JP2004188273A - Ultraviolet irradiation system - Google Patents

Ultraviolet irradiation system Download PDF

Info

Publication number
JP2004188273A
JP2004188273A JP2002356992A JP2002356992A JP2004188273A JP 2004188273 A JP2004188273 A JP 2004188273A JP 2002356992 A JP2002356992 A JP 2002356992A JP 2002356992 A JP2002356992 A JP 2002356992A JP 2004188273 A JP2004188273 A JP 2004188273A
Authority
JP
Japan
Prior art keywords
turbidity
ultraviolet
ultraviolet irradiation
output
raw water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002356992A
Other languages
Japanese (ja)
Inventor
Tomoaki Miyanoshita
友明 宮ノ下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2002356992A priority Critical patent/JP2004188273A/en
Publication of JP2004188273A publication Critical patent/JP2004188273A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultraviolet irradiation system which performs effective ultraviolet irradiation by controlling the output of an ultraviolet lamp in carrying out ultraviolet irradiation treatment in water purification treatment, industrial water treatment, waste water treatment or the like. <P>SOLUTION: An ultraviolet irradiation apparatus 12 irradiates a raw water with ultraviolet rays before flocculating treatment. The turbidity and the number of fine particles in the raw water are measured respectively with a turbidimeter 22 and a particulate meter 24, and the power of ultraviolet rays of the ultraviolet irradiation apparatus 12 is controlled by the output of the particulate meter 24. When the number of fine particles is small and the turbidity is high, the power of the ultraviolet rays is controlled according to the detected turbidity. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、浄水処理や工業用水処理あるいは排水処理等において、紫外線照射処理を行う場合の紫外線ランプ出力の制御に関する。
【0002】
【従来の技術】
従来より、浄水処理場等において、殺菌や残留有機物の酸化を目的として紫外線照射処理が採用される場合がある。この場合、紫外線の透過効率の観点から、一般的にはろ過処理水あるいは凝集沈澱処理水に紫外線を照射している。
【0003】
一方、凝集改善やクリプトスポリジウムなどの病原性原虫類の感染力消失等を目的とする場合、原水に紫外線照射を行うことがある。これは前塩素処理の代わりに紫外線を照射するものであるが、これによって塩素と異なり、紫外線はTHM(トリハロメタン)の生成がなく、クリプトスポリジウムの増殖能力にダメージを与えて感染力を消失させるのに効果が高い等という紫外線のメリットを有効に利用することができる。なお、藻類についても浄水処理においてはこれを繁殖させないことが好適であり、藻類の繁殖を防止するのにも紫外線照射が効果的である。
【0004】
しかし、紫外線の照射効率は原水の濁度や色度により、変化する。特に、原水の水質は制御することが困難であり、従って照射効率を適切なものに維持することは難しかった。
【0005】
ここで、貯水池などにおける水中プランクトンの殺藻処理において、紫外線照射を利用することが提案されている(特許文献1)。この特許文献1では、原水の濁度を検出し、検出濁度に応じて紫外線ランプを収容した流水管に流す原水の流量を制御することが示されている。これによって、より適切な紫外線照射制御が行える。なお、濁度計に代えて、微粒子計を採用することについても提案がある(非特許文献1)。
【0006】
【特許文献1】
特開平5−169059号公報
【非特許文献1】
木村繁夫他「微粒子計測機器の基礎的性能評価に関する調査」水道協会雑誌、第71巻、第10号、31〜51頁、平成14年10月発行
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献1のように、原水濁度に基づいて紫外線照射量を制御するのでは、必ずしも紫外線照射量の適切な制御が行えず、十分な処理を行うことができない場合も生じていた。
【0008】
本発明は、上記課題に鑑みなされたものであり、効果的な紫外線照射が行える紫外線照射システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、原水に紫外線ランプからの紫外線を照射する紫外線照射システムにおいて、原水中の濁度を検出する濁度計と、原水中の微粒子数を検出する微粒子計と、前記濁度計および前記微粒子計の両方の計測結果に応じて前記紫外線ランプの出力を制御する出力制御部と、を有することを特徴とする。
【0010】
本発明によれば、濁度計と微粒子計の両方を設け、両方の検出結果に基づいて紫外線の出力を制御する。このため、生物が多く、無機の濁質が少ない場合においても、紫外線の出力を十分なものとでき、かつ生物が少なく無機の濁質が多い場合に、紫外線出力が過剰となることを防止することができる。
【0011】
また、前記出力制御部は、前記濁度計の検出濁度を所定濁度しきい値と比較する濁度比較手段と、前記微粒子計の検出微粒子数を所定の微粒子数しきい値と比較する微粒子数比較手段と、を有し、前記濁度比較手段および前記微粒子比較手段のいずれか1つの比較結果のみがしきい値以上であった場合には、そのしきい値以上の比較結果であった濁度または微粒子数のいずれかに基づいて紫外線ランプの出力を決定することが好適である。
【0012】
これによって、原水の状態に応じて適切な紫外線照射量の制御を行うことができる。
【0013】
また、紫外線を照射した処理水に対し、凝集剤を添加し、凝集物を分離する凝集分離手段をさらに有することが好適である。
【0014】
これによって、凝集前の原水について、適切な紫外線照射を行うことができる。
【0015】
【発明の実施の形態】
以下、本発明の実施形態について、図面に基づいて説明する。
【0016】
本実施形態は、上水を生成する水処理施設である浄水場を対象としたものであり、原水としては、河川水、井水などが採用される。特に、本実施形態では、紫外線照射装置(UVランプ)により被処理水に紫外線を照射し、これによってクリプトスポリジウムなどの病原性微生物の増殖能力を低下させ不活性化する。
【0017】
原水は、原水貯槽10に一旦貯留される。原水貯槽10には、紫外線照射装置12が接続されており、原水貯槽10内の原水は、ポンプ(図示省略)などにより紫外線照射装置12に供給される。なお、原水貯槽10から紫外線照射装置12に至る経路には、通水弁14が配置されていると共に、この通水弁14の原水貯槽10側には、バイパス弁16を有するバイパス管の一旦が接続されている。
【0018】
また、紫外線照射装置12の出口側は、遮断弁18を介し、凝集沈殿装置20に接続されている。そして、バイパス管の他端が凝集沈殿装置20に接続されている。
【0019】
従って、バイパス弁16を閉じ、通水弁14、遮断弁18を開くことで、原水貯槽10内の原水が紫外線照射装置12を介し凝集沈殿装置20に導入され、通常の処理が行える。また、紫外線照射装置12の故障時や、原水濁度が非常に高く紫外線照射処理の効果が期待できないときには、バイパス弁16を開き、通水弁14、遮断弁18を閉じることで、原水貯槽10内の原水が紫外線照射装置12をバイパスして直接に凝集沈殿装置20に供給される。
【0020】
ここで、紫外線照射装置12は、パイプ状の被処理水流通路中に所定の複数の紫外線ランプが配置されたもので、紫外線ランプの周囲を被処理水が流れる際にその被処理水に紫外線が照射される。特に、紫外線ランプは、蛍光灯と同様の水銀が封入された放電管であり、蛍光剤が塗布されていないため、放電により発生した紫外線がそのまま放電管の外に射出されるものである。また、紫外線ランプの周囲には、これを覆って紫外線を透過させる石英ガラス製の保護管が配置されている。従って、紫外線照射装置12の被処理水通路内には、保護管が通路をほぼ横断するように配置されていることになる。
【0021】
また、紫外線照射装置12への原水の経路には、濁度計22、微粒子計24が配置されており、原水の濁度、微粒子数をそれぞれ計測する。濁度計22は、水中に存在する濁度成分の濃度を計測するものであり、検水中を光が透過した際の減衰を計測する。この濁度計22としては、水中散乱式、表面散乱式などがあり、いずれを採用してもかまわない。また、微粒子計24は、レーザ光を検水に照射し、検水中の微粒子による散乱などを検出して、所定粒子径(例えば3〜10μm)以上の微粒子の個数を検出するものである。その測定方式として、(i)光散乱方式、(ii)光遮断方式、(iii)透過散乱光方式、(iv)レーザ回折・散乱光方式などの方式のものが知られている。各方式により、測定誤差はあるが、微粒子の数を検出できることに変わりはなく、いずれを微粒子計24に採用することも可能である。なお、これらの微粒子計については、非特許文献1に記載がある。
【0022】
そして、この濁度計22、微粒子計24の検出結果は、制御ユニット26に供給される。この制御ユニット26は、入力されてくる原水の濁度、微粒子数に応じて、所定の処理を行い、紫外線照射装置12における紫外線ランプの出力をコントロールし、原水に対する紫外線照射量を制御する。具体的には、紫外線照射装置12に制御信号を送り、この紫外線照射装置12内の紫外線ランプへの電力供給制御部が紫外線照射装置12における紫外線ランプの出力パワーをコントロールする。なお、具体的な制御内容については、後述する。
【0023】
凝集沈殿装置20は、急速撹拌機32を有する混和槽20a、緩速撹拌機34を有する凝集槽20b、および傾斜板36が配置された沈殿槽20cからなっている。そして、混和槽20aには、凝集剤貯槽38から凝集剤(例えば、ポリ塩化アルミニウム(PAC))などが供給される。これによって、被処理水中に凝集剤が添加混合され、被処理水中に存在する固形物が凝集される。そして、凝集槽20bでフロックの粗大化が図られ、沈殿槽で粗大化したフロックが沈降分離され、被処理水中の固形物が沈殿除去される。なお、沈殿汚泥は、系外に引き抜かれ、別途処分される。
【0024】
また、凝集剤としては、PACの他、硫酸バンドや塩化第二鉄などのアルミ系、鉄系の無機凝集剤が好適であり、これにあわせて高分子凝集剤を使用することも好適である。また、フロック化に適したpHでない場合には、水酸化ナトリウムや塩酸などの薬剤によってpHを適切なpHに調整することが好ましい。
【0025】
凝集沈殿装置20の処理水は沈殿槽20cの上澄み水として得られ、この沈殿処理水はろ過器40に導入される。このろ過器40は、内部に砂ろ過層などを有するものであり、沈殿処理水中に残留する固形物をさらに除去する。そして、ろ過器40のろ過処理水は、処理水貯槽42に貯留された後、適宜消毒などの処理を受け、配水される。なお、ろ過器40は、処理水貯槽42内の処理水によって、適宜逆洗などの処理を受ける。
【0026】
このように、本実施形態の水処理設備によれば、原水貯槽10内の原水は紫外線照射装置12において、紫外線照射処理を受けた後、凝集沈殿、砂ろ過処理をうける。
【0027】
このように、本実施形態では、紫外線照射装置12による紫外線照射によって、クリプトスポリジウムなどの病原性微生物が不活性化される。すなわち、紫外線照射処理は、微生物を完全に殺菌するまでの処理を行うには不適であるが、これら微生物の増殖が不能になるような不活性化の処理を行うのに適している。従って、本実施形態の設備によって、クリプトスポリジウムなどの病原性微生物や藻類について増殖能力にダメージが与えられ、実質的に問題のない処理水を得ることができる。
【0028】
そして、原水の濁度を計測する水中散乱方式または表面散乱方式の濁度計22と、原水中の3〜10μm以上の微粒数を計測する微粒子計24(例えば7μm以上の微粒子数を計測する微粒子計)の出力に応じて紫外線照射装置12の紫外線出力を変化させる。ただし、原水濁度が一定以上に達した場合、紫外線ランプはオフとする。すなわち、微粒子計24により計測した3〜10μm以上の粒子数を生物数とみなし、濁度計22により計測した濁度を無機の濁質とみなし、これらを所定のしきい値と比較する。なお、微粒子計24の計測値の中の3〜10μm以上の粒子数を生物数と見なすのは、図2に示すように、この範囲の粒子数と顕微鏡により計測した藻類数の相関が非常に高いためである。なお、微粒子計24の種類によっては、3〜10μmという範囲での計測ができないものもあるが、1μm〜20μm程度の範囲内の粒子数を計測するものであれば、その範囲自体は狭くても問題はない。また、濁度計22にも各種のものがあるが、その計測値自体はほぼ同一であり、いずれを採用してもよい。しかし、オンラインで濁度を計測するため、水中散乱式または表面散乱式のものが濁度計22として採用される。
【0029】
この場合、比較結果は、次の(i)〜(iv)の4つに分類され、それぞれに対応した紫外線出力が決定される。なお、生物数の大小を判断するしきい値としては、微粒子数10000個/mL、濁質の大小のしきい値としては、濁度5.0度程度が採用される。
【0030】
(i)生物、無機の濁質ともに少ない。
この場合には、紫外線出力は「小」でよい。濁度計22または微粒子計24のいずれの計測値に基づいて紫外線照射量を制御してもよいが、紫外線照射の目的は、微生物の不活性化であり、微粒子計24により計測した粒子数に基づいて紫外線出力を決定することが好適である。
【0031】
(ii)生物は多いが、無機の濁質は少ない。
この場合、紫外線出力は、中〜大とする。特に、生物を十分に不活性化する必要があり、微粒子計24の計測値である微粒子数に基づいて紫外線出力を決定する。
【0032】
(iii)生物は少ないが、無機の濁質は多い。
この場合、紫外線が濁質により吸収散乱され、生物の不活性化の邪魔になる。そこで、紫外線出力は中〜大とし、濁度計22の計測値に基づいて紫外線出力を決定する。
【0033】
濁度計22のみの検出結果により、紫外線照射量を決定する場合、生物も多い場合も考慮して、紫外線照射量を多くコントロールすることになるが、本実施形態では、生物数が少ないことが分かっており、比較的少なめの紫外線照射量に設定できる。
【0034】
(iv)生物が多く、かつ無機の濁質も多い。
この場合、紫外線出力は大とする。紫外線照射の目的は、微生物の不活性化であり、微粒子計24により計測した粒子数に基づいて紫外線出力を決定する。
【0035】
ここで、紫外線照射装置12による紫外線照射の処理は、基本的に原水濁度が比較的低い原水に適用する。台風などの大雨により、原水濁度が一時的に上昇した場合には、紫外線の効果はあまり得られないので、原水濁度の上限値を設定し、紫外線照射を中止する。原水濁度が通常の値に戻った場合に、紫外線の照射を再開する。具体的には、原水濁度15〜50度で紫外線照射を停止し、10度以下で照射を再開する。
【0036】
凝集前の原水に紫外線を照射する場合の主な目的は、藻類やクリプトスポリジウム等の生物の活性を低下させることである。従って、それらの生物があまり多くない状況で、紫外線の出力を大きくすることは、消費電力が過剰となり、電気料金が無駄となる。一方、同じ生物数の原水であっても、無機成分により濁度が上昇した場合、紫外線の透過率が低減するため、紫外線の出力を増大させる必要がある。
【0037】
本実施形態では、濁度計22と微粒子計24の両方を設け、濁度と生物数を分けて検出し、両方の検出結果に基づいて紫外線の出力を制御する。このため、生物が多く、無機の濁質が少ない場合においても、紫外線の出力を十分なものとでき、かつ生物が少なく無機の濁質が多い場合に、紫外線出力が過剰となることを防止することができる。
【0038】
【実施例】
図1のフローにより実際に処理を行った例を以下に説明する。
・原水:ダム水
・原水濁度:通常1〜5度、大雨等の場合 5〜40度
・大雨等の場合の処理:原水濁度15度で紫外線照射を停止し、10度で照射を開始する。
・最大処理水量:24,000m/d=1,000m/h=0.28m/秒
・紫外線照射装置12:低圧紫外線ランプ、最大出力4.0kW(100Wランプ40本)
・紫外線照射量:10〜50mJ/cm
【0039】
図2に原水中の7μm以上の微粒子数と藻類数との相関関係を、図3に原水中の濁度と藻類数との相関関係を示す。
【0040】
このように、7μm以上の微粒子数と藻類数には相関性があることが確認できた。また、濁度と藻類数にはあまり相関がないことも確認された。
【0041】
そして、濁度および微粒子数から、原水を次の4つに分類した。
(i)生物、無機の濁質ともに少ない、
(ii)生物は多いが、無機の濁質は少ない、
(iii)生物は少ないが、無機の濁質は多い、
(iv)生物、無機の濁質ともに多い。
【0042】
この分類条件と紫外線出力は予め以下のように設定した。なお、原水濁度がある程度高くなると、紫外線による効果があまり得られないため、原水濁度が15度以上となった場合に紫外線照射を停止し、10度まで下がった場合に照射を開始する。
【0043】
判定条件は、次の通りである。
・微粒子数10000個/mL未満かつ濁度5.0度未満→分類(i)
・微粒子数10000個/mL以上かつ濁度5.0度未満→分類(ii)
・微粒子数10000個/mL未満かつ濁度5.0度以上→分類(iii)
・微粒子数10000個/mL以上かつ濁度5.0度以上→分類(iv)
【0044】
分類(i)の紫外線出力は、次の式により、微粒子計の検出結果に基づく比例制御を行った。
出力%={0.2+(微粒子数/10000)×0.2}×100×(現在流量m/h÷1,000m/h)
【0045】
分類(ii)の紫外線出力は、次の式により、微粒子計の検出結果に基づく比例制御を行った。
出力%={0.4+(微粒子数/40000)×0.4}×100×(現在流量m/h÷1,000m/h)
但し、流量1000m/hで微粒子数60,000個/mL以上の場合、出力%=100で一定となる。
【0046】
分類(iii)の紫外線出力は、次の式により、濁度計の検出結果に基づく比例制御を行った。
出力%={0.4+(濁度/10)×0.4}×100×(現在流量m/h÷1,000m/h)
【0047】
分類(iv)の紫外線出力は、次の式により、微粒子計の検出結果に基づく比例制御を行った。
出力%={0.8+(微粒子数/40000)×0.2}×100×(現在流量m/h÷1,000m/h)
【0048】
これに対し、従来例の濁度計による紫外線出力は、次の式により、濁度計の検出結果に基づく比例制御を行った。
出力%={0.2+(濁度/10)×0.8}×100×(現在流量m/h÷1,000m/h)
【0049】
また、従来例の微粒子計による紫外線出力は、次の式により、微粒子計の検出結果に基づく比例制御を行った。
出力%={0.2+(微粒子数/40000)×0.8}×100×(現在流量m/h÷1,000m/h)
なお、この例において、出力100%=4.0kWである。
【0050】
上記の判定条件及び紫外線出力制御にて運転を行った本発明の制御方法と従来の制御との比較を表1に示す。
【表1】

Figure 2004188273
【0051】
このように、本発明の制御によると藻類の死滅率を常に99%程度(低くても97.5%)に維持することができる。一方、従来の方法(濁度計単独または微粒子計単独)でのUV出力制御では、過剰の紫外線照射の際には、十分な藻類死滅率を維持できるが、不足の場合も生じる。すなわち、濁度計単独による制御では、紫外線照射が過剰の場合が多く、かつ藻類数の多い条件では、照射が不十分になってしまう。また、微粒子計単独による制御では、紫外線の照射量の過剰が抑制されるが、濁度が高い条件において紫外線照射が不足し、その結果、藻類の死滅率において、従来法では90%以下(最低77.4%)となるケースがあった。
【0052】
このように、本実施形態により、凝集剤を添加する前の原水に紫外線を照射する処理において、生物が多い割に濁度が低い場合には、充分な紫外線照射量とすることができ、生物が少なく濁度が高い場合には、過剰な紫外線照射量とすることがなく、効率的な運転ができるようになった。消費電力の無駄をなくし、運転費用の低減が図れた。
【0053】
【発明の効果】
以上説明したように、本発明によれば、濁度計と微粒子計の両方を設け、両方の検出結果に基づいて紫外線の出力を制御する。このため、生物が多く、無機の濁質が少ない場合においても、紫外線の出力を十分なものとでき、かつ生物が少なく無機の濁質が多い場合に、紫外線出力が過剰となることを防止することができる。
【0054】
また、前記濁度計の検出濁度と、前記微粒子計の検出微粒子数をそれぞれ所定のしきい値と比較し、いずれか1つの比較結果のみがしきい値以上であった場合には、そのしきい値以上の比較結果であった濁度または微粒子数のいずれかに基づいて紫外線ランプの出力を決定することで、原水の状態に応じて適切な紫外線照射量の制御を行うことができる。
【0055】
また、凝集前の原水について、適切な紫外線照射を行うことが好適である。
【図面の簡単な説明】
【図1】一実施形態の水処理設備の構成を示す図である。
【図2】原水中の7μm以上の微粒子数と藻類数の関係を示す図である。
【図3】原水中の濁度と藻類数の関係を示す図である。
【符号の説明】
10 原水貯槽、12 紫外線照射装置、14 通水弁、16 バイパス弁、18 遮断弁、20 凝集沈殿装置、20a 混和槽、20b 凝集槽、20c沈殿槽、22 濁度計、24 微粒子計、26 制御ユニット、32 急速撹拌機、34 緩速撹拌機、36 傾斜板、38 凝集剤貯槽、40 ろ過器、42 処理水貯槽。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to control of an ultraviolet lamp output when performing an ultraviolet irradiation process in water purification treatment, industrial water treatment, wastewater treatment, and the like.
[0002]
[Prior art]
BACKGROUND ART Conventionally, in a water treatment plant or the like, ultraviolet irradiation treatment may be employed for the purpose of sterilization or oxidation of residual organic matter. In this case, from the viewpoint of the transmission efficiency of ultraviolet rays, generally, the filtered water or the coagulated sedimentation water is irradiated with ultraviolet rays.
[0003]
On the other hand, for the purpose of improving coagulation or eliminating infectivity of pathogenic protozoa such as Cryptosporidium, raw water may be irradiated with ultraviolet rays. This is to irradiate ultraviolet rays instead of pre-chlorination, but unlike chlorine, ultraviolet rays do not produce THM (trihalomethane) and damage the ability of Cryptosporidium to proliferate and lose its infectivity. It is possible to effectively use the merits of ultraviolet rays, such as high effects. It is preferable that the algae are not propagated in the water purification treatment, and ultraviolet irradiation is also effective for preventing the algae from growing.
[0004]
However, the irradiation efficiency of ultraviolet rays varies depending on the turbidity and chromaticity of raw water. In particular, it was difficult to control the quality of the raw water, and thus it was difficult to maintain irradiation efficiency at an appropriate level.
[0005]
Here, it has been proposed to use ultraviolet irradiation in algal killing of underwater plankton in a reservoir or the like (Patent Document 1). Patent Document 1 discloses that the turbidity of raw water is detected, and the flow rate of raw water flowing through a water pipe containing an ultraviolet lamp is controlled in accordance with the detected turbidity. Thereby, more appropriate ultraviolet irradiation control can be performed. In addition, there is a proposal to employ a fine particle meter instead of the turbidity meter (Non-Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H5-169059 [Non-Patent Document 1]
Shigeo Kimura et al., "Survey on Basic Performance Evaluation of Particle Measurement Instruments," Water Works Association Magazine, Vol. 71, No. 10, pp. 31-51, published in October 2002.
[Problems to be solved by the invention]
However, if the amount of ultraviolet irradiation is controlled based on the turbidity of the raw water as in Patent Literature 1, appropriate control of the amount of ultraviolet irradiation cannot always be performed, and in some cases, sufficient processing cannot be performed. .
[0008]
The present invention has been made in view of the above problems, and has as its object to provide an ultraviolet irradiation system capable of performing effective ultraviolet irradiation.
[0009]
[Means for Solving the Problems]
The present invention provides an ultraviolet irradiation system that irradiates raw water with ultraviolet light from an ultraviolet lamp, a turbidity meter that detects turbidity in raw water, a fine particle meter that detects the number of fine particles in raw water, the turbidity meter, and the turbidity meter. An output control unit that controls the output of the ultraviolet lamp according to both measurement results of the particle counter.
[0010]
According to the present invention, both a turbidity meter and a fine particle meter are provided, and the output of ultraviolet light is controlled based on the results of both detections. For this reason, even when there are many organisms and the amount of inorganic turbidity is small, the output of ultraviolet light can be sufficient, and when the number of living things is small and the amount of inorganic turbidity is large, it is possible to prevent the ultraviolet light output from becoming excessive. be able to.
[0011]
Further, the output control unit compares the turbidity detected by the turbidity meter with a predetermined turbidity threshold, and compares the number of detected particles of the fine particle meter with a predetermined threshold of the number of fine particles. Means for comparing the number of fine particles, and when only one of the comparison results of the turbidity comparing means and the fine particle comparing means is equal to or greater than a threshold value, the comparison result is equal to or greater than the threshold value. It is preferred to determine the output of the UV lamp based on either the turbidity or the number of particles.
[0012]
Thereby, it is possible to appropriately control the amount of irradiation of ultraviolet rays according to the state of raw water.
[0013]
Further, it is preferable to further include an aggregating / separating means for adding an aggregating agent to the treated water irradiated with ultraviolet rays and separating agglomerated products.
[0014]
Thereby, appropriate ultraviolet irradiation can be performed on the raw water before aggregation.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0016]
The present embodiment is directed to a water treatment plant that is a water treatment facility that generates clean water, and river water, well water, and the like are used as raw water. In particular, in the present embodiment, the water to be treated is irradiated with ultraviolet rays by an ultraviolet irradiation device (UV lamp), whereby the growth ability of pathogenic microorganisms such as cryptosporidium is reduced and inactivated.
[0017]
Raw water is temporarily stored in the raw water storage tank 10. An ultraviolet irradiation device 12 is connected to the raw water storage tank 10, and the raw water in the raw water storage tank 10 is supplied to the ultraviolet irradiation device 12 by a pump (not shown) or the like. In addition, a water passage valve 14 is disposed in a path from the raw water storage tank 10 to the ultraviolet irradiation device 12, and a bypass pipe having a bypass valve 16 is provided on the raw water storage tank 10 side of the water flow valve 14. It is connected.
[0018]
The outlet side of the ultraviolet irradiation device 12 is connected to a coagulation sedimentation device 20 via a shutoff valve 18. The other end of the bypass pipe is connected to the coagulation and sedimentation device 20.
[0019]
Therefore, by closing the bypass valve 16 and opening the water flow valve 14 and the shutoff valve 18, the raw water in the raw water storage tank 10 is introduced into the coagulation sedimentation device 20 via the ultraviolet irradiation device 12, and normal processing can be performed. Further, when the ultraviolet irradiation device 12 is out of order or when the turbidity of the raw water is extremely high and the effect of the ultraviolet irradiation treatment cannot be expected, the bypass valve 16 is opened, and the water supply valve 14 and the shutoff valve 18 are closed. The raw water inside is directly supplied to the coagulation sedimentation device 20 bypassing the ultraviolet irradiation device 12.
[0020]
Here, the ultraviolet irradiation device 12 has a plurality of predetermined ultraviolet lamps arranged in a pipe-shaped water flow passage, and when the water flows around the ultraviolet lamp, the ultraviolet light is applied to the water to be treated. Irradiated. In particular, an ultraviolet lamp is a discharge tube in which mercury is sealed like a fluorescent lamp, and since no fluorescent agent is applied, ultraviolet light generated by discharge is directly emitted outside the discharge tube. In addition, a protection tube made of quartz glass that covers the ultraviolet lamp and transmits ultraviolet light is disposed around the ultraviolet lamp. Therefore, in the to-be-processed water passage of the ultraviolet irradiation device 12, the protective tube is arranged so as to substantially cross the passage.
[0021]
In addition, a turbidity meter 22 and a fine particle meter 24 are disposed on the raw water path to the ultraviolet irradiation device 12, and measure the turbidity of the raw water and the number of fine particles, respectively. The turbidity meter 22 measures the concentration of a turbidity component present in water, and measures attenuation when light passes through the test water. As the turbidity meter 22, there are an underwater scattering type and a surface scattering type, and any of them may be adopted. The fine particle meter 24 irradiates the water sample with laser light, detects scattering by fine particles in the sample water, and detects the number of fine particles having a predetermined particle diameter (for example, 3 to 10 μm) or more. As the measuring method, there are known methods such as (i) a light scattering method, (ii) a light blocking method, (iii) a transmitted scattered light method, and (iv) a laser diffraction / scattered light method. Although there is a measurement error in each system, the number of fine particles can be detected without change, and any of them can be used for the fine particle meter 24. Note that these particle counters are described in Non-Patent Document 1.
[0022]
The detection results of the turbidity meter 22 and the fine particle meter 24 are supplied to the control unit 26. The control unit 26 performs a predetermined process in accordance with the turbidity of the raw water and the number of fine particles that are input, controls the output of an ultraviolet lamp in the ultraviolet irradiation device 12, and controls the amount of ultraviolet irradiation on the raw water. Specifically, a control signal is sent to the ultraviolet irradiation device 12, and a power supply control unit for the ultraviolet lamp in the ultraviolet irradiation device 12 controls the output power of the ultraviolet lamp in the ultraviolet irradiation device 12. The specific control contents will be described later.
[0023]
The coagulation sedimentation device 20 includes a mixing tank 20a having a rapid stirrer 32, a coagulation tank 20b having a slow stirrer 34, and a sedimentation tank 20c in which an inclined plate 36 is disposed. Then, a coagulant (for example, polyaluminum chloride (PAC)) or the like is supplied from the coagulant storage tank 38 to the mixing tank 20a. As a result, the coagulant is added and mixed into the water to be treated, and the solids present in the water to be treated are coagulated. The floc is coarsened in the flocculation tank 20b, and the coarsened floc is settled and separated in the sedimentation tank, and the solid matter in the water to be treated is settled and removed. The settled sludge is drawn out of the system and disposed separately.
[0024]
In addition, as the coagulant, in addition to PAC, an aluminum-based or iron-based inorganic coagulant such as a sulfate band or ferric chloride is preferable, and it is also preferable to use a polymer coagulant accordingly. . If the pH is not suitable for flocking, it is preferable to adjust the pH to an appropriate pH using a chemical such as sodium hydroxide or hydrochloric acid.
[0025]
The treated water of the coagulating sedimentation device 20 is obtained as supernatant water of the sedimentation tank 20 c, and the treated water for precipitation is introduced into the filter 40. The filter 40 has a sand filtration layer and the like inside, and further removes solid matter remaining in the settling water. Then, the filtered water of the filter 40 is stored in the treated water storage tank 42, and then subjected to a process such as disinfection as appropriate and distributed. In addition, the filter 40 receives a process, such as backwashing, by the process water in the process water storage tank 42 suitably.
[0026]
As described above, according to the water treatment equipment of the present embodiment, the raw water in the raw water storage tank 10 is subjected to the coagulation sedimentation and the sand filtration after being subjected to the ultraviolet irradiation treatment in the ultraviolet irradiation device 12.
[0027]
Thus, in this embodiment, pathogenic microorganisms such as Cryptosporidium are inactivated by ultraviolet irradiation by the ultraviolet irradiation device 12. That is, the ultraviolet irradiation treatment is not suitable for performing the treatment until the microorganisms are completely sterilized, but is suitable for performing the inactivation treatment so that the growth of these microorganisms becomes impossible. Therefore, the facility of the present embodiment damages the growth ability of pathogenic microorganisms such as Cryptosporidium and algae, and makes it possible to obtain treated water having substantially no problem.
[0028]
An underwater scattering type or surface scattering type turbidity meter 22 for measuring the turbidity of raw water, and a fine particle meter 24 for measuring the number of fine particles of 3 to 10 μm or more in raw water (for example, fine particles for measuring the number of fine particles of 7 μm or more) The ultraviolet output of the ultraviolet irradiation device 12 is changed in accordance with the output of the meter. However, when the raw water turbidity reaches a certain level, the ultraviolet lamp is turned off. That is, the number of particles of 3 to 10 μm or more measured by the fine particle meter 24 is regarded as the number of organisms, and the turbidity measured by the turbidimeter 22 is regarded as inorganic turbidity, and these are compared with a predetermined threshold value. In addition, the number of particles of 3 to 10 μm or more in the measured value of the fine particle meter 24 is regarded as the number of living organisms, as shown in FIG. 2, because the correlation between the number of particles in this range and the number of algae measured by a microscope is very large. Because it is expensive. Depending on the type of the fine particle meter 24, there are some which cannot measure in the range of 3 to 10 μm, but as long as the number of particles in the range of about 1 to 20 μm is measured, even if the range itself is narrow, No problem. There are various types of turbidity meters 22, but the measured values themselves are almost the same, and any of them may be employed. However, in order to measure the turbidity online, an underwater scattering type or a surface scattering type is adopted as the turbidimeter 22.
[0029]
In this case, the comparison results are classified into the following four (i) to (iv), and the corresponding ultraviolet output is determined. The threshold for judging the number of living organisms is 10,000 particles / mL, and the threshold for the size of turbid matter is turbidity of about 5.0 degrees.
[0030]
(I) Both biological and inorganic turbidity are low.
In this case, the UV output may be "small". The amount of ultraviolet irradiation may be controlled based on the measured value of either the turbidity meter 22 or the fine particle meter 24. However, the purpose of ultraviolet irradiation is to inactivate microorganisms, and the number of particles measured by the fine particle meter 24 is reduced. It is preferred to determine the UV output based on this.
[0031]
(Ii) Many organisms, but few inorganic turbidity.
In this case, the ultraviolet output is set to medium to large. In particular, it is necessary to sufficiently inactivate living organisms, and the ultraviolet output is determined based on the number of fine particles, which is the value measured by the fine particle meter 24.
[0032]
(Iii) There are few living things, but there are many inorganic turbidities.
In this case, the ultraviolet light is absorbed and scattered by the turbidity, and hinders the inactivation of living things. Therefore, the ultraviolet output is set to a medium to high level, and the ultraviolet output is determined based on the measurement value of the turbidimeter 22.
[0033]
When determining the amount of ultraviolet irradiation based on the detection result of only the turbidity meter 22, the amount of ultraviolet irradiation is controlled to be large in consideration of the case where there are many organisms, but in the present embodiment, the number of organisms is small. It is known that it is possible to set a relatively small amount of ultraviolet irradiation.
[0034]
(Iv) Many organisms and many inorganic turbid substances.
In this case, the ultraviolet output is large. The purpose of the ultraviolet irradiation is to inactivate microorganisms, and the ultraviolet output is determined based on the number of particles measured by the fine particle meter 24.
[0035]
Here, the treatment of ultraviolet irradiation by the ultraviolet irradiation device 12 is basically applied to raw water having relatively low raw water turbidity. If the turbidity of the raw water temporarily rises due to heavy rain such as a typhoon, the effect of the ultraviolet rays is not so much obtained, so the upper limit of the turbidity of the raw water is set and the irradiation of the ultraviolet rays is stopped. When the raw water turbidity returns to the normal value, the irradiation of ultraviolet rays is restarted. Specifically, the ultraviolet irradiation is stopped at the raw water turbidity of 15 to 50 degrees, and the irradiation is restarted at 10 degrees or less.
[0036]
The main purpose of irradiating raw water before coagulation with ultraviolet rays is to reduce the activity of organisms such as algae and cryptosporidium. Therefore, increasing the output of ultraviolet light in a situation where there are not many such organisms results in excessive power consumption and wasteful electricity bills. On the other hand, even if the raw water has the same number of organisms, when the turbidity increases due to the inorganic component, the transmittance of ultraviolet rays decreases, so that it is necessary to increase the output of ultraviolet rays.
[0037]
In the present embodiment, both the turbidity meter 22 and the fine particle meter 24 are provided, the turbidity and the number of living organisms are separately detected, and the output of the ultraviolet light is controlled based on both detection results. For this reason, even when there are many organisms and the amount of inorganic turbidity is small, the output of ultraviolet light can be sufficient, and when the number of living things is small and the amount of inorganic turbidity is large, it is possible to prevent the ultraviolet light output from becoming excessive. be able to.
[0038]
【Example】
An example in which the processing is actually performed according to the flow of FIG. 1 will be described below.
-Raw water: Dam water-Raw water turbidity: Normally 1 to 5 degrees, heavy rain, etc. 5 to 40 degrees-Processing for heavy rain, etc .: Stop UV irradiation at 15 degrees raw water turbidity and start irradiation at 10 degrees I do.
Maximum amount of treated water: 24,000m 3 / d = 1,000m 3 /h=0.28m 3 / sec · UV irradiation apparatus 12: a low-pressure ultraviolet lamp, maximum output 4.0 kW (100W lamp 40 pieces)
・ Ultraviolet irradiation amount: 10 to 50 mJ / cm 2
[0039]
FIG. 2 shows the correlation between the number of fine particles of 7 μm or more in raw water and the number of algae, and FIG. 3 shows the correlation between turbidity in raw water and the number of algae.
[0040]
Thus, it was confirmed that there is a correlation between the number of fine particles of 7 μm or more and the number of algae. It was also confirmed that there was not much correlation between turbidity and the number of algae.
[0041]
The raw water was classified into the following four based on the turbidity and the number of fine particles.
(I) Both biological and inorganic turbidity are low.
(Ii) many organisms, but few inorganic turbidity;
(Iii) less organisms, more inorganic turbidity,
(Iv) Both biological and inorganic turbidity is high.
[0042]
The classification conditions and the ultraviolet output were set in advance as follows. Note that if the raw water turbidity is increased to some extent, the effect of ultraviolet rays is not so much obtained. Therefore, the irradiation of ultraviolet rays is stopped when the raw water turbidity becomes 15 degrees or more, and the irradiation is started when the raw water turbidity decreases to 10 degrees.
[0043]
The judgment conditions are as follows.
-Less than 10,000 particles / mL and less than 5.0 degrees of turbidity-> classification (i)
-The number of fine particles is 10000 particles / mL or more and the turbidity is less than 5.0 degrees → Classification (ii)
-The number of fine particles is less than 10,000 / mL and the turbidity is 5.0 degrees or more → Classification (iii)
-Number of fine particles 10,000 or more / mL and turbidity 5.0 degrees or more → Classification (iv)
[0044]
The ultraviolet output of the category (i) was subjected to proportional control based on the detection result of the fine particle meter according to the following equation.
Output% = {0.2+ (number of fine particles / 10000) × 0.2} × 100 × (current flow rate m 3 / h ÷ 1,000 m 3 / h)
[0045]
The ultraviolet output of the category (ii) was subjected to proportional control based on the detection result of the fine particle meter according to the following equation.
Output% = {0.4+ (number of fine particles / 40000) × 0.4} × 100 × (current flow rate m 3 / h ÷ 1,000 m 3 / h)
However, when the flow rate is 1000 m 3 / h and the number of fine particles is 60,000 particles / mL or more, the output% = 100 is constant.
[0046]
The ultraviolet output of the category (iii) was subjected to proportional control based on the detection result of the turbidimeter according to the following equation.
Output% = {0.4+ (turbidity / 10) × 0.4} × 100 × (current flow m 3 / h ÷ 1,000 m 3 / h)
[0047]
The ultraviolet output of the category (iv) was subjected to a proportional control based on the detection result of the fine particle meter according to the following equation.
Output% = {0.8+ (number of fine particles / 40000) × 0.2} × 100 × (current flow rate m 3 / h ÷ 1,000 m 3 / h)
[0048]
On the other hand, the UV output of the conventional turbidimeter was subjected to proportional control based on the detection result of the turbidimeter according to the following equation.
Output% = {0.2+ (turbidity / 10) × 0.8} × 100 × (current flow m 3 / h ÷ 1,000 m 3 / h)
[0049]
In addition, the output of ultraviolet light by the conventional particle meter was subjected to proportional control based on the detection result of the particle meter according to the following equation.
Output% = {0.2+ (number of fine particles / 40000) × 0.8} × 100 × (current flow rate m 3 / h ÷ 1,000 m 3 / h)
In this example, the output is 100% = 4.0 kW.
[0050]
Table 1 shows a comparison between the control method of the present invention operated under the above determination conditions and the ultraviolet output control and the conventional control.
[Table 1]
Figure 2004188273
[0051]
Thus, according to the control of the present invention, the algal mortality can always be maintained at about 99% (at least 97.5%). On the other hand, in the UV output control by the conventional method (turbidity meter alone or fine particle meter alone), a sufficient algal mortality can be maintained in the case of excessive ultraviolet irradiation, but it may be insufficient. That is, in the control using the turbidity meter alone, the ultraviolet irradiation is often excessive and the irradiation becomes insufficient under the condition of a large number of algae. In addition, the control using the fine particle meter alone suppresses an excessive amount of UV irradiation, but the UV irradiation is insufficient under high turbidity conditions. As a result, the algae mortality is 90% or less (minimum) in the conventional method. (77.4%) in some cases.
[0052]
Thus, according to the present embodiment, in the treatment of irradiating the raw water with ultraviolet rays before adding the coagulant, if the turbidity is low in spite of the large number of living organisms, it is possible to obtain a sufficient amount of ultraviolet irradiation. When the turbidity was low and the turbidity was high, an efficient operation could be performed without excessive ultraviolet irradiation. Power consumption was reduced, and operating costs were reduced.
[0053]
【The invention's effect】
As described above, according to the present invention, both the turbidity meter and the fine particle meter are provided, and the output of the ultraviolet light is controlled based on both detection results. For this reason, even when there are many organisms and the amount of inorganic turbidity is small, the output of ultraviolet light can be sufficient, and when the number of living things is small and the amount of inorganic turbidity is large, it is possible to prevent the ultraviolet light output from becoming excessive. be able to.
[0054]
Further, the turbidity detected by the turbidimeter and the number of particles detected by the fine particle meter are each compared with a predetermined threshold value. If only one of the comparison results is equal to or greater than the threshold value, By determining the output of the ultraviolet lamp based on either the turbidity or the number of fine particles that is a comparison result equal to or larger than the threshold value, it is possible to appropriately control the amount of ultraviolet irradiation according to the state of the raw water.
[0055]
Further, it is preferable to perform appropriate ultraviolet irradiation on the raw water before aggregation.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a water treatment facility according to one embodiment.
FIG. 2 is a diagram showing the relationship between the number of fine particles of 7 μm or more in raw water and the number of algae.
FIG. 3 is a diagram showing the relationship between turbidity in raw water and the number of algae.
[Explanation of symbols]
Reference Signs List 10 raw water storage tank, 12 ultraviolet irradiation device, 14 water flow valve, 16 bypass valve, 18 shutoff valve, 20 coagulation sedimentation device, 20a mixing tank, 20b coagulation tank, 20c sedimentation tank, 22 turbidity meter, 24 particle meter, 26 control Unit, 32 rapid stirrer, 34 slow stirrer, 36 inclined plate, 38 flocculant storage tank, 40 filter, 42 treated water storage tank.

Claims (3)

原水に紫外線ランプからの紫外線を照射する紫外線照射システムにおいて、
原水中の濁度を検出する濁度計と、
原水中の微粒子数を検出する微粒子計と、
前記濁度計および前記微粒子計の両方の計測結果に応じて前記紫外線ランプの出力を制御する出力制御部と、
を有することを特徴とする紫外線照射システム。
In an ultraviolet irradiation system that irradiates raw water with ultraviolet light from an ultraviolet lamp,
A turbidity meter that detects turbidity in raw water,
A particle meter that detects the number of particles in raw water,
An output control unit that controls the output of the ultraviolet lamp according to the measurement results of both the turbidity meter and the fine particle meter,
An ultraviolet irradiation system, comprising:
請求項1に記載のシステムにおいて、
前記出力制御部は、
前記濁度計の検出濁度を所定濁度しきい値と比較する濁度比較手段と、
前記微粒子計の検出微粒子数を所定の微粒子数しきい値と比較する微粒子数比較手段と、
を有し、
前記濁度比較手段および前記微粒子比較手段のいずれか1つの比較結果のみがしきい値以上であった場合には、そのしきい値以上の比較結果であった濁度または微粒子数のいずれかに基づいて紫外線ランプの出力を決定することを特徴とする紫外線照射システム。
The system according to claim 1,
The output control unit includes:
Turbidity comparing means for comparing the detected turbidity of the turbidity meter with a predetermined turbidity threshold,
Fine particle count comparing means for comparing the detected fine particle count of the fine particle meter with a predetermined fine particle count threshold,
Has,
When only one of the comparison results of the turbidity comparing means and the fine particle comparing means is equal to or more than the threshold value, the turbidity or the number of fine particles having the comparison result equal to or more than the threshold value An ultraviolet irradiation system, wherein an output of the ultraviolet lamp is determined based on the output.
請求項1または2に記載のシステムにおいて、
紫外線を照射した処理水に対し、凝集剤を添加し、凝集物を分離する凝集分離手段をさらに有することを特徴とする紫外線照射システム。
The system according to claim 1 or 2,
An ultraviolet irradiation system, further comprising an aggregating / separating means for adding an aggregating agent to the treated water irradiated with the ultraviolet light and separating an agglomerated product.
JP2002356992A 2002-12-09 2002-12-09 Ultraviolet irradiation system Pending JP2004188273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002356992A JP2004188273A (en) 2002-12-09 2002-12-09 Ultraviolet irradiation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002356992A JP2004188273A (en) 2002-12-09 2002-12-09 Ultraviolet irradiation system

Publications (1)

Publication Number Publication Date
JP2004188273A true JP2004188273A (en) 2004-07-08

Family

ID=32757169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002356992A Pending JP2004188273A (en) 2002-12-09 2002-12-09 Ultraviolet irradiation system

Country Status (1)

Country Link
JP (1) JP2004188273A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218361A (en) * 2005-02-09 2006-08-24 Kurita Water Ind Ltd Apparatus and method for treating water
JP2007144370A (en) * 2005-11-30 2007-06-14 Toshiba Corp Water treatment system
US7740753B2 (en) 2005-03-29 2010-06-22 Kabushiki Kaisha Toshiba Ultraviolet radiation water treatment system
CN102838243A (en) * 2012-09-27 2012-12-26 青岛双瑞海洋环境工程股份有限公司 Method and device for removing organic matters in water by cooperation of ultraviolet illumination and sodium hypochlorite
CN105417805A (en) * 2015-11-26 2016-03-23 张家港市大新毛纺有限公司 Wastewater reclamation and treatment device for printing and dyeing production
US10558512B2 (en) 2013-02-08 2020-02-11 Xylem Ip Holdings Llc Ballast water tank recirculation treatment system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218361A (en) * 2005-02-09 2006-08-24 Kurita Water Ind Ltd Apparatus and method for treating water
US7740753B2 (en) 2005-03-29 2010-06-22 Kabushiki Kaisha Toshiba Ultraviolet radiation water treatment system
US7820038B2 (en) 2005-03-29 2010-10-26 Kabushiki Kaisha Toshiba Ultraviolet radiation water treatment system
JP2007144370A (en) * 2005-11-30 2007-06-14 Toshiba Corp Water treatment system
JP4746414B2 (en) * 2005-11-30 2011-08-10 株式会社東芝 Water treatment system
CN102838243A (en) * 2012-09-27 2012-12-26 青岛双瑞海洋环境工程股份有限公司 Method and device for removing organic matters in water by cooperation of ultraviolet illumination and sodium hypochlorite
US10558512B2 (en) 2013-02-08 2020-02-11 Xylem Ip Holdings Llc Ballast water tank recirculation treatment system
CN105417805A (en) * 2015-11-26 2016-03-23 张家港市大新毛纺有限公司 Wastewater reclamation and treatment device for printing and dyeing production

Similar Documents

Publication Publication Date Title
Farrell et al. Turbidity composition and the relationship with microbial attachment and UV inactivation efficacy
Blume et al. Improved wastewater disinfection by ultrasonic pre-treatment
Oliver et al. The disinfection of sewage treatment plant effluents using ultraviolet light
JP4468221B2 (en) Water treatment system using ultraviolet irradiation
JP2009000673A (en) Apparatus and method for monitoring water purification process
KR20150122876A (en) Water treatment apparatus of chlorine-uv combined oxidation for removing algae-caused noxious substance, and variable control method of chlorine dosage and uv dose using the same
US11753322B2 (en) Side stream treatment for overflow
Cantwell et al. Inactivation of indigenous coliform bacteria in unfiltered surface water by ultraviolet light
KR102289164B1 (en) Smart tap water filtering system for water tank in apartment houses
Rahman et al. Advanced oxidation treatment of drinking water: Part II. Turbidity, particles and organics removal from Lake Huron water
JP2000246263A (en) Method and apparatus for purifying water
JP4468223B2 (en) Water treatment system using ultraviolet irradiation
JP2004188273A (en) Ultraviolet irradiation system
Annadurai et al. Floc characteristics and removal of turbidity and humic acid from high-turbidity storm water
Venditto et al. A microsieve-based filtration process for combined sewer overflow treatment with nutrient control: modeling and experimental studies
JP4244769B2 (en) Aggregation apparatus and aggregation method
JP2000140888A (en) Method for purifying and sterilizing sewage and device therefor
JP5044634B2 (en) Water treatment system using ultraviolet irradiation
JP2002059194A (en) Treatment method of raw water
JP5137724B2 (en) Method and apparatus for treating organic wastewater with activated sludge
JP2004249207A (en) Ultraviolet irradiation method in deactivation treatment of protozoans
JP2002282623A (en) Method and apparatus for monitoring water filtrate in quick filtration
JP7225073B2 (en) Coagulating filtration method and coagulating filtration device
Ogutu et al. ASSESSING THE PERFORMANCE OF DRINKING WATER TREATMENT PLANT USING TURBIDITY AS THE MAIN PARAMETER (CASE STUDY: MOI UNIVERSTITY-KENYA)
Sehnaoui Fouling of UV lamp sleeves: exploring inconsistencies in the role of iron