JP2008169297A - Desulfurizing agent for super-deep oxidative desulfurization and oxidative desulfurization method using the same - Google Patents

Desulfurizing agent for super-deep oxidative desulfurization and oxidative desulfurization method using the same Download PDF

Info

Publication number
JP2008169297A
JP2008169297A JP2007003491A JP2007003491A JP2008169297A JP 2008169297 A JP2008169297 A JP 2008169297A JP 2007003491 A JP2007003491 A JP 2007003491A JP 2007003491 A JP2007003491 A JP 2007003491A JP 2008169297 A JP2008169297 A JP 2008169297A
Authority
JP
Japan
Prior art keywords
oil
component
metal
organic sulfur
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007003491A
Other languages
Japanese (ja)
Other versions
JP5269321B2 (en
Inventor
Kenta Inoue
健太 井上
Hirohisa Nito
浩久 仁藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Adeka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adeka Corp filed Critical Adeka Corp
Priority to JP2007003491A priority Critical patent/JP5269321B2/en
Publication of JP2008169297A publication Critical patent/JP2008169297A/en
Application granted granted Critical
Publication of JP5269321B2 publication Critical patent/JP5269321B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a desulfurizing agent capable of efficiently removing organic sulfur compounds contained in a liquid oil, particularly hardly decomposable organic sulfur compounds, and provide a desulfurization method using the desulfurizing agent. <P>SOLUTION: The desulfurizing agent comprises (1) a solid catalyst consisting of the following components (a) and (b) and (2) urea peroxide, wherein the component (a) is at least one component selected from the group consisting of metal oxides, acids of these oxides and salts of the acids of these oxides, isopolyacids of metals and salts thereof, and heteropolyacids of metals and salts thereof (wherein the metal is selected from the group consisting of tungsten, molybdenum and vanadium) and the component (b) is hydrotalcite. The desulfurization method comprises putting into contact a liquid oil containing organic sulfur compounds with the above desulfurizing agent. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液状油に含まれる有機硫黄化合物を超深度酸化脱硫する脱硫剤及びその脱硫方法に関する。   The present invention relates to a desulfurization agent that desulfurizes an organic sulfur compound contained in a liquid oil, and a method for desulfurization thereof.

石油や石炭などの化石資源を原料とする燃料油中に含まれる硫黄化合物類は、燃焼に際して硫黄酸化物を生成し、大気環境汚染の原因となる。その主な原因として、軽油等を燃料とする自動車の排出ガス中に含まれる硫黄酸化物が挙げられ、近年の燃料油の硫黄分は50ppm以下に規制され、将来的には更なる規制の強化が見込まれている。そのため、燃料油中に含まれる硫黄化合物の脱硫技術は、積極的に開発が進められてきており、現在精油所では、触媒の存在下に水素化処理を行う水素化脱硫方法が行われている。   Sulfur compounds contained in fuel oils made from fossil resources such as oil and coal produce sulfur oxides during combustion and cause air pollution. The main cause is sulfur oxides contained in the exhaust gas of automobiles that use diesel oil as fuel. The sulfur content of fuel oil in recent years has been regulated to 50 ppm or less, and further regulations will be strengthened in the future. Is expected. Therefore, desulfurization technology for sulfur compounds contained in fuel oil has been actively developed, and at present refineries, hydrodesulfurization methods that perform hydrotreating in the presence of a catalyst are being carried out. .

ところで、このような軽油等の燃料油中には、前記水素化脱硫法において、その除去が極めて困難な有機硫黄化合物、特に硫黄原子近傍にアルキル基などの立体障害性の置換基を持つアルキル置換ジベンゾチオフェン類が含まれており、硫黄分を50ppm以下へと低減させるためには、これらの難脱硫性化合物を効果的に脱硫する必要がある。そこで、超深度脱硫の達成のためには、このような難分解性有機硫黄化合物を有効に除去することのできる、新たな脱硫技術の開発が急務とされている。   By the way, in such fuel oil such as light oil, in the hydrodesulfurization method, organic sulfur compounds that are extremely difficult to remove, particularly alkyl substitution having a sterically hindered substituent such as an alkyl group in the vicinity of the sulfur atom. Dibenzothiophenes are contained, and in order to reduce the sulfur content to 50 ppm or less, it is necessary to effectively desulfurize these difficult-to-desulfurize compounds. Therefore, in order to achieve ultra-deep desulfurization, there is an urgent need to develop a new desulfurization technique that can effectively remove such persistent organic sulfur compounds.

そこで様々な脱硫方法が考案されている。従来、脱硫の方法としては、金属系の触媒を使用することが一般的であり、現在もその方法が通常的に行われている。しかし、金属系の触媒だけを使用した場合、超深度の脱硫は難しく、近年、金属系の触媒に酸化剤を併用することが考えられてきた(例えば、特許文献1,2を参照)。   Various desulfurization methods have been devised. Conventionally, as a method of desulfurization, it is common to use a metal-based catalyst, and the method is usually performed at present. However, when only a metal catalyst is used, ultra-deep desulfurization is difficult, and in recent years, it has been considered to use an oxidizing agent in combination with a metal catalyst (for example, see Patent Documents 1 and 2).

しかし、こうした酸化剤を使用する方法はある程度の効果はあるものの、難分解性の有機硫黄化合物は分解されにくく、また、特許文献1のように溶剤を使用すると溶剤処理のための処理時間増及びコスト増をまねくため、更に効率の良い脱硫触媒が求められていた。   However, although the method using such an oxidizing agent has a certain effect, the hardly decomposable organic sulfur compound is difficult to be decomposed, and when a solvent is used as in Patent Document 1, the processing time for solvent treatment is increased. In order to increase the cost, a more efficient desulfurization catalyst has been demanded.

特開2001−354978号公報JP 2001-354978 A 特開2002−322483号公報Japanese Patent Application Laid-Open No. 2002-322483

従って、本発明が解決しようとする課題は、液状油に含まれる有機硫黄化合物、特に難分解性の有機硫黄化合物を効率よく除去することのできる脱硫剤、及びその脱硫剤を用いた脱硫方法を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a desulfurization agent that can efficiently remove organic sulfur compounds contained in liquid oil, particularly difficult-to-decompose organic sulfur compounds, and a desulfurization method using the desulfurization agent. It is to provide.

そこで本発明者等鋭意検討し、難分解性の有機硫黄化合物も効率よく分解できる脱硫剤を見出し、本発明に至った。
即ち、(1)以下の成分(a)および成分(b)からなる固形触媒、
(a)金属の酸化物、該酸化物の酸及び該酸化物の酸の塩、金属のイソポリ酸類及びその塩、金属のヘテロポリ酸類及びその塩よりなる群から選択された少なくとも一種の成分(該金属はタングステン、モリブデン及びバナジウムよりなる群から選択される)、
(b)ハイドロタルサイト、並びに
(2)過酸化尿素
を含む脱硫剤である。
Thus, the present inventors have intensively studied, and found a desulfurization agent that can efficiently decompose hardly-decomposable organic sulfur compounds, and have reached the present invention.
That is, (1) a solid catalyst comprising the following components (a) and (b),
(A) at least one component selected from the group consisting of a metal oxide, an acid of the oxide and an acid salt of the oxide, a metal isopolyacid and a salt thereof, a metal heteropolyacid and a salt thereof (the The metal is selected from the group consisting of tungsten, molybdenum and vanadium);
(B) a desulfurization agent containing hydrotalcite and (2) urea peroxide.

本発明の効果は、液状油に含まれる有機硫黄化合物、特に難分解性の有機硫黄化合物を効率よく除去することのできる脱硫剤、及びその脱硫剤を用いた脱硫方法を提供したことにある。以下、本発明をその好ましい実施形態に基づき詳細に説明する。   The effect of the present invention is to provide a desulfurization agent capable of efficiently removing an organic sulfur compound contained in a liquid oil, particularly a hardly decomposable organic sulfur compound, and a desulfurization method using the desulfurization agent. Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.

まず(1)固形触媒である成分(a)について説明する。成分(a)としては、タングステン、モリブデンおよびバナジウムのいずれか一種以上を含有する金属の酸化物、該酸化物の酸または該酸化物の酸の塩を使用することができる。これらの金属の酸化物やその酸としては、例えば、三酸化タングステン、三酸化モリブデン、五酸化バナジウム、タングステン酸、モリブデン酸、バンジン酸等が挙げられるが、これらの中でも、タングステン原子を含有しているものが好ましい。また、塩の対イオンとしては、例えば、アルカリ金属類、アルカリ土類金属類、塩基性の窒素化合物等が挙げられるが、これらの中でもカリウム、ナトリウムまたはアンモニウム等の対イオンが好ましい。   First, (1) component (a) which is a solid catalyst will be described. As the component (a), an oxide of a metal containing at least one of tungsten, molybdenum, and vanadium, an acid of the oxide, or an acid salt of the oxide can be used. Examples of these metal oxides and acids thereof include tungsten trioxide, molybdenum trioxide, vanadium pentoxide, tungstic acid, molybdic acid, and bannic acid. Among these, tungsten atoms are contained. Is preferred. Examples of the counter ion of the salt include alkali metals, alkaline earth metals, basic nitrogen compounds, etc. Among them, a counter ion such as potassium, sodium or ammonium is preferable.

更に、タングステン、モリブデンおよびバナジウムよりなる群から選択された少なくとも一種の金属元素を含有するイソポリ酸類、ヘテロポリ酸類、又はその酸の塩も成分(a)として使用することができる。これらのポリ酸類の中でも、イソポリタングステン酸及びその塩、イソポリモリブデン酸及びその塩、ヘテロポリタングステン酸及びその塩、ヘテロポリモリブデン酸及びその塩が好ましく、ヘテロポリタングステン酸及びその塩がより好ましい。また、塩の対イオンとしては、カリウム、ナトリウムまたはアンモニウム等の対イオンが好ましい。これらのポリ酸類の構造にはケギン型や、ドーソン型も含まれる。   Furthermore, isopolyacids, heteropolyacids, or salts of the acids containing at least one metal element selected from the group consisting of tungsten, molybdenum and vanadium can also be used as component (a). Among these polyacids, isopolytungstic acid and its salt, isopolymolybdic acid and its salt, heteropolytungstic acid and its salt, heteropolymolybdic acid and its salt are preferable, and heteropolytungstic acid and its salt are more preferable. The counter ion of the salt is preferably a counter ion such as potassium, sodium or ammonium. The structures of these polyacids include Keggin type and Dawson type.

通常ポリ酸は陰イオンとして存在し、荷電を中和するためNa+、K+等のアルカリ金属類あるいはMg2+、Ca2+等のアルカリ土類金属、アンモニウムイオンさらには第四級アンモニウムイオンまたは含窒素複素環を有する第四級アンモニウム型化合物のイオンの塩よりなる群から選択された少なくとも一種の対イオンで中和されている。これらの対イオンの中でも、より好ましい例としてNa+、K+、アンモニウムおよびピリジン環を有する第四級アンモニウム化合物が挙げられる。また、ヘテロポリ酸におけるヘテロ原子としてはリン、ホウ素、珪素、ゲルマニウム、ランタノイド、ニッケル、鉄、コバルト、ルテニウム等が挙げられる。これらのポリ酸類は市販品を利用することができる。また、例えば特許公表2002−532378号公報またはM.T.Pope らによる「インオーガニックケミストリー、第6巻 1147.頁(1967)」等に従い合成することもできる。 Polyacids usually exist as anions, and to neutralize the charge, alkali metals such as Na + and K + , alkaline earth metals such as Mg 2+ and Ca 2+ , ammonium ions, and quaternary ammonium ions Alternatively, it is neutralized with at least one counter ion selected from the group consisting of salts of ions of quaternary ammonium type compounds having a nitrogen-containing heterocycle. Among these counter ions, more preferable examples include Na + , K + , ammonium and a quaternary ammonium compound having a pyridine ring. Moreover, phosphorus, boron, silicon, germanium, a lanthanoid, nickel, iron, cobalt, ruthenium etc. are mentioned as a hetero atom in heteropoly acid. Commercially available products can be used for these polyacids. Also, for example, Japanese Patent Publication No. 2002-532378 or M.S. T.A. It can also be synthesized according to “Inorganic Chemistry, Vol. 6, 1147. (1967)” by Pope et al.

成分(a)としては、上記のいずれの化合物も使用できるが、触媒としての活性が高いことから、タングステンのヘテロポリ酸またはその酸の塩が特に好ましく、12−タングストリン酸及び12−タングストリン酸塩がより好ましい。   As the component (a), any of the above-mentioned compounds can be used. However, since the activity as a catalyst is high, a tungsten heteropolyacid or a salt of the acid is particularly preferable. 12-tungstophosphoric acid and 12-tungstophosphoric acid A salt is more preferred.

次に成分(b)のハイドロタルサイト類の説明をする。ハイドロタルサイト類としては、下記一般式(1)(M2+1-x(M3+x(OH)2(An-x/n・aH2O (1)
(式中、M2+は2価金属イオンを示し、M3+は3価金属イオンを示し、An-はn価のアニオンを示し、xおよびaはそれぞれ0<x<0.5、0≦a<1の範囲を示す)で表すことができる。本発明に使用できる成分(b)としては、上記一般式(1)で表される化合物の群から選択された少なくとも一種からなるハイドロタルサイト類であり、好ましくは、M2+はMg、CaおよびZnよりなる群から選ばれた少なくとも一種、M3+はAlおよびFeから選ばれた少なくとも一種、An-はOH-、ClO4 -、NO3 -、SO4 2-、CO3 2-、SiO3 2-、HPO4 2-、PO4 3-およびCH3COO-よりなる群から選ばれた少なくとも一種からなるハイドロタルサイト類で、より好ましくはM2+はMg、M3+はAl、An-はCO3 2-で示されるハイドロタルサイト類が使用される。ハイドロタルサイト類の合成方法は、例えば特公昭47−32198号公報に示された合成方法が利用できる。
Next, the hydrotalcite component (b) will be described. As hydrotalcites, the following general formula (1) (M 2+ ) 1-x (M 3+ ) x (OH) 2 (A n− ) x / n · aH 2 O (1)
(Wherein, M 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, A n-represents an n-valent anion, respectively x and a 0 <x <0.5, 0 ≦ a <1). The component (b) that can be used in the present invention is a hydrotalcite composed of at least one selected from the group of compounds represented by the general formula (1). Preferably, M 2+ is Mg, Ca. and at least one, at least one M 3+ is selected from Al and Fe selected from the group consisting of Zn, A n-is OH -, ClO 4 -, NO 3 -, SO 4 2-, CO 3 2- , SiO 3 2− , HPO 4 2− , PO 4 3−, and CH 3 COO are at least one hydrotalcite, more preferably M 2+ is Mg and M 3+ is al, A n-hydrotalcite compound represented by CO 3 2- is used. As a method for synthesizing hydrotalcites, for example, a synthesis method disclosed in Japanese Patent Publication No. 47-32198 can be used.

成分(a)および成分(b)よりなる固体触媒の調製は、両者を混合するだけで良く、例えば、予めハイドロタルサイト類の乾燥物にポリ酸類の粉末を添加し、よく粉末同士を攪拌混合する等である。成分(b)であるハイドロタルサイト類に成分(a)をできるだけ均一に分散させることが好ましく、そのため成分(a)の粉末は微粒子であることが好ましい。好ましい粒子サイズとして電子顕微鏡観察による平均粒子径が10μm以下、より好ましくは5〜0.01μmである。
他の方法としては、ハイドロタルサイト類の乾燥物に、水溶液とした成分(a)を添加し、攪拌混合する方法でも良い。さらにはハイドロタルサイト類を調製する際に、成分(a)を少量添加しておく方法や、ハイドロタルサイト類に成分(a)をスプレー噴霧する方法でも良い。
Preparation of the solid catalyst consisting of the component (a) and the component (b) only requires mixing them. For example, the powder of polyacids is added to the dried hydrotalcite in advance, and the powders are mixed well with stirring. Etc. It is preferable to disperse the component (a) as uniformly as possible in the hydrotalcite that is the component (b), and therefore the powder of the component (a) is preferably fine particles. As a preferable particle size, an average particle diameter by electron microscope observation is 10 μm or less, more preferably 5 to 0.01 μm.
As another method, a method of adding the component (a) as an aqueous solution to the dried hydrotalcite and stirring and mixing it may be used. Furthermore, when preparing hydrotalcite, the method of adding a small amount of component (a) or the method of spraying component (a) on hydrotalcite may be used.

成分(b)のハイドロタルサイト類の粒子サイズについては特に制限は無く、例えばハイドロタルサイト類の乾燥粉末を精製水と混練した後、押し出し造粒したものから得られた乾燥粉末およびそのものを微粉砕した微粒子でも使用できる。通常の使用範囲としては5mm〜0.1μmであり、好ましくは1mm〜5μm、さらに好ましくは100μm〜10μmである。ハイドロタルサイト類の表面積にも特に制限はないが、通常はBET法で500m2/g〜5m2/gのものが多く、好ましくは300m2/g〜10m2/g、より好ましくは250m2/g〜50m2/gである。 The particle size of the hydrotalcite of component (b) is not particularly limited. For example, the dry powder obtained by extruding and granulating the hydrotalcite dry powder after being kneaded with purified water is finely divided. Even pulverized fine particles can be used. The normal use range is 5 mm to 0.1 μm, preferably 1 mm to 5 μm, and more preferably 100 μm to 10 μm. Although there is no particular limitation to the surface area of the hydrotalcite, usually many things 500m 2 / g~5m 2 / g by the BET method, preferably 300m 2 / g~10m 2 / g, more preferably 250 meters 2 / G to 50 m 2 / g.

成分(a)と成分(b)の混合比に制限はないが、成分(b)のハイドロタルサイト類1モルあたり成分(a)を分子内の金属元素(タングステン、モリブデン等)として0.001モル〜0.1モルとするのが好ましく、0.005モル〜0.05モルとするのがより好ましい。   Although there is no restriction | limiting in the mixing ratio of a component (a) and a component (b), 0.001 as a metal element (tungsten, molybdenum, etc.) in a molecule | numerator (a) per 1 mol of hydrotalcites of a component (b). It is preferable to set it as mol-0.1 mol, and it is more preferable to set it as 0.005 mol-0.05 mol.

混合方法については特に制限されないが、混合時の温度は200℃を超えないほうが好ましい。より好ましい混合温度は0℃〜100℃であり、特に成分(a)の塩が第四級アンモニウムイオンまたは含窒素複素環を有する第四級アンモニウム化合物の塩である場合は100℃を超えないほうが好ましい。混合する方法としては、成分(a)を均一に分散させることが出来るのであればいずれの方法・装置でもよく、例えば、ヘンシェルミキサーのような高速攪拌翼のついた混合機、V型混合機、リボンブレンダー等が利用できる。   The mixing method is not particularly limited, but it is preferable that the temperature during mixing does not exceed 200 ° C. A more preferable mixing temperature is 0 ° C. to 100 ° C. Especially when the salt of the component (a) is a salt of a quaternary ammonium compound having a quaternary ammonium ion or a nitrogen-containing heterocyclic ring, it should not exceed 100 ° C. preferable. As a mixing method, any method and apparatus may be used as long as the component (a) can be uniformly dispersed. For example, a mixer having a high-speed stirring blade such as a Henschel mixer, a V-type mixer, Ribbon blenders can be used.

次に(2)過酸化尿素について説明する。過酸化尿素は、尿素と過酸化水素を原料として製造するものであり、その製造方法としては、例えば、尿素1モルに対して過酸化水素を1〜3モル、好ましくは1.1〜2モル添加し、30〜80℃で1〜10時間混合させた後、冷却して過酸化尿素の結晶を析出させて分離・乾燥させればよい。過酸化水素が1モルより少ないと反応速度が遅くなり、更に未反応の尿素が大量に残存してしまう。また、過酸化水素が3モルより多いと未反応の過酸化水素が大量に残存してしまう。
過酸化水素は通常水溶液の状態で流通しているが、過酸化水素の濃度の低いものを使用すると反応系内に水が大量に入ってしまい、過酸化尿素が析出しにくくなるので、50質量%以上の高濃度の過酸化水素水を使用するのが好ましい。
Next, (2) urea peroxide will be described. Urea peroxide is produced using urea and hydrogen peroxide as raw materials, and as a production method thereof, for example, hydrogen peroxide is 1 to 3 moles, preferably 1.1 to 2 moles per mole of urea. After adding and mixing at 30 to 80 ° C. for 1 to 10 hours, cooling is performed to precipitate urea peroxide crystals, followed by separation and drying. When the amount of hydrogen peroxide is less than 1 mole, the reaction rate becomes slow, and a large amount of unreacted urea remains. If the amount of hydrogen peroxide is more than 3 mol, a large amount of unreacted hydrogen peroxide remains.
Hydrogen peroxide usually circulates in the form of an aqueous solution, but if a low concentration of hydrogen peroxide is used, a large amount of water will enter the reaction system, making it difficult for urea peroxide to precipitate. It is preferable to use a high concentration hydrogen peroxide solution of at least%.

本発明の脱硫剤は(1)成分(a)および成分(b)からなる固体触媒並びに(2)過酸化尿素を含有する触媒組成物であるが、過酸化水素に対する固体触媒の量が少なすぎたり多すぎたりすると、酸化反応がスムーズに進まずに反応時間が長くなる場合があるため、その混合比は、過酸化尿素1質量部に対して固体触媒0.1〜10質量部が好ましく、0.5〜8質量部がより好ましい。2つの成分とも粉末、あるいは顆粒状の固体であり、混合方法としては2つの成分を均一になるように混合できれば特に制限はなく、例えば、ヘンシェルミキサーのような高速攪拌翼のついた混合機、V型混合機、リボンブレンダー等が利用できる。また本発明の脱硫剤は、成分(a)と成分(b)からなる固体触媒の触媒効果と過酸化尿素の酸化剤としての効果が同時に働くことによって有機硫黄化合物を効果的に酸化させるものである。   The desulfurizing agent of the present invention is a catalyst composition containing (1) a solid catalyst comprising component (a) and component (b) and (2) urea peroxide, but the amount of solid catalyst relative to hydrogen peroxide is too small. If it is too much, the oxidation reaction may not proceed smoothly and the reaction time may become long. Therefore, the mixing ratio is preferably 0.1 to 10 parts by mass of the solid catalyst with respect to 1 part by mass of urea peroxide, 0.5-8 mass parts is more preferable. The two components are either powder or granular solid, and the mixing method is not particularly limited as long as the two components can be mixed uniformly. For example, a mixer equipped with a high-speed stirring blade such as a Henschel mixer, V-type mixers, ribbon blenders, etc. can be used. The desulfurizing agent of the present invention effectively oxidizes an organic sulfur compound by simultaneously acting as a catalytic effect of the solid catalyst comprising the component (a) and the component (b) and an oxidizing agent of urea peroxide. is there.

本発明に用いられる液状油に特に制約はなく、硫黄化合物が含有する一般的な燃料油や潤滑油等に利用することができる。こうした燃料油や潤滑油としては、例えば、ガソリン、軽油、重油、灯油、ジェット燃料、天然ガス、アルコール、LPG、ナフサ、アスファルト油、オイルサンド油、石炭液化油、シェルオイル、廃プラスチック油、バイオフューエル、GTL、パラフィン系鉱油、ナフテン系鉱油あるいはこれらを精製した精製鉱油類を用いることができる。これらの中でも、燃焼時の硫黄酸化物が問題となる燃料油が好ましく、ガソリン、軽油、灯油がより好ましい。   There is no restriction | limiting in particular in the liquid oil used for this invention, It can utilize for the common fuel oil, lubricating oil, etc. which a sulfur compound contains. Examples of such fuel oil and lubricating oil include gasoline, light oil, heavy oil, kerosene, jet fuel, natural gas, alcohol, LPG, naphtha, asphalt oil, oil sand oil, coal liquefied oil, shell oil, waste plastic oil, bio Fuel, GTL, paraffinic mineral oil, naphthenic mineral oil, or refined mineral oil refined from these can be used. Among these, fuel oils in which sulfur oxides during combustion are a problem are preferable, and gasoline, light oil, and kerosene are more preferable.

これらの液状油には、主に原料由来の有機硫黄化合物が含まれるが、こうした有機硫黄化合物としては、例えば、チオール類、チオエーテル類、チオフェノール類、チオアニソール類、チオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類等が挙げられる。こうした有機硫黄化合物の中でも、骨格中に硫黄原子を含有する複素環化合物、特に硫黄原子周辺にアルキル基などの置換基を持つジベンゾチオフェン類は、通常の水素化脱硫方法では立体障害の影響により分解することが困難な化合物であるが、本発明ではこのような難分解性の有機硫黄化合物でも容易に酸化させて除去することができる。   These liquid oils mainly contain organic sulfur compounds derived from raw materials. Examples of such organic sulfur compounds include thiols, thioethers, thiophenols, thioanisoles, thiophenes, benzothiophenes, And dibenzothiophenes. Among these organic sulfur compounds, heterocyclic compounds containing a sulfur atom in the skeleton, especially dibenzothiophenes having a substituent such as an alkyl group around the sulfur atom, are decomposed by the effects of steric hindrance in ordinary hydrodesulfurization methods. In the present invention, even such a hardly decomposable organic sulfur compound can be easily oxidized and removed.

本発明の脱硫方法は、本発明の触媒組成物と液状油とを接触させるものであるが、接触方法としては、例えば、吸着塔に本発明の触媒組成物を充填して液状油を流通させる方法、本発明の触媒組成物を内部に固定したタンクなどの容器に液状油を入れて静置または撹拌する方法、タンクなどの容器に液状油と本発明の触媒組成物を入れて反応後に触媒組成物を除去する方法等が挙げられる。これら脱硫時の反応温度は、−40〜100℃が好ましく、−20℃〜80℃がより好ましい。反応温度が−40℃より低いと燃料油の流動性が低下し、反応がスムーズに進まない場合があり、100℃より高いと触媒活性が低下する上、過酸化尿素の好ましくない分解反応が優先的に進行する場合がある。また、反応時の圧力は常圧〜1MPaの範囲であるのが好ましい。また本発明の触媒組成物と液状油とを接触させる時間は、1〜20時間が好ましく、3〜15時間がより好ましい。1時間より短いと有機硫黄化合物の酸化反応が完全に終了しない場合があり、20時間以上の接触は反応率がほとんど変わらないため経済的な損失が大きくなる場合がある。   The desulfurization method of the present invention is a method in which the catalyst composition of the present invention and liquid oil are brought into contact. Examples of the contact method include filling the catalyst composition of the present invention into an adsorption tower and circulating the liquid oil. Method, a method in which liquid oil is placed in a container such as a tank in which the catalyst composition of the present invention is fixed, and is allowed to stand or stir. Examples thereof include a method for removing the composition. The reaction temperature at the time of desulfurization is preferably -40 to 100 ° C, and more preferably -20 to 80 ° C. If the reaction temperature is lower than −40 ° C., the fluidity of the fuel oil is lowered, and the reaction may not proceed smoothly. Sometimes progress. The pressure during the reaction is preferably in the range of normal pressure to 1 MPa. Further, the time for contacting the catalyst composition of the present invention with the liquid oil is preferably 1 to 20 hours, more preferably 3 to 15 hours. If it is shorter than 1 hour, the oxidation reaction of the organic sulfur compound may not be completed completely, and contact for 20 hours or more may cause a large economic loss because the reaction rate hardly changes.

有機硫黄化合物の酸化反応が進むと、本発明の脱硫剤の一成分である過酸化尿素に含有している過酸化水素が減少していく。過酸化水素が完全になくなってしまうと、過酸化尿素の酸化剤としての性能がなくなってしまうため、精製できる液状油の量には限界がある。液状油中の有機硫黄化合物の量にもよるが、通常、本発明の脱硫剤1質量部に対して、液状油は2000質量部以下が好ましく、1000質量部以下がより好ましい。   As the oxidation reaction of the organic sulfur compound proceeds, hydrogen peroxide contained in urea peroxide, which is one component of the desulfurizing agent of the present invention, decreases. When hydrogen peroxide is completely eliminated, the performance of urea peroxide as an oxidant is lost, so the amount of liquid oil that can be refined is limited. Although depending on the amount of the organic sulfur compound in the liquid oil, the liquid oil is usually preferably 2000 parts by mass or less and more preferably 1000 parts by mass or less with respect to 1 part by mass of the desulfurizing agent of the present invention.

酸化反応により生成した有機硫黄酸化物を処理するには、抽出、吸着、蒸留等の各種分離操作を用いて除去すればよい。吸着操作の吸着剤には、例えば、シリカゲル、ゼオライト、モレキュラシーブ、活性白土、イオン交換樹脂、吸着樹脂、粘度鉱物、活性炭等、分子極性吸着や分子篩い作用のある剤を挙げることができる。また、上記処理操作に加えて蒸留精製する事により、該有機硫黄酸化物は完全に除去する事ができる。   In order to treat the organic sulfur oxide generated by the oxidation reaction, it may be removed by using various separation operations such as extraction, adsorption, and distillation. Examples of the adsorbent for the adsorption operation include silica polar particles, zeolites, molecular sieves, activated clay, ion exchange resins, adsorbent resins, viscous minerals, activated carbon, and the like, which have molecular polar adsorption or molecular sieving action. In addition to the above treatment operation, the organic sulfur oxide can be completely removed by purification by distillation.

本発明の脱硫剤は過酸化尿素の酸化剤としての性能がなくなった後でも、容易に再利用することができる。過酸化尿素の酸化剤としての性能がなくなった本発明の脱硫剤は、成分(a)及び成分(b)よりなる固体触媒並びに尿素との混合物になっている。この混合物に水を添加すると尿素だけが溶解するので、ろ過によって簡単に固体触媒と分離することができる。固体触媒はそのまま再利用でき、水に溶解した尿素は過酸化水素と反応させて過酸化尿素に再生し、再び過酸化尿素の酸化剤として再利用することができる。   The desulfurizing agent of the present invention can be easily reused even after the performance of urea peroxide as an oxidizing agent is lost. The desulfurizing agent of the present invention, which has lost the performance of urea peroxide as an oxidizing agent, is a mixture of a solid catalyst comprising components (a) and (b) and urea. When water is added to this mixture, only urea is dissolved, so that it can be easily separated from the solid catalyst by filtration. The solid catalyst can be reused as it is, and urea dissolved in water can be regenerated to urea peroxide by reacting with hydrogen peroxide and reused again as an oxidizing agent for urea peroxide.

以下本発明を実施例により、具体的に説明する。尚、以下の実施例等において%及びppmは特に記載が無い限り質量基準である。   Hereinafter, the present invention will be specifically described by way of examples. In the following examples and the like,% and ppm are based on mass unless otherwise specified.

<固体触媒の調整>
(固体触媒1)
化学式Mg6Al2(OH)16CO3・4H2Oで示される市販のハイドロタルサイト(協和化学工業(株)製 キョーワードKW−500:成分(b))250gに、12−タングストリン酸ナトリウム(成分(a))10.0gを加え小型Vミキサーで30分間混合して固体触媒1を得た。
(固体触媒2)
化学式Mg6Al2(OH)16CO3・4H2Oで示される市販のハイドロタルサイト(協和化学工業(株)製 キョーワードKW−500:成分(b))250gに、タングステン酸ナトリウム(成分(a))1.0gを加え小型Vミキサーで30分間混合して固体触媒2を得た。
<Preparation of solid catalyst>
(Solid catalyst 1)
To 250 g of commercially available hydrotalcite (Kyowa Chemical Industry Co., Ltd. Kyoward KW-500: component (b)) represented by the chemical formula Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O, 12-tungstophosphoric acid 10.0 g of sodium (component (a)) was added and mixed with a small V mixer for 30 minutes to obtain a solid catalyst 1.
(Solid catalyst 2)
250 g of commercially available hydrotalcite represented by the chemical formula Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O (Kyowa Chemical Industry Co., Ltd. Kyoward KW-500: component (b)) is added to sodium tungstate (component (A) 1.0 g was added and mixed with a small V mixer for 30 minutes to obtain a solid catalyst 2.

<分析方法>
モデル硫黄化合物として、難分解性の4,6−ジメチルジベンゾチオフェンを使用し、高速液体クロマトグラフィー(HPLC)によって、4,6−ジメチルジベンゾチオフェンの分解率を確認した。また液中の硫黄濃度は、ICPにて硫黄分を確認した。結果を表1に記した。なお、両分析機器の詳細は以下の通りである。
<Analysis method>
As the model sulfur compound, hardly decomposed 4,6-dimethyldibenzothiophene was used, and the decomposition rate of 4,6-dimethyldibenzothiophene was confirmed by high performance liquid chromatography (HPLC). The sulfur concentration in the liquid was confirmed by ICP. The results are shown in Table 1. The details of both analytical instruments are as follows.

(HPLC分析方法)
カラム :ODSカラム(LUNA 5C18 RS,φ4.6mm×250mm)
溶離液 :アセトニトリル/水=75/25
流速 :1.0mL/min
検出器 :UV、325nm
カラムオーブン温度 :40℃
(ICP(Inductively Coupled Plasma)分析方法)
分析使用機器:島津製作所製 ICPS−8100
分析方法:内部標準補正法(希釈溶媒キシレン)
(HPLC analysis method)
Column: ODS column (LUNA 5C18 RS, φ4.6mm × 250mm)
Eluent: acetonitrile / water = 75/25
Flow rate: 1.0 mL / min
Detector: UV, 325nm
Column oven temperature: 40 ° C
(ICP (Inductively Coupled Plasma) analysis method)
Analytical instrument: ICPS-8100 manufactured by Shimadzu Corporation
Analysis method: Internal standard correction method (diluted solvent xylene)

実施例1
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分として50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)0.2g及び上記で調整した触媒1を0.5g加え27℃で5時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油を蒸留精製し、液中の全硫黄濃度をICP分析によって調べた。
Example 1
Add 0.5 g of urea peroxide (effective hydrogen peroxide: 36.1%) and 0.5 g of catalyst 1 prepared above to 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: 50 ppm as total sulfur component) After stirring for 5 hours at 27 ° C., the residual 4,6-dimethyldibenzothiophene concentration was determined by HPLC analysis. Thereafter, the obtained model light oil was purified by distillation, and the total sulfur concentration in the liquid was examined by ICP analysis.

実施例2
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分として50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)0.2g及び上記で調整した触媒2を0.5g加え27℃で5時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデルを蒸留精製し、液中の全硫黄濃度を、ICP分析によって調べた。
Example 2
Add 0.5 g of urea peroxide (effective hydrogen peroxide: 36.1%) and 0.5 g of catalyst 2 prepared above to 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: 50 ppm as total sulfur component) After stirring for 5 hours at 27 ° C., the residual 4,6-dimethyldibenzothiophene concentration was determined by HPLC analysis. Thereafter, the obtained model was purified by distillation, and the total sulfur concentration in the liquid was examined by ICP analysis.

実施例3
市販の軽油(全硫黄成分350ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)1.35g、上記で調整した触媒1を1.0g加え27℃で5時間撹拌した後、得られたモデル軽油中にシリカゲル10gを加え27℃で1時間攪拌した後、シリカゲルを濾過除去して蒸留精製し、液中の全硫黄濃度を、ICP分析によって調べた。
Example 3
After adding 1.35 g of urea peroxide (effective hydrogen peroxide: 36.1%) to 500 ml of commercially available light oil (total sulfur component 350 ppm) and 1.0 g of catalyst 1 prepared as described above, stirring was performed at 27 ° C. for 5 hours, and then obtained. After adding 10 g of silica gel to the obtained model light oil and stirring at 27 ° C. for 1 hour, the silica gel was removed by filtration and purified by distillation, and the total sulfur concentration in the liquid was examined by ICP analysis.

実施例4
モデルガソリン(4,6−ジメチルジベンゾチオフェン含有オクタン50質量%/シクロヘキサン30質量%/1−オクテン20質量%混合液:全硫黄成分50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)1.35g、上記で調整した触媒1を1.0g加え55℃で10時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油中にシリカゲル10gを加え55℃で1時間攪拌した後、シリカゲルを濾過除去して蒸留精製し、液中の全硫黄濃度をICP分析によって調べた。
Example 4
Model gasoline (4,6-dimethyldibenzothiophene-containing octane 50% by mass / cyclohexane 30% by mass / 1-octene 20% by mass mixture: total sulfur component 50ppm) urea peroxide (effective hydrogen peroxide: 36.1%) 1.35 g, 1.0 g of the catalyst 1 prepared above was added and stirred at 55 ° C. for 10 hours, and then the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis. Thereafter, 10 g of silica gel was added to the obtained model light oil and stirred at 55 ° C. for 1 hour, and then the silica gel was removed by filtration and purified by distillation. The total sulfur concentration in the liquid was examined by ICP analysis.

比較例1
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)1.109g、12−タングストリン酸1.00gを加え27℃で5時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油中にシリカゲル10gを加え27℃で1時間攪拌した後、シリカゲルを濾過除去して蒸留精製し、液中の全硫黄濃度をICP分析によって調べた。
Comparative Example 1
1.109 g of urea peroxide (effective hydrogen peroxide: 36.1%) and 1.00 g of 12-tungstophosphoric acid were added to 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm) at 27 ° C. After stirring for 5 hours, the concentration of 4,6-dimethyldibenzothiophene remaining was determined by HPLC analysis. Thereafter, 10 g of silica gel was added to the obtained model light oil and stirred at 27 ° C. for 1 hour, and then the silica gel was removed by filtration and purified by distillation. The total sulfur concentration in the liquid was examined by ICP analysis.

比較例2
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに市販の35%過酸化水素水1.110g、上記で調整した触媒1を0.5g加え27℃で5時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油中にシリカゲル10gを加え27℃で1時間攪拌した後、シリカゲルを濾過除去して蒸留精製し、液中の全硫黄濃度をICP分析によって調べた。
Comparative Example 2
To 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm), 1.110 g of commercially available 35% hydrogen peroxide water and 0.5 g of catalyst 1 prepared above were added and stirred at 27 ° C. for 5 hours. Thereafter, the concentration of 4,6-dimethyldibenzothiophene remaining was examined by HPLC analysis. Thereafter, 10 g of silica gel was added to the obtained model light oil and stirred at 27 ° C. for 1 hour, and then the silica gel was removed by filtration and purified by distillation. The total sulfur concentration in the liquid was examined by ICP analysis.

比較例3
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに微粉化過硫酸ナトリウム1.110g、上記で調整した触媒1を0.5g加え27℃で5時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油中にシリカゲル10gを加え27℃で1時間攪拌した後、シリカゲルを濾過除去して蒸留精製し、液中の全硫黄濃度をICP分析によって調べた。
Comparative Example 3
To 500 ml of model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm), 1.110 g of finely powdered sodium persulfate and 0.5 g of catalyst 1 prepared as described above were added and stirred at 27 ° C. for 5 hours. The concentration of residual 4,6-dimethyldibenzothiophene was examined by analysis. Thereafter, 10 g of silica gel was added to the obtained model light oil and stirred at 27 ° C. for 1 hour, and then the silica gel was removed by filtration and purified by distillation. The total sulfur concentration in the liquid was examined by ICP analysis.

比較例4
モデル軽油(4,6−ジメチルジベンゾチオフェン含有オクタン:全硫黄成分50ppm)500mlに過酸化尿素(有効過酸化水素:36.1%)1.109g、化学式Mg6Al2(OH)16CO3・4H2Oで示される市販のハイドロタルサイト(協和化学工業(株)製 キョーワードKW−500)を0.5g加え27℃で5時間撹拌した後、HPLC分析によって残留する4,6−ジメチルジベンゾチオフェンの濃度を調べた。その後、得られたモデル軽油中にシリカゲル10gを加え27℃で1時間攪拌した後、シリカゲルを濾過除去して蒸留精製し、液中の全硫黄濃度をICP分析によって調べた。
Comparative Example 4
Model light oil (4,6-dimethyldibenzothiophene-containing octane: total sulfur component 50 ppm) and 1.109 g of urea peroxide (effective hydrogen peroxide: 36.1%), chemical formula Mg 6 Al 2 (OH) 16 CO 3. After adding 0.5 g of commercially available hydrotalcite (Kyowa Chemical Industry Co., Ltd. Kyoward KW-500) represented by 4H 2 O and stirring at 27 ° C. for 5 hours, 4,6-dimethyldibenzoic acid remaining by HPLC analysis was retained. The concentration of thiophene was examined. Thereafter, 10 g of silica gel was added to the obtained model light oil and stirred at 27 ° C. for 1 hour, and then the silica gel was removed by filtration and purified by distillation. The total sulfur concentration in the liquid was examined by ICP analysis.

Figure 2008169297
Figure 2008169297

上記の結果から、本願発明を用いると硫黄濃度だけでなく、難分解性の有機硫黄化合物を効率よく除去できることがわかる。   From the above results, it can be seen that not only the sulfur concentration but also the hard-to-decompose organic sulfur compound can be efficiently removed by using the present invention.

Claims (4)

(1)以下の成分(a)および成分(b)からなる固形触媒、
(a)金属の酸化物、該酸化物の酸及び該酸化物の酸の塩、金属のイソポリ酸類及びその塩、金属のヘテロポリ酸類及びその塩よりなる群から選択された少なくとも一種の成分(該金属はタングステン、モリブデン及びバナジウムよりなる群から選択される)、
(b)ハイドロタルサイト、並びに
(2)過酸化尿素
を含む脱硫剤。
(1) a solid catalyst comprising the following component (a) and component (b);
(A) at least one component selected from the group consisting of a metal oxide, an acid of the oxide and an acid salt of the oxide, a metal isopolyacid and a salt thereof, a metal heteropolyacid and a salt thereof (the The metal is selected from the group consisting of tungsten, molybdenum and vanadium);
(B) A hydrotalcite, and (2) a desulfurization agent containing urea peroxide.
前記(a)成分の金属がタングステンである請求項1に記載の脱硫剤。   The desulfurization agent according to claim 1, wherein the metal of the component (a) is tungsten. 有機硫黄化合物含有の液状油と請求項1または2に記載の脱硫剤とを接触させて処理する脱硫方法。   A desulfurization method in which an organic sulfur compound-containing liquid oil is contacted with the desulfurization agent according to claim 1 for treatment. 有機硫黄化合物含有の液状油が、ガソリン、軽油、重油、灯油、ジェット燃料、天然ガス、アルコール、LPG、ナフサ、アスファルト油、オイルサンド油、石炭液化油、シェルオイル、廃プラスチック油、バイオフューエル、GTL、パラフィン系鉱油、ナフテン系鉱油から選ばれる一種以上である請求項3に記載の脱硫方法。   Liquid oils containing organic sulfur compounds are gasoline, light oil, heavy oil, kerosene, jet fuel, natural gas, alcohol, LPG, naphtha, asphalt oil, oil sand oil, coal liquefied oil, shell oil, waste plastic oil, biofuel, The desulfurization method according to claim 3, wherein the desulfurization method is at least one selected from GTL, paraffinic mineral oil, and naphthenic mineral oil.
JP2007003491A 2007-01-11 2007-01-11 Desulfurization agent for ultra-deep oxidative desulfurization and oxidative desulfurization method using the same Expired - Fee Related JP5269321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003491A JP5269321B2 (en) 2007-01-11 2007-01-11 Desulfurization agent for ultra-deep oxidative desulfurization and oxidative desulfurization method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003491A JP5269321B2 (en) 2007-01-11 2007-01-11 Desulfurization agent for ultra-deep oxidative desulfurization and oxidative desulfurization method using the same

Publications (2)

Publication Number Publication Date
JP2008169297A true JP2008169297A (en) 2008-07-24
JP5269321B2 JP5269321B2 (en) 2013-08-21

Family

ID=39697699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003491A Expired - Fee Related JP5269321B2 (en) 2007-01-11 2007-01-11 Desulfurization agent for ultra-deep oxidative desulfurization and oxidative desulfurization method using the same

Country Status (1)

Country Link
JP (1) JP5269321B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134508A (en) * 2011-01-30 2011-07-27 山东大学 Oxidation desulfuration method based on modified MCM-41 anchored heteropolyacid catalyst
WO2013035200A1 (en) * 2011-09-09 2013-03-14 Aida Tetsuo Method for producing ultra-low sulfur fuel oil
KR101509137B1 (en) 2013-10-18 2015-04-07 한국과학기술원 Method of Removing Hydrogen Sulfide Using Heteropoly Acid
CN106268236A (en) * 2016-09-30 2017-01-04 扬州大学 A kind of compost reaction fuel gas efficient purifying, collecting device
WO2018205113A1 (en) * 2017-05-08 2018-11-15 Solvay Sa Process for removing sulfur compounds from a liquid composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108939801A (en) * 2018-08-13 2018-12-07 长有彬 A kind of desulfurizing agent preparation method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354978A (en) * 2000-06-16 2001-12-25 National Institute Of Advanced Industrial & Technology Process for oxidizing and desulfurizing fuel oil
JP2002322483A (en) * 2001-04-24 2002-11-08 Idemitsu Kosan Co Ltd Method for desulfurization of liquid oil containing organic sulfur compound
JP2004517193A (en) * 2000-12-28 2004-06-10 トタル、フイナ、エルフ、フランス Method and apparatus for desulfurizing hydrocarbons containing thiophene derivatives
JP2004195445A (en) * 2002-12-17 2004-07-15 Toshiaki Kabe Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus
JP2006306838A (en) * 2005-03-31 2006-11-09 Sumitomo Chemical Co Ltd Method for producing cycloalkanol and/or cycloalkanone
JP2007517925A (en) * 2003-12-05 2007-07-05 インターカット インコーポレイテッド Reduction of gasoline sulfur using hydrotalcite-like compounds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354978A (en) * 2000-06-16 2001-12-25 National Institute Of Advanced Industrial & Technology Process for oxidizing and desulfurizing fuel oil
JP2004517193A (en) * 2000-12-28 2004-06-10 トタル、フイナ、エルフ、フランス Method and apparatus for desulfurizing hydrocarbons containing thiophene derivatives
JP2002322483A (en) * 2001-04-24 2002-11-08 Idemitsu Kosan Co Ltd Method for desulfurization of liquid oil containing organic sulfur compound
JP2004195445A (en) * 2002-12-17 2004-07-15 Toshiaki Kabe Oxidation method of liquid containing organic sulfur compound, oxidation catalyst, oxidation desulfurization method and oxidation desulfurization apparatus
JP2007517925A (en) * 2003-12-05 2007-07-05 インターカット インコーポレイテッド Reduction of gasoline sulfur using hydrotalcite-like compounds
JP2006306838A (en) * 2005-03-31 2006-11-09 Sumitomo Chemical Co Ltd Method for producing cycloalkanol and/or cycloalkanone

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134508A (en) * 2011-01-30 2011-07-27 山东大学 Oxidation desulfuration method based on modified MCM-41 anchored heteropolyacid catalyst
WO2013035200A1 (en) * 2011-09-09 2013-03-14 Aida Tetsuo Method for producing ultra-low sulfur fuel oil
KR101509137B1 (en) 2013-10-18 2015-04-07 한국과학기술원 Method of Removing Hydrogen Sulfide Using Heteropoly Acid
CN106268236A (en) * 2016-09-30 2017-01-04 扬州大学 A kind of compost reaction fuel gas efficient purifying, collecting device
WO2018205113A1 (en) * 2017-05-08 2018-11-15 Solvay Sa Process for removing sulfur compounds from a liquid composition
US11225613B2 (en) 2017-05-08 2022-01-18 Solvay Sa Process for removing sulfur compounds from a liquid composition

Also Published As

Publication number Publication date
JP5269321B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
Sikarwar et al. Catalytic oxidative desulfurization of DBT using green catalyst (Mo/MCM-41) derived from coal fly ash
Rezvani et al. Green and efficient organic–inorganic hybrid nanocatalyst for oxidative desulfurization of gasoline
Bhutto et al. Oxidative desulfurization of fuel oils using ionic liquids: A review
JP5269321B2 (en) Desulfurization agent for ultra-deep oxidative desulfurization and oxidative desulfurization method using the same
Zhang et al. Deep oxidative desulfurization of dibenzothiophene with POM-based hybrid materials in ionic liquids
Ali et al. A review of methods for the demetallization of residual fuel oils
Rezvani et al. Oxidative desulfurization of gas oil catalyzed by (TBA) 4PW11Fe@ PbO as an efficient and recoverable heterogeneous phase-transfer nanocatalyst
Mokhtari et al. Superior deep desulfurization of real diesel over MoO3/silica gel as an efficient catalyst for oxidation of refractory compounds
Rezvani et al. Synthesis and characterization of new substituted Sandwich-type Polyoxometalate-based inorganic–organic hybrid nanocomposites for catalytic oxidative desulfurization of real gasoline
Rezvani et al. Facile synthesis of inorganic–organic Fe2W18Fe4@ NiO@ CTS hybrid nanocatalyst induced efficient performance in oxidative desulfurization of real fuel
EP3442683B1 (en) Chemical process for sulfur reduction of hydrocarbons
Rezvani et al. An organic–inorganic hybrid compound constructed by polytungsto-vanadosilicate and hexadecyltrimethyl ammonium as an efficient catalyst for demercaptanization of crude oil
US8961779B2 (en) Reaction system and products therefrom
KR102024349B1 (en) Process for Oxidative Desulfurization with Integrated Sulfone Decomposition
JP2014524836A (en) Catalyst composition useful for removing sulfur compounds from gaseous hydrocarbons, process for its production and use thereof
CN108203593B (en) Oxidation desulfurization method based on polyethyleneimine fixed heteropoly acid catalyst
WO2011091221A2 (en) Manganese tetrathiotungstate material
CN111741811A (en) Process for hydroconversion of heavy hydrocarbon feedstocks in a hybrid reactor
CN104907078A (en) Slurry bed hydrogenation catalyst, and preparation, design method and use thereof
Desai et al. Effectiveness of ionic liquids in extractive–oxidative desulfurization of liquid fuels: a review
Ali et al. Molybdenum boron based catalysts loaded on MnO alumina support for hydrodesulfurization of dibenzothiophene
Tireli et al. Iron and molybdenum mixed oxide supported on Al-PILC for the catalytic oxidative desulfurization of dibenzothiophene in simulated diesel fuel
Bibak et al. Oxidative desulfurization of model oil and oil cuts with MoO3/SBA-15: experimental design and optimization by Box–Behnken method
Abdullah et al. Catalytic oxidative desulfurization of diesel fuel utilizing a polymolybdate alumina supported catalyst: characterization, catalytic activity and mechanistic study
WO2013052102A1 (en) Oxidation catalysts derived from heteropoly acids and quaternized nitrogen compounds, methods for synthesis and activation thereof, and methods for use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130508

LAPS Cancellation because of no payment of annual fees