JP2002282623A - Method and apparatus for monitoring water filtrate in quick filtration - Google Patents

Method and apparatus for monitoring water filtrate in quick filtration

Info

Publication number
JP2002282623A
JP2002282623A JP2001093730A JP2001093730A JP2002282623A JP 2002282623 A JP2002282623 A JP 2002282623A JP 2001093730 A JP2001093730 A JP 2001093730A JP 2001093730 A JP2001093730 A JP 2001093730A JP 2002282623 A JP2002282623 A JP 2002282623A
Authority
JP
Japan
Prior art keywords
particles
raw water
water
filtered water
turbidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001093730A
Other languages
Japanese (ja)
Inventor
Yutaka Mori
豊 森
Masanori Ichinohe
正憲 一戸
Tomofumi Kikuchi
智文 菊地
Seisaku Endo
誠作 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2001093730A priority Critical patent/JP2002282623A/en
Publication of JP2002282623A publication Critical patent/JP2002282623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus for monitoring a water filtrate whereby the performance of removing Cryptosproridium can be judged instantly and more efficiently. SOLUTION: This apparatus comprises a mixing basin 1 where a coagulant is diffused into the raw water to be treated, a flock formation basin 2, a flock precipitation basin 3, a quick filtration basin 4, a turbidometer 5 for measurement of the raw water, a high-sensitivity turbidometer 6 having the function of outputting the count of 3 μm or larger particles in the water filtrate, and an arithmetic operating unit 7 that determines the count (A) of 3 μm or larger particles in the raw water by calculation according to the predetermined correlation between the measured value of turbidity of the raw water and the measured value of the count of particles in the raw water, and operates and outputs the removal rate R=100×(A-B)/A (%) of 3 μm or larger particles according to the above measured value and the count (B) of 3 μm or larger particles in the filtered water. This method comprises monitoring the state of filtration according to this removal rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、上水道を対象と
する急速ろ過処理におけるろ過水の監視方法ならびにそ
の装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for monitoring filtered water in a rapid filtration process for water supply.

【0002】[0002]

【従来の技術】浄水処理において、凝集沈澱−砂ろ過処
理を行なう方法が広く採用されている。急速ろ過(砂ろ
過)池は、被処理原水中の懸濁物質を薬品によって凝集
させた後、粒状層に比較的速い流速で水を通し、主とし
てろ材への付着とろ層でのふるい分けによって、濁質を
除去する。たとえ原水が低濁度であっても、急速ろ過池
でろ過するのみではクリプトスポリジウムを含め、コロ
イド・懸濁物質の十分な除去は期待できないので、凝集
剤を用いて前処理を行なう(「水道施設設計指針」,
(社)日本水道協会,2000年3月発行参照)。
2. Description of the Related Art In water purification treatment, a method of performing coagulation sedimentation-sand filtration treatment has been widely adopted. In a rapid filtration (sand filtration) pond, after the suspended solids in the raw water to be treated are coagulated by chemicals, water is passed through the granular layer at a relatively high flow rate, and the turbidity is mainly due to adhesion to the filter medium and sieving in the filter layer. Remove quality. Even if the raw water has low turbidity, sufficient filtration of colloids and suspended substances, including Cryptosporidium, cannot be expected by simply filtering through a rapid filtration pond. Facility Design Guidelines ”,
(See Japan Water Works Association, published in March 2000.)

【0003】図2は、前記従来の急速ろ過処理装置の模
式的なシステム系統図を示す。図2において、被処理原
水は、混和池1、フロック形成池2、沈澱池3、急速ろ
過池4を経て、ろ過水としての浄水となる。前記混和池
1は、凝集剤を注入した後、直ちに急速な攪拌を与え、
凝集剤を原水中に均一に拡散させる機能を備える。混和
時間は、計画浄水量に対して1〜5分間を標準とする。
FIG. 2 is a schematic system diagram of the conventional rapid filtration apparatus. In FIG. 2, raw water to be treated passes through a mixing pond 1, a floc forming pond 2, a sedimentation pond 3, and a rapid filtration pond 4, and becomes purified water as filtered water. Immediately after injecting the flocculant, the mixing pond 1 gives rapid stirring,
It has a function to uniformly diffuse the flocculant into raw water. The mixing time is 1 to 5 minutes as standard for the planned purified water volume.

【0004】フロック形成池2は、次の沈澱池3との一
体構造、流水路、機械の設置等を考慮して、長方形とす
るのが一般的で、フロック成長に必要なエネルギーを与
えるため、攪拌装置を備える。滞留時間は、20〜40
分間が適当である。沈澱池3は、懸濁物質やフロックの
大部分を重力沈降作用によって除去し、後続の急速ろ過
池4にかかる負担を軽減するために設ける。
The floc formation pond 2 is generally rectangular in consideration of the integral structure with the next settling pond 3, the flow channel, the installation of machinery, and the like, and provides the energy required for floc growth. Equipped with a stirring device. Residence time is 20-40
Minutes are appropriate. The sedimentation basin 3 is provided to remove most of the suspended solids and flocs by gravity sedimentation and to reduce the load on the subsequent rapid filtration basin 4.

【0005】急速ろ過池4は、浄水処理工程で除濁の最
終段階として用いられ、次の機能を必要とする。 1)水質基準および「水道におけるクリプトスポリジウ
ム暫定対策指針」に適合するろ過水が得られる浄化機能 2)濁質の量的抑留機能 3)水質,水量の変動に対する緩衝機能 4)逆流洗浄等の十分な洗浄機能 前記「水道におけるクリプトスポリジウム暫定対策指
針」は、平成8年10月に定められ、これにより、クリ
プトスポリジウム対策に関して、急速ろ過処理の役割が
これまで以上に重要となった。この指針によれば、クリ
プトスポリジウムにより水道水が汚染される恐れがある
場合には、急速ろ過池4出口の水の濁度を常時把握し、
急速ろ過池4出口の水の濁度を0.1度以下に維持する
運転管理を行なうこととされている。
[0005] The rapid filtration pond 4 is used as a final stage of turbidity in the water purification treatment process, and requires the following functions. 1) Purification function to obtain filtered water that conforms to water quality standards and "Temporary Guideline for Cryptosporidium in Waterworks" 2) Quantitative deterrent function of turbidity 3) Buffer function against fluctuations in water quality and quantity 4) Sufficient backflow washing Clean function The "Temporary Guideline for Cryptosporidium in Waterworks" was stipulated in October 1996, and the role of the rapid filtration treatment became even more important for Cryptosporidium control. According to these guidelines, if there is a risk that tap water will be contaminated by Cryptosporidium, the turbidity of the water at the outlet of the rapid filtration pond 4 should be constantly monitored,
It is stipulated that operation management is performed to maintain the turbidity of water at the outlet of the rapid filtration pond 4 at 0.1 degrees or less.

【0006】上記運転管理を行なうため、図2に示すよ
うに、通常、急速ろ過池4の出口には、ろ過水の濁度を
計測するための高感度濁度計6aが設けられる。また、
原水の濁度を計測するための濁度計5aも設けられ、こ
の濁度計5aの測定値に基づき、例えば、凝集剤の注入
制御が行われる。濁度計5aと高感度濁度計6aとは、
各位置における水の濁りのレベルが異なるので、各レベ
ルに適した測定レンジを有するものが使用される。
As shown in FIG. 2, a high-sensitivity turbidity meter 6a for measuring the turbidity of filtered water is usually provided at the outlet of the rapid filtration pond 4 for performing the above operation management. Also,
A turbidity meter 5a for measuring the turbidity of the raw water is also provided. Based on the measured value of the turbidity meter 5a, for example, injection control of a flocculant is performed. The turbidimeter 5a and the high-sensitivity turbidimeter 6a are:
Since the level of water turbidity at each position is different, one having a measurement range suitable for each level is used.

【0007】[0007]

【発明が解決しようとする課題】ところで、前記「水道
におけるクリプトスポリジウム暫定対策指針」に基づく
濁度管理は、凝集,沈澱,ろ過工程が良好に機能してい
るか否かを判断する指標にはなるものの、クリプトスポ
リジウムの除去性能を直接的に評価する指標としては、
十分とはいえない。
By the way, turbidity control based on the aforementioned "Temporary Guideline for Cryptosporidium in Waterworks" is an index for judging whether or not the coagulation, sedimentation and filtration steps are functioning well. However, as an index for directly evaluating the removal performance of Cryptosporidium,
Not enough.

【0008】クリプトスポリジウムは微生物であるの
で、その存在を直接検出する方法としては、顕微鏡によ
る検知方法以外にはなく、その測定には約4日を要す
る。そのため、問題となる測定結果がでた時点では、既
に、それ以前の4日間は、問題となる水質の状態で消費
された後となり、この方法を日々の管理に反映させるこ
とはナンセンスとなる。
[0008] Since Cryptosporidium is a microorganism, there is no other method for directly detecting its presence than a detection method using a microscope, and its measurement takes about four days. Therefore, when the measurement result in question is obtained, the previous four days have already been consumed in the state of the water quality in question, and it is nonsense to reflect this method in daily management.

【0009】そこで、急速ろ過処理における浄水過程で
のクリプトスポリジウムの除去性能を、即時性をもっ
て、かつ従来より直接的に近い方法により評価できる効
果的な代替指標が求められている。
[0009] Therefore, there is a need for an effective alternative index that can immediately evaluate the removal performance of Cryptosporidium in the water purification process in the rapid filtration process by a method that is more direct than before.

【0010】この発明は、上記の点に鑑みてなされたも
ので、この発明の課題は、クリプトスポリジウムの除去
性能の即時的かつ従来より効果的な判断を可能とする急
速ろ過処理におけるろ過水の監視方法および装置を提供
することにある。
[0010] The present invention has been made in view of the above points, and an object of the present invention is to provide filtered water in a rapid filtration process that enables immediate and more effective determination of the removal performance of Cryptosporidium. It is to provide a monitoring method and a monitoring device.

【0011】[0011]

【課題を解決するための手段】前述の課題を解決するた
めに、この発明においては、被処理原水中の濁質を、凝
集処理によってフッロック化し、かつ沈澱させる前処理
を行なった後、急速ろ過処理により前記濁質を除去した
ろ過水の監視方法において、前記被処理原水中の3μm
以上の粒子数(A)と、前記ろ過水中の3μm以上の粒
子数(B)とを計測し、前記粒子数(A)と粒子数
(B)とから、3μm以上の粒子数の除去率R=100
×(A−B)/A(%)を演算出力し、この除去率によ
ってろ過処理状態を監視する(請求項1の発明)。
In order to solve the above-mentioned problems, in the present invention, a pretreatment for flocculating and sedimenting turbid substances in raw water to be treated by flocculation is carried out, followed by rapid filtration. In the method of monitoring filtered water from which turbid matter has been removed by treatment, the raw water to be treated may be 3 μm
The above number of particles (A) and the number of particles (B) of 3 μm or more in the filtered water were measured, and the removal rate R of the number of particles of 3 μm or more was determined from the number of particles (A) and the number of particles (B). = 100
X (AB) / A (%) is calculated and output, and the state of the filtration process is monitored based on the removal rate (the invention of claim 1).

【0012】上記請求項1の発明の監視方法によれば、
下記のようにして、クリプトスポリジウムの除去性能
を、即時性をもってより直接的に評価することができ
る。
According to the monitoring method of the first aspect of the present invention,
As described below, the removal performance of Cryptosporidium can be more directly evaluated with immediacy.

【0013】クリプトスポリジウムは、微生物であっ
て、その粒子相当径は、3〜5μm程度であることが知
られている。従って、直接微生物を検知しなくとも、上
記3μm以上の粒子が、ろ過水中に存在しなければ、ク
リプトスポリジウムは存在しないといえる。そのため、
3μm以上の粒子数の除去率が高ければ、クリプトスポ
リジウムの除去確率は相対的に高いということができ、
前記3μm以上の粒子数の除去率は、従来の濁度指標よ
りは、より直接的な指標となる。
[0013] Cryptosporidium is a microorganism, and its particle equivalent diameter is known to be about 3 to 5 µm. Therefore, even if the microorganisms are not directly detected, it can be said that Cryptosporidium does not exist unless the particles of 3 μm or more are present in the filtered water. for that reason,
If the removal rate of the number of particles of 3 μm or more is high, the removal probability of Cryptosporidium can be said to be relatively high,
The removal rate of the number of particles of 3 μm or more is a more direct index than the conventional turbidity index.

【0014】濁度が低くとも、微粒子径が特定されない
ので、かならずしも3μm以上の粒子が少ないとはいえ
ない。従って、前記「水道におけるクリプトスポリジウ
ム暫定対策指針」における濁度を0.1度以下に維持す
る運転管理指針は、濁度に基づく相対的な目安にすぎな
い。
Even if the turbidity is low, the diameter of the fine particles is not specified, so that it cannot always be said that the number of particles having a size of 3 μm or more is small. Therefore, the operation management guideline for maintaining the turbidity at 0.1 degrees or less in the "Temporary Measures for Cryptosporidium in Waterworks" is only a relative measure based on turbidity.

【0015】例えば、この発明によって、前記除去率
を、所定の値(例えば、99.9%)以下に管理するこ
とを指標とした場合には、クリプトスポリジウムの除去
率も、上記比率に応じて高い比率で除去されているとい
えるので、従来の濁度指標よりは、より直接的な指標と
なる。
For example, according to the present invention, when the removal rate is controlled to be equal to or less than a predetermined value (for example, 99.9%), the removal rate of Cryptosporidium also depends on the ratio. It can be said that it has been removed at a high rate, so it is a more direct index than the conventional turbidity index.

【0016】また、前記請求項1の発明の実施態様とし
て、下記請求項2ないし3の発明が既存設備の有効利用
の観点から好ましい。即ち、請求項1記載のろ過水の監
視方法において、前記粒子数(A)を、前記被処理原水
における濁度を計測することにより、当該濁度の計測値
と当該粒子数の計測値との予め求めた相関に基づいて換
算して求める(請求項2の発明)。
As an embodiment of the first aspect of the present invention, the following second and third aspects of the present invention are preferable from the viewpoint of effective use of existing facilities. That is, in the method of monitoring filtered water according to claim 1, the number of particles (A) is measured by measuring the turbidity of the raw water to be treated, whereby the measured value of the turbidity and the measured value of the number of particles are measured. It is obtained by conversion based on the correlation obtained in advance (the invention of claim 2).

【0017】本発明者等の実験によれば、後述するよう
に、原水における濁度の計測値と3μm以上の粒子数
(A)の計測値との間には、よい相関があることが判明
している。勿論、粒子数(A)を計測するための微粒子
カウンターを、既存の濁度計以外に設けてもかまわない
が、上記請求項2の発明によれば、新たに微粒子カウン
ター設ける必要がないので、その分、設備コストが低減
する。
According to experiments conducted by the present inventors, as described later, it has been found that there is a good correlation between the measured value of turbidity in raw water and the measured value of the number of particles (A) of 3 μm or more. are doing. Of course, a fine particle counter for measuring the number of particles (A) may be provided in addition to the existing turbidimeter, but according to the invention of claim 2, it is not necessary to newly provide a fine particle counter. The equipment cost is reduced accordingly.

【0018】また、請求項1または2記載のろ過水の監
視方法において、前記粒子数(B)を、ろ過水中の3μ
m以上の粒子数の出力機能を有する高感度濁度計により
計測する(請求項3の発明)。この場合にも、粒子数
(B)を計測するための微粒子カウンターを、既存の高
感度濁度計以外に設けてもよいが、上記請求項3の発明
によれば、新たに微粒子カウンター設ける必要がないの
で、その分、設備コストが低減する。なお、ろ過水中の
3μm以上の粒子数の出力機能を有する高感度濁度計と
しては、例えば、特開平10−311787号公報に記
載された高感度濁度計を使用することができる。
In the method for monitoring filtered water according to claim 1 or 2, the number of particles (B) is determined by measuring 3 μm in the filtered water.
It is measured by a high-sensitivity turbidimeter having an output function of the number of particles of m or more (the invention of claim 3). In this case as well, a fine particle counter for measuring the number of particles (B) may be provided in addition to the existing high-sensitivity turbidimeter, but according to the third aspect of the present invention, it is necessary to newly provide a fine particle counter. Since there is no equipment, the equipment cost is reduced accordingly. In addition, as a high-sensitivity turbidimeter having an output function of the number of particles of 3 μm or more in filtered water, for example, a high-sensitivity turbidimeter described in JP-A-10-31787 can be used.

【0019】さらに、前記ろ過水の監視方法を実施する
ための装置としては、下記請求項4の発明が好適であ
る。即ち、被処理原水中の濁質を、凝集処理によってフ
ッロック化し、かつ沈澱させる前処理を行なった後、急
速ろ過処理により前記濁質を除去したろ過水の監視装置
において、前記被処理原水に凝集剤を拡散させる混和池
と、フロック形成池および同沈澱池と、急速ろ過池と、
原水計測用の濁度計と、ろ過水中の3μm以上の粒子数
の出力機能を有する高感度濁度計と、原水濁度の計測値
と原水粒子数の計測値との予め求めた相関に基づいて、
前記被処理原水中の3μm以上の粒子数(A)を換算し
て求め、この換算値と前記ろ過水中の3μm以上の粒子
数(B)とから、3μm以上の粒子数の除去率R=10
0×(A−B)/A(%)を演算出力する演算器とを備
えるものとする。
Further, as an apparatus for carrying out the method for monitoring the filtered water, the invention of the following claim 4 is suitable. That is, the turbid matter in the raw water to be treated is flocculated by a coagulation treatment and subjected to a pretreatment for precipitation, and then the filtered water from which the turbid matter has been removed by a rapid filtration treatment is subjected to flocculation with the raw water to be treated. A mixing pond for diffusing the agent, a floc formation pond and the same sedimentation pond, a rapid filtration pond,
Based on a turbidity meter for measuring raw water, a high-sensitivity turbidity meter having an output function of the number of particles of 3 μm or more in filtered water, and a previously obtained correlation between the measured value of the raw water turbidity and the measured value of the raw water particle number. hand,
The number of particles (A) having a particle size of 3 μm or more in the raw water to be treated is calculated and obtained. From this conversion value and the number of particles (B) having a size of 3 μm or more in the filtered water, the removal rate R of the particles having a particle size of 3 μm or more is R = 10.
And a computing unit for computing and outputting 0 × (AB) / A (%).

【0020】[0020]

【発明の実施の形態】図1に示す急速ろ過処理装置にお
けるろ過水の監視装置の模式的なシステム系統図に基づ
き、この発明の実施例について以下にのべる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to a schematic system diagram of a system for monitoring filtered water in a rapid filtration apparatus shown in FIG.

【0021】図1において、図2に示す急速ろ過処理装
置の構成部材と同一構成部材には、同一番号を付して説
明を省略する。図1と図2との相違点は、図1において
は、前記粒子数(A)および粒子数(B)を測定可能
な、濁度計5および高感度濁度計6とを備え、さらに、
前記粒子数(A)と粒子数(B)とから、3μm以上の
粒子数の除去率R=100×(A−B)/A(%)を演
算出力する演算器7を備える点である。
In FIG. 1, the same components as those of the rapid filtration apparatus shown in FIG. 2 are denoted by the same reference numerals, and description thereof will be omitted. The difference between FIG. 1 and FIG. 2 is that, in FIG. 1, a turbidimeter 5 and a high-sensitivity turbidimeter 6 capable of measuring the number of particles (A) and the number of particles (B) are provided.
It is characterized in that a computing unit 7 is provided for calculating and outputting a removal rate R = 100 × (AB) / A (%) for the number of particles of 3 μm or more from the number of particles (A) and the number of particles (B).

【0022】原水における濁度の計測値と3μm以上の
粒子数(A)の計測値との間には、比例的なよい相関が
あることが実験により確認されている。例えば、濁度
5.38の場合、粒子数(A)は43282個/ml,
濁度13.04の場合、粒子数(A)は107585個
/ml,濁度37.7の場合、粒子数(A)は3260
00個/mlである。従って、上記濁度の計測値と粒子
数の計測値との予め求めた相関に基づいて、前記請求項
2の発明のように、濁度計5の計測値により、粒子数
(A)を換算して求めることができる。
It has been experimentally confirmed that there is a proportionally good correlation between the measured value of turbidity in raw water and the measured value of the number of particles (A) of 3 μm or more. For example, when the turbidity is 5.38, the number of particles (A) is 43282 particles / ml,
When the turbidity is 13.04, the number of particles (A) is 107585 particles / ml, and when the turbidity is 37.7, the number of particles (A) is 3260.
00 / ml. Therefore, based on the correlation obtained in advance between the measured value of the turbidity and the measured value of the number of particles, the number of particles (A) is converted by the measured value of the turbidimeter 5 as in the invention of the second aspect. You can ask.

【0023】高感度濁度計6としては、例えば、前述の
特開平10−311787号公報に記載された高感度濁
度計を使用することができるが、前記粒子数(B)が測
定可能であれば、その他の高感度濁度計を使用すること
もできる。
As the high-sensitivity turbidimeter 6, for example, the high-sensitivity turbidimeter described in the above-mentioned Japanese Patent Application Laid-Open No. 10-311787 can be used, but the number of particles (B) can be measured. If available, other sensitive turbidimeters can be used.

【0024】演算器7においては、前記濁度計5の計測
値および高感度濁度計6の粒子数(B)の出力値を入力
し、粒子数(A)を演算し、さらにこの粒子数(A)の
演算値と粒子数(B)の入力値とから、3μm以上の粒
子数の除去率R=100×(A−B)/A(%)を演算
出力する。
The arithmetic unit 7 inputs the measured value of the turbidimeter 5 and the output value of the number of particles (B) of the high-sensitivity turbidimeter 6, calculates the number of particles (A), and further calculates the number of particles. From the calculated value of (A) and the input value of the number of particles (B), a removal rate R = 100 × (AB) / A (%) for the number of particles of 3 μm or more is calculated and output.

【0025】前記除去率の出力値が、所定の値(例え
ば、99.9%)となった場合には、原因究明とその原
因に応じた必要な処置を行なう。例えば、飲み水として
緊急処置を要する場合には、最悪、運転を停止するか、
もしくは水道水の煮沸を喚起する。通常は、前記に至る
ことは殆んどなく、除去率の出力値が高くなる要因とし
ては、例えば、下記のような場合が想定され、設備の運
転継続中に設備上で必要な処置がとれる。原水の濁度
異常があり、凝集剤の投入が一時的に遅れる。凝集剤
の投入制御異常。急速ろ過池における逆流洗浄の後、
ろ材付近に残った濁質が一時的に高濃度となる場合等々
である。
When the output value of the removal rate reaches a predetermined value (for example, 99.9%), the cause is investigated and necessary measures are taken according to the cause. For example, when emergency treatment is required for drinking water, at worst, stop driving or
Or evocate the boiling of tap water. Usually, it hardly reaches the above, and as a factor for increasing the output value of the removal rate, for example, the following cases are assumed, and necessary measures can be taken on the equipment during the continuous operation of the equipment. . There is a turbidity abnormality in the raw water, and the feeding of the flocculant is temporarily delayed. Abnormal control of coagulant injection. After backwashing in the rapid filtration pond,
In some cases, the turbidity remaining near the filter medium temporarily becomes high in concentration.

【0026】上記実施例によれば、クリプトスポリジウ
ムの除去性能を、演算器の出力とその表示結果によっ
て、即時性をもってより直接的に検知することができ
る。
According to the above embodiment, the removal performance of Cryptosporidium can be detected more directly and immediately with the output of the arithmetic unit and the display result.

【0027】[0027]

【発明の効果】上記のとおり、この発明によれば、被処
理原水中の濁質を、凝集処理によってフッロック化し、
かつ沈澱させる前処理を行なった後、急速ろ過処理によ
り前記濁質を除去したろ過水の監視装置において、前記
被処理原水に凝集剤を拡散させる混和池と、フロック形
成池および同沈澱池と、急速ろ過池と、原水計測用の濁
度計と、ろ過水中の3μm以上の粒子数の出力機能を有
する高感度濁度計と、原水濁度の計測値と原水粒子数の
計測値との予め求めた相関に基づいて、前記被処理原水
中の3μm以上の粒子数(A)を換算して求め、この換
算値と前記ろ過水中の3μm以上の粒子数(B)とか
ら、3μm以上の粒子数の除去率R=100×(A−
B)/A(%)を演算出力する演算器とを備えるものと
し、この除去率によってろ過処理状態を監視することと
したので、クリプトスポリジウム相当径の3μm以上の
粒子数除去率を自動的に監視・記録することができるた
め、クリプトスポリジウムの除去性能を日々管理するこ
とが可能となり、即時的かつ従来より効果的なろ過水の
監視と必要な処置をとることが可能となる。
As described above, according to the present invention, the suspended matter in the raw water to be treated is flocculated by coagulation treatment,
And after performing the pretreatment for precipitation, in the filtered water monitoring device from which the turbid matter has been removed by rapid filtration treatment, a mixing pond for diffusing a flocculant into the raw water to be treated, a floc formation pond and the same sedimentation basin, A rapid filtration pond, a turbidity meter for measuring raw water, a high-sensitivity turbidity meter having an output function of the number of particles of 3 μm or more in filtered water, and a measurement of raw water turbidity and a measured value of raw water particle number in advance. Based on the obtained correlation, the number of particles (A) having a size of 3 μm or more in the raw water to be treated is calculated and obtained. Number removal rate R = 100 × (A−
B) / A (%) is calculated and output, and the filtering state is monitored based on the removal rate, so that the removal rate of particles of 3 μm or more equivalent to Cryptosporidium is automatically determined. Since monitoring and recording can be performed, it is possible to manage the removal performance of Cryptosporidium on a daily basis, and it is possible to immediately and more effectively monitor filtered water and take necessary measures.

【0028】また、上記監視方法によれば、「水道にお
けるクリプトスポリジウム暫定対策指針」に基づくろ過
水濁度の常時監視も同時にできる利点も有する。
Further, according to the above-mentioned monitoring method, there is an advantage that the turbidity of filtered water can be constantly monitored based on the "Temporary Guideline for Cryptosporidium in Waterworks".

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例に関わる急速ろ過処理装置に
おけるろ過水の監視装置の模式的なシステム系統図
FIG. 1 is a schematic system diagram of a filtration water monitoring device in a rapid filtration device according to an embodiment of the present invention.

【図2】従来の急速ろ過処理装置におけるろ過水の監視
装置の模式的なシステム系統図
FIG. 2 is a schematic system diagram of a filtration water monitoring device in a conventional rapid filtration device.

【符号の説明】[Explanation of symbols]

1:混和池、2:フロック形成池、3:沈澱池、4:急
速ろ過池、5:濁度計、6:高感度濁度計、7:演算
器。
1: mixing pond, 2: floc forming pond, 3: sedimentation pond, 4: rapid filtration pond, 5: turbidity meter, 6: high sensitivity turbidity meter, 7: arithmetic unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊地 智文 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (72)発明者 遠藤 誠作 福島県田村郡三春町大字込木字大志田201 Fターム(参考) 4D015 BA19 BA23 CA14 EA02 EA06 EA32 FA16 4D066 AB07 EA09 EA15  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tomofumi Kikuchi 1-1-1, Tanabe Nitta, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (72) Inventor Seisaku Endo Miharucho, Tamura-gun, Fukushima Prefecture 201 Oshida F term (reference) 4D015 BA19 BA23 CA14 EA02 EA06 EA32 FA16 4D066 AB07 EA09 EA15

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 被処理原水中の濁質を、凝集処理によっ
てフッロック化し、かつ沈澱させる前処理を行なった
後、急速ろ過処理により前記濁質を除去したろ過水の監
視方法において、 前記被処理原水中の3μm以上の粒子数(A)と、前記
ろ過水中の3μm以上の粒子数(B)とを計測し、前記
粒子数(A)と粒子数(B)とから、3μm以上の粒子
数の除去率R=100×(A−B)/A(%)を演算出
力し、この除去率によってろ過処理状態を監視すること
を特徴とする急速ろ過処理におけるろ過水の監視方法。
1. A method for monitoring filtered water in which a turbid substance in raw water to be treated is subjected to flocculation treatment by flocculation treatment and subjected to a pretreatment for sedimentation, followed by rapid filtration treatment to remove the turbid substance. The number of particles of 3 μm or more in raw water (A) and the number of particles of 3 μm or more in filtered water (B) are measured, and the number of particles of 3 μm or more is determined from the number of particles (A) and the number of particles (B). A removal rate R = 100 × (A−B) / A (%) is calculated and the filtration processing state is monitored based on the removal rate.
【請求項2】 請求項1記載のろ過水の監視方法におい
て、前記粒子数(A)を、前記被処理原水における濁度
を計測することにより、当該濁度の計測値と粒子数の計
測値との予め求めた相関に基づいて換算して求めること
を特徴とする急速ろ過処理におけるろ過水の監視方法。
2. The method of monitoring filtered water according to claim 1, wherein the number of particles (A) is measured by measuring the turbidity of the raw water to be treated, and the measured value of the turbidity and the measured value of the number of particles are measured. A method for monitoring filtered water in a rapid filtration process, wherein the filtered water is calculated based on a correlation previously obtained with the filter.
【請求項3】 請求項1または2記載のろ過水の監視方
法において、前記粒子数(B)を、ろ過水中の3μm以
上の粒子数の出力機能を有する高感度濁度計により計測
することを特徴とする急速ろ過処理におけるろ過水の監
視方法。
3. The method for monitoring filtered water according to claim 1, wherein the number of particles (B) is measured by a high-sensitivity turbidimeter having an output function of the number of particles of 3 μm or more in the filtered water. A method for monitoring filtered water in a rapid filtration process.
【請求項4】 被処理原水中の濁質を、凝集処理によっ
てフッロック化し、かつ沈澱させる前処理を行なった
後、急速ろ過処理により前記濁質を除去したろ過水の監
視装置において、 前記被処理原水に凝集剤を拡散させる混和池と、フロッ
ク形成池および同沈澱池と、急速ろ過池と、原水計測用
の濁度計と、ろ過水中の3μm以上の粒子数の出力機能
を有する高感度濁度計と、原水濁度の計測値と原水粒子
数の計測値との予め求めた相関に基づいて、前記被処理
原水中の3μm以上の粒子数(A)を換算して求め、こ
の換算値と前記ろ過水中の3μm以上の粒子数(B)と
から、3μm以上の粒子数の除去率R=100×(A−
B)/A(%)を演算出力する演算器とを備えることを
特徴とする急速ろ過処理におけるろ過水の監視装置。
4. A monitoring apparatus for filtered water in which turbid matter in raw water to be treated is subjected to flocculation treatment by flocculation treatment and subjected to pretreatment for sedimentation, and then the turbid matter is removed by rapid filtration treatment. Mixing pond that diffuses flocculant into raw water, floc formation pond and sedimentation pond, rapid filtration pond, turbidity meter for measuring raw water, and high-sensitivity turbidity with output function of 3μm or more particles in filtered water The number of particles (A) having a particle size of 3 μm or more in the raw water to be treated is calculated based on a correlation between the measured value of the raw water turbidity and the measured value of the raw water particle number. And the number (B) of particles of 3 μm or more in the filtered water, the removal rate R of particles of 3 μm or more R = 100 × (A−
B) A device for monitoring filtered water in a rapid filtration process, comprising a computing unit for computing and outputting / A (%).
JP2001093730A 2001-03-28 2001-03-28 Method and apparatus for monitoring water filtrate in quick filtration Pending JP2002282623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001093730A JP2002282623A (en) 2001-03-28 2001-03-28 Method and apparatus for monitoring water filtrate in quick filtration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001093730A JP2002282623A (en) 2001-03-28 2001-03-28 Method and apparatus for monitoring water filtrate in quick filtration

Publications (1)

Publication Number Publication Date
JP2002282623A true JP2002282623A (en) 2002-10-02

Family

ID=18948029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001093730A Pending JP2002282623A (en) 2001-03-28 2001-03-28 Method and apparatus for monitoring water filtrate in quick filtration

Country Status (1)

Country Link
JP (1) JP2002282623A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195304A (en) * 2002-12-17 2004-07-15 Toshiba Corp Coagulant injection control method and apparatus
CN1300014C (en) * 2005-07-13 2007-02-14 哈尔滨工业大学 Method for on-line testing effect of polution removing by permanganate composite drug
JP2011005463A (en) * 2009-06-29 2011-01-13 Hitachi Ltd Flocculant injection control system
JP5733872B1 (en) * 2015-01-07 2015-06-10 渡部 秀一 Water purification system
CN112964504A (en) * 2021-02-06 2021-06-15 河北呈鑫质检技术服务有限公司 Water quality real-time monitoring system and monitoring method based on TOC detector
CN113252852A (en) * 2021-06-04 2021-08-13 金科环境股份有限公司 Flocculant performance evaluation and inspection equipment and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004195304A (en) * 2002-12-17 2004-07-15 Toshiba Corp Coagulant injection control method and apparatus
CN1300014C (en) * 2005-07-13 2007-02-14 哈尔滨工业大学 Method for on-line testing effect of polution removing by permanganate composite drug
JP2011005463A (en) * 2009-06-29 2011-01-13 Hitachi Ltd Flocculant injection control system
JP5733872B1 (en) * 2015-01-07 2015-06-10 渡部 秀一 Water purification system
JP2016123961A (en) * 2015-01-07 2016-07-11 渡部 秀一 Water purification system
CN112964504A (en) * 2021-02-06 2021-06-15 河北呈鑫质检技术服务有限公司 Water quality real-time monitoring system and monitoring method based on TOC detector
CN113252852A (en) * 2021-06-04 2021-08-13 金科环境股份有限公司 Flocculant performance evaluation and inspection equipment and method

Similar Documents

Publication Publication Date Title
Gkotsis et al. Fouling control in a lab-scale MBR system: Comparison of several commercially applied coagulants
Ding et al. Characteristics of meso-particles formed in coagulation process causing irreversible membrane fouling in the coagulation-microfiltration water treatment
JP2001170458A (en) Method of detecting membrane breaking and fouling in membrane cleaning
JP2008068199A (en) Flocculation device and flocculation method
JP2002282623A (en) Method and apparatus for monitoring water filtrate in quick filtration
JP5473560B2 (en) Water purification automatic continuous monitoring device and continuous water purification system monitoring system using the same
Lousada-Ferreira et al. Particle counting as surrogate measurement of membrane integrity loss and assessment tool for particle growth and regrowth in the permeate of membrane bioreactors
JP3680452B2 (en) Anomaly detection method and control method for membrane processing system
JP4033095B2 (en) Membrane filtration device membrane damage detection method and apparatus therefor
CN108059298A (en) A kind of glass fibre production wastewater treatment equipment and processing method
JP2007069182A (en) Operational control method of waste water treatment plant
KR20010006614A (en) An equipment and method for the automatic backwashing of activated carbon process
JP2000042307A (en) Water purification plant water treatment system
JP3083087B2 (en) Water quality management device
JP2004188273A (en) Ultraviolet irradiation system
JP3733497B2 (en) Wastewater monitoring system and wastewater treatment system
JP5283550B2 (en) A method for judging backwashing from the measured value of the turbidity or the number of fine particles of filtered water after passing through the filter basin, a device for judging the backwashing from the measured value of the turbidity or the number of fine particles of filtered water after passing through the filter basin, A program for causing a computer to execute a method for determining backwashing from a measured value of the turbidity or the number of fine particles of filtered water after passing, and a recording medium
JP3442301B2 (en) Water quality management system
JP4309645B2 (en) Flocculant injection control method and apparatus
JP2001205022A (en) Method for controlling filter basin equipment
JP2005334777A (en) Water purifier
JP2001281240A (en) Clafirying device for water-measuring instrument
JP2003254960A (en) Number concentration measuring method and device of particulate in sample water
JPH0729101B2 (en) Inorganic wastewater coagulation treatment device
JP2005211891A (en) Wastewater treatment method and wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080314

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080314

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080606

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309