ700に対して一つ設けられている。第六緩衝材860は、電極体400の上面401と、容器100の蓋体110との間に介在している。つまり、第六緩衝材860は、サイドスペーサ700の第一突出部及び第二突出部のうち、第五緩衝材850が設けられた突出部と容器100との間に介在している。これにより、第六緩衝材860は、電極体400の上面401と、容器100とを離間させる。つまり、第六緩衝材860は、上記第三緩衝材830に対応している。 The sixth buffer material 860 is a plate-shaped buffer material, and one buffer material is provided for each side spacer 700. The sixth buffer material 860 is interposed between the upper surface 401 of the electrode body 400 and the lid body 110 of the container 100. That is, the sixth cushioning material 860 is interposed between the container 100 and the projection provided with the fifth cushioning material 850 among the first projection and the second projection of the side spacer 700. Thereby, the sixth buffer material 860 separates the upper surface 401 of the electrode body 400 from the container 100. That is, the sixth buffer material 860 corresponds to the third buffer material 830.
 第七緩衝材870は、板状の緩衝材であり、電極体400に対して一つ設けられている。第七緩衝材870は、電極体400の下面402であって、底板730から露出した部分と、容器100の本体111の底113との間に介在している。つまり、第七緩衝材870は、電極体400の上面401及び下面402のうち、第五緩衝材850が設けられていない側の下面402であって、底板730(第二突出部)から露出した部分と、容器100との間に介在している。第七緩衝材870は、電極体400の下面402と、サイドスペーサ700の底板730とを離間させるとともに、容器100の底113と、サイドスペーサ700の底板730とを離間させる厚みに設定されている。ここでいう「離間」とは、離間対象同士が接触していても、一方からの荷重を他方が受けていない状態を含む。 The seventh buffer material 870 is a plate-shaped buffer material, and one seventh buffer material 870 is provided for the electrode body 400. The seventh buffer material 870 is disposed on the lower surface 402 of the electrode body 400 between the portion exposed from the bottom plate 730 and the bottom 113 of the main body 111 of the container 100. That is, the seventh buffer material 870 is the lower surface 402 of the electrode body 400 on the side where the fifth buffer material 850 is not provided, and is exposed from the bottom plate 730 (second projecting portion). It is interposed between the portion and the container 100. The seventh buffer material 870 is set to a thickness that separates the lower surface 402 of the electrode body 400 from the bottom plate 730 of the side spacer 700 and separates the bottom 113 of the container 100 and the bottom plate 730 of the side spacer 700. . Here, “separation” includes a state in which a load from one side is not received by the other even though the separation targets are in contact with each other.
 この構成によれば、第五緩衝材850、第六緩衝材860及び第七緩衝材870によって、容器100内におけるサイドスペーサ700と電極体400との所定方向(例えば上下方向)の位置関係が維持される。このため、電極体400の上面401とサイドスペーサ700の天板720とを確実に離間させるとともに、電極体400の下面402とサイドスペーサ700の底板730とを確実に離間させることができる。したがって、電極体400とサイドスペーサ700との接触を確実に抑制することができる。 According to this configuration, the fifth buffer material 850, the sixth buffer material 860, and the seventh buffer material 870 maintain the positional relationship between the side spacer 700 and the electrode body 400 in the container 100 in a predetermined direction (for example, the vertical direction). Is done. Therefore, the upper surface 401 of the electrode body 400 and the top plate 720 of the side spacer 700 can be reliably separated from each other, and the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700 can be reliably separated from each other. Therefore, the contact between the electrode body 400 and the side spacer 700 can be reliably suppressed.
 [変形例2]
 変形例1では、第五緩衝材850及び第六緩衝材860が上方(天板720側)、第七緩衝材870が下方(底113側)に配置されている場合を例示したが、この変形例2では、これらの配置関係が逆となった場合について説明する。
[Modification 2]
In the first modification, the case where the fifth cushioning material 850 and the sixth cushioning material 860 are disposed on the upper side (the top plate 720 side) and the seventh cushioning material 870 is disposed on the lower side (the bottom 113 side) is illustrated. In Example 2, a case where these arrangement relationships are reversed will be described.
 図8は、変形例2に係る容器100、電極体400、サイドスペーサ700及び緩衝材800Aの配置関係を模式的に示す断面図である。図8に示すように、第五緩衝材850は、電極体400の下面402と、サイドスペーサ700の底板730との間に介在している。第六緩衝材860は、サイドスペーサ700の底板730と、容器100の本体111の底113との間に介在している。一方、第七緩衝材870は、電極体400の上面401であって、天板720から露出した部分と、容器100の蓋体110との間に介在している。つまり、第七緩衝材870は、電極体400の上面401及び下面402のうち、第五緩衝材850が設けられていない側の上面401であって、天板720(第一突出部)から露出した部分と、容器100との間に介在している。 FIG. 8 is a cross-sectional view schematically showing an arrangement relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800A according to the second modification. As shown in FIG. 8, the fifth buffer material 850 is interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the side spacer 700. The sixth buffer material 860 is interposed between the bottom plate 730 of the side spacer 700 and the bottom 113 of the main body 111 of the container 100. On the other hand, the seventh buffer material 870 is interposed between the portion of the upper surface 401 of the electrode body 400 exposed from the top plate 720 and the lid body 110 of the container 100. That is, the seventh buffer material 870 is the upper surface 401 of the upper surface 401 and the lower surface 402 of the electrode body 400 on the side where the fifth buffer material 850 is not provided, and is exposed from the top plate 720 (first protrusion). And the container 100 is interposed.
 この場合においても、容器100内におけるサイドスペーサ700と電極体400との所定方向(例えば上下方向)の位置関係を維持することができ、結果的に電極体400とサイドスペーサ700との接触を確実に抑制することができる。 Even in this case, the positional relationship between the side spacer 700 and the electrode body 400 in the container 100 in a predetermined direction (for example, the vertical direction) can be maintained, and as a result, the contact between the electrode body 400 and the side spacer 700 is ensured. Can be suppressed.
 変形例2のように第七緩衝材870を蓋体110側に配置する場合には、蓄電素子10に内蔵される他の構成要素(下部ガスケット、集電体等)と干渉しない形状に第七緩衝材870を形成していることが望ましい。 When the seventh cushioning material 870 is disposed on the lid 110 side as in the second modification, the seventh cushioning material 870 has a shape that does not interfere with other components (lower gasket, current collector, etc.) built in the power storage element 10. It is desirable to form the buffer material 870.
 [変形例3]
 上記実施の形態では、第一緩衝材810、第二緩衝材820及び第三緩衝材830が、各サイドスペーサ700に一つずつ設けられている場合、つまり、容器100内において2つずつ設けられている場合を例示して説明した。しかし、一対のサイドスペーサ700に対して第一緩衝材810、第二緩衝材820及び第三緩衝材830が一つずつ設けられていてもよい。
[Modification 3]
In the above embodiment, when the first buffer material 810, the second buffer material 820, and the third buffer material 830 are provided one by one in each side spacer 700, that is, two in the container 100. The case has been described as an example. However, the first buffer material 810, the second buffer material 820, and the third buffer material 830 may be provided for each of the pair of side spacers 700.
 図9は、変形例3に係る容器100、電極体400、サイドスペーサ700及び緩衝材800Cの配置関係を模式的に示す断面図である。図9に示すように、緩衝材800Cの第四緩衝材840cは、電極体400の下面402と、一対のサイドスペーサ700の底板730との間に単体で介在するように長尺な板状に形成されている。これにより、部品点数を削減することができる。なお、一対のサイドスペーサ700を一つの第四緩衝材840cで対応する場合には、蓄電素子10に内蔵される他の構成要素(下部ガスケット、集電体等)と干渉しない形状に第四緩衝材840cを形成していることが望ましい。 FIG. 9 is a cross-sectional view schematically showing an arrangement relationship among the container 100, the electrode body 400, the side spacer 700, and the buffer material 800C according to the third modification. As shown in FIG. 9, the fourth cushioning material 840c of the cushioning material 800C has a long plate shape so as to be interposed between the lower surface 402 of the electrode body 400 and the bottom plate 730 of the pair of side spacers 700. Is formed. Thereby, the number of parts can be reduced. When the pair of side spacers 700 is handled by one fourth buffer material 840c, the fourth buffer is formed in a shape that does not interfere with other components (lower gasket, current collector, etc.) built in the storage element 10. It is desirable to form the material 840c.
 ここでは、第四緩衝材840cを例示して説明したが、他の緩衝材(第一緩衝材810、第二緩衝材820、第三緩衝材830)においても同様である。 Here, the fourth buffer material 840c has been described as an example, but the same applies to other buffer materials (first buffer material 810, second buffer material 820, and third buffer material 830).
 (他の実施の形態)
 以上、本発明に係る蓄電素子について、実施の形態に基づいて説明した。しかしながら、本発明は、上記実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものも、あるいは、上記説明された複数の構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。
(Other embodiments)
The power storage element according to the present invention has been described based on the embodiments. However, the present invention is not limited to the above embodiment. Unless it deviates from the gist of the present invention, various modifications conceived by those skilled in the art have been applied to the above-described embodiments, or forms constructed by combining a plurality of the constituent elements described above are within the scope of the present invention. include.
 例えば、蓄電素子10が備える電極体400の個数は1には限定されず、2以上であってよい。蓄電素子10が複数の電極体400を備える場合においては、複数の電極体400の側面をまとめて覆うように、一対のサイドスペーサが取り付けられていてもよい。なお、複数の電極体400を備える場合、各電極体400に対して一対のサイドスペーサ700を取り付けることも可能である。 For example, the number of electrode bodies 400 included in the electricity storage element 10 is not limited to 1, and may be 2 or more. When the electrical storage element 10 includes a plurality of electrode bodies 400, a pair of side spacers may be attached so as to cover the side surfaces of the plurality of electrode bodies 400 together. When a plurality of electrode bodies 400 are provided, a pair of side spacers 700 can be attached to each electrode body 400.
 また、電極体400が有する正極側のタブ部410と負極側のタブ部420との位置関係は特に限定されない。例えば、巻回型の電極体400において、タブ部410とタブ部420とが巻回軸方向の互いに反対側に配置されていてもよい。また、蓄電素子10が、積層型の電極体を備える場合、積層方向から見た場合において、正極側のタブ部と負極側のタブ部とが異なる方向に突出して設けられていてもよい。この場合、正極側のタブ部と負極側のタブ部にそれぞれ対応する位置に、下部絶縁部材、集電体等が配置されていればよい。 Further, the positional relationship between the positive electrode side tab portion 410 and the negative electrode side tab portion 420 of the electrode body 400 is not particularly limited. For example, in the wound electrode body 400, the tab portion 410 and the tab portion 420 may be disposed on opposite sides in the winding axis direction. Moreover, when the electrical storage element 10 is provided with a laminated electrode body, when viewed from the laminating direction, the positive-side tab portion and the negative-side tab portion may be provided so as to protrude in different directions. In this case, it is only necessary that the lower insulating member, the current collector, and the like are arranged at positions corresponding to the tab portion on the positive electrode side and the tab portion on the negative electrode side, respectively.
 また、上記実施の形態では、スペーサとして、電極体400の側方を覆うサイドスペーサ700を例示して説明した。しかし、スペーサとしては、容器と電極体との間に介在するものであれば如何様でもよい。その他のスペーサとしては、例えば、電極体の上面と容器の蓋体との間に介在する上部スペーサ、電極体の下面と容器の底との間に介在する下部スペーサなどが挙げられる。 In the above embodiment, the side spacer 700 that covers the side of the electrode body 400 is described as an example of the spacer. However, any spacer may be used as long as it is interposed between the container and the electrode body. Examples of other spacers include an upper spacer interposed between the upper surface of the electrode body and the lid of the container, and a lower spacer interposed between the lower surface of the electrode body and the bottom of the container.
 そして、上記実施の形態及び変形例1~3では、容器100内に複数の緩衝材が設けられている場合を例示して説明した。しかし、電極体の一つの面と、サイドスペーサの突出部(天板及び底板)とを一箇所でも離間させるのであれば、容器内に緩衝材は一つであってもよい。これにより、一箇所であっても、電極体とサイドスペーサの突出部との接触を低減することができ、スペーサの突出部との接触を起因とした電極体の損傷を抑制することができる。また、緩衝材の弾力性によって、電極体に対する衝撃を吸収することができ、電極体の損傷を抑制することができる。なお、「電極体の一つの面とサイドスペーサの突出部とを離間させる」とは、両者が接触していても、一方からの荷重を他方が受けていない状態を含む。 In the above embodiment and Modifications 1 to 3, the case where a plurality of cushioning materials are provided in the container 100 has been described as an example. However, as long as one surface of the electrode body and the protruding portion (the top plate and the bottom plate) of the side spacer are separated from each other even at one place, there may be one buffer material in the container. Thereby, even if it is one place, the contact with the protrusion part of an electrode body and a side spacer can be reduced, and the damage to the electrode body resulting from the contact with the protrusion part of a spacer can be suppressed. Moreover, the impact with respect to an electrode body can be absorbed by the elasticity of a buffer material, and damage to an electrode body can be suppressed. Note that “separate one surface of the electrode body and the protruding portion of the side spacer” includes a state in which the other does not receive a load from one side even if they are in contact with each other.
 なお、上述したように、巻回軸がZ軸方向に沿うように電極体400が容器100内に収容され、電極体400から突出したタブ部410、420で集電する場合には、容器100内で電極体400が揺れ動き、サイドスペーサの突出部と電極体が干渉しやすい。つまり、サイドスペーサの突出部との干渉対策として、電極体の一つの面と、サイドスペーサの突出部とを一箇所でも離間させる構成を採用することは、上述のような電極体400に対して好適である。 As described above, when the electrode body 400 is accommodated in the container 100 so that the winding axis is along the Z-axis direction and current is collected by the tab portions 410 and 420 protruding from the electrode body 400, the container 100 In this case, the electrode body 400 sways and the protruding portions of the side spacers easily interfere with the electrode body. In other words, as a countermeasure against interference with the protruding portion of the side spacer, adopting a configuration in which one surface of the electrode body and the protruding portion of the side spacer are separated from each other at one place is as opposed to the electrode body 400 as described above. Is preferred.
 本発明は、リチウムイオン二次電池などの蓄電素子等に適用できる。 The present invention can be applied to power storage elements such as lithium ion secondary batteries.
10 蓄電素子
100 容器
110 蓋体
400 電極体
401 上面(第一の面)
402 下面(第二の面)
700 サイドスペーサ(スペーサ)
720 天板(第一突出部)
730 底板(第二突出部)
800、800A、800C 緩衝材
810 第一緩衝材
820 第二緩衝材
830 第三緩衝材
840、840c 第四緩衝材
850 第五緩衝材
860 第六緩衝材
870 第七緩衝材
10 power storage element 100 container 110 lid body 400 electrode body 401 upper surface (first surface)
402 Lower surface (second surface)
700 Side spacer (spacer)
720 Top plate (first protrusion)
730 Bottom plate (second protrusion)
800, 800A, 800C Buffer material 810 First buffer material 820 Second buffer material 830 Third buffer material 840, 840c Fourth buffer material 850 Fifth buffer material 860 Sixth buffer material 870 Seventh buffer material

Claims (5)

  1.  電極体と、
     前記電極体を収容する容器と、
     前記容器と前記電極体との間に介在するスペーサと、を備える蓄電素子であって、
     前記スペーサは、
     前記容器の内方に向けて突出し、前記電極体の一つの面に対向する突出部を備え、
     前記蓄電素子は、緩衝材を有し、
     前記緩衝材は、前記電極体の一つの面と前記突出部とを離間させる
     蓄電素子。
    An electrode body;
    A container for housing the electrode body;
    A storage element comprising a spacer interposed between the container and the electrode body,
    The spacer is
    Projecting inward of the container, and having a projecting portion facing one surface of the electrode body,
    The power storage element has a buffer material,
    The buffer material separates one surface of the electrode body from the protruding portion.
  2.  前記スペーサは、前記突出部として、前記電極体の第一の面に対向する第一突出部と、前記電極体における前記第一の面に向かい合う第二の面に対向する第二突出部とを有し、
     前記緩衝材は、前記電極体の前記第一の面と前記第一突出部とを離間させるとともに前記電極体の前記第二の面と前記第二突出部とを離間させる
     請求項1に記載の蓄電素子。
    The spacer includes, as the protruding portion, a first protruding portion that faces the first surface of the electrode body, and a second protruding portion that faces the second surface of the electrode body facing the first surface. Have
    The buffer material separates the first surface of the electrode body and the first protrusion, and separates the second surface of the electrode body and the second protrusion. Power storage element.
  3.  前記緩衝材は、
     前記電極体の前記第一の面と前記第一突出部との間に介在する第一緩衝材と、
     前記電極体の前記第二の面と前記第二突出部との間に介在する第二緩衝材とを含む
     請求項2に記載の蓄電素子。
    The cushioning material is
    A first cushioning material interposed between the first surface of the electrode body and the first protrusion;
    The power storage device according to claim 2, further comprising a second buffer material interposed between the second surface of the electrode body and the second protrusion.
  4.  前記緩衝材は、
     前記第一突出部と前記容器との間に介在する第三緩衝材と、
     前記第二突出部と前記容器との間に介在する第四緩衝材とを含む
     請求項3に記載の蓄電素子。
    The cushioning material is
    A third cushioning material interposed between the first protrusion and the container;
    The power storage device according to claim 3, further comprising a fourth cushioning material interposed between the second projecting portion and the container.
  5.  前記緩衝材は、
     前記電極体の前記第一の面と前記第一突出部との間若しくは前記電極体の前記第二の面と前記第二突出部との間に介在する第五緩衝材と、
     前記第一突出部及び前記第二突出部のうち、前記第五緩衝材が設けられた突出部と前記容器との間に介在する第六緩衝材と、
     前記電極体の前記第一の面及び前記第二の面のうち、前記第五緩衝材が設けられていない側の面であって、前記第一突出部または前記第二突出部から露出した部分と、前記容器との間に介在する第七緩衝材とを含む
     請求項2に記載の蓄電素子。
    The cushioning material is
    A fifth cushioning material interposed between the first surface of the electrode body and the first projecting portion or between the second surface of the electrode body and the second projecting portion;
    Of the first protrusion and the second protrusion, a sixth shock absorber interposed between the container provided with the protrusion provided with the fifth shock absorber, and
    Of the first surface and the second surface of the electrode body, the surface on the side where the fifth cushioning material is not provided, the portion exposed from the first protrusion or the second protrusion And a seventh cushioning material interposed between the container and the container.
PCT/JP2018/007148 2017-03-03 2018-02-27 Electricity storage element WO2018159581A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-040673 2017-03-03
JP2017040673A JP2020071898A (en) 2017-03-03 2017-03-03 Power storage element

Publications (1)

Publication Number Publication Date
WO2018159581A1 true WO2018159581A1 (en) 2018-09-07

Family

ID=63370851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007148 WO2018159581A1 (en) 2017-03-03 2018-02-27 Electricity storage element

Country Status (2)

Country Link
JP (1) JP2020071898A (en)
WO (1) WO2018159581A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044082A (en) * 2019-09-06 2021-03-18 株式会社Gsユアサ Power storage element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114824413A (en) * 2021-01-19 2022-07-29 株式会社Lg新能源 Battery, current collector applied to battery, battery pack comprising current collector and automobile
KR102447738B1 (en) * 2021-02-19 2022-09-28 주식회사 엘지에너지솔루션 Battery, and battery pack and vehicle including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130393A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery and its manufacture
JP2011049066A (en) * 2009-08-27 2011-03-10 Toshiba Corp Battery
JP2012104341A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Battery
WO2013111256A1 (en) * 2012-01-23 2013-08-01 日立ビークルエナジー株式会社 Secondary battery
JP2014225450A (en) * 2013-05-15 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Secondary battery
JP2015095382A (en) * 2013-11-13 2015-05-18 株式会社Gsユアサ Power-storage device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130393A (en) * 1993-10-29 1995-05-19 Sony Corp Nonaqueous electrolyte secondary battery and its manufacture
JP2011049066A (en) * 2009-08-27 2011-03-10 Toshiba Corp Battery
JP2012104341A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Battery
WO2013111256A1 (en) * 2012-01-23 2013-08-01 日立ビークルエナジー株式会社 Secondary battery
JP2014225450A (en) * 2013-05-15 2014-12-04 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Secondary battery
JP2015095382A (en) * 2013-11-13 2015-05-18 株式会社Gsユアサ Power-storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044082A (en) * 2019-09-06 2021-03-18 株式会社Gsユアサ Power storage element
JP7393729B2 (en) 2019-09-06 2023-12-07 株式会社Gsユアサ Energy storage element

Also Published As

Publication number Publication date
JP2020071898A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
CN108140756B (en) Energy storage device
WO2017047787A1 (en) Power storage element and method for manufacturing power storage element
CN108028348B (en) Energy storage element and method for manufacturing energy storage element
JP6766136B2 (en) Power storage element
WO2016159099A1 (en) Electricity storage element
JP7136177B2 (en) Storage element
JPWO2017047784A1 (en) Electricity storage element
JP2017157354A (en) Power storage element and method of manufacturing power storage element
JP6743417B2 (en) Storage element
WO2018159581A1 (en) Electricity storage element
JP2017157342A (en) Power storage element
JP6701210B2 (en) Electric storage element and method for manufacturing electric storage element
JP2017157352A (en) Manufacturing method of power storage element, and power storage element
WO2017222039A1 (en) Electricity storage element
JP2018056081A (en) Power storage element
JP6726738B2 (en) Storage element
EP3319144B1 (en) Energy storage device
JP2018147618A (en) Power storage element
JP2019175583A (en) Power storage element
JP7322872B2 (en) Storage element
US20240097179A1 (en) Energy storage device
WO2022163520A1 (en) Power storage element
WO2023063332A1 (en) Power storage element
JP2022149967A (en) Power storage element
JP2020064723A (en) Power storage element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP