JP2004223654A - Foamed body for polishing - Google Patents

Foamed body for polishing Download PDF

Info

Publication number
JP2004223654A
JP2004223654A JP2003015033A JP2003015033A JP2004223654A JP 2004223654 A JP2004223654 A JP 2004223654A JP 2003015033 A JP2003015033 A JP 2003015033A JP 2003015033 A JP2003015033 A JP 2003015033A JP 2004223654 A JP2004223654 A JP 2004223654A
Authority
JP
Japan
Prior art keywords
polishing
foam
foamed body
pad
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003015033A
Other languages
Japanese (ja)
Inventor
Yoshinori Masaki
義則 政木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2003015033A priority Critical patent/JP2004223654A/en
Publication of JP2004223654A publication Critical patent/JP2004223654A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a foamed body for polishing suitable as a polishing pad to be used for surface-flattening of a device wafer of a semiconductor of an inter-layer insulating film and a metal wiring, etc., capable of realizing polishing equal to or more than that of a conventional pad and having high wear resistance. <P>SOLUTION: In this foamed body for polishing, wear amount by a wear test according to JIS K 7311 prepared by making gas under ordinary temperature and ordinary pressure as foaming agent is taken as 50 to 250 mg. Especially, it is desirable that apparent compacting ratio is 3 to 15% at 25°C. A main raw material of the foamed body is desirably a thermoplastic elastomer such as polyurethane. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体、各種メモリーハードディスク用基板等の研磨に使用される研磨パッドに好適に用いられる研磨用発泡体に関するものである。
【0002】
【従来の技術】
半導体のデバイスウエハの表面平坦化加工に用いられる、代表的なプロセスである化学的機械的研磨法(CMP)の一例を図1に示す。定盤(2)、試料ホルダー(5)を回転させ、研磨スラリー(4)をスラリー供給用配管(10)を通して供給しながら、半導体ウエハ(1)を研磨パッド(6)表面に押しあてることにより、デバイス表面を高精度に平坦化するというものである。なお研磨前、あるいは研磨中においてドレッシングディスク(3)を回転させながら研磨パッド(6)表面に押しあてることにより、研磨パッド(6)の表面状態を整えている。研磨条件はもとより、研磨パッド(6)、研磨スラリー(4)等に代表される各構成部材の特性が、研磨の仕上がり状態に大きな影響を及ぼす。
【0003】
エレクトロニクス業界の最近の著しい発展により、トランジスター、IC、LSI、超LSIと進化してきている。これら半導体素子における回路の集積度が急激に増大するにつれて、半導体デバイスのデザインルールは年々微細化が進み、デバイス製造プロセスでの焦点深度は浅くなってきており、その結果、パターン形成面に求められる平坦化レベルはますます厳しくなってきている。同時にウエハの大口径化も進行し、加工するデバイスウエハ面内の平坦性のばらつきをいかに抑えるか、つまりはウエハ面内での均一性をいかに向上させるかが大きな課題となってきた。
従来から、このような高い平坦化レベルが求められる研磨においては、例えば、高分子マトリックス中に、空隙スペースを有する中空高分子微小エレメントを含浸した独立発泡体が標準的に使用されてきた(例えば、特許文献1参照。)。研磨前、あるいは研磨中におけるドレッシング、および研磨の進行に伴う研磨パッド表面の摩耗等により、中空高分子微小エレメントのシェルが破れて内部の空孔が開口し、研磨スラリーの保持能力を発現するというものであった。
【0004】
研磨パッドのライフの目安となる指標の一つとして、研磨層として用いられる材料の耐摩耗性が挙げられる。
従来の独立発泡体を研磨パッドの研磨層として用いた場合、独立発泡体の耐摩耗性を高くすると、ドレッシングや研磨の進行に伴う研磨パッド表面の摩耗が抑制され、空孔の開口が阻害される。その結果、研磨速度の低下やウエハ面内における均一性の低下等、研磨性能の低下を招き安くなる。
このため、従来の独立発泡体においては、耐摩耗性をさらに高めることができない、つまりはライフの改善が望めないという点が問題の一つであった。
耐摩耗性の目安となる指標の一つとして、JISK−7311に準じた摩耗試験による摩耗量が挙げられる。摩耗試験による摩耗量が多い程、耐摩耗性が低いと判断することができる。例えば、研磨パッドの研磨層として従来から標準的に使用されているロデール社製の独立発泡体(商品名:IC1000)の、該摩耗試験による摩耗量は250mg前後であった。
【0005】
また、従来の研磨パッドにおいては、平坦化レベルを確保するために、研磨層は硬度の高い独立発泡体を使用することが多かった。しかし高硬度の独立発泡体単独では、ウエハ全体のうねりに追従できないため、研磨性能の面内ばらつきが大きい、つまりは均一性が低くなるという問題があった。この点を改善する手段として、例えば、独立発泡体よりも圧縮率の大きいクッション層と貼り合わせ、2層構造とする方法等が主に用いられてきた。クッション層との2層構造とすることにより、均一性の低下は抑えられるが、下地のクッション層の効果を消失させないために、研磨層にあたる独立発泡体の厚み上限が必然的に制限される点が、耐摩耗性の問題に加えて、従来の独立発泡体を用いた研磨パッドのライフ改善を阻害する要因の一つとなっていた。
【0006】
【特許文献1】
特許第3013105号
【0007】
【発明が解決しようとする課題】
本発明は、研磨パッドのライフ改善を目的とするためのもので、従来の研磨パッド以上の研磨性能を備え、かつ耐摩耗性の高い、研磨パッドを提供することにある。
【課題を解決するための手段】
本発明者らは、前記従来の問題点を鑑み、鋭意検討を重ねた結果、以下の手段により、本発明を完成するに至った。
【0008】
すなわち本発明は、
(1) 常温常圧下において気体であるガスを発泡剤とした、JIS K 7311に準じた摩耗試験による摩耗量が50〜250mgである研磨用発泡体、
(2) 25℃における見掛けの圧縮率が3〜15%である第(1)項に記載の研磨用発泡体、
(3) 発泡体の主原料が熱可塑性エラストマーである第(1)又は(2)項に記載の研磨用発泡体、
(4) 熱可塑性エラストマーがポリウレタンである第(3)項記載の研磨用発泡体、
である。
【0009】
【発明の実施の形態】
本発明における研磨用発泡体においては、従来のように空隙スペースを有する中空高分子微小エレメントを発泡剤としては用いず、常温常圧下において気体であるガスを発泡剤とする。このようなガスとしては、特に制限はなく、無機ガス、フロンガス、低分子量の炭化水素などの有機ガス等が挙げられるが、原料に不活性であり、ガスの回収が不要という点で無機ガスが好ましい。無機ガスとしては、常温常圧下において気体である無機物質であって、原料に溶解混合できるものであれば特に制限はなく、例えば二酸化炭素、窒素、アルゴン、ネオン、ヘリウム、酸素等が好ましいが、特にプラスチックや熱可塑性エラストマー等の樹脂原料に溶解混合し易く、取り扱いが容易であり、さらには他の発泡剤と比べて安価であるという点等から二酸化炭素がより好ましい。
【0010】
常温常圧下において気体であるガスを発泡剤とする本発明の研磨用発泡体は、ドレッシング後の表面状態が従来の独立発泡体とは全く異なるものである。研磨の機構は十分に解明されていないが、本発明の研磨用発泡体に含まれる気泡は、従来の独立発泡体に含まれる空孔と同様に、研磨スラリーを保持する役割も一部担っているが、それ以上にドレッシングによる研磨に好適な表面状態の形成に大きく寄与することが確認された。この点において、本発明における研磨用発泡体において、研磨前のドレッシングは必要不可欠である。
この研磨に好適な表面状態を形成する摩耗量は、JIS K 7311に準じた摩耗試験において、50〜250mgであり、好ましくは50〜200mg、より好ましくは80〜200mg、最も好ましくは100〜150mgである。これは、従来の独立発泡体よりも摩耗量が少ない、つまりは耐摩耗性が高い範囲にあり、研磨パッドのライフ改善に有利である。
【0011】
摩耗量が50mgより少ないと、研磨前、研磨中に関わらず、ドレッシング、本発明においては、研磨に好適な表面状態の形成に要する時間が長くなり、生産性が著しく低下するので好ましくない。逆に250mgより多い場合、耐摩耗性およびドレス後に形成される表面状態が、従来の独立発泡体と同様であることから、ライフの改善が望めないことから、好ましくない。
なお、本発明における研磨用発泡体を研磨パッドの研磨層として使用する場合、クッション層と貼り合わせても良いし、あるいは発泡体単独でも良い。
本発明における研磨用発泡体の見掛けの圧縮率は特に制限しないが、特に単独で研磨パッドとして使用する場合は、見掛けの圧縮率が25℃において3〜15%が好ましい。例えば半導体デバイスウエハの表面研磨を行う場合、圧縮率が3%未満では、ウエハ全体のうねりに追従しきれず、研磨速度のウエハ面内におけるばらつきが大きくなる、つまりは均一性が低下するので好ましくない。逆に15%より大きくなると、研磨後のデバイス表面の平坦性低下を引き起こす原因となるため好ましくない。
【0012】
なお見掛けの圧縮率は、熱応力歪測定装置(TMA)により測定したシート厚みの変化量より算出した値である。測定サンプルシートの厚みは1mmとする。シートにかける面圧の経時変化(プロファイル)を図2に示す。
本発明で用いる見掛けの圧縮率は、300g/cmの面圧を60秒間掛けたときの厚み(T1)から、引き続き1800g/cmの面圧を同じく60秒間掛けた時の厚み(T2)を引いた値をT1で除し、さらにその値を100倍することにより求めることができる。
【0013】
本発明の研磨用発泡体の主原料は特に限定しない。ポリウレタン、ポリスチレン、ポリエステル、ポリプロピレン、ポリエチレン、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリブテン、ポリアセタール、ポリフェニレンオキシド、ポリビニルアルコール、ポリメチルメタクリレート、ポリカーボネート、ポリアリレート、芳香族系ポリサルホン、ポリアミド、ポリイミド、フッ素樹脂、エチレン−プロピレン樹脂、エチレン−エチルアクリレート樹脂、アクリル樹脂、ノルボルネン系樹脂、例えば、ビニルポリイソプレン−スチレン共重合体、ブタジエン−スチレン共重合体、アクリロニトリル−スチレン共重合体、アクリロニトリル−ブタジエン−スチレン共重合体等に代表されるスチレン共重合体、あるいは天然ゴム、合成ゴム等を用いることができる。これらは単独で用いても良いし、混合あるいは共重合させてもよいが、研磨特性に大きな影響を及ぼす耐摩耗性や圧縮率等の基本物性を比較的容易に制御できるという点から、例えばウレタン系やオレフィン系等の熱可塑性エラストマーが好適である。その中でも、本発明の研磨に好適な表面状態を形成するという点において、熱可塑性ポリウレタンエラストマーが最も好ましい。
【0014】
本発明の研磨用発泡独立体を研磨パッドとして用いる場合、必要に応じて表面に溝加工を施すことができる。溝の形状は特に限定しないが、例えば平行、格子状、同心円状、さらには渦巻き状等、随時選定することができる。表面に溝を施すことにより、研磨面全域に研磨スラリーがより行き渡り安くなり、本発明の研磨用発泡体の性能がさらに引き出される。
【0015】
【実施例】
以下に、実施例により本発明を具体的に説明するが、本発明は、実施例の内容になんら限定されるものではない。
【0016】
<発泡体の製造設備>
本発明の実施例で使用した発泡体の製造設備の概略図を図3に示す。バレル径50mm、L/D=32の第一押出機(11)とバレル径65mm、L/D=36の第二押出機(12)を中空の単管(16)で連結したタンデム型押出機の先端に、リップ幅300mmの金型(13)を取り付けた。
発泡剤としては二酸化炭素を用い、ボンベ(17)から取り出した後に、ガスブースターポンプ(18)により昇圧した二酸化炭素を、第一押出機(11)の中央前寄りに取り付けた注入口(14)を通して注入した。
【0017】
<研磨用発泡体の製造>
(発泡体A)
主原料である大日精化工業(株)製熱可塑性ポリウレタンエラストマー(商品名:レザミンP−4250)に、同社の架橋剤(商品名:クロスネートEM−30)をあらかじめ混合した原料を使用し、厚み1.6mmの発泡体を作製した。発泡体の製造条件を表1に示す。
得られた発泡体表面を、丸源鐵工所製ベルトサンダー(商品名:MNW−610−C2)で研磨し、表面近傍の無発泡層を除去し、厚み1.4mmの研磨用発泡体を得た。
(発泡体B)
製造条件を変更した以外は、発泡体Aと同じ原料を使用し、厚み1.4mmの発泡体を作製した。製造条件を表1に示す。
発泡体Aの場合と同様に、無発泡層を除去し、厚み1.1mmの研磨用発泡体を得た。
(発泡体C)
大日精化工業(株)製熱可塑性ポリウレタンエラストマー(商品名:レザミンP−4070)を原料として、厚み1.5mmの発泡体を作製した。製造条件を表1に示す。
発泡体Aの場合と同様に、無発泡層を除去し、厚み1.4mmの研磨用発泡体を得た。
【0018】
【表1】

Figure 2004223654
【0019】
<研磨用発泡体の物性評価>
発泡体A〜Cおよびロデール社製IC1000それぞれの摩耗量、25℃における圧縮率および気泡の平均径を測定した結果を表2に示す。なお各項目の測定方法は次の通りである。
・摩耗量
JIS K 7311(ポリウレタン系熱可塑性エラストマーの試験方法)の9項(摩耗試験)に準じる。
・圧縮率
セイコーインスツルメンツ(株)製TMAを使用して表面を研磨し、厚み1mmに調整したシートの、25℃における厚み変化を測定した。
面圧のプロファイルは図2の通りである。負荷無しの状態から、300g/cmの面圧を掛け、引き続き1800g/cmの面圧を掛けた後に荷重を取り除くという一連の操作を1サイクルとして、連続的に5サイクル測定した。厚み変化から算出した各サイクルにおける圧縮率の5回の平均値を、見掛けの圧縮率として用いた。
・気泡の平均径
HITACHI製走査型電子顕微鏡(SEM)S−2400で発泡体断面を観察し、倍率300倍の画像に含まれる気泡一つ一つの直径を計測し、全気泡の直径の平均値を算出した。なお気泡の断面形状が真円でなく、例えば楕円形、もしくはいびつな多角形形状の場合は、円相当直径をその気泡の直径とした。
【0020】
【表2】
Figure 2004223654
【0021】
<研磨パッドの作製>
(実施例1)
研磨層として発泡体Aを使用した。
発泡体A3枚を、クッション性を有する発泡ポリエチレンシートを基材とした、厚み0.9mmの両面テープと貼り合わせた後に、直径600mmφの円盤状に切り取り、その後、ショーダテクトロン社製クロスワイズソーを用いて、表面に溝幅2mm、隣合う溝と溝との間隔13mm、溝深さ0.8mmの格子溝を施し、研磨パッドを作製した。
【0022】
(実施例2)
研磨層として発泡体Aを使用した。
発泡体A3枚を、クッション性を有しない無発泡シートを基材とした、厚み0.15mmの両面テープと貼り合わせた以外は、実施例1と同様にして表面に溝加工を施し、直径600mmφの研磨パッドを作製した。
(実施例3)
研磨層として発泡体Bを使用した。
発泡体B3枚を、実施例1で使用したクッション性を有する両面テープと貼り合わせた後、実施例1と同様にして表面に溝加工を施し、直径600mmφの研磨パッドを作製した。
【0023】
(比較例1)
研磨層として発泡体Cを使用した。
発泡体C3枚を、実施例1で使用したクッション性を有する両面テープと貼り合わせた後、実施例1と同様にして表面に溝加工を施し、直径600mmφの研磨パッドを作製した。
(比較例2)
研磨パッドとして、溝幅2mm、隣合う溝と溝との間隔13mm、溝深さ0.6mmの格子溝が施されたロデール社製IC1000を、同社のSuba400と貼り合わせた2層パッドを使用した。
【0024】
<研磨性能評価>
研磨速度とそのウエハ面内ばらつきの評価には、直径200mmのCuベタウエハを使用した。また研磨後のデバイス表面の平坦性評価には、直径200mmのパターン付きウエハを使用した。
(実施例)および(比較例)で得られた研磨パッドをMAT製片面研磨機ARW−681MSの定盤に貼り付け、ダイヤモンドドレッサーを用いてドレッシングした後、キャボット社製研磨スラリー(商品名:iCue5003)を供給しながら研磨を実施した。ドレス条件および研磨条件を表3に示す。
【0025】
【表3】
Figure 2004223654
【0026】
研磨後のウエハを洗浄、乾燥後、シート抵抗測定機を用いてウエハ面内49点のCu膜厚を測定し、研磨速度の平均値および研磨速度のウエハ面内におけるばらつきを算出した。
またパターン付きウエハについては、ライン/スペースが4.5μm/0.5μmと10μm/10μmそれぞれの配線部の研磨後の表面粗さを測定し、平坦性を確認した。表4において、従来パッドの代表例である比較例2に対して、平坦性が同等以上のものは○、低下したものは×で示した。
なお、研磨速度のウエハ面内におけるばらつきとして、49点の研磨速度の最大値から最小値を引いた値を平均値の2倍で除した値を100倍した値を用いた。その値が大きいほど均一性が低いことを意味する。
実施例および比較例の研磨パッドの性能評価結果を併せて表4に示す。
【0027】
【表4】
Figure 2004223654
【0028】
実施例1〜3は、従来の独立発泡体の代表例であるロデール社製IC1000を用いて研磨した比較例2に対して、いずれも耐摩耗性が高く、ライフの改善が期待されるとともに、比較例2と同等以上の研磨性能が確認された。その中でも研磨速度がIC1000の1.7〜2倍と、好ましい傾向が確認された。
【0029】
比較例1は、実施例1〜3に対して摩耗量が多く、耐摩耗性は低いと考えられるが、研磨速度が低いとともに、平坦性が低下する傾向が確認され、本発明の研磨用発泡体の摩耗量の下限を下回ると、研磨性能が低下することが確認された。なお、発泡体Aとほとんどクッション性のない両面テープとを貼り合わせて作製した研磨パッドを使用した実施例2が、比較例2に対して面内ばらつきと平坦性が同等以上で、さらに研磨速度が高い点は、従来2層構造でないと実現されなかった研磨性能を単層で実現できる可能性を示唆するものであり、特筆すべき点である。
なお、IC1000に比べて耐摩耗性が高い発泡体Aは、発泡体自体の厚みも厚く、溝深さを深くすることができたので、ライフの点においてもより好ましい特徴を有するものと判断できる。
【0030】
【発明の効果】
本発明の、従来の独立発泡体と比べて耐摩耗性の高い研磨用発泡体を用いて、例えば半導体デバイスウエハを研磨すれば、研磨性能が従来パッドと同等以上である上に、研磨層の厚みを厚くすることができるため、ライフの向上が期待できる。
【図面の簡単な説明】
【図1】化学的機械的研磨法(CMP)の標準的なプロセスの一例である。
【図2】圧縮率測定における面圧の経時変化(プロファイル)である。
【図3】実施例で用いた発泡体化設備の概略図である。
【符号の説明】
1 半導体ウエハ
2 定盤
3 ドレッサー
4 研磨スラリー
5 試料ホルダー
6 研磨パッド
7 回転軸
8 ウエハ固定用治具
9 バッキング材
10 スラリー供給用配管
11 第一押出機
12 第二押出機
13 金型
14 発泡剤の注入用部品
15 原料ホッパ
16 中空単管
17 ボンベ
18 ガスブースターポンプ
19 圧力調整弁
20 引取機
21 発泡体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing foam suitably used for a polishing pad used for polishing semiconductors, substrates for various memory hard disks, and the like.
[0002]
[Prior art]
FIG. 1 shows an example of a chemical mechanical polishing method (CMP), which is a typical process used for flattening a surface of a semiconductor device wafer. The semiconductor wafer (1) is pressed against the surface of the polishing pad (6) while rotating the platen (2) and the sample holder (5) to supply the polishing slurry (4) through the slurry supply pipe (10). That is, the device surface is flattened with high precision. Before or during polishing, the surface condition of the polishing pad (6) is adjusted by pressing the dressing disk (3) against the surface of the polishing pad (6) while rotating. Not only the polishing conditions, but also the characteristics of the constituent members typified by the polishing pad (6), the polishing slurry (4), etc., have a great influence on the finished state of polishing.
[0003]
The recent remarkable development of the electronics industry has evolved into transistors, ICs, LSIs, and VLSIs. As the degree of integration of circuits in these semiconductor elements has rapidly increased, the design rules of semiconductor devices have become finer year by year, and the depth of focus in the device manufacturing process has become shallower. As a result, the pattern formation surface is required. Flattening levels are becoming increasingly severe. At the same time, the diameter of the wafer has been increasing, and it has become a major issue how to suppress the variation in flatness in the device wafer surface to be processed, that is, how to improve the uniformity in the wafer surface.
Conventionally, in polishing in which such a high level of flatness is required, for example, a closed cell impregnated with a hollow polymer microelement having a void space in a polymer matrix has been used as a standard (for example, And Patent Document 1.). Before or during polishing, dressing during polishing, and abrasion of the polishing pad surface accompanying the progress of polishing, etc., break the shell of the hollow polymer microelements and open internal pores, expressing the ability to hold polishing slurry. Was something.
[0004]
One of the indices serving as a measure of the life of the polishing pad is the wear resistance of the material used as the polishing layer.
When a conventional independent foam is used as the polishing layer of the polishing pad, if the abrasion resistance of the independent foam is increased, abrasion of the polishing pad surface due to the progress of dressing and polishing is suppressed, and the opening of pores is hindered. You. As a result, a reduction in polishing performance, such as a reduction in polishing rate and a reduction in uniformity in a wafer surface, is likely to occur.
For this reason, in the conventional independent foam, one of the problems is that the abrasion resistance cannot be further increased, that is, the life cannot be improved.
One of the indices used as a measure of wear resistance is a wear amount obtained by a wear test according to JIS K-7311. It can be determined that the greater the wear amount in the wear test, the lower the wear resistance. For example, the abrasion amount of the independent foam (trade name: IC1000) manufactured by Rodale as a polishing layer of a polishing pad conventionally used as a polishing layer was about 250 mg in the abrasion test.
[0005]
Further, in the conventional polishing pad, in order to secure a flattening level, the polishing layer often uses a high-hardness independent foam. However, since the high-hardness independent foam alone cannot follow the undulation of the entire wafer, there is a problem that the in-plane variation of the polishing performance is large, that is, the uniformity is low. As a means for improving this point, for example, a method of bonding a cushion layer having a higher compression ratio than a closed-cell foam to form a two-layer structure has been mainly used. By adopting the two-layer structure with the cushion layer, the uniformity can be suppressed from being lowered, but the upper limit of the thickness of the independent foam as the polishing layer is necessarily limited in order not to lose the effect of the underlying cushion layer. However, in addition to the problem of abrasion resistance, it has been one of the factors that hinder the improvement of the life of a polishing pad using a conventional independent foam.
[0006]
[Patent Document 1]
Patent No. 3013105 [0007]
[Problems to be solved by the invention]
The present invention has an object to improve the life of a polishing pad, and it is an object of the present invention to provide a polishing pad having higher polishing performance than conventional polishing pads and having high wear resistance.
[Means for Solving the Problems]
The present inventors have made intensive studies in view of the above-mentioned conventional problems, and as a result, have completed the present invention by the following means.
[0008]
That is, the present invention
(1) a polishing foam having a wear amount of 50 to 250 mg in a wear test according to JIS K 7311, using a gas that is a gas at normal temperature and normal pressure as a foaming agent;
(2) The polishing foam according to (1), wherein the apparent compression ratio at 25 ° C is 3 to 15%,
(3) The polishing foam according to (1) or (2), wherein the main raw material of the foam is a thermoplastic elastomer,
(4) The polishing foam according to (3), wherein the thermoplastic elastomer is polyurethane.
It is.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the polishing foam of the present invention, a hollow polymer microelement having a void space is not used as a foaming agent as in the related art, but a gas that is a gas at normal temperature and normal pressure is used as a foaming agent. Such a gas is not particularly limited, and examples thereof include an inorganic gas, a fluorocarbon gas, and an organic gas such as a low-molecular-weight hydrocarbon.The inorganic gas is inactive as a raw material and does not require gas recovery. preferable. The inorganic gas is an inorganic substance that is a gas at normal temperature and normal pressure, and is not particularly limited as long as it can be dissolved and mixed with the raw materials.For example, carbon dioxide, nitrogen, argon, neon, helium, and oxygen are preferable. In particular, carbon dioxide is more preferable because it can be easily dissolved and mixed with resin materials such as plastics and thermoplastic elastomers, is easy to handle, and is inexpensive as compared with other foaming agents.
[0010]
The polishing foam of the present invention using a gas that is a gas at normal temperature and normal pressure as a foaming agent has a completely different surface state after dressing from a conventional independent foam. Although the mechanism of polishing has not been sufficiently elucidated, the bubbles contained in the polishing foam of the present invention also partially play a role of holding the polishing slurry, similarly to the pores contained in the conventional closed foam. However, it was confirmed that it greatly contributed to the formation of a surface state suitable for polishing by dressing. In this regard, in the polishing foam of the present invention, dressing before polishing is indispensable.
The amount of abrasion that forms a surface state suitable for this polishing is 50 to 250 mg, preferably 50 to 200 mg, more preferably 80 to 200 mg, and most preferably 100 to 150 mg in a wear test according to JIS K 7311. is there. This is in a range where the wear amount is smaller than that of the conventional closed-cell foam, that is, the wear resistance is in a high range, which is advantageous for improving the life of the polishing pad.
[0011]
If the abrasion amount is less than 50 mg, it is not preferable because dressing, in the present invention, the time required to form a surface state suitable for polishing becomes long and the productivity is remarkably reduced regardless of before or during polishing. Conversely, if the amount is more than 250 mg, the wear resistance and the surface state formed after the dressing are the same as those of the conventional independent foam, so that an improvement in life cannot be expected.
When the polishing foam of the present invention is used as a polishing layer of a polishing pad, the polishing foam may be bonded to a cushion layer, or the foam may be used alone.
The apparent compression ratio of the polishing foam in the present invention is not particularly limited, but when used alone as a polishing pad, the apparent compression ratio is preferably 3 to 15% at 25 ° C. For example, when the surface of a semiconductor device wafer is polished, if the compression ratio is less than 3%, it is impossible to follow the undulation of the whole wafer, and the polishing rate varies greatly in the wafer surface, that is, the uniformity is lowered, which is not preferable. . Conversely, if it is larger than 15%, it is not preferable because it causes a reduction in flatness of the device surface after polishing.
[0012]
The apparent compression ratio is a value calculated from the amount of change in sheet thickness measured by a thermal stress strain measuring device (TMA). The thickness of the measurement sample sheet is 1 mm. FIG. 2 shows the change over time (profile) of the surface pressure applied to the sheet.
The apparent compression ratio used in the present invention is, from the thickness (T1) when a surface pressure of 300 g / cm 2 is applied for 60 seconds, to the thickness (T2) when a surface pressure of 1800 g / cm 2 is continuously applied for 60 seconds. Can be obtained by dividing the value obtained by subtracting by T1 and further multiplying the value by 100.
[0013]
The main material of the polishing foam of the present invention is not particularly limited. Polyurethane, polystyrene, polyester, polypropylene, polyethylene, nylon, polyvinyl chloride, polyvinylidene chloride, polybutene, polyacetal, polyphenylene oxide, polyvinyl alcohol, polymethyl methacrylate, polycarbonate, polyarylate, aromatic polysulfone, polyamide, polyimide, fluorine resin , Ethylene-propylene resin, ethylene-ethyl acrylate resin, acrylic resin, norbornene-based resin such as vinyl polyisoprene-styrene copolymer, butadiene-styrene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer A styrene copolymer represented by a polymer or the like, natural rubber, synthetic rubber, or the like can be used. These may be used alone, or may be mixed or copolymerized.However, since the basic physical properties such as abrasion resistance and compressibility, which greatly affect the polishing characteristics, can be relatively easily controlled, for example, urethane is used. Thermoplastic elastomers such as those based on olefins and olefins are preferred. Among them, a thermoplastic polyurethane elastomer is most preferable in that a surface state suitable for the polishing of the present invention is formed.
[0014]
When the polishing independent foam of the present invention is used as a polishing pad, the surface can be grooved as necessary. Although the shape of the groove is not particularly limited, for example, a parallel shape, a lattice shape, a concentric shape, and a spiral shape can be selected as needed. By providing a groove on the surface, the polishing slurry can be more widely distributed over the entire polishing surface, and the performance of the polishing foam of the present invention can be further enhanced.
[0015]
【Example】
Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited to the contents of the examples.
[0016]
<Foam manufacturing equipment>
FIG. 3 is a schematic view of a facility for producing a foam used in an example of the present invention. A tandem type extruder in which a first extruder (11) having a barrel diameter of 50 mm and L / D = 32 and a second extruder (12) having a barrel diameter of 65 mm and L / D = 36 are connected by a single hollow tube (16). A die (13) having a lip width of 300 mm was attached to the tip of.
Carbon dioxide was used as a foaming agent. After being taken out of the cylinder (17), carbon dioxide pressurized by a gas booster pump (18) was supplied to an inlet (14) attached to the center of the first extruder (11) near the center. Injection.
[0017]
<Manufacture of polishing foam>
(Foam A)
Using a raw material obtained by previously mixing a crosslinking agent (trade name: Crossnate EM-30) of the company with a thermoplastic polyurethane elastomer (trade name: Rezamin P-4250) manufactured by Dainichi Seika Kogyo Co., Ltd. A foam having a thickness of 1.6 mm was produced. Table 1 shows the production conditions of the foam.
The surface of the obtained foam is polished with a belt sander (trade name: MNW-610-C2) manufactured by Marugen Ironworks, and a non-foamed layer near the surface is removed to obtain a 1.4 mm-thick polishing foam. Obtained.
(Foam B)
A foam having a thickness of 1.4 mm was prepared using the same raw materials as the foam A except that the manufacturing conditions were changed. Table 1 shows the manufacturing conditions.
As in the case of the foam A, the non-foamed layer was removed to obtain a polishing foam having a thickness of 1.1 mm.
(Foam C)
Using a thermoplastic polyurethane elastomer (trade name: Rezamin P-4070) manufactured by Dainichi Seika Kogyo Co., Ltd., a foam having a thickness of 1.5 mm was produced. Table 1 shows the manufacturing conditions.
As in the case of the foam A, the non-foamed layer was removed to obtain a polishing foam having a thickness of 1.4 mm.
[0018]
[Table 1]
Figure 2004223654
[0019]
<Evaluation of physical properties of polishing foam>
Table 2 shows the results of measuring the abrasion loss, the compression ratio at 25 ° C., and the average diameter of the bubbles of each of the foams A to C and the IC 1000 manufactured by Rodale. The measuring method of each item is as follows.
-Abrasion amount According to JIS K 7311 (Testing method for polyurethane thermoplastic elastomer), paragraph 9 (wear test).
Compressibility The surface was polished using TMA manufactured by Seiko Instruments Inc., and the change in thickness of the sheet adjusted to 1 mm in thickness at 25 ° C. was measured.
The profile of the surface pressure is as shown in FIG. From a state of no load, a series of operations of applying a surface pressure of 300 g / cm 2 , subsequently applying a surface pressure of 1800 g / cm 2 , and removing the load were defined as one cycle, and measurement was continuously performed for five cycles. The average of the five compression ratios in each cycle calculated from the thickness change was used as the apparent compression ratio.
・ Average diameter of bubbles The cross section of the foam was observed with a scanning electron microscope (SEM) S-2400 manufactured by HITACHI, and the diameter of each bubble included in the image at a magnification of 300 was measured, and the average value of the diameter of all the bubbles was measured. Was calculated. When the cross-sectional shape of the bubble is not a perfect circle, for example, an elliptical shape or an irregular polygonal shape, the diameter equivalent to the circle is defined as the diameter of the bubble.
[0020]
[Table 2]
Figure 2004223654
[0021]
<Preparation of polishing pad>
(Example 1)
Foam A was used as a polishing layer.
After laminating three foams A with a 0.9 mm thick double-sided tape based on a foamed polyethylene sheet having cushioning properties, cut them into a disk shape having a diameter of 600 mmφ, and then cross-saw made by Shoda Tectron Co., Ltd. The surface was provided with a lattice groove having a groove width of 2 mm, an interval between adjacent grooves of 13 mm, and a groove depth of 0.8 mm by using the above method, thereby producing a polishing pad.
[0022]
(Example 2)
Foam A was used as a polishing layer.
Groove processing was performed on the surface in the same manner as in Example 1 except that three pieces of the foam A were bonded to a 0.15 mm-thick double-sided tape using a non-foamed sheet having no cushioning property as a base material, and a diameter of 600 mmφ. Was prepared.
(Example 3)
Foam B was used as a polishing layer.
After bonding three foams B to the double-sided tape having cushioning properties used in Example 1, grooves were formed on the surface in the same manner as in Example 1 to produce a polishing pad having a diameter of 600 mmφ.
[0023]
(Comparative Example 1)
Foam C was used as a polishing layer.
After bonding three foams C to the double-sided tape having cushioning properties used in Example 1, grooves were formed on the surface in the same manner as in Example 1 to produce a polishing pad having a diameter of 600 mmφ.
(Comparative Example 2)
As a polishing pad, a two-layer pad was used in which a Rodale IC1000 provided with a lattice groove having a groove width of 2 mm, a space between adjacent grooves of 13 mm, and a groove depth of 0.6 mm was bonded to Suba400 of the company. .
[0024]
<Polishing performance evaluation>
For the evaluation of the polishing rate and its in-plane variation, a Cu solid wafer having a diameter of 200 mm was used. A 200 mm diameter patterned wafer was used for the evaluation of the flatness of the device surface after polishing.
The polishing pad obtained in (Example) and (Comparative Example) was attached to a surface plate of a single-side polishing machine ARW-681MS made of MAT, dressed using a diamond dresser, and then a polishing slurry manufactured by Cabot Corporation (trade name: iCue5003) ) Was supplied while polishing was performed. Table 3 shows the dressing conditions and polishing conditions.
[0025]
[Table 3]
Figure 2004223654
[0026]
After cleaning and drying the polished wafer, the Cu film thickness at 49 points in the wafer surface was measured using a sheet resistance measuring instrument, and the average polishing rate and the variation in the polishing rate in the wafer plane were calculated.
For the patterned wafers, the surface roughness after polishing of the wiring portions having a line / space of 4.5 μm / 0.5 μm and 10 μm / 10 μm was measured, and the flatness was confirmed. In Table 4, compared to Comparative Example 2 which is a typical example of a conventional pad, those having flatness equal to or higher were indicated by ○, and those having reduced flatness were indicated by ×.
As a variation in the polishing rate in the wafer surface, a value obtained by dividing a value obtained by subtracting the minimum value from the maximum value of the polishing rate at 49 points by twice the average value and multiplying the value by 100 was used. The higher the value, the lower the uniformity.
Table 4 also shows the performance evaluation results of the polishing pads of the example and the comparative example.
[0027]
[Table 4]
Figure 2004223654
[0028]
Examples 1 to 3 are all high in abrasion resistance and are expected to improve life with respect to Comparative Example 2 polished using Rodale IC1000, which is a typical example of a conventional independent foam. Polishing performance equal to or higher than Comparative Example 2 was confirmed. Among them, a preferable tendency was confirmed, in which the polishing rate was 1.7 to 2 times the IC1000.
[0029]
Comparative Example 1 is considered to have a higher abrasion amount and lower wear resistance than Examples 1 to 3, but it was confirmed that the polishing rate was low and the flatness tended to decrease. It was confirmed that the polishing performance was reduced when the wear amount of the body was less than the lower limit. Example 2 using a polishing pad manufactured by laminating a foam A and a double-sided tape having almost no cushioning property showed that in-plane variation and flatness were equal to or more than Comparative Example 2, and the polishing rate was higher. Is high, which suggests the possibility of achieving a polishing performance that could not be realized by a conventional two-layer structure with a single layer, and is particularly notable.
In addition, since the foam A having higher wear resistance than the IC 1000 has a thick foam itself and a deep groove depth, it can be determined that the foam A has more preferable characteristics in terms of life. .
[0030]
【The invention's effect】
For example, if a semiconductor device wafer is polished by using a polishing foam having high wear resistance as compared with the conventional independent foam of the present invention, the polishing performance is equal to or higher than that of the conventional pad, and the polishing layer Since the thickness can be increased, an improvement in life can be expected.
[Brief description of the drawings]
FIG. 1 is an example of a standard process of chemical mechanical polishing (CMP).
FIG. 2 is a time-dependent change (profile) of surface pressure in compression ratio measurement.
FIG. 3 is a schematic diagram of a foaming equipment used in Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor wafer 2 Surface plate 3 Dresser 4 Polishing slurry 5 Sample holder 6 Polishing pad 7 Rotating shaft 8 Wafer fixing jig 9 Backing material 10 Slurry supply pipe 11 First extruder 12 Second extruder 13 Mold 14 Foaming agent Injection parts 15 Raw material hopper 16 Hollow single pipe 17 Cylinder 18 Gas booster pump 19 Pressure regulating valve 20 Take-off machine 21 Foam

Claims (4)

常温常圧下において気体であるガスを発泡剤とした、JISK 7311に準じた摩耗試験による摩耗量が50〜250mgである研磨用発泡体。A polishing foam having a wear amount of 50 to 250 mg in a wear test according to JIS K 7311 using a gas that is a gas at normal temperature and normal pressure as a foaming agent. 25℃における見掛けの圧縮率が3〜15%である請求項1に記載の研磨用発泡体。The polishing foam according to claim 1, wherein the apparent compression ratio at 25C is 3 to 15%. 発泡体の主原料が熱可塑性エラストマーである請求項1又は2項に記載の研磨用発泡体。The polishing foam according to claim 1 or 2, wherein a main raw material of the foam is a thermoplastic elastomer. 熱可塑性エラストマーがポリウレタンである請求項3記載の研磨用発泡体。The polishing foam according to claim 3, wherein the thermoplastic elastomer is polyurethane.
JP2003015033A 2003-01-23 2003-01-23 Foamed body for polishing Pending JP2004223654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003015033A JP2004223654A (en) 2003-01-23 2003-01-23 Foamed body for polishing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003015033A JP2004223654A (en) 2003-01-23 2003-01-23 Foamed body for polishing

Publications (1)

Publication Number Publication Date
JP2004223654A true JP2004223654A (en) 2004-08-12

Family

ID=32902904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003015033A Pending JP2004223654A (en) 2003-01-23 2003-01-23 Foamed body for polishing

Country Status (1)

Country Link
JP (1) JP2004223654A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034980A1 (en) * 2005-09-22 2007-03-29 Kuraray Co., Ltd. Polymer material, foam obtained from same, and polishing pad using those
JP2010076076A (en) * 2008-09-29 2010-04-08 Fujibo Holdings Inc Polishing sheet used in polishing pad for use in polishing, and the polishing pad
JP2010076075A (en) * 2008-09-29 2010-04-08 Fujibo Holdings Inc Polishing sheet used in polishing pad for use in polishing, and the polishing pad

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034980A1 (en) * 2005-09-22 2007-03-29 Kuraray Co., Ltd. Polymer material, foam obtained from same, and polishing pad using those
US9321142B2 (en) 2005-09-22 2016-04-26 Kuraray Co., Ltd. Polymer material, foam obtained from same, and polishing pad using those
JP2010076076A (en) * 2008-09-29 2010-04-08 Fujibo Holdings Inc Polishing sheet used in polishing pad for use in polishing, and the polishing pad
JP2010076075A (en) * 2008-09-29 2010-04-08 Fujibo Holdings Inc Polishing sheet used in polishing pad for use in polishing, and the polishing pad

Similar Documents

Publication Publication Date Title
US5489233A (en) Polishing pads and methods for their use
US8133096B2 (en) Multi-phase polishing pad
JP6290004B2 (en) Soft and conditionable chemical mechanical window polishing pad
JP2009274208A (en) Microporous polishing pad
WO2005000526A1 (en) Polishing pad with oriented pore structure
CN107520743A (en) Superelevation voidage polishing pad with hole-closing structure
JP2011526218A (en) Polishing pad having porous element and method for producing and using the same
JP2006231464A (en) Polishing pad
JP2016524549A (en) Low surface roughness polishing pad
JP2006513571A (en) How to use soft subpads for chemical mechanical polishing
JP4931133B2 (en) Polishing pad
KR20020054507A (en) multi characterized CMP pad structure and method for fabricating same
WO2016051796A1 (en) Polishing pad
JP4563025B2 (en) Polishing pad for CMP and polishing method using the same
JP2005066749A (en) Laminated element for polishing, and polishing method
JP2005001083A (en) Polishing laminate and polishing method
JP2008207318A (en) Layer laminated polishing pad
JP2001277304A (en) Producing method for polishing pad for semiconductor wafer
JP2006210657A (en) Polishing pad, polishing device, and method of manufacturing semiconductor device
JP2004223654A (en) Foamed body for polishing
JP2003209078A (en) Foam plastic sheet for polishing and manufacturing method therefor
JP2002192455A (en) Abrasive pad
JP2010069551A (en) Polishing pad
JP2004188586A (en) Foam sheet for polishing
JP2002059357A (en) Polishing pad, polishing device and polishing method