JP2004187841A - Shoes and designing method for shoes - Google Patents

Shoes and designing method for shoes Download PDF

Info

Publication number
JP2004187841A
JP2004187841A JP2002357905A JP2002357905A JP2004187841A JP 2004187841 A JP2004187841 A JP 2004187841A JP 2002357905 A JP2002357905 A JP 2002357905A JP 2002357905 A JP2002357905 A JP 2002357905A JP 2004187841 A JP2004187841 A JP 2004187841A
Authority
JP
Japan
Prior art keywords
shoe
peak value
slip
ratio
shoes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002357905A
Other languages
Japanese (ja)
Other versions
JP4149250B2 (en
Inventor
Kazuhiko Kobayashi
和彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2002357905A priority Critical patent/JP4149250B2/en
Publication of JP2004187841A publication Critical patent/JP2004187841A/en
Application granted granted Critical
Publication of JP4149250B2 publication Critical patent/JP4149250B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide shoes 1 of which the slip-preventing capability and cushioning property are increased. <P>SOLUTION: The shoe 1 is equipped with an upper 2, an insole 3, a midsole 4, and an outsole 5. The outsole 5 is equipped with numerous protruding parts 6. A ratio (μb/μf) of a frictional factor μb to the tiptoe direction of the bottom surface of a back foot part B to a frictional factor μf to the heel direction of the bottom surface of a front foot part F is 0.95 or lower. In the designing of the shoe 1, first, the floor reaction forces in the horizontal direction and the vertical direction during running are measured. Thus, the time history of a ratio R of a horizontal load to a vertical load is obtained. Then, a peak value Rm of the ratio R is determined. Then, a pattern of the bottom surface is determined in such a manner that the frictional factor μb to the tiptoe direction of the bottom surface of the back foot part B may become from 50% to 98% of the peak value Rm, and the frictional factor μf to the heel direction of the bottom surface of the front foot part F may become 100% or higher of the peak value Rm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、靴に関する。詳細には、本発明は、靴の底面のパターンの改良に関するものである。
【0002】
【従来の技術】
靴は、着用者の足と地面との間に介在し、人体の動きによって生じる力を地面に伝える機能を果たす。靴と地面との摩擦係数が小さいと、靴はスリップを起こす。スリップは、運動を阻害する。スリップにより、着用者が転倒するおそれもある。防滑性能は、靴にとって重要である。防滑性能に優れた靴が、種々提案されている(特開2002−34609公報参照)。
【0003】
靴にとって、緩衝性能も重要である。靴の緩衝性能が劣る場合は、人体への悪影響が生じる。緩衝性能に優れた靴が、特開2000−236909公報に開示されている。
【0004】
【特許文献1】
特開2002−34609公報
【特許文献2】
特開2000−236909公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、防滑性能及び緩衝性能に優れた靴の提供にある。
【0006】
【課題を解決するための手段】
本発明に係る靴は、アッパーと、ポリマー組成物からなるアウトソールとを備えている。この靴において、後足部の底面の爪先方向への摩擦係数μbの、前足部の底面の踵方向への摩擦係数μfに対する比(μb/μf)は、0.95以下である。
【0007】
前進運動において靴が着地する際は、後足部に大きな荷重がかかる。この荷重の向きは、爪先方向である。本発明に係る靴では、摩擦係数μbが小さいので、着地時に地面と靴とが微小スリップを起こす。この微小スリップにより、衝撃が低減される。スリップは微小なので、運動への悪影響はほとんどない。前進運動において靴が離地する際は、前足部に大きな荷重がかかる。この荷重の向きは、踵方向である。本発明に係る靴では、摩擦係数μaが大きいので、離地時のスリップが抑制される。この靴は、防滑性能と緩衝性能との両方に優れている。
【0008】
本発明に係る設計方法は、以下のステップを含む。
(1)運動中の水平方向及び鉛直方向の床反力が三次元床反力計で測定されるステップ、
(2)この鉛直方向床反力に対する水平方向床反力の比Rのピーク値Rmが得られるステップ
及び
(3)後足部の底面の爪先方向への摩擦係数μbがピーク値Rmの50%以上98%以下となり、前足部の底面の踵方向への摩擦係数μfが最大値Rmの100%以上となるように、底面のパターンが決定されるステップ。
【0009】
この設計方法により、防滑性能と緩衝性能との両方に優れた靴が得られる。
【0010】
【発明の実施の形態】
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
【0011】
図1は、本発明の一実施形態にかかる靴1が示された一部切り欠き断面図である。この靴1は、アッパー2、インソール3、ミッドソール4及びアウトソール5を備えている。アウトソール5は、多数の突出部6を備えている。突出部6の形状は、突条である。アウトソール5は、架橋ゴム又は合成樹脂から構成されている。アウトソール5には、スパイクピン等の金属材料は用いられていない。
【0012】
図1における左右方向は、靴1の長さ方向である。図1における左側は爪先側であり、右側は踵側である。靴1は、長さ方向中心を境界として、前足部Fと後足部Bとに区分される。
【0013】
ランニング等の運動において足に加わる衝撃には、受動的衝撃と能動的衝撃とがある。受動的衝撃は、主として着地時に生じる。受動的衝撃の周波数は、7Hz以上である。受動的衝撃は、人体の障害の原因となることがある。受動的衝撃は主として後足部Bに加わり、その方向は爪先方向である。一方、能動的衝撃は、主として離地時に生じる。能動的衝撃の周波数は、7Hz未満である。能動的衝撃では、人体への悪影響は少ない。能動的衝撃は主として前足部Fに加わり、その方向は踵方向である。
【0014】
靴1と地面との間でスリップが生じても、その程度が微小であれば、着用者はスリップを感じない。このような微小スリップは、「無感スリップ」と称される。このような微小スリップが生じることで、人体に伝わる衝撃が緩和される。
【0015】
図1に示された靴1では、後足部Bの底面の爪先方向への摩擦係数μbは、前足部Fの底面の踵方向への摩擦係数μfよりも小さい。両者の比(μb/μf)は、0.95以下である。この靴1では、摩擦係数μbが小さいので、着地時に微小スリップが生じる。この微小スリップにより、着地時の受動的衝撃が緩和される。この靴1では、摩擦係数μfが大きいので、離地時のスリップが防止される。スリップの防止により、力が確実に地面に伝わる。スリップの防止により、着用者の転倒が防止される。この靴1では離地時に生じる能動的衝撃は緩和されないが、能動的衝撃は本来人体への悪影響が少ないので、障害は生じにくい。この靴1は、防滑性能と緩衝性能との両方に優れる。
【0016】
一般的な靴には、緩衝性能向上の目的で、柔軟なミッドソールが用いられている。ミッドソールが厚肉とされれば、受動的衝撃は緩和される。しかし、厚肉のミッドソールは、靴の軽量化の要請に反する。しかも、厚肉のミッドソールは、能動的衝撃をも緩和し、運動を阻害する。本発明に係る靴1では能動的衝撃が緩和されないので、運動が阻害されない。
【0017】
防滑性能、緩衝性能及び運動性能の観点から、比(μb/μf)は0.90以下が好ましく、0.85以下が特に好ましい。比(μb/μf)が小さすぎると着地時に大幅なスリップが生じるので、比(μb/μf)は0.40以上が好ましく、0.55以上が特に好ましい。
【0018】
図2は、摩擦係数の測定の様子が示された模式図である。摩擦係数μb及び摩擦係数μfは、静止摩擦係数である。測定は、陸上競技場のポリウレタン製走路Gの上で行われる。測定では、試験片7に700Nの鉛直荷重がかけられ、この試験片7が所定方向に60cm/sの速度で引っ張られるように水平方向の力がかけられる。この引っ張りの力がロードセル8で検出され、この引っ張りの力が鉛直荷重で除されることにより摩擦係数が算出される。試験片7は、靴1が長さ方向中心線に沿って前足部Fと後足部Bとに分割されることで得られる。摩擦係数μbの測定には後足部Bが用いられ、摩擦係数μfの測定には前足部Fが用いられる。後足部Bの引張方向は、爪先方向である。前足部Fの引張方向は、踵方向である。図2の例では、試験片7として前足部Fが用いられており、この前足部Fが踵方向へと引っ張られることで摩擦係数μfが測定されている。摩擦係数の測定では、アッパーが取り除かれた試験片が用いられてもよい。
【0019】
比(μb/μf)が0.95以下である靴1が得られる手法としては、以下のものが例示される。
(1)前足部Fの突出部6の密度が後足部Bの突出部6の密度よりも大きくされる。
(2)前足部Fの突出部6の高さが後足部Bの突出部6の高さよりも大きくされる。
(3)前足部Fの突出部6の硬度が後足部Bの突出部6の硬度よりも大きくされる。
(4)爪先側壁面の水平方向に対する傾斜角度が踵側壁面の水平方向に対する傾斜角度よりも小さな突出部6が後足部Bに配置される。
図1に示された靴1では、爪先側壁面6tの水平方向に対する傾斜角度が踵側壁面6hの水平方向に対する傾斜角度よりも小さな突出部6が後足部Bに配置されることで、0.95以下の比(μb/μf)が達成されている。
【0020】
底面のパターンは、以下の方法により設計されるのが好ましい。まず、ヒトが運動(典型的にはランニング)を行い、この運動中の水平方向及び鉛直方向の床反力が三次元床反力計で測定される。これにより、鉛直荷重に対する水平荷重の比Rの時刻歴が得られる。次に、この比Rのピーク値Rmが決定される。つぎに、後足部Bの底面の爪先方向への摩擦係数μbがピーク値Rmの50%以上98%以下となり、前足部Fの底面の踵方向への摩擦係数μfがピーク値Rmの100%以上となるように、底面のパターンが決定される。
【0021】
三次元床反力計としては、キスラー社の「水晶圧電式多成分フォースプレート9287B」が好適に用いられうる。この三次元床反力計によって床反力が測定される方法は、特開2002−34609号公報に開示されている。
【0022】
摩擦係数μbがピーク値Rmの50%未満であると、着地時のスリップが大きくなり、着用者が違和感を感じることがある。この観点から、摩擦係数μbはピーク値Rmの60%以上が好ましい。摩擦係数μbがピーク値Rmの98%を超えると、無感スリップが生じず、大きな受動的衝撃が発生することがある。この観点から、摩擦係数μbはピーク値Rmの95%以下が好ましく、95%以下がより好ましく、90%以下がさらに好ましく、80%以下が特に好ましい。
【0023】
摩擦係数μfがピーク値Rmの100%未満であると、離地時にスリップが生じて運動が阻害されることがある。この観点から、摩擦係数μfはピーク値Rmの105%以上が好ましく、110%以上が特に好ましい。摩擦係数μfは、ピーク値Rmの200%以下である。
【0024】
図3は、本発明の他の実施形態に係る靴9が示された底面図である。この靴9のアウトソール10は、架橋ゴム又は合成樹脂から構成されている。このアウトソール10は、多数の突出部11を備えている。突出部11の形状は、円柱状である。前足部Fの突出部11の密度は、後足部Bの突出部11の密度よりも大きい。後足部Bの底面の爪先方向への摩擦係数μbと、前足部Fの底面の踵方向への摩擦係数μfとの比(μb/μf)は、0.95以下である。0.95以下の比(μb/μf)は、後足部Bと前足部Fとの突出部の密度の差によって達成されている。この靴9は、防滑性能と緩衝性能との両方に優れる。
【0025】
【実施例】
以下、実施例によって本発明の効果が明らかにされるが、この実施例の記載に基づいて本発明が限定的に解釈されるべきはない。
【0026】
[実施例1]
スチレン−ブタジエン共重合体を基材とするゴム組成物を成形型に投入し、ゴムに架橋反応を起こさせて、図3と類似の形状を備えたアウトソールを得た。このソールには、多数の突出部が形成されている。この突出部は円柱状であり、その直径は3mmであり、その高さは2mmである。後足部Bの突出部の数は80個であり、前足部Fの突出部の数は110個である。このソールに、エチレン酢酸ビニル共重合体からなるミッドソールと、綿からなるアッパーを取り付けて、実施例1の靴を得た。
【0027】
[実施例2から4及び比較例1]
成形型を変更し、後足部Bの突出部の数を下記の表1に示される通りとした他は実施例1と同様にして、実施例2から4及び比較例1のテニスシューズを得た。
【0028】
[比較例2]
成形型を変更し、前足部Fの突出部の数を下記の表1に示される通りとした他は実施例1と同様にして、比較例2のテニスシューズを得た。
【0029】
[実用テスト]
プレーヤーに靴を着用させ、陸上競技場のポリウレタン製走路の上でランニングを行わせた。そして、着地時の緩衝性能及び離地時の防滑性能を「1」から「5」の5段階で評価させた。同時に、着地時のスリップを感じるか否かについて回答させた。着地時の緩衝性能に関しては、衝撃を最も感じない場合を「5」とし、衝撃を最も感じる場合を「1」とした。離地時の防滑性能に関しては、最も滑りにくいものを「5」とし、最も滑りやすいものを「1」とした。この結果が、下記の表1に示されている。
【0030】
【表1】

Figure 2004187841
【0031】
表1に示されるように、実施例の靴は防滑性能と緩衝性能との両方に優れている。この結果から、本発明の優位性は明らかである。
【0032】
【発明の効果】
以上説明されたように、本発明に係る靴は防滑性能及び緩衝性能に優れている。この靴は、着用者の運動と障害防止とに寄与する。本発明に係る設計方法により、着用者に有用な靴が得られる。
【図面の簡単な説明】
【図1】図1は、本発明の一実施形態にかかる靴が示された一部切り欠き断面図である。
【図2】図2は、摩擦係数の測定の様子が示された模式図である。
【図3】図3は、本発明の他の実施形態に係る靴9が示された底面図である。
【符号の説明】
1、9・・・靴
2・・・アッパー
3・・・インソール
4・・・ミッドソール
5、10・・・アウトソール
6、11・・・突出部
6t・・・爪先側壁面
6h・・・踵側壁面
7・・・試験片
8・・・ロードセル
B・・・後足部
F・・・前足部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to shoes. In particular, the invention relates to improving the pattern on the bottom of a shoe.
[0002]
[Prior art]
The shoe is interposed between the wearer's foot and the ground, and performs a function of transmitting force generated by the movement of the human body to the ground. If the coefficient of friction between the shoe and the ground is small, the shoe will slip. Slip inhibits movement. The slip may cause the wearer to fall. Anti-slip performance is important for shoes. Various shoes having excellent anti-slip performance have been proposed (see JP-A-2002-34609).
[0003]
For shoes, buffer performance is also important. When shoes have poor cushioning performance, they have an adverse effect on the human body. A shoe excellent in cushioning performance is disclosed in JP-A-2000-236909.
[0004]
[Patent Document 1]
JP 2002-34609 A [Patent Document 2]
JP 2000-236909 A
[Problems to be solved by the invention]
An object of the present invention is to provide shoes excellent in anti-slip performance and cushioning performance.
[0006]
[Means for Solving the Problems]
The shoe according to the present invention includes an upper and an outsole made of a polymer composition. In this shoe, the ratio (μb / μf) of the friction coefficient μb of the bottom surface of the rear foot portion toward the toe to the friction coefficient μf of the bottom surface of the front foot portion toward the heel is 0.95 or less.
[0007]
When the shoe lands in the forward movement, a large load is applied to the rear foot. The direction of this load is the toe direction. In the shoe according to the present invention, since the coefficient of friction μb is small, a minute slip occurs between the ground and the shoe at the time of landing. This small slip reduces the impact. Since the slip is small, there is almost no adverse effect on the movement. When the shoe takes off in the forward movement, a large load is applied to the forefoot. The direction of this load is the heel direction. In the shoe according to the present invention, since the coefficient of friction μa is large, slip during takeoff is suppressed. This shoe is excellent in both anti-slip performance and cushioning performance.
[0008]
The design method according to the present invention includes the following steps.
(1) a step in which horizontal and vertical floor reaction forces during exercise are measured by a three-dimensional floor reaction force meter;
(2) the step of obtaining the peak value Rm of the ratio R of the horizontal floor reaction force to the vertical floor reaction force; and (3) the coefficient of friction μb of the bottom surface of the rear foot toward the toe is 50% of the peak value Rm. A step of determining the pattern of the bottom surface such that the friction coefficient μf of the bottom surface of the forefoot portion in the heel direction is 100% or more of the maximum value Rm.
[0009]
By this design method, a shoe excellent in both anti-slip performance and cushioning performance can be obtained.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on preferred embodiments with reference to the drawings as appropriate.
[0011]
FIG. 1 is a partially cutaway sectional view showing a shoe 1 according to an embodiment of the present invention. The shoe 1 includes an upper 2, an insole 3, a midsole 4, and an outsole 5. The outsole 5 has a number of protrusions 6. The shape of the protrusion 6 is a ridge. Outsole 5 is made of crosslinked rubber or synthetic resin. The outsole 5 does not use a metal material such as a spike pin.
[0012]
The left-right direction in FIG. 1 is the length direction of the shoe 1. The left side in FIG. 1 is the toe side, and the right side is the heel side. The shoe 1 is divided into a front foot F and a rear foot B with the center in the length direction as a boundary.
[0013]
Impacts applied to the foot during exercise such as running include passive impacts and active impacts. Passive impact mainly occurs at landing. The frequency of the passive impact is above 7 Hz. Passive impacts can cause personal injury. The passive impact is mainly applied to the rear foot B, and its direction is the toe direction. On the other hand, active impact mainly occurs at takeoff. The frequency of the active shock is less than 7 Hz. Active impact has little adverse effect on the human body. The active impact is mainly applied to the forefoot F, and its direction is the heel direction.
[0014]
Even if a slip occurs between the shoe 1 and the ground, if the degree is small, the wearer does not feel the slip. Such a minute slip is referred to as "insensitive slip". When such a small slip occurs, the impact transmitted to the human body is reduced.
[0015]
In the shoe 1 shown in FIG. 1, the friction coefficient μb of the bottom surface of the rear foot portion B in the toe direction is smaller than the friction coefficient μf of the bottom surface of the forefoot portion F in the heel direction. The ratio (μb / μf) is 0.95 or less. In the shoe 1, since the friction coefficient μb is small, a slight slip occurs at the time of landing. Due to this minute slip, a passive impact at the time of landing is reduced. In this shoe 1, since the coefficient of friction μf is large, slippage at takeoff is prevented. Prevention of slip ensures that power is transmitted to the ground. The prevention of slip prevents the wearer from falling. In this shoe 1, the active impact generated at the time of takeoff is not mitigated, but the active impact is less likely to cause an obstacle since the active impact has essentially no adverse effect on the human body. This shoe 1 is excellent in both anti-slip performance and cushioning performance.
[0016]
In general shoes, a flexible midsole is used for the purpose of improving cushioning performance. If the midsole is made thicker, the passive impact is reduced. However, the thick midsole goes against the demand for lighter shoes. Moreover, the thick midsole also mitigates active impact and hinders movement. In the shoe 1 according to the present invention, since the active impact is not reduced, the movement is not hindered.
[0017]
In light of anti-slip performance, cushioning performance, and athletic performance, the ratio (μb / μf) is preferably equal to or less than 0.90, and particularly preferably equal to or less than 0.85. If the ratio (μb / μf) is too small, a large slip occurs at the time of landing, so the ratio (μb / μf) is preferably 0.40 or more, and particularly preferably 0.55 or more.
[0018]
FIG. 2 is a schematic diagram showing the state of measurement of the coefficient of friction. The friction coefficient μb and the friction coefficient μf are static friction coefficients. The measurement is performed on the polyurethane runway G of the athletics stadium. In the measurement, a vertical load of 700 N is applied to the test piece 7, and a horizontal force is applied so that the test piece 7 is pulled in a predetermined direction at a speed of 60 cm / s. The pulling force is detected by the load cell 8, and the coefficient of friction is calculated by dividing the pulling force by the vertical load. The test piece 7 is obtained by dividing the shoe 1 into a front foot F and a rear foot B along the longitudinal center line. The hindfoot B is used for measuring the friction coefficient μb, and the forefoot F is used for measuring the friction coefficient μf. The pulling direction of the rear foot B is the toe direction. The pulling direction of the forefoot F is the heel direction. In the example of FIG. 2, the forefoot F is used as the test piece 7, and the friction coefficient μf is measured by pulling the forefoot F toward the heel. In the measurement of the coefficient of friction, a test piece from which the upper has been removed may be used.
[0019]
As a technique for obtaining the shoe 1 having the ratio (μb / μf) of 0.95 or less, the following is exemplified.
(1) The density of the protrusions 6 of the forefoot F is made higher than the density of the protrusions 6 of the hindfoot B.
(2) The height of the protrusion 6 of the forefoot F is made larger than the height of the protrusion 6 of the rear foot B.
(3) The hardness of the protrusion 6 of the forefoot F is made larger than the hardness of the protrusion 6 of the rear foot B.
(4) The protrusion 6 in which the inclination angle of the toe side wall surface with respect to the horizontal direction is smaller than the inclination angle of the heel side wall surface with respect to the horizontal direction is disposed on the rear foot portion B.
In the shoe 1 shown in FIG. 1, since the protrusion 6 whose inclination angle of the toe side wall surface 6t with respect to the horizontal direction is smaller than the inclination angle of the heel side wall surface 6h with respect to the horizontal direction is arranged on the rear foot portion B, A ratio (μb / μf) of .95 or less has been achieved.
[0020]
The pattern on the bottom surface is preferably designed by the following method. First, a human performs exercise (typically running), and the horizontal and vertical floor reaction forces during this exercise are measured with a three-dimensional floor reaction force meter. Thereby, the time history of the ratio R of the horizontal load to the vertical load is obtained. Next, the peak value Rm of the ratio R is determined. Next, the coefficient of friction μb of the bottom surface of the rear foot B toward the toe is 50% or more and 98% or less of the peak value Rm, and the coefficient of friction μf of the bottom surface of the front foot F toward the heel is 100% of the peak value Rm. The pattern of the bottom surface is determined as described above.
[0021]
As the three-dimensional floor reaction force meter, a “quartz-piezoelectric multi-component force plate 9287B” manufactured by Kistler can be suitably used. A method of measuring the floor reaction force by the three-dimensional floor reaction force meter is disclosed in Japanese Patent Application Laid-Open No. 2002-34609.
[0022]
If the friction coefficient μb is less than 50% of the peak value Rm, the slip at the time of landing increases, and the wearer may feel uncomfortable. In this respect, the friction coefficient μb is preferably equal to or greater than 60% of the peak value Rm. When the coefficient of friction μb exceeds 98% of the peak value Rm, insensitive slip does not occur and a large passive impact may occur. In this respect, the friction coefficient μb is preferably equal to or less than 95% of the peak value Rm, more preferably equal to or less than 95%, further preferably equal to or less than 90%, and particularly preferably equal to or less than 80%.
[0023]
If the coefficient of friction μf is less than 100% of the peak value Rm, slippage may occur at takeoff and movement may be hindered. In this respect, the friction coefficient μf is preferably equal to or greater than 105% of the peak value Rm, and particularly preferably equal to or greater than 110%. The friction coefficient μf is 200% or less of the peak value Rm.
[0024]
FIG. 3 is a bottom view showing a shoe 9 according to another embodiment of the present invention. The outsole 10 of the shoe 9 is made of a crosslinked rubber or a synthetic resin. The outsole 10 has a number of protrusions 11. The shape of the protrusion 11 is a columnar shape. The density of the protrusions 11 of the front foot F is higher than the density of the protrusions 11 of the rear foot B. The ratio (μb / μf) of the friction coefficient μb of the bottom surface of the rear foot portion B toward the toe and the friction coefficient μf of the bottom surface of the front foot portion F toward the heel is 0.95 or less. The ratio (μb / μf) of 0.95 or less is achieved by the difference in the density of the protrusion between the hindfoot B and the forefoot F. This shoe 9 is excellent in both anti-slip performance and cushioning performance.
[0025]
【Example】
Hereinafter, the effects of the present invention will be clarified by examples, but the present invention should not be construed as being limited based on the description of the examples.
[0026]
[Example 1]
A rubber composition having a styrene-butadiene copolymer as a base material was charged into a mold, and a crosslinking reaction was caused in the rubber to obtain an outsole having a shape similar to that of FIG. The sole has a number of protrusions formed thereon. The protrusion is cylindrical, has a diameter of 3 mm, and a height of 2 mm. The number of protrusions of the rear foot B is 80, and the number of protrusions of the front foot F is 110. A midsole made of an ethylene-vinyl acetate copolymer and an upper made of cotton were attached to this sole to obtain a shoe of Example 1.
[0027]
[Examples 2 to 4 and Comparative Example 1]
The tennis shoes of Examples 2 to 4 and Comparative Example 1 were obtained in the same manner as in Example 1 except that the molding die was changed and the number of protrusions of the rear foot portion B was changed as shown in Table 1 below. Was.
[0028]
[Comparative Example 2]
A tennis shoe of Comparative Example 2 was obtained in the same manner as in Example 1 except that the mold was changed and the number of protrusions of the forefoot portion F was changed as shown in Table 1 below.
[0029]
[Practical test]
Players were allowed to wear shoes and run on the polyurethane track of the athletics stadium. Then, the buffer performance at landing and the anti-slip performance at takeoff were evaluated on a five-point scale from "1" to "5". At the same time, they were asked if they felt a slip on landing. Regarding the shock absorbing performance at the time of landing, "5" was set when the impact was least felt, and "1" was given when the impact was most felt. Regarding the anti-slip performance at takeoff, the one that was the least slippery was set to “5”, and the one that was most slippery was set to “1”. The results are shown in Table 1 below.
[0030]
[Table 1]
Figure 2004187841
[0031]
As shown in Table 1, the shoes of the examples are excellent in both anti-slip performance and cushioning performance. From these results, the superiority of the present invention is clear.
[0032]
【The invention's effect】
As described above, the shoe according to the present invention has excellent anti-slip performance and cushioning performance. The shoe contributes to the exercise of the wearer and prevention of obstacles. By the designing method according to the present invention, a shoe useful for a wearer can be obtained.
[Brief description of the drawings]
FIG. 1 is a partially cutaway sectional view showing a shoe according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a state of measurement of a friction coefficient.
FIG. 3 is a bottom view showing a shoe 9 according to another embodiment of the present invention.
[Explanation of symbols]
1, 9 ... shoes 2 ... upper 3 ... insole 4 ... midsole 5, 10 ... outsole 6, 11 ... protrusion 6t ... toe side wall surface 6h ... Heel side wall surface 7: Test piece 8: Load cell B: Rear foot F: Front foot

Claims (2)

アッパーとポリマー組成物からなるアウトソールとを備えており、後足部の底面の爪先方向への摩擦係数μbの、前足部の底面の踵方向への摩擦係数μfに対する比(μb/μf)が0.95以下である靴。It has an upper and an outsole made of a polymer composition, and has a ratio (μb / μf) of a friction coefficient μb of the bottom surface of the hindfoot toward the toe to a friction coefficient μf of the bottom surface of the forefoot toward the heel. Shoes that are 0.95 or less. 運動中の水平方向及び鉛直方向の床反力が三次元床反力計で測定されるステップと、
この鉛直方向床反力に対する水平方向床反力の比Rのピーク値Rmが得られるステップと、
後足部の底面の爪先方向への摩擦係数μbがピーク値Rmの50%以上98%以下となり、前足部の底面の踵方向への摩擦係数μfがピーク値Rmの100%以上となるように、底面のパターンが決定されるステップと
を含む靴の設計方法。
Horizontal and vertical floor reaction forces during exercise are measured with a three-dimensional floor reaction force meter;
A step of obtaining a peak value Rm of a ratio R of the horizontal floor reaction force to the vertical floor reaction force;
The friction coefficient μb of the bottom surface of the hindfoot toward the toe is 50% or more and 98% or less of the peak value Rm, and the friction coefficient μf of the bottom surface of the forefoot toward the heel is 100% or more of the peak value Rm. Determining the pattern of the bottom surface.
JP2002357905A 2002-12-10 2002-12-10 Shoes and shoe design methods Expired - Fee Related JP4149250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002357905A JP4149250B2 (en) 2002-12-10 2002-12-10 Shoes and shoe design methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002357905A JP4149250B2 (en) 2002-12-10 2002-12-10 Shoes and shoe design methods

Publications (2)

Publication Number Publication Date
JP2004187841A true JP2004187841A (en) 2004-07-08
JP4149250B2 JP4149250B2 (en) 2008-09-10

Family

ID=32757779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002357905A Expired - Fee Related JP4149250B2 (en) 2002-12-10 2002-12-10 Shoes and shoe design methods

Country Status (1)

Country Link
JP (1) JP4149250B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210055113A (en) * 2019-11-06 2021-05-17 김종한 Insole for shoes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210055113A (en) * 2019-11-06 2021-05-17 김종한 Insole for shoes
KR102271497B1 (en) 2019-11-06 2021-07-02 김종한 Insole for shoes

Also Published As

Publication number Publication date
JP4149250B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
US11937665B2 (en) Footwear including a stabilizing sole
KR101930613B1 (en) Article of footwear with inner and outer midsole layers
US4085527A (en) Athletic shoe
US5381608A (en) Shoe heel spring and stabilizer
US4624062A (en) Sole with cushioning and braking spiroidal contact surfaces
KR101423025B1 (en) Midsole reducing the load on the knee
EP0206439A2 (en) An outer sole for a basketball or like shoe
EP0467506B1 (en) Shoe construction
US20100146816A1 (en) Footwear insole for high heel shoes
CN112971270B (en) Ground engaging structure for an article of footwear
KR20180004178A (en) Outlined Shoe Insole
KR20150043481A (en) Reactive shoe
JP2012501717A (en) Insole of footwear with impact dispersion function and rolling walking function
EP0947145B1 (en) Shoe sole with improved dual energy management system
WO2011014146A1 (en) Shoe construction incorporating grooves for improved flexibility
US20030029060A1 (en) Cleat
JP2004187841A (en) Shoes and designing method for shoes
JP6680495B2 (en) Soles and shoes
CN210276114U (en) Sole that buffering shock attenuation performance is good
JP3874982B2 (en) Shoe sole
KR200466692Y1 (en) Bowling shoes
KR101851760B1 (en) Mid-sole for shoes
KR20040076585A (en) A set of insoles for baby and child-care shoes
CN102429758B (en) Correcting insole and correcting shoe for handicapped person using same
CN209825382U (en) Anti-skid insole of sports shoe

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees