JP2004200222A - Isolated foam material for polishing - Google Patents

Isolated foam material for polishing Download PDF

Info

Publication number
JP2004200222A
JP2004200222A JP2002363711A JP2002363711A JP2004200222A JP 2004200222 A JP2004200222 A JP 2004200222A JP 2002363711 A JP2002363711 A JP 2002363711A JP 2002363711 A JP2002363711 A JP 2002363711A JP 2004200222 A JP2004200222 A JP 2004200222A
Authority
JP
Japan
Prior art keywords
polishing
sheet
wafer
independent foam
flatness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002363711A
Other languages
Japanese (ja)
Inventor
Yoshinori Masaki
義則 政木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2002363711A priority Critical patent/JP2004200222A/en
Priority to AU2003284655A priority patent/AU2003284655A1/en
Priority to PCT/JP2003/014964 priority patent/WO2004054779A1/en
Publication of JP2004200222A publication Critical patent/JP2004200222A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an isolated foam material for polishing which has a longer life than a conventional pad, further obtains well-balanced flatness of a device surface after polishing and uniformity on the wafer surface, and realizes polishing with high accuracy as the polishing layer of a polishing pad used for flattening the surface of the device wafer of a semiconductor such as an inter-layer insulating film, a metal wiring or the like. <P>SOLUTION: The isolated foam material for polishing has an A hardness of 80 or more conforming to JIS K 7311, and has an apparent compression ratio of 3 to 15% at 25°C. It is desirable that the mean diametr of the foam contained in a sheet is 1 to 50μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨パッドに用いられる研磨用独立発泡体に関するものである。
【0002】
【従来の技術】
半導体のデバイスウエハの表面平坦化加工に用いられる、代表的なプロセスである化学的機械的研磨法(CMP)の一例を図1に示す。定盤(2)、試料ホルダー(5)を回転させ、砥粒を含有する研磨スラリー(4)をスラリー供給用配管(10)を通して滴下しながら、半導体ウエハ(1)を研磨パッド(6)表面に押しあてることにより、デバイス表面を高精度に平坦化するというものである。なお研磨中、ドレッシングディスク(3)を回転させながら研磨パッド(6)表面に押しあてることにより、研磨パッド(6)の表面状態を整えている。研磨条件はもとより、研磨パッド(6)、ドレッシングディスク(3)、研磨スラリー(4)、ウエハ固定用治具(8)およびバッキング材(9)等、各構成部材の特性が、研磨速度、研磨後のデバイス表面の平坦性および均一性の指標となる、ウエハ面内における平坦性のばらつき等に代表される研磨性能に影響を及ぼすが、その中でも研磨パッド(6)と研磨スラリー(4)および研磨スラリー中に含まれる砥粒の及ぼす影響は極めて大きい。
【0003】
従来から、層間絶縁膜や金属配線等の研磨に用いられる研磨パッドの研磨層として、高分子マトリックス中に、空隙スペースを有する中空高分子微小エレメントを含浸した独立発泡体が標準的に使用されてきた(例えば、特許文献1参照。)。使用前、使用中におけるドレッシング、および研磨の進行に伴う研磨パッド表面の摩耗により、中空高分子微小エレメントのシェルが破れて内部の空孔が開口し、研磨スラリーの保持能力を発現するというものであった。
エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきている。これら半導体素子における回路の集積度が急激に増大するにつれて、半導体デバイスのデザインルールは、年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなり、パターン形成面の平坦性はますます厳しくなってきている。同時にウエハの大口径化も進行し、加工するデバイスウエハ面内の平坦性のばらつきをいかに抑えるか、つまりはウエハ面内での均一性をいかに向上させるかが大きな課題となっている。A硬度で80以上の、硬質系に分類される高硬度の、かつ圧縮率の小さい研磨層を用いることにより、平坦性向上は期待できるが、ウエハ全体の大きなうねりに沿うことは困難となり、均一性は低下する。逆に圧縮率の大きい研磨層を用いると、均一性は保たれるが平坦性の低下は免れない。近年になり、平坦性と均一性をいかに両立させるかということが、従来にも増して重要な課題となってきている。
【0004】
平坦性と均一性を両立するために、従来は、独立発泡体をクッション性を有する基材と貼り合わせ、研磨パッドを二層構造にするという手法がこれまでの主流であった。具体的には、表面硬度が大きく、圧縮率の小さい独立発泡体で平坦性を、圧縮率のクッション性を有する基材で均一性を保持するというコンセプトであった。
しかしながら、従来の二層構造研磨パッドにおいては、クッション層の効果を研磨に反映させる必要があるために、研磨層である独立発泡体の厚みが制限され、その結果としてパッドライフが制限されてしまうという点が大きな問題であった。
【0005】
【特許文献1】
特許第3013105号
【特許文献2】
公開特許公報2001−277101
【0006】
【発明が解決しようとする課題】
本発明は、従来研磨パッドの、均一性を保持するために研磨層の厚みが制限されるという問題を解決することにより、研磨層を厚くすることができ、研磨パッド1枚当たりのスループットを向上させるというもので、その目的とするところは、平坦性と均一性を兼ね備えた、ライフの長い研磨用独立発泡体を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、前記従来の問題点を鑑み、鋭意検討を重ねた結果、以下の手段により、本発明を完成するに至った。
すなわち本発明は、
(1) JIS K 7311に準じたA硬度が80以上であり、かつ25℃における見掛けの圧縮率が5〜15%である研磨用独立発泡体、
(2) シートに含まれる気泡の平均径が1〜50μmである第(1)項に記載の研磨用独立発泡体、
(3) シートの主原料が熱可塑性エラストマーである第(1)又は(2)項のいずれか1項に記載の研磨用独立発泡体、
(4) 熱可塑性エラストマーがポリウレタンである第(3)項記載の研磨用独立発泡体、
である。
【0008】
【発明の実施の形態】
本発明では、硬質系に分類される研磨パッドを対象とする。具体的には、本発明の研磨用独立発泡体は、JIS K 7311(ポリウレタン系熱可塑性エラストマーの試験方法)の硬さ試験に準じた測定において、A硬度80以上の表面硬度を有する。
本発明における研磨用独立発泡体の見掛けの圧縮率は、25℃において好ましくは3〜15%、より好ましくは5〜12%である。例えば半導体デバイスウエハの表面研磨を行う場合、圧縮率が3%未満では、研磨層がウエハ全体のうねりに追従しきれず、研磨速度のウエハ面内におけるばらつきが大きくなる、つまりは均一性が低下するので好ましくない。逆に15%より大きくなると、研磨速度が遅くなるだけでなく、研磨後のデバイス表面の平坦性低下を引き起こす原因となるため好ましくない。
【0009】
なお見掛けの圧縮率は、熱応力歪測定装置(TMA)により測定したシート厚みの変化量より算出した値である。測定サンプルシートの厚みは1mmとする。シートにかける面圧の経時変化(プロファイル)を図2に示す。
本発明で用いる見掛けの圧縮率は、300g/cmの面圧を60秒間掛けたときの厚み(T1)から、引き続き1800g/cmの面圧を同じく60秒間掛けた時の厚み(T2)を引いた値をT1で除し、さらにその値を100倍することにより求める。
【0010】
本発明において、シートに含まれる気泡の平均径は特に制限しないが、1〜50μmが、高精度な研磨、特に平坦性と均一性の両立が求められる半導体デバイス表面のCMPに好適である。
気泡の平均径が1μm未満であると、研磨スラリー中に含まれる砥粒の凝集物や研磨の進行に伴い発生する研磨屑等が、気泡が開口した結果生じた空孔内から排出されにくく、空孔が目詰まりし易い。その結果、スラリーの保持性能がウエハ面内においてばらつきやすくなり、均一性が低下するので好ましくない。逆に気泡が粗大になり、その平均径が50μmを超えた場合も同様に、スラリーの保持性能がウエハ面内においてばらつきやすくなり、均一性が低下するので好ましくない。
なお、シートに含まれる気泡の直径は、走査型電子顕微鏡(SEM)のシート断面像から計測した。倍率300倍の断面像に含まれる気泡一つ一つの直径を計測し、全気泡の直径の平均値を算出した。なおシート断面における気泡の形状が、真円でなく、例えば楕円形、もしくはいびつな多角形形状の場合は、円相当直径をその気泡の直径とする。
【0011】
本発明の研磨用独立発泡体の原料に関し、その主成分は特に限定しない。ポリウレタン、ポリスチレン、ポリエステル、ポリプロピレン、ポリエチレン、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリアセタール、ポリフェニレンオキシド、ポリビニルアルコール、ポリメチルメタクリレート、ポリカーボネート、ポリアリレート、芳香族系ポリサルホン、ポリアミド、ポリイミド、フッ素樹脂、エチレン−プロピレン樹脂、エチレン−エチルアクリレート樹脂、アクリル樹脂、ノルボルネン系樹脂、例えば、ビニルポリイソプレン−スチレン共重合体、ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体等に代表されるスチレン共重合体、あるいは天然ゴム、合成ゴム等を用いることができる。これらは単独で用いても良いし、混合あるいは共重合させてもよいが、研磨特性に大きな影響を及ぼす硬度や圧縮率等の物性を比較的容易に制御できるという点から、例えばウレタン系やオレフィン系の熱可塑性エラストマーが好適である。その中でもさらに研磨に重要な耐摩耗性を、比較的広い範囲でコントロールすることが可能であるという点で、熱可塑性ポリウレタンエラストマーが最も好ましい。
【0012】
本発明の研磨用独立発泡体を研磨パッドとして用いる場合、必要に応じてシート表面に溝加工を施すことができる。溝の形状は特に限定しないが、例えば平行、格子状、同心円状、さらには渦巻き状等、随時選定することができる。シート表面に溝を施すことにより、研磨面全域に研磨スラリーがより行き渡り安くなり、本発明の研磨用独立発泡体の性能がさらに引き出される。
【0013】
【実施例】
以下に、実施例により本発明を具体的に説明するが、本発明は、実施例の内容になんら限定されるものではない。
【0014】
<発泡シート化設備>
本発明の実施例で使用した発泡シート化設備の概略図を図3に示す。バレル径50mm、L/D=32の第一押出機(11)とバレル径65mm、L/D=36の第二押出機(12)を中空の単管(16)で連結したタンデム型押出機の先端に、リップ幅300mmの金型(13)を取り付けた。
発泡剤としては二酸化炭素を用い、ボンベ(17)から取り出した後に、ガスブースターポンプ(18)により昇圧した二酸化炭素を、第一押出機(11)の中央前寄りに取り付けた注入口(14)を通して注入した。
<研磨用独立発泡体作製>
【0015】
(実施例1)
主原料である大日精化工業(株)製熱可塑性ポリウレタンエラストマー(商品名:レザミンP−4250)に、同社の架橋剤(商品名:クロスネートEM−30)をあらかじめ混合した原料を使用し、厚み1.6mmの独立発泡体を作製した。発泡シート化条件を表1に示す。
得られた独立発泡体表面を、丸源鐵工所製ベルトサンダー(商品名:MNW−610−C2)で研磨し、シート表面近傍の無発泡層を除去し、厚み1.4mmの研磨用独立発泡体を得た。
該シート3枚を両面テープと貼り合わせた後に、直径600mmφの円盤状に切り取り、その後、ショーダテクトロン社製クロスワイズソーを用いて、表面に溝幅2mm、隣り合う溝と溝との間隔13mm、溝深さ0.8mmの格子溝を施し、研磨パッドを作製した。
【0016】
(実施例2)
大日精化工業(株)製熱可塑性ポリウレタンエラストマー(商品名:レザミンP−4070)を原料として、厚み1.5mmの独立発泡体を作製した。発泡シート化条件を表1に示す。
実施例1と同様に無発泡層を除去し、厚み1.4mmの研磨用独立発泡体を得た。引き続き、実施例1と同様の溝加工を施し、研磨パッドを作製した。
(比較例1)
発泡シート化条件を変更した以外は、実施例1と同じ原料を使用し、厚み1.4mmの独立発泡体を作製した。発泡シート化条件を表1に示す。
実施例1と同様に無発泡層を除去し、厚み1.1mmの研磨用独立発泡体を得た。引き続き、実施例1と同様の溝加工を施し、研磨パッドを作製した。
(比較例2)
研磨パッドとして、溝幅2mm、隣り合う溝と溝との間隔13mm、溝深さ0.6mmの格子溝が施されたロデール社製IC1000/Suba400の2層パッドを使用した。研磨層であるIC1000の厚みは1.2mmであった。
【0017】
【表1】

Figure 2004200222
【0018】
<研磨パッドの物性評価>
(実施例)および(比較例)の研磨パッドの硬度、25℃における圧縮率および気泡の平均径を測定した結果を表2に示す。なお各項目の測定方法は次の通りである。
○硬度
高分子計器(株)製Asker硬度計を用いて測定した。
○圧縮率
セイコーインスツルメンツ(株)製TMAを使用して表面を研磨し、厚み1mmに調整したシートの、25℃における厚み変化を測定した。
面圧のプロファイルは図2の通りである。負荷無しの状態から、300g/cmの面圧を掛け、引き続き1800g/cmの面圧を掛けた後に荷重を取り除くという一連の操作を1サイクルとして、連続的に5サイクル測定した。厚み変化から算出した各サイクルにおける圧縮率の5回の平均値を、見掛けの圧縮率として用いた。
○気泡の平均径
HITACHI製走査型電子顕微鏡(SEM)S−2400で独立発泡体断面を観察し、倍率300倍の画像に含まれる気泡一つ一つの直径を計測し、全気泡の直径の平均値を算出した。なお気泡の断面形状が真円でなく、例えば楕円形、もしくはいびつな多角形形状の場合は、円相当直径をその気泡の直径とした。
【0019】
【表2】
Figure 2004200222
【0020】
<研磨性能評価>
研磨速度とそのウエハ面内ばらつきの評価には、直径200mmのCuブランケットウエハを使用した。また研磨後のデバイス表面の平坦性評価には、直径200mmのパターン付きウエハを使用した。
(実施例)および(比較例)で得られた研磨パッドをMAT製片面研磨機ARW−681MSの定盤に貼り付け、ダイヤモンドドレッサーを用いてドレスをかけた後に、キャボット社製研磨スラリー(商品名:iCue5003)を供給しながら研磨を実施した。ドレス条件および研磨条件を表3に示す。
【0021】
【表3】
Figure 2004200222
【0022】
研磨後のウエハを洗浄、乾燥後、シート抵抗測定機を用いてウエハ面内49点のCu膜厚を測定し、研磨速度の平均値および研磨速度のウエハ面内におけるばらつきを算出した。
またパターン付きウエハについては、ライン/スペースが4.5μm/0.5μmと10μm/10μmの配線部の、研磨後の表面粗さをそれぞれ測定し、平坦性を評価した。表4において、従来パッドの代表例である比較例2に対して、平坦性が同等以上のものは○、低下したものは×で示した。
なお、研磨速度のウエハ面内におけるばらつきとして、49点の研磨速度の最大値から最小値を引いた値を平均値の2倍で除した値を100倍した値を用いた。その値が大きいほど均一性が低いことを意味する。
実施例および比較例の研磨パッドの性能評価結果および研磨層厚みを併せて表4に示す。
【0023】
【表4】
Figure 2004200222
【0024】
実施例は、圧縮率の大きい比較例1に対し、面内ばらつきが小さく均一性が、併せて均一性がともに良好であった。
また従来パッドの代表例である比較例2に対しては、均一性と平坦性のいずれも同等以上であった。但し研磨層の厚みが厚いため、比較例2よりも溝を深くすることができた。つまりはパッドライフの延長とともに、研磨工程でのスループットの向上が期待できる。
なお本発明の研磨用独立発泡体が、従来パッドに比べて、圧縮率が大きいにも関わらず研磨速度が向上している点は、特筆すべき好ましい特性である。
【0025】
【発明の効果】
本発明の研磨用独立発泡体を用いて、例えば半導体デバイスウエハを研磨すれば、従来パッドに比べて、研磨速度が速くなるだけでなく、研磨後のデバイス表面の平坦性とそのウエハ面内における均一性とのバランス良い、高精度な研磨の実現が期待できる。さらには、研磨層の厚みを厚くすることにより、スループットの向上が期待できる。
【図面の簡単な説明】
【図1】化学的機械的研磨法(CMP)の標準的なプロセスの一例である。
【図2】圧縮率測定における面圧の経時変化(プロファイル)である。
【図3】実施例で用いた発泡シート化設備の概略図である。
【符号の説明】
1 半導体ウエハ
2 定盤
3 ドレッサー
4 研磨スラリー
5 試料ホルダー
6 研磨パッド
7 回転軸
8 ウエハ固定用治具
9 バッキング材
10 スラリー供給用配管
11 第一押出機
12 第二押出機
13 金型
14 発泡剤の注入用部品
15 原料ホッパ
16 中空単管
17 ボンベ
18 ガスブースターポンプ
19 圧力調整弁[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing independent foam used for a polishing pad used for polishing semiconductors, substrates for various memory hard disks, and the like.
[0002]
[Prior art]
FIG. 1 shows an example of a chemical mechanical polishing method (CMP), which is a typical process used for flattening a surface of a semiconductor device wafer. The semiconductor wafer (1) is placed on the surface of the polishing pad (6) while rotating the platen (2) and the sample holder (5) and dropping the polishing slurry (4) containing abrasive grains through the slurry supply pipe (10). To flatten the device surface with high precision. During polishing, the surface condition of the polishing pad (6) is adjusted by pressing the dressing disk (3) against the surface of the polishing pad (6) while rotating. In addition to the polishing conditions, the characteristics of each component such as a polishing pad (6), a dressing disk (3), a polishing slurry (4), a wafer fixing jig (8), and a backing material (9) are determined by the polishing rate and the polishing. Influences the polishing performance represented by the flatness variation in the wafer surface, which is an index of the flatness and uniformity of the device surface later. Among them, the polishing pad (6), the polishing slurry (4) and The effect of the abrasive grains contained in the polishing slurry is extremely large.
[0003]
Conventionally, as a polishing layer of a polishing pad used for polishing an interlayer insulating film, a metal wiring, or the like, a closed cell in which a hollow polymer microelement having a void space is impregnated in a polymer matrix has been normally used. (For example, see Patent Document 1). Before use, dressing during use, and abrasion of the polishing pad surface due to the progress of polishing, the shell of the hollow polymer microelements is broken, and the internal pores are opened, expressing the ability to hold the polishing slurry. there were.
The recent remarkable development of the electronics industry has evolved into transistors, ICs, LSIs, and VLSIs. As the degree of integration of circuits in these semiconductor devices has rapidly increased, the design rules of semiconductor devices have been miniaturized year by year, the depth of focus in the device manufacturing process has become shallower, and the flatness of the pattern formation surface has become increasingly severe. Is coming. At the same time, the diameter of the wafer has been increasing, and it has been a major problem how to suppress the variation in flatness in the device wafer surface to be processed, that is, how to improve the uniformity in the wafer surface. By using a polishing layer having a hardness of 80 or more and a high hardness classified as a hard type and having a small compressibility, improvement in flatness can be expected, but it is difficult to follow a large undulation of the entire wafer, and uniformity is obtained. Sex is reduced. Conversely, when a polishing layer having a high compression ratio is used, the uniformity is maintained, but the flatness is inevitably reduced. In recent years, how to achieve both flatness and uniformity has become more important than ever.
[0004]
Conventionally, in order to achieve both flatness and uniformity, a method of pasting an independent foam to a substrate having cushioning properties and forming a polishing pad in a two-layer structure has been the mainstream so far. Specifically, the concept was to maintain flatness with an independent foam having a large surface hardness and a small compression ratio, and maintain uniformity with a substrate having a cushioning property with a compression ratio.
However, in the conventional two-layer polishing pad, since the effect of the cushion layer needs to be reflected in polishing, the thickness of the independent foam as the polishing layer is limited, and as a result, the pad life is limited. That was a big problem.
[0005]
[Patent Document 1]
Patent No. 3013105 [Patent Document 2]
Published Patent Publication 2001-277101
[0006]
[Problems to be solved by the invention]
The present invention can increase the thickness of the polishing layer by solving the problem that the thickness of the polishing layer of the conventional polishing pad is limited in order to maintain uniformity, thereby improving the throughput per polishing pad. The object is to provide a long-life polishing independent foam having both flatness and uniformity.
[0007]
[Means for Solving the Problems]
The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, have completed the present invention by the following means.
That is, the present invention
(1) A polishing independent foam having an A hardness of 80 or more according to JIS K 7311 and an apparent compression ratio at 25 ° C of 5 to 15%,
(2) The independent foam for polishing according to (1), wherein the average diameter of the bubbles contained in the sheet is 1 to 50 µm,
(3) The independent foam for polishing according to any one of (1) or (2), wherein the main raw material of the sheet is a thermoplastic elastomer,
(4) The polishing independent foam according to (3), wherein the thermoplastic elastomer is polyurethane,
It is.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is directed to a polishing pad classified as a hard type. Specifically, the independent foam for polishing of the present invention has a surface hardness of 80 or more in A hardness in a measurement according to a hardness test of JIS K 7311 (test method for polyurethane-based thermoplastic elastomer).
The apparent compression ratio of the independent foam for polishing in the present invention at 25 ° C. is preferably 3 to 15%, more preferably 5 to 12%. For example, when the surface of a semiconductor device wafer is polished, if the compression ratio is less than 3%, the polishing layer cannot completely follow the undulation of the entire wafer, and the polishing rate varies greatly within the wafer surface, that is, the uniformity decreases. It is not preferred. Conversely, if it is more than 15%, it is not preferable because not only the polishing rate is reduced but also the flatness of the device surface after polishing is reduced.
[0009]
The apparent compression ratio is a value calculated from the amount of change in sheet thickness measured by a thermal stress strain measuring device (TMA). The thickness of the measurement sample sheet is 1 mm. FIG. 2 shows the change over time (profile) of the surface pressure applied to the sheet.
The apparent compression ratio used in the present invention is, from the thickness (T1) when a surface pressure of 300 g / cm 2 is applied for 60 seconds, to the thickness (T2) when a surface pressure of 1800 g / cm 2 is continuously applied for 60 seconds. Is obtained by dividing the value obtained by subtracting by T1 and further multiplying the value by 100.
[0010]
In the present invention, the average diameter of the bubbles contained in the sheet is not particularly limited, but 1 to 50 μm is suitable for high-precision polishing, particularly for CMP on the surface of a semiconductor device that requires both flatness and uniformity.
When the average diameter of the bubbles is less than 1 μm, agglomerates of abrasive grains contained in the polishing slurry and polishing debris generated with the progress of polishing are less likely to be discharged from the pores resulting from the opening of the bubbles, Voids are easily clogged. As a result, the slurry holding performance tends to vary within the wafer surface, and the uniformity is deteriorated, which is not preferable. Conversely, if the bubbles become coarse and their average diameter exceeds 50 μm, the holding performance of the slurry is also likely to vary within the wafer surface, which is not preferable because the uniformity decreases.
In addition, the diameter of the bubble contained in the sheet was measured from a sheet cross-sectional image of a scanning electron microscope (SEM). The diameter of each bubble contained in the cross-sectional image at a magnification of 300 was measured, and the average value of the diameters of all the bubbles was calculated. In the case where the shape of the bubble in the cross section of the sheet is not a perfect circle, for example, an elliptical shape or an irregular polygonal shape, the diameter of the bubble is defined as the equivalent circle diameter.
[0011]
The main component of the raw material for the independent foam for polishing of the present invention is not particularly limited. Polyurethane, polystyrene, polyester, polypropylene, polyethylene, nylon, polyvinyl chloride, polyvinylidene chloride, polybutene, polyacetal, polyphenylene oxide, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyarylate, aromatic polysulfone, polyamide, polyimide, fluorine resin , Ethylene-propylene resin, ethylene-ethyl acrylate resin, acrylic resin, norbornene-based resin such as vinyl polyisoprene-styrene copolymer, butadiene-styrene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer A styrene copolymer represented by a polymer or the like, natural rubber, synthetic rubber, or the like can be used. These may be used alone, or may be mixed or copolymerized.However, from the viewpoint that physical properties such as hardness and compressibility, which greatly affect polishing characteristics, can be controlled relatively easily, for example, urethane-based or olefin-based Thermoplastic elastomers of the system are preferred. Among them, a thermoplastic polyurethane elastomer is most preferable in that abrasion resistance, which is important for polishing, can be controlled in a relatively wide range.
[0012]
When the independent foam for polishing of the present invention is used as a polishing pad, a groove can be formed on the sheet surface as necessary. Although the shape of the groove is not particularly limited, for example, a parallel shape, a lattice shape, a concentric shape, and a spiral shape can be selected as needed. By providing a groove on the sheet surface, the polishing slurry can be more widely distributed over the entire polishing surface, and the performance of the independent foam for polishing of the present invention can be further enhanced.
[0013]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the contents of the examples.
[0014]
<Foam sheeting equipment>
FIG. 3 is a schematic view of the equipment for forming a foam sheet used in the example of the present invention. A tandem type extruder in which a first extruder (11) having a barrel diameter of 50 mm and L / D = 32 and a second extruder (12) having a barrel diameter of 65 mm and L / D = 36 are connected by a single hollow tube (16). A die (13) having a lip width of 300 mm was attached to the tip of.
Carbon dioxide was used as a foaming agent. After being taken out of the cylinder (17), carbon dioxide pressurized by a gas booster pump (18) was supplied to an inlet (14) attached to the center of the first extruder (11) near the center. Injection.
<Preparation of independent foam for polishing>
[0015]
(Example 1)
Using a raw material obtained by previously mixing a crosslinking agent (trade name: Crossnate EM-30) of the company with a thermoplastic polyurethane elastomer (trade name: Rezamin P-4250) manufactured by Dainichi Seika Kogyo Co., Ltd. An independent foam having a thickness of 1.6 mm was produced. Table 1 shows the conditions for forming a foam sheet.
The surface of the obtained independent foam was polished with a belt sander (trade name: MNW-610-C2) manufactured by Marugen Tekkosho to remove the non-foamed layer near the sheet surface, and a 1.4 mm-thick polishing stand was used. A foam was obtained.
After laminating the three sheets with a double-sided tape, the sheet is cut into a disc having a diameter of 600 mmφ, and then, using a crosswise saw manufactured by Shoda Tectron Co., the groove width is 2 mm on the surface, and the distance between adjacent grooves is 13 mm. Then, a lattice groove having a groove depth of 0.8 mm was formed to produce a polishing pad.
[0016]
(Example 2)
Using a thermoplastic polyurethane elastomer (trade name: Rezamin P-4070) manufactured by Dainichi Seika Kogyo Co., Ltd. as a raw material, a 1.5 mm-thick independent foam was produced. Table 1 shows the conditions for forming a foam sheet.
The non-foamed layer was removed in the same manner as in Example 1 to obtain a 1.4 mm-thick independent foam for polishing. Subsequently, the same groove processing as in Example 1 was performed to produce a polishing pad.
(Comparative Example 1)
An independent foam having a thickness of 1.4 mm was produced using the same raw materials as in Example 1 except that the conditions for forming a foam sheet were changed. Table 1 shows the conditions for forming a foam sheet.
The non-foamed layer was removed in the same manner as in Example 1 to obtain a 1.1 mm-thick independent foam for polishing. Subsequently, the same groove processing as in Example 1 was performed to produce a polishing pad.
(Comparative Example 2)
As a polishing pad, a two-layer pad of IC1000 / Suba400 manufactured by Rodale having a lattice groove having a groove width of 2 mm, an interval between adjacent grooves of 13 mm, and a groove depth of 0.6 mm was used. The thickness of the polishing layer, IC1000, was 1.2 mm.
[0017]
[Table 1]
Figure 2004200222
[0018]
<Evaluation of physical properties of polishing pad>
Table 2 shows the measurement results of the hardness, the compressibility at 25 ° C., and the average diameter of the bubbles of the polishing pads of (Example) and (Comparative Example). The measuring method of each item is as follows.
○ Hardness The hardness was measured using an Asker hardness meter manufactured by Kobunshi Keiki Co., Ltd.
Compressibility The surface was polished using TMA manufactured by Seiko Instruments Inc., and the thickness change at 25 ° C. of the sheet adjusted to 1 mm in thickness was measured.
The profile of the surface pressure is as shown in FIG. From a state of no load, a series of operations of applying a surface pressure of 300 g / cm 2 , subsequently applying a surface pressure of 1800 g / cm 2 , and removing the load were defined as one cycle, and measurement was continuously performed for five cycles. The average of the five compression ratios in each cycle calculated from the thickness change was used as the apparent compression ratio.
○ Average diameter of bubbles Observing the cross section of the independent foam with a scanning electron microscope (SEM) S-2400 manufactured by HITACHI, measuring the diameter of each bubble contained in the image at a magnification of 300 times, and averaging the diameter of all the bubbles. Values were calculated. When the cross-sectional shape of the bubble is not a perfect circle, for example, an elliptical shape or an irregular polygonal shape, the diameter equivalent to the circle is defined as the diameter of the bubble.
[0019]
[Table 2]
Figure 2004200222
[0020]
<Polishing performance evaluation>
A Cu blanket wafer having a diameter of 200 mm was used for evaluating the polishing rate and its in-plane variation. A 200 mm diameter patterned wafer was used for the evaluation of the flatness of the device surface after polishing.
The polishing pad obtained in (Example) and (Comparative Example) was attached to a surface plate of a single-side polishing machine ARW-681MS made of MAT, dressed using a diamond dresser, and then a polishing slurry (trade name) manufactured by Cabot Corporation : ICue5003) was supplied while polishing was performed. Table 3 shows the dressing conditions and polishing conditions.
[0021]
[Table 3]
Figure 2004200222
[0022]
After cleaning and drying the polished wafer, the Cu film thickness at 49 points in the wafer surface was measured using a sheet resistance measuring instrument, and the average polishing rate and the variation in the polishing rate in the wafer plane were calculated.
For the patterned wafers, the surface roughness after polishing of the wiring portions having a line / space of 4.5 μm / 0.5 μm and 10 μm / 10 μm was measured, and the flatness was evaluated. In Table 4, compared to Comparative Example 2 which is a typical example of a conventional pad, those having flatness equal to or higher were indicated by ○, and those having reduced flatness were indicated by ×.
As a variation in the polishing rate in the wafer surface, a value obtained by dividing a value obtained by subtracting the minimum value from the maximum value of the polishing rate at 49 points by twice the average value and multiplying the value by 100 was used. The higher the value, the lower the uniformity.
Table 4 also shows the performance evaluation results and the polishing layer thickness of the polishing pads of the examples and the comparative examples.
[0023]
[Table 4]
Figure 2004200222
[0024]
In the example, compared with Comparative Example 1 having a large compression ratio, the in-plane variation was small, the uniformity was good, and the uniformity was good.
In comparison with Comparative Example 2 which is a typical example of the conventional pad, both the uniformity and the flatness were equal or higher. However, since the thickness of the polishing layer was large, the grooves could be made deeper than in Comparative Example 2. In other words, an improvement in the throughput in the polishing step can be expected with the extension of the pad life.
The fact that the polishing independent foam of the present invention has a higher polishing rate in spite of a higher compression ratio than the conventional pad is a particularly preferable characteristic.
[0025]
【The invention's effect】
If the semiconductor device wafer is polished using the independent foam for polishing of the present invention, for example, the polishing speed is increased as compared with the conventional pad, and the flatness of the device surface after polishing and its in-plane Highly accurate polishing with good balance with uniformity can be expected. Further, by increasing the thickness of the polishing layer, an improvement in throughput can be expected.
[Brief description of the drawings]
FIG. 1 is an example of a standard process of chemical mechanical polishing (CMP).
FIG. 2 is a time-dependent change (profile) of surface pressure in compression ratio measurement.
FIG. 3 is a schematic diagram of a foam sheeting facility used in Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 2 Surface plate 3 Dresser 4 Polishing slurry 5 Sample holder 6 Polishing pad 7 Rotating shaft 8 Wafer fixing jig 9 Backing material 10 Slurry supply pipe 11 First extruder 12 Second extruder 13 Mold 14 Foaming agent Parts for injection 15 Raw material hopper 16 Hollow single pipe 17 Cylinder 18 Gas booster pump 19 Pressure regulating valve

Claims (4)

JIS K 7311に準じたA硬度が80以上であり、かつ25℃における見掛けの圧縮率が3〜15%である研磨用独立発泡体。A polishing independent foam having an A hardness of 80 or more according to JIS K 7311 and an apparent compression ratio at 25 ° C of 3 to 15%. シートに含まれる気泡の平均径が1〜50μmである請求項1に記載の研磨用独立発泡体。The independent foam for polishing according to claim 1, wherein the average diameter of the bubbles contained in the sheet is 1 to 50 µm. シートの主原料が熱可塑性エラストマーである請求項1又は2のいずれか1項に記載の研磨用独立発泡体。The independent foam for polishing according to claim 1, wherein a main raw material of the sheet is a thermoplastic elastomer. 熱可塑性エラストマーがポリウレタンである請求項3記載の研磨用独立発泡体。The polishing independent foam according to claim 3, wherein the thermoplastic elastomer is polyurethane.
JP2002363711A 2002-11-25 2002-12-16 Isolated foam material for polishing Pending JP2004200222A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002363711A JP2004200222A (en) 2002-12-16 2002-12-16 Isolated foam material for polishing
AU2003284655A AU2003284655A1 (en) 2002-11-25 2003-11-25 Method for producing closed cell cellular material for use in polishing, cellular sheet for polishing, laminate for polishing and polishing method, method for producing laminate for polishing, and grooved polishing pad
PCT/JP2003/014964 WO2004054779A1 (en) 2002-11-25 2003-11-25 Method for producing closed cell cellular material for use in polishing, cellular sheet for polishing, laminate for polishing and polishing method, method for producing laminate for polishing, and grooved polishing pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363711A JP2004200222A (en) 2002-12-16 2002-12-16 Isolated foam material for polishing

Publications (1)

Publication Number Publication Date
JP2004200222A true JP2004200222A (en) 2004-07-15

Family

ID=32761781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363711A Pending JP2004200222A (en) 2002-11-25 2002-12-16 Isolated foam material for polishing

Country Status (1)

Country Link
JP (1) JP2004200222A (en)

Similar Documents

Publication Publication Date Title
US6007407A (en) Abrasive construction for semiconductor wafer modification
US8133096B2 (en) Multi-phase polishing pad
KR100640141B1 (en) Chemical mechanical polishing pad, manufacturing process thereof and chemical mechanical polishing method
US20110183583A1 (en) Polishing Pad with Floating Elements and Method of Making and Using the Same
JP5371251B2 (en) Polishing pad
JP2006513571A (en) How to use soft subpads for chemical mechanical polishing
JPH11277408A (en) Cloth, method and device for polishing mirror finished surface of semi-conductor wafer
KR20080091796A (en) Abrasive pad and abrasion device
JP4563025B2 (en) Polishing pad for CMP and polishing method using the same
JP2005066749A (en) Laminated element for polishing, and polishing method
JP2005001083A (en) Polishing laminate and polishing method
TWI276498B (en) CMP pad with composite transparent window
JP2006210657A (en) Polishing pad, polishing device, and method of manufacturing semiconductor device
JP2005131720A (en) Method of manufacturing polishing pad
JP2002192455A (en) Abrasive pad
JP2002059357A (en) Polishing pad, polishing device and polishing method
JP2004200222A (en) Isolated foam material for polishing
JP2005001059A (en) Polishing laminate
JP2002075932A (en) Polishing pad, and apparatus and method for polishing
JP2004188586A (en) Foam sheet for polishing
JP2003209078A (en) Foam plastic sheet for polishing and manufacturing method therefor
JP2004223654A (en) Foamed body for polishing
JP2004119657A (en) Grinding pad, grinding device and grinding method employing it
JP2005231014A (en) Polishing pad, and polishing method using the same
JP2006142440A (en) Polishing pad and polishing method using the same