JP2004184160A - Testing device for toroidal type continuously variable transmission - Google Patents

Testing device for toroidal type continuously variable transmission Download PDF

Info

Publication number
JP2004184160A
JP2004184160A JP2002349773A JP2002349773A JP2004184160A JP 2004184160 A JP2004184160 A JP 2004184160A JP 2002349773 A JP2002349773 A JP 2002349773A JP 2002349773 A JP2002349773 A JP 2002349773A JP 2004184160 A JP2004184160 A JP 2004184160A
Authority
JP
Japan
Prior art keywords
continuously variable
variable transmission
torque
type continuously
toroidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002349773A
Other languages
Japanese (ja)
Inventor
Shinji Miyata
慎司 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002349773A priority Critical patent/JP2004184160A/en
Publication of JP2004184160A publication Critical patent/JP2004184160A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately evaluate characteristics in an abrupt torque change, by performing the test only for a toroidal type continuously variable transmission 13, in order to reduce the development cost of a continuously variable transmission system consisted by combining the toroidal type continuously variable transmission 13 and a planet gear type transmission, and to shorten the development period therefor. <P>SOLUTION: The toroidal type continuously variable transmission 13 is connected between the first dynamo 11 and the second dynamo 12 to change a passing torque of the toroidal type continuously variable transmission 13. Driving torques or absorption torques of the both dynamos 11, 12 are feedforward-controlled in the abrupt change of the passing torque. Resultingly, a hunting generated in a toroidal type continuously variable transmission 13 portion is not suppressed by the both dynamos 11, 12, and an excessive hunting is not generated based on the existence of a pressing device thereby. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
この発明は、自動車用自動変速装置を構成するトロイダル型無段変速機の性能評価を行なう為の試験装置の改良に関する。
【0002】
【従来の技術】
自動車用自動変速装置として、図5に示す様なトロイダル型無段変速機を使用する事が研究され、一部で実施されている。このトロイダル型無段変速機は、ダブルキャビティ型と呼ばれるもので、入力軸1の両端部周囲に1対の入力側ディスク2、2を、ボールスプライン3、3を介して支持している。従ってこれら両入力側ディスク2、2は、互いに同心に、且つ、同期した回転を自在に支持されている。又、上記入力軸1の中間部周囲に出力歯車4を、この入力軸1に対する相対回転を自在として支持している。そして、この出力歯車4の中心部に設けた円筒部の両端部に、1対の出力側ディスク5、5をスプライン係合させている。
従ってこれら両出力側ディスク5、5は、上記出力歯車4と共に、同期して回転する。
【0003】
又、上記各入力側ディスク2、2と上記各出力側ディスク5、5との間には、それぞれ複数個ずつ(通常2〜3個ずつ)のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれトラニオン7、7の内側面に、支持軸8、8及び複数の転がり軸受を介して、回転自在に支持されている。上記各トラニオン7、7は、それぞれの長さ方向(図5の表裏方向)両端部に、これら各トラニオン7、7毎に互いに同心に設けられた枢軸(図示せず)を中心として揺動変位自在である。これら各トラニオン7、7を傾斜させる動作は、図示しない油圧式のアクチュエータによりこれら各トラニオン7、7を上記枢軸の軸方向に変位させる事により行なうが、総てのトラニオン7、7の傾斜角度は、油圧式及び機械式に互いに同期させる。
【0004】
上述の様なトロイダル型無段変速機の運転時には、エンジン等の動力源に繋がる駆動軸9により一方(図5の左方)の入力側ディスク2を、ローディングカム式の押圧装置10を介して回転駆動する。この結果、前記入力軸1の両端部に支持された1対の入力側ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、上記各パワーローラ6、6を介して上記各出力側ディスク5、5に伝わり、前記出力歯車4から取り出される。
【0005】
上記入力軸1と出力歯車4との回転速度の比を変える場合で、先ず入力軸1と出力歯車4との間で減速を行なう場合には、上記各トラニオン7、7を図5に示す位置に揺動させ、上記各パワーローラ6、6の周面をこの図5に示す様に、上記各入力側ディスク2、2の内側面の中心寄り部分と上記各出力側ディスク5、5の内側面の外周寄り部分とにそれぞれ当接させる。反対に、増速を行なう場合には、上記各トラニオン7、7を図5と反対方向に揺動させ、上記各パワーローラ6、6の周面を、図5に示した状態とは逆に、上記各入力側ディスク2、2の内側面の外周寄り部分と上記各出力側ディスク5、5の内側面の中心寄り部分とに、それぞれ当接する様に、上記各トラニオン7、7を傾斜させる。これら各トラニオン7、7の傾斜角度を中間にすれば、入力軸1と出力歯車4との間で、中間の速度比(変速比)を得られる。
【0006】
上述の図5に示したトロイダル型無段変速機の場合には、入力軸1から出力歯車4への動力の伝達を、一方の入力側ディスク2と出力側ディスク5との間と、他方の入力側ディスク2と出力側ディスク5との間との、2系統に分けて行なうので、大きな動力の伝達を行なえる。
更に、上述の様に構成され作用するトロイダル型無段変速機を実際の自動車用の自動変速機に組み込む場合、遊星歯車機構と組み合わせて無段変速装置を構成する事が、特許文献1〜5等に記載されて、従来から広く知られている。
【0007】
この様なトロイダル型無段変速機と遊星歯車機構とを組み合わせて成る無段変速装置として、パワー・スプリット型と呼ばれるものと、ギヤード・ニュートラル型と呼ばれるものとが知られている。これら各無段変速装置は何れも、低速モード時に繋がれる低速用クラッチと、高速モード時に繋がれる高速用クラッチとを備える。そして、パワースプリット型と呼ばれる無段変速装置の場合には、高速モード時にトロイダル型無段変速機を通過するトルクを低減して、このトロイダル型無段変速機の耐久性向上と、無段変速装置全体としての伝達効率の向上とを図れる。又、ギヤード・ニュートラル型と呼ばれる無段変速装置の場合には、低速モード時に、入力軸を回転させたまま出力軸を停止させる、所謂変速比が無限大の状態を実現できる。
【0008】
この様な無段変速装置の場合、上記低速用クラッチと高速用クラッチとの断接に基づく、上記低速モードと高速モードとの切換時に、上記トロイダル型無段変速機を通過するトルク(通過トルク)の方向及び大きさが急激に変動する。周知の様にトロイダル型無段変速機の構成部品は、トルク伝達に伴って弾性変形する他、組み付け隙間に基づいて変位し、その結果、入力側ディスクと出力側ディスクとの間の変速比が変動する。この様な変速比の変動が緩徐に行なわれれば、特に面倒な制御を行なう必要はないが、上記モード切換に伴って通過トルクが急激に変動した場合には、何らかの制御を行なわない限り、運転者等に違和感を与える程の、急激な変速比の変動を生じる可能性がある。
【0009】
この様な事情に鑑みて、上記無段変速装置の実用化の為には、パワー・スプリット型、ギヤード・ニュートラル型、何れの場合でも、モード切換時の制御が重要になると考えられている。そして、この様なモード切換時の制御の形態を求める為には、多くの実験により、このモード切換時に於ける、トロイダル型無段変速機の変速比の変動状態等の特性を知る必要がある。但し、実際にトロイダル型無段変速機と遊星歯車機構とを組み合わせて構成した無段変速装置での実験を行なう事は、試料であるこの無段変速装置の試作に要するコスト並びに期間が嵩む為、好ましくない。一方、無段変速装置のモード切換時に於ける、この無段変速装置に組み込んだトロイダル型無段変速機の通過トルクの変動状況は、このトロイダル型無段変速機と組み合わされる遊星歯車機構等の構造が分かれば、計算により求められる。従って、上記変速比の変動等、上記トロイダル型無段変速機の特性を求める為の試験装置には、このトロイダル型無段変速装置のみを装着して、計算により求めたトルクの変動状況を上記試験装置により造り出す事が考えられる。
【0010】
例えば、図1は、従来からトロイダル型無段変速機の開発に使用していた試験装置(未公知)を示している。この試験装置は、第一の(駆動側若しくは入力側)ダイナモ11と第二の(吸収側若しくは出力側)ダイナモ12との間に、トロイダル型無段変速機13とトルク計14とを、上記第一のダイナモ11の側から順に、互いに直列に設けている。又、上記第二のダイナモ12にはフライホイール15を接続して、上記トロイダル型無段変速機13の出力側に、実際の車両に見合う程度の慣性質量を結合自在としている。尚、上記第一のダイナモ11部分、或はこの第一のダイナモ11と上記トロイダル型無段変速機13との間部分で、このトロイダル型無段変速機13に入力(又は出力)される動力のトルクと回転速度とを測定自在としている。又、上記トルク計14部分で、上記トロイダル型無段変速機13から出力(又は入力)される動力のトルクと回転速度とを測定自在としている。
【0011】
この様な試験装置を使用して、上記第一のダイナモ11から上記トロイダル型無段変速機13の通過トルクを変動させつつ、このトロイダル型無段変速機13を挟む2個所位置での回転速度から、このトロイダル型無段変速機13の変速比の変動を求めれば、トルク変動に対するこのトロイダル型無段変速機13の挙動を知る事ができる。尚、この様な試験装置を運転する際に従来は、上記第一のダイナモ11のトルクをフィードバック制御により、上記第二のダイナモ12の回転速度をフィードバック制御により、それぞれ所望値に規制していた。
【0012】
【特許文献1】
特開平1−169169号公報
【特許文献2】
特開平1−312266号公報
【特許文献3】
特開平10−196759号公報
【特許文献4】
特開平11−63146号公報
【特許文献5】
米国特許第5607372号明細書
【特許文献6】
特開2000−220719号公報
【0013】
【発明が解決しようとする課題】
従来装置の様に、第一のダイナモ11のトルクをフィードバック制御により所望値に、第二のダイナモ12の回転速度をフィードバック制御により所望値に、それぞれ規制しつつトロイダル型無段変速機13の特性を求めると、必ずしも実際の使用状況に即した結果を得られない。この理由は、トロイダル型無段変速機13特有の問題として、通過トルクの変動に伴って変速比が変化する事と、ローディングカム式の押圧装置10の存在に基づき、回転方向の剛性(捩り剛性)が低い事とによる。この点に就いて、本発明者が行なった実験の結果を参照しつつ説明する。
【0014】
先ず、図2は、図1に示した試験装置で、第一のダイナモ11のトルクをフィードバック制御により所望値に、第二のダイナモ12の回転速度をフィードバック制御により所望値に、それぞれ規制しつつ、歯車式減速機の入力トルクを急変動させた実験の結果を示している。図2の(a)はトルクを急減させた場合の、(b)は同じく急増させた場合の、それぞれ実験結果を示している。各図で実線aは入力側の回転速度を、実線bは入力側のトルクを、鎖線cは出力側の回転速度を、鎖線dは出力側のトルクを、それぞれ示している。この様な図2で、入力トルクを急変動させた直後に発生している、回転速度の変動とトルクのオーバシュートは、上記歯車式減速機に存在するバックラッシュに基づくものである。この様な図2から、捩り剛性が高く、しかもトルクの急変動時にも変速比(減速比)が変化しない歯車式変速機の場合には、第一のダイナモ11のトルクをフィードバック制御により、第二のダイナモ12の回転速度をフィードバック制御により、それぞれ制御する従来構造でも、特性を知る為の試験が可能である事が分かる。
【0015】
これに対して、上述の様な従来構造の試験装置でトロイダル型無段変速機の特性を求めようとしても求める事ができない。この点に就いて、図3(B)及び図4(B)により説明する。先ず、図3(B)は、第一のダイナモ11のトルクをフィードバック制御により、第二のダイナモ12の回転速度をフィードバック制御により、それぞれ制御する従来構造の試験装置により、安定した性能を得られるトロイダル型無段変速機13に就いて行なった試験の結果を表している。この試験では、このトロイダル型無段変速機13の出力部の回転速度を凡そ2600min−1 に維持する制御を行ないつつ、このトロイダル型無段変速機13の通過トルクを+350Nmから−280Nmまで、0.5秒の間に急変動させた。
【0016】
上記従来構造でこの様な試験を行なった場合、トロイダル型無段変速機13自体は、本来安定した性能を得られるものであるにも拘らず、入力部の回転速度、入力部及び出力部のトルクにハンチングが発生した。この様なハンチングが発生する原因は、次の様に考えられる。トルクを+から−に入れ換える場合、即ち、トルクの伝達方向を逆転させる場合には、上記トロイダル型無段変速機13を挟んで設けた第一、第二のダイナモ11、12同士の間で、駆動側と吸収側とが入れ換わる。この場合でも、第一のダイナモ11はフィードバック制御によりトルクを、第二のダイナモ12はフィードバック制御により回転速度を、それぞれ制御する状態のままである。
【0017】
この様な制御を行なうと、上記駆動側と吸収側とが入れ換わる際、上記トロイダル型無段変速機13の捻り剛性が低い事に起因して、上記第二のダイナモ12と上記第一のダイナモ11との間で、トルク伝達に遅れが生じる。この遅れは、これら両ダイナモ11、12同士の間に設けられた回転軸、歯車等の弾性変形によっても生じるが、最も大きな要因は、上記トロイダル型無段変速機13に組み込まれたローディングカム式の押圧装置10(図5参照)の存在である。即ち、この押圧装置10は、図5に示す様に、カム板16と入力側ディスク2との互いに対向する面に形成したカム面17a、17b同士の間で複数のローラ18、18を挟持して成る。この様な押圧装置10によるトルク伝達時には、このトルクの大きさ及び方向に基づいて上記両カム面17a、17bの位相が円周方向に関して互いにずれ、このずれが、上記捻り剛性の低下になる。この様な、カム面17a、17bのずれに基づく捻り剛性の低下は、上記回転軸や歯車等の弾性変形に基づく低下分に比べて、桁違いに大きい。この結果、上記第二のダイナモ12と上記第一のダイナモ11との間でのトルク伝達の遅れは、無視できない程に大きくなる。
【0018】
この様にトルク伝達に大きな遅れが生じるトロイダル型無段変速機13を対象として、それまで上記第一のダイナモ11から上記第二のダイナモ12にトルクを伝達していた状態から、急にこの第二のダイナモ12から上記第一のダイナモ11にトルクを伝達する状態に切り換えても、この第一のダイナモ11にトルクが伝達されるまでの間に若干の時間的遅れが生じる。しかもこの第一のダイナモ11には、この時間的遅れの間にも、トルクを規制しようとするフィードバック制御が加わる。この為、上記第一のダイナモ11部分でフィードバック制御を加えるタイミングは、上記第二のダイナモ12から上記第一のダイナモ11にトルクを伝達しようとするタイミングに対して、時間的に早かったり、或は遅かったりする。
【0019】
この結果、上記第一のダイナモ11部分でのトルク制御と、上記第二のダイナモ12部分での回転数制御とがちぐはぐに行なわれ、図3(B)に示す様なハンチングが、入力側、出力側双方の回転速度とトルクとに生じる。尚、図3(B)で、実線aは入力側の回転速度を、実線bは入力側のトルクを、鎖線cは出力側の回転速度を、鎖線dは出力側のトルクを、それぞれ示している。図3(B)にその結果を示した実験に供したトロイダル型無段変速機13は、各部を適正に構成して、通過トルクの急変動によってもハンチング等が発生しない様に構成したものである。従って、上記図3(B)は、従来構造の場合には、上記トロイダル型無段変速機13の特性を正しく評価できない事を意味する。
【0020】
又、本発明の発明者は、敢えてトルク急変動時にハンチングが発生し易いトロイダル型無段変速機13を造った。そして、フィードバック制御によりトルクを制御する第一のダイナモ11と、フィードバック制御により回転速度を制御する第二のダイナモ12とを備えた試験装置により、上記トロイダル型無段変速機13の特性試験を行なった。この試験の結果を図4(B)に示す。この図4(B)も、実線aは入力側の回転速度を、実線bは入力側のトルクを、鎖線cは出力側の回転速度を、鎖線dは出力側のトルクを、それぞれ示している。この場合には、第二のダイナモ12部分で、回転数を一定に保とうとする制御が働く為、本来発生するはずのハンチングが抑えられる傾向になる。この為、本来、通過トルクの急変動直後から発生するはずのハンチングが抑えられている{図4(B)のイ、ロ}。上記トロイダル型無段変速機13は、敢えて大きなハンチングが発生する様に設計している為、上記通過トルクが急変動してから0.5秒程度経過した後、ハンチングが発生している。但し、軽度のハンチングを発生する程度の無段変速機13の試験を行なう際には、完全にハンチングの発生を抑え込まれて、ハンチングが発生する可能性がある事を掴めない事も考えられる。
【0021】
以上に述べた図3(B)及び図4(B)から明らかな様に、フィードバック制御によりトルクを制御する第一のダイナモ11と、フィードバック制御により回転速度を制御する第二のダイナモ12とを備えた従来の試験装置では、トロイダル型無段変速機の特性評価を正確に行なえない事になる。
本発明は、この様な事情に鑑みて、通過トルクの急変動時に於けるトロイダル型無段変速機の挙動を含む特性評価を正確に行なえるトロイダル型無段変速機用試験装置と実現すべく発明したものである。
【0022】
【課題を解決するための手段】
本発明のトロイダル型無段変速機用試験装置は、トロイダル型無段変速機の性能評価を行なう為、このトロイダル型無段変速機の入力軸に連結される第一のダイナモと、このトロイダル型無段変速機の出力軸に連結される第二のダイナモとを備える。
特に、本発明のトロイダル型無段変速機用試験装置に於いては、少なくともトルク変動に基づく性能評価を行なう状態で、上記第一、第二のダイナモの駆動トルク又は吸収トルクを、何れもフィードフォワード制御により所望値に規制する。
【0023】
【作用】
上述の様に構成する本発明のトロイダル型無段変速機用試験装置によれば、トロイダル型無段変速機を実際に無段変速装置に組み込んだ状態に則した状態で試験を行なえる。即ち、前述した様な、トロイダル型無段変速機と遊星歯車機構とを組み合わせた無段変速装置の場合、パワー・スプリット型、ギヤード・ニュートラル型、何れの場合でも、高速用クラッチと低速用クラッチとの断接に基づくモード切換時に、上記トロイダル型無段変速機の通過トルクが急変動する。この場合に、このトロイダル型無段変速機の入力部と出力部とのトルクが、上記モード切換に伴って急変動する。
【0024】
本発明のトロイダル型無段変速機用試験装置の場合には、上述した様に、第一、第二のダイナモの駆動トルク又は吸収トルクを、何れもフィードフォワード制御により所望値に規制する。この為、上記モード切換に伴って急変動するはずである、上記トロイダル型無段変速機の入力部と出力部とのトルクを、上記トロイダル型無段変速機特有の、低い捻り剛性に基づくトルク伝達の遅れに関係なく、直ちに実際に即した値にできる。この為、上記低い捻り剛性に基づくトルク伝達の遅れに拘らず、ハンチングを発生する可能性の有無等、上記トロイダル型無段変速機の特性評価を正確に行なえる。又、このトロイダル型無段変速機部分で発生したハンチングを抑え込んだりする事も防止できる。
【0025】
【発明の実施の形態】
本発明のトロイダル型無段変速機用試験装置の特徴は、第一、第二のダイナモ11、12の駆動トルク又は吸収トルクを、何れもフィードフォワード制御により所望値に規制する点にある。図面に表れる部分の構造に就いては、前述の図1に示した、従来からトロイダル型無段変速機の開発に使用していた試験装置と同様であるから、重複する説明は省略し、以下、本発明の効果を確認する為に本発明者が行なった実験に就いて、図3(A)及び図4(A)により説明する。
【0026】
先ず、図3(A)は、第一のダイナモ11及び第二のダイナモ12のトルク(駆動トルク及び吸収トルク)をフィードフォワード制御によりそれぞれ制御する、本発明の試験装置により、安定した性能を得られるトロイダル型無段変速機13に就いて行なった試験の結果を表している。試験条件は、前述の図3(B)の場合とほぼ同じである。この試験の準備段階では、試験装置の出力部の回転を凡そ2700min−1 に、同じく入力部のトルクを+350Nmにそれぞれ設定した。この場合には、上記トロイダル型無段変速機13の減速比は0.5(2倍増速)とし、上記入力部の回転を凡そ2000min−1 とした。この準備段階では、前述した従来構造と同様に、上記第一のダイナモ11のトルクをフィードバック制御により、上記第二のダイナモ12の回転速度をフィードバック制御により、それぞれ制御した。
【0027】
この様な準備段階の後、上記第二のダイナモ12の制御を、フィードバック制御による回転速度制御から、フィードフォワード制御によるトルク制御に変更した。本例の場合、この変更時に於ける上記第二のダイナモ12のトルクである、凡そ+250Nmなる値を、その時点でのこの第二のダイナモ12の吸収トルクとした。次いで、上記トロイダル型無段変速機13の通過トルクを+350Nmから−280Nmまで、0.5秒の間に急変動させた。この為に本例の場合には、上記第二のダイナモ12の駆動トルクを凡そ200Nmとし、上記第一のダイナモ11の吸収トルクを280Nmとした。
【0028】
これら第一、第二のダイナモ11、12のトルク制御は、フィードフォワード制御のみにより行ない、フィードバック制御は一切行なわなかった。又、上記第一、第二のダイナモ11、12の回転速度制御も、トルクの急変動時には、一切行なわなかった。従って、仮に上記トロイダル型無段変速機13部分で、変速比が急変動する様なハンチングが発生しても、上記第一、第二のダイナモ11、12は、このハンチングを抑え込む様な事は行なわない。この状態では、上記トロイダル型無段変速機13の出力側に接続された、上記第二のダイナモ12側には、慣性質量の大きなフライホイール15が設けられている為、この第二のダイナモ12側である出力側の回転は、殆ど変動する事なく、凡そ一定となる。これに対して、上記トロイダル型無段変速機13の入力側に接続された、上記第一のダイナモ11側の慣性質量は小さい為、この入力側の回転速度は、上記トロイダル型無段変速機13の変速比変動に基づいて変化する。この際のトロイダル型無段変速機13の変速比変動は、このトロイダル型無段変速機13の構成部材の組み付け隙間や弾性変形に基づいて生じるものである。
【0029】
この様な図3(A)から、本発明の試験装置によれば、トロイダル型無段変速機13自体が安定した性能を得られるものであれば、入力部の回転速度、入力部及び出力部のトルクに過大なハンチングを発生させず、上記トロイダル型無段変速機の性能評価を正しく行なえる事が分かる。尚、図3(A)で、実線aは入力側の回転速度を、実線bは入力側のトルクを、鎖線cは出力側の回転速度を、鎖線dは出力側のトルクを、それぞれ示している。
【0030】
又、図4(A)は、敢えてトルク急変動時にハンチングが発生し易いトロイダル型無段変速機13に関して行なった実験の結果を示している。試験条件は、前述の図4(B)の場合とほぼ同じである。この試験の準備段階では、試験装置の出力部の回転を凡そ4000min−1 に、同じく入力部のトルクを+350Nmにそれぞれ設定した。この場合には、上記トロイダル型無段変速機13の減速比は0.5(2倍増速)とし、上記入力部の回転を凡そ3000min−1 とした。この準備段階では、前述した従来構造と同様に、上記第一のダイナモ11のトルクをフィードバック制御により、上記第二のダイナモ12の回転速度をフィードバック制御により、それぞれ制御した。
【0031】
この様な準備段階の後、上記第二のダイナモ12の制御を、フィードバック制御による回転速度制御から、フィードフォワード制御によるトルク制御に変更した。そして、上記トロイダル型無段変速機13の通過トルクを+350Nmから−280Nmまで、0.1秒の間に急変動させた。この為に本例の場合には、上記第二のダイナモ12の駆動トルクを凡そ200Nmとし、上記第一のダイナモ11の吸収トルクを280Nmとした。
【0032】
これら第一、第二のダイナモ11、12のトルク制御は、フィードフォワード制御のみにより行ない、フィードバック制御は一切行なわなかった。又、上記第一、第二のダイナモ11、12の回転速度制御も、一切行なわなかった。従って、仮に上記トロイダル型無段変速機13部分で、変速比が急変動する様なハンチングが発生しても、上記第一、第二のダイナモ11、12は、このハンチングを抑え込む様な事は行なわない。この結果、予想通りにハンチングが発生して、入力部の回転速度、入力部及び出力部のトルクが細かく変動した。又、出力部の回転速度に関しても、上記入力部の回転速度変動に伴って変動した。尚、ハンチング発生後、凡そ1秒後に、非常停止動作を行なって、上記第一、第二のダイナモ11、12のトルクを0にした。
【0033】
この様な図4(A)から、本発明の試験装置によれば、トロイダル型無段変速機13がハンチングを発生するものあれば、入力部の回転速度、入力部及び出力部のトルクにハンチングを発生させて、上記トロイダル型無段変速機の性能評価を正しく行なえる事が分かる。尚、図4(A)で、実線aは入力側の回転速度を、実線bは入力側のトルクを、鎖線cは出力側の回転速度を、鎖線dは出力側のトルクを、それぞれ示している。
【0034】
【発明の効果】
本発明は、以上に述べた通り構成され作用するので、通過トルクが急変動する際に於けるトロイダル型無段変速機の特性を、トロイダル型無段変速機単独で行なう試験により、正確に掴む事ができる。従って、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせて構成する無段変速装置の性能評価を、低コストで、しかも短い準備期間で行なう事ができて、この様な無段変速装置の開発の能率化に寄与できる。
【図面の簡単な説明】
【図1】本発明の対象となるトロイダル型無段変速機用試験装置の1例を、一部を切断して示す側面図。
【図2】この試験装置による測定結果の第1例を示す線図。
【図3】同第2例を示す線図。
【図4】同第3例を示す線図。
【図5】従来から知られているトロイダル型無段変速機の1例を示す断面図。
【符号の説明】
1 入力軸
2 入力側ディスク
3 ボールスプライン
4 出力歯車
5 出力側ディスク
6 パワーローラ
7 トラニオン
8 支持軸
9 駆動軸
10 押圧装置
11 第一のダイナモ
12 第二のダイナモ
13 トロイダル型無段変速機
14 トルク計
15 フライホイール
16 カム板
17a、17b カム面
18 ローラ
[0001]
[Industrial applications]
The present invention relates to an improvement of a test device for evaluating the performance of a toroidal-type continuously variable transmission constituting an automatic transmission for an automobile.
[0002]
[Prior art]
The use of a toroidal-type continuously variable transmission as shown in FIG. 5 has been studied as an automatic transmission for an automobile, and has been partially implemented. This toroidal-type continuously variable transmission is called a double-cavity type, and supports a pair of input-side disks 2, 2 at both ends of an input shaft 1 via ball splines 3, 3. Therefore, these two input-side disks 2, 2 are supported concentrically and freely in a synchronized manner. Further, an output gear 4 is supported around an intermediate portion of the input shaft 1 so as to be rotatable relative to the input shaft 1. A pair of output-side disks 5, 5 are spline-engaged with both ends of a cylindrical portion provided at the center of the output gear 4.
Therefore, these two output-side disks 5, 5 rotate synchronously with the output gear 4.
[0003]
A plurality of (normally two to three) power rollers 6, 6 are sandwiched between the input disks 2, 2, and the output disks 5, 5, respectively. These power rollers 6 are rotatably supported on the inner surfaces of the trunnions 7 via support shafts 8 and a plurality of rolling bearings. Each of the trunnions 7 is pivotally displaced about a pivot (not shown) provided concentrically with each of the trunnions 7 at both ends in the longitudinal direction (front and back directions in FIG. 5). It is free. The operation of inclining these trunnions 7, 7 is performed by displacing each of the trunnions 7, 7 in the axial direction of the pivot axis by a hydraulic actuator (not shown). Synchronized with each other hydraulically and mechanically.
[0004]
During the operation of the toroidal-type continuously variable transmission as described above, one (the left side in FIG. 5) input-side disc 2 is driven by a drive shaft 9 connected to a power source such as an engine via a loading cam-type pressing device 10. Drive rotationally. As a result, the pair of input-side disks 2, 2 supported at both ends of the input shaft 1 rotate synchronously while being pressed in directions approaching each other. Then, this rotation is transmitted to the respective output side disks 5, 5 via the respective power rollers 6, 6 and is taken out from the output gear 4.
[0005]
In the case where the ratio of the rotational speeds of the input shaft 1 and the output gear 4 is changed, and when the deceleration is first performed between the input shaft 1 and the output gear 4, the trunnions 7, 7 are moved to the positions shown in FIG. As shown in FIG. 5, the peripheral surface of each of the power rollers 6, 6 is shifted toward the center of the inner side surface of each of the input disks 2, 2, and the inner surface of each of the output disks 5, 5, as shown in FIG. Abut the outer peripheral portion of the side surface. Conversely, when increasing the speed, the trunnions 7, 7 are swung in the direction opposite to that of FIG. 5, and the peripheral surfaces of the power rollers 6, 6 are reversed in the state shown in FIG. The trunnions 7, 7 are inclined so as to abut against the outer peripheral portions of the inner surfaces of the input disks 2, 2 and the central portions of the inner surfaces of the output disks 5, 5, respectively. . An intermediate speed ratio (speed ratio) between the input shaft 1 and the output gear 4 can be obtained by setting the angle of inclination of each of the trunnions 7 and 7 at an intermediate value.
[0006]
In the case of the toroidal type continuously variable transmission shown in FIG. 5 described above, the transmission of power from the input shaft 1 to the output gear 4 is performed between one input side disk 2 and the output side disk 5 and the other side. Since it is divided into two systems, that is, between the input-side disk 2 and the output-side disk 5, large power can be transmitted.
Further, when the toroidal-type continuously variable transmission configured and operated as described above is incorporated into an actual automatic transmission for a vehicle, it is known that the continuously variable transmission is configured in combination with a planetary gear mechanism. And has been widely known.
[0007]
As a continuously variable transmission that combines such a toroidal-type continuously variable transmission and a planetary gear mechanism, there are known a so-called power split type and a so-called geared neutral type. Each of these continuously variable transmissions includes a low-speed clutch connected in the low-speed mode and a high-speed clutch connected in the high-speed mode. In the case of a continuously variable transmission called a power split type, the torque that passes through the toroidal type continuously variable transmission in the high-speed mode is reduced, and the durability of the toroidal type continuously variable transmission is improved and the continuously variable transmission is improved. The transmission efficiency of the entire device can be improved. In the case of a continuously variable transmission called a geared / neutral type, it is possible to realize a state in which the output shaft is stopped while rotating the input shaft in the low-speed mode, that is, a state where the speed ratio is infinite.
[0008]
In the case of such a continuously variable transmission, when the low-speed mode and the high-speed mode are switched based on the connection / disconnection of the low-speed clutch and the high-speed clutch, the torque passing through the toroidal-type continuously variable transmission (passing torque) The direction and size of ()) fluctuate rapidly. As is well known, the components of the toroidal-type continuously variable transmission are elastically deformed in accordance with torque transmission, and are displaced based on an assembling clearance. As a result, the gear ratio between the input side disk and the output side disk is reduced. fluctuate. If such a change in the gear ratio is performed slowly, it is not necessary to perform any troublesome control. However, if the passing torque fluctuates rapidly with the mode switching, the operation is performed unless some control is performed. There is a possibility that a sudden change in the gear ratio may occur so as to give an uncomfortable feeling to a person or the like.
[0009]
In view of such circumstances, in order to put the above-described continuously variable transmission into practical use, it is considered that control at the time of mode switching is important in any of the power split type and the geared neutral type. In order to determine the mode of control at the time of such mode switching, it is necessary to know characteristics such as the fluctuation state of the speed ratio of the toroidal type continuously variable transmission at the time of this mode switching through many experiments. . However, actually conducting an experiment with a continuously variable transmission configured by combining a toroidal-type continuously variable transmission and a planetary gear mechanism increases the cost and time required for trial production of the sample continuously variable transmission. Is not preferred. On the other hand, when the mode of the continuously variable transmission is switched, the fluctuation state of the passing torque of the toroidal type continuously variable transmission incorporated in the continuously variable transmission depends on the planetary gear mechanism and the like combined with the toroidal continuously variable transmission. Once the structure is known, it can be calculated. Therefore, only the toroidal-type continuously variable transmission is mounted on a test device for determining the characteristics of the toroidal-type continuously variable transmission, such as the change in the transmission ratio, and the torque fluctuation obtained by calculation is calculated as described above. It is conceivable to create it with a test device.
[0010]
For example, FIG. 1 shows a test apparatus (unknown) conventionally used for developing a toroidal type continuously variable transmission. This test apparatus includes a toroidal-type continuously variable transmission 13 and a torque meter 14 between a first (drive side or input side) dynamo 11 and a second (absorption side or output side) dynamo 12. The first dynamo 11 is provided in series with each other in order from the side. A flywheel 15 is connected to the second dynamo 12 so that an inertia mass suitable for an actual vehicle can be freely connected to the output side of the toroidal type continuously variable transmission 13. The power input (or output) to the toroidal-type continuously variable transmission 13 at the first dynamo 11 portion or between the first dynamo 11 and the toroidal-type continuously variable transmission 13. The torque and rotation speed of the motor can be measured freely. In addition, the torque meter 14 allows the torque and rotation speed of the power output (or input) from the toroidal-type continuously variable transmission 13 to be freely measured.
[0011]
Using such a test apparatus, while changing the passing torque of the toroidal type continuously variable transmission 13 from the first dynamo 11, the rotational speed at two positions sandwiching the toroidal type continuously variable transmission 13. Thus, if the change in the gear ratio of the toroidal type continuously variable transmission 13 is obtained, the behavior of the toroidal type continuously variable transmission 13 with respect to the torque fluctuation can be known. Conventionally, when such a test apparatus is operated, the torque of the first dynamo 11 is regulated to a desired value by feedback control, and the rotation speed of the second dynamo 12 is regulated to a desired value by feedback control. .
[0012]
[Patent Document 1]
JP-A-1-169169 [Patent Document 2]
Japanese Patent Application Laid-Open No. Hei 1-312266 [Patent Document 3]
JP 10-196759 A [Patent Document 4]
JP-A-11-63146 [Patent Document 5]
US Pat. No. 5,607,372 [Patent Document 6]
JP 2000-220719 A
[Problems to be solved by the invention]
As in the conventional device, the torque of the first dynamo 11 is regulated to a desired value by feedback control, and the rotation speed of the second dynamo 12 is regulated to a desired value by feedback control. Is not always possible to obtain a result according to the actual use situation. The reason for this is that, as a problem peculiar to the toroidal type continuously variable transmission 13, the speed ratio changes with the variation of the passing torque and the presence of the loading cam type pressing device 10, the rigidity in the rotational direction (torsional rigidity). ) Is low. This point will be described with reference to the results of experiments performed by the present inventors.
[0014]
First, FIG. 2 shows the test apparatus shown in FIG. 1, which regulates the torque of the first dynamo 11 to a desired value by feedback control and the rotation speed of the second dynamo 12 to a desired value by feedback control. 4 shows the results of an experiment in which the input torque of a gear type speed reducer was rapidly changed. FIG. 2A shows the experimental results when the torque is suddenly reduced, and FIG. 2B shows the experimental results when the torque is also rapidly increased. In each figure, the solid line a indicates the input side rotational speed, the solid line b indicates the input side torque, the chain line c indicates the output side rotational speed, and the chain line d indicates the output side torque. In FIG. 2, the fluctuation of the rotation speed and the overshoot of the torque that occur immediately after the input torque is suddenly changed are based on the backlash existing in the gear type speed reducer. From FIG. 2 as described above, in the case of a gear transmission in which the torsional rigidity is high and the gear ratio (reduction ratio) does not change even when the torque fluctuates rapidly, the torque of the first dynamo 11 is controlled by the feedback control. It can be seen that a test for knowing the characteristics is possible even with the conventional structure in which the rotational speed of the second dynamo 12 is controlled by feedback control.
[0015]
On the other hand, the characteristics of the toroidal-type continuously variable transmission cannot be obtained by using the test device having the conventional structure as described above. This point will be described with reference to FIGS. 3B and 4B. First, FIG. 3B shows that a stable performance can be obtained by a test device having a conventional structure that controls the torque of the first dynamo 11 by feedback control and the rotation speed of the second dynamo 12 by feedback control. 4 shows the results of a test performed on the toroidal type continuously variable transmission 13. In this test, while controlling the rotational speed of the output portion of the toroidal-type continuously variable transmission 13 to be maintained at approximately 2600 min −1 , the passing torque of the toroidal-type continuously variable transmission 13 was increased from +350 Nm to −280 Nm. It fluctuated rapidly during .5 seconds.
[0016]
When such a test is conducted with the above-described conventional structure, the toroidal type continuously variable transmission 13 itself can obtain the rotational speed of the input unit, the input unit and the output unit, although the inherently stable performance can be obtained. Hunting occurred in the torque. The cause of such hunting is considered as follows. When the torque is changed from + to-, that is, when the torque transmission direction is reversed, between the first and second dynamos 11 and 12 provided with the toroidal type continuously variable transmission 13 interposed therebetween, The drive side and the absorption side are switched. Also in this case, the first dynamo 11 controls the torque by the feedback control, and the second dynamo 12 controls the rotation speed by the feedback control.
[0017]
By performing such control, when the drive side and the absorption side are switched, the second dynamo 12 and the first dynamo 12 are connected to each other due to low torsional rigidity of the toroidal type continuously variable transmission 13. There is a delay in torque transmission with the dynamo 11. This delay is also caused by the elastic deformation of the rotating shaft, gears and the like provided between the two dynamos 11 and 12, but the biggest factor is the loading cam type built into the toroidal type continuously variable transmission 13. Press device 10 (see FIG. 5). That is, as shown in FIG. 5, the pressing device 10 sandwiches a plurality of rollers 18, 18 between cam surfaces 17a, 17b formed on surfaces of the cam plate 16 and the input side disk 2 facing each other. Consisting of At the time of transmitting the torque by the pressing device 10, the phases of the two cam surfaces 17a and 17b are shifted from each other in the circumferential direction based on the magnitude and direction of the torque, and this shift decreases the torsional rigidity. Such a decrease in torsional rigidity due to the displacement of the cam surfaces 17a and 17b is significantly larger than the decrease due to the elastic deformation of the rotating shaft and the gears. As a result, the delay in torque transmission between the second dynamo 12 and the first dynamo 11 becomes so large that it cannot be ignored.
[0018]
For the toroidal type continuously variable transmission 13 in which a large delay in torque transmission occurs as described above, the state in which the torque is transmitted from the first dynamo 11 to the second dynamo 12 until then is suddenly changed to the second dynamo 12. Even if the state is switched to a state in which torque is transmitted from the second dynamo 12 to the first dynamo 11, there is a slight time delay until the torque is transmitted to the first dynamo 11. In addition, the first dynamo 11 is subjected to feedback control for regulating the torque even during this time delay. For this reason, the timing at which feedback control is performed in the first dynamo 11 portion is earlier in time than the timing at which torque is transmitted from the second dynamo 12 to the first dynamo 11, or Is late.
[0019]
As a result, the torque control at the first dynamo 11 portion and the rotation speed control at the second dynamo 12 portion are performed in a staggered manner, and the hunting as shown in FIG. The rotation speed and the torque on both output sides are generated. In FIG. 3B, a solid line a indicates an input-side rotational speed, a solid line b indicates an input-side torque, a chain line c indicates an output-side rotational speed, and a chain line d indicates an output-side torque. I have. The toroidal-type continuously variable transmission 13 used in the experiment whose results are shown in FIG. 3 (B) is configured such that each part is appropriately configured so that hunting or the like does not occur even when a sudden change in the passing torque occurs. is there. Therefore, FIG. 3B indicates that the characteristics of the toroidal type continuously variable transmission 13 cannot be correctly evaluated in the case of the conventional structure.
[0020]
In addition, the inventor of the present invention has dared to produce a toroidal-type continuously variable transmission 13 in which hunting is likely to occur during a sudden change in torque. Then, a characteristic test of the toroidal type continuously variable transmission 13 is performed by a test device including a first dynamo 11 that controls torque by feedback control and a second dynamo 12 that controls rotation speed by feedback control. Was. FIG. 4B shows the results of this test. Also in FIG. 4B, the solid line a indicates the input side rotational speed, the solid line b indicates the input side torque, the chain line c indicates the output side rotational speed, and the chain line d indicates the output side torque. . In this case, control is performed in the second dynamo 12 to keep the rotation speed constant, so that hunting, which should occur originally, tends to be suppressed. For this reason, hunting, which should occur immediately after a sudden change in the passing torque, is suppressed {a and b in FIG. Since the toroidal type continuously variable transmission 13 is designed so as to intentionally generate large hunting, hunting occurs after about 0.5 seconds after the passing torque suddenly fluctuates. However, when performing a test of the continuously variable transmission 13 that causes slight hunting, it is possible that the occurrence of hunting may not be grasped because the occurrence of hunting is completely suppressed. .
[0021]
As is clear from FIGS. 3B and 4B described above, the first dynamo 11 that controls the torque by feedback control and the second dynamo 12 that controls the rotation speed by feedback control With the conventional test apparatus provided, the characteristic evaluation of the toroidal type continuously variable transmission cannot be performed accurately.
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a test device for a toroidal-type continuously variable transmission that can accurately perform a characteristic evaluation including a behavior of the toroidal-type continuously variable transmission during a rapid change in passing torque. It was invented.
[0022]
[Means for Solving the Problems]
The toroidal type continuously variable transmission test apparatus according to the present invention includes a first dynamo connected to an input shaft of the toroidal type continuously variable transmission and a toroidal type continuously variable transmission to evaluate the performance of the toroidal type continuously variable transmission. A second dynamo connected to the output shaft of the continuously variable transmission.
In particular, in the test device for a toroidal type continuously variable transmission according to the present invention, the drive torque or the absorption torque of each of the first and second dynamos is fed at least in a state where the performance evaluation based on the torque fluctuation is performed. It is regulated to a desired value by forward control.
[0023]
[Action]
According to the test device for a toroidal type continuously variable transmission of the present invention configured as described above, the test can be performed in a state in which the toroidal type continuously variable transmission is actually assembled in the continuously variable transmission. That is, as described above, in the case of a continuously variable transmission that combines a toroidal-type continuously variable transmission and a planetary gear mechanism, a high-speed clutch and a low-speed clutch are used in any of the power split type and the geared neutral type. When the mode is switched based on the connection / disconnection of the toroidal type, the passing torque of the toroidal type continuously variable transmission fluctuates rapidly. In this case, the torque of the input section and the output section of the toroidal type continuously variable transmission fluctuates rapidly with the mode switching.
[0024]
In the case of the test apparatus for a toroidal-type continuously variable transmission according to the present invention, as described above, the drive torque or the absorption torque of the first and second dynamos are both regulated to desired values by feedforward control. For this reason, the torque of the input portion and the output portion of the toroidal type continuously variable transmission, which should fluctuate rapidly with the mode switching, is reduced by the torque based on the low torsional rigidity unique to the toroidal type continuously variable transmission. Regardless of the transmission delay, the value can be immediately adjusted to the actual value. Therefore, regardless of the torque transmission delay due to the low torsional rigidity, the characteristic evaluation of the toroidal-type continuously variable transmission, such as whether or not hunting may occur, can be accurately performed. Also, it is possible to prevent hunting generated in the toroidal type continuously variable transmission from being suppressed.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
A feature of the test device for a toroidal type continuously variable transmission of the present invention is that both the drive torque or the absorption torque of the first and second dynamos 11 and 12 are regulated to desired values by feedforward control. The structure of the part shown in the drawing is the same as that of the test apparatus shown in FIG. 1 and used in the development of the conventional toroidal-type continuously variable transmission. An experiment conducted by the present inventor to confirm the effect of the present invention will be described with reference to FIGS. 3 (A) and 4 (A).
[0026]
First, FIG. 3A shows that the test apparatus of the present invention controls the torques (drive torque and absorption torque) of the first dynamo 11 and the second dynamo 12 by feedforward control, respectively, to obtain stable performance. 2 shows the results of a test performed on the toroidal type continuously variable transmission 13. The test conditions are almost the same as in the case of FIG. In the preparation stage of this test, the rotation of the output part of the test apparatus was set to about 2700 min −1 , and the torque of the input part was set to +350 Nm. In this case, the reduction ratio of the toroidal type continuously variable transmission 13 was set to 0.5 (double speed increase), and the rotation of the input section was set to about 2000 min -1 . In this preparation stage, similarly to the conventional structure described above, the torque of the first dynamo 11 was controlled by feedback control, and the rotation speed of the second dynamo 12 was controlled by feedback control.
[0027]
After such a preparation stage, the control of the second dynamo 12 was changed from the rotation speed control by the feedback control to the torque control by the feedforward control. In the case of this example, a value of approximately +250 Nm, which is the torque of the second dynamo 12 at the time of this change, was taken as the absorption torque of the second dynamo 12 at that time. Next, the passing torque of the toroidal type continuously variable transmission 13 was rapidly changed from +350 Nm to -280 Nm in 0.5 seconds. Therefore, in the case of the present example, the driving torque of the second dynamo 12 was set to approximately 200 Nm, and the absorption torque of the first dynamo 11 was set to 280 Nm.
[0028]
The torque control of these first and second dynamos 11 and 12 was performed only by feedforward control, and no feedback control was performed. Also, the rotational speed control of the first and second dynamos 11 and 12 was not performed at all when the torque suddenly fluctuated. Therefore, even if hunting such as a sudden change in the gear ratio occurs in the toroidal type continuously variable transmission 13, the first and second dynamos 11 and 12 do not suppress the hunting. Do not do. In this state, the flywheel 15 having a large inertial mass is provided on the side of the second dynamo 12 connected to the output side of the toroidal type continuously variable transmission 13. The rotation on the output side, which is the output side, is almost constant with almost no fluctuation. On the other hand, since the inertial mass of the first dynamo 11 connected to the input side of the toroidal type continuously variable transmission 13 is small, the rotation speed of the input side is limited to the toroidal type continuously variable transmission 13. 13 changes based on the speed ratio fluctuation. The speed ratio fluctuation of the toroidal-type continuously variable transmission 13 at this time is generated based on an assembling gap or elastic deformation of the components of the toroidal-type continuously variable transmission 13.
[0029]
From FIG. 3A, according to the test apparatus of the present invention, if the toroidal type continuously variable transmission 13 itself can obtain stable performance, the rotational speed of the input unit, the input unit, and the output unit It can be understood that the performance evaluation of the toroidal type continuously variable transmission can be correctly performed without generating excessive hunting in the torque of the toroidal type. In FIG. 3A, a solid line a indicates the input side rotational speed, a solid line b indicates the input side torque, a chain line c indicates the output side rotational speed, and a chain line d indicates the output side torque. I have.
[0030]
FIG. 4A shows the results of an experiment performed on the toroidal type continuously variable transmission 13 in which hunting is apt to occur during a sudden change in torque. The test conditions are almost the same as in the case of FIG. In the preparation stage of this test, the rotation of the output part of the test apparatus was set to about 4000 min -1 and the torque of the input part was set to +350 Nm. In this case, the reduction ratio of the toroidal type continuously variable transmission 13 was set to 0.5 (double speed increase), and the rotation of the input unit was set to about 3000 min -1 . In this preparation stage, similarly to the conventional structure described above, the torque of the first dynamo 11 was controlled by feedback control, and the rotation speed of the second dynamo 12 was controlled by feedback control.
[0031]
After such a preparation stage, the control of the second dynamo 12 was changed from the rotation speed control by the feedback control to the torque control by the feedforward control. Then, the passing torque of the toroidal type continuously variable transmission 13 was rapidly changed from +350 Nm to -280 Nm in 0.1 seconds. Therefore, in the case of the present example, the driving torque of the second dynamo 12 was set to approximately 200 Nm, and the absorption torque of the first dynamo 11 was set to 280 Nm.
[0032]
The torque control of these first and second dynamos 11 and 12 was performed only by feedforward control, and no feedback control was performed. Also, the rotation speed control of the first and second dynamos 11 and 12 was not performed at all. Therefore, even if hunting such as a sudden change in the gear ratio occurs in the toroidal type continuously variable transmission 13, the first and second dynamos 11 and 12 do not suppress the hunting. Do not do. As a result, hunting occurred as expected, and the rotational speed of the input section and the torque of the input section and the output section fluctuated finely. Further, the rotation speed of the output unit also fluctuated with the rotation speed of the input unit. About one second after the occurrence of hunting, an emergency stop operation was performed to reduce the torque of the first and second dynamos 11 and 12 to zero.
[0033]
From FIG. 4 (A), according to the test apparatus of the present invention, if the toroidal type continuously variable transmission 13 generates hunting, the hunting is performed on the rotation speed of the input unit and the torque of the input unit and the output unit. It can be seen that the performance evaluation of the toroidal-type continuously variable transmission can be correctly performed by causing the above. In FIG. 4A, a solid line a indicates the input side rotational speed, a solid line b indicates the input side torque, a chain line c indicates the output side rotational speed, and a chain line d indicates the output side torque. I have.
[0034]
【The invention's effect】
Since the present invention is configured and operates as described above, the characteristics of the toroidal-type continuously variable transmission when the passing torque fluctuates suddenly can be accurately grasped by the test performed by the toroidal-type continuously variable transmission alone. Can do things. Therefore, it is possible to evaluate the performance of a continuously variable transmission constituted by combining a toroidal type continuously variable transmission and a planetary gear type transmission at a low cost and in a short preparation period. It can contribute to the efficiency of device development.
[Brief description of the drawings]
FIG. 1 is a side view showing an example of a toroidal type continuously variable transmission test apparatus to which the present invention is applied, with a part thereof cut away.
FIG. 2 is a diagram showing a first example of a measurement result obtained by the test apparatus.
FIG. 3 is a diagram showing the second example.
FIG. 4 is a diagram showing a third example.
FIG. 5 is a sectional view showing an example of a conventionally known toroidal type continuously variable transmission.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Input shaft 2 Input side disk 3 Ball spline 4 Output gear 5 Output side disk 6 Power roller 7 Trunnion 8 Support shaft 9 Drive shaft 10 Pressing device 11 First dynamo 12 Second dynamo 13 Toroidal-type continuously variable transmission 14 Torque 15 Flywheel 16 Cam plate 17a, 17b Cam surface 18 Roller

Claims (1)

トロイダル型無段変速機の性能評価を行なう為、このトロイダル型無段変速機の入力軸に連結される第一のダイナモと、このトロイダル型無段変速機の出力軸に連結される第二のダイナモとを備えたトロイダル型無段変速機用試験装置に於いて、少なくともトルク変動に基づく性能評価を行なう状態で、上記第一、第二のダイナモの駆動トルク又は吸収トルクを、何れもフィードフォワード制御により所望値に規制する事を特徴とするトロイダル型無段変速機用試験装置。In order to evaluate the performance of the toroidal continuously variable transmission, a first dynamo connected to the input shaft of the toroidal continuously variable transmission and a second dynamo connected to the output shaft of the toroidal continuously variable transmission are used. In a test device for a toroidal type continuously variable transmission equipped with a dynamo, the drive torque or the absorption torque of the first and second dynamos are all fed forward in a state where at least performance evaluation based on torque fluctuation is performed. A test device for a toroidal-type continuously variable transmission characterized by regulating to a desired value by control.
JP2002349773A 2002-12-02 2002-12-02 Testing device for toroidal type continuously variable transmission Pending JP2004184160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349773A JP2004184160A (en) 2002-12-02 2002-12-02 Testing device for toroidal type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349773A JP2004184160A (en) 2002-12-02 2002-12-02 Testing device for toroidal type continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2004184160A true JP2004184160A (en) 2004-07-02

Family

ID=32752215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349773A Pending JP2004184160A (en) 2002-12-02 2002-12-02 Testing device for toroidal type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2004184160A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074951A (en) * 2007-09-21 2009-04-09 Nsk Ltd Method and apparatus for testing toroidal type continuously variable transmission
KR101157476B1 (en) * 2011-10-19 2012-07-03 한국기계연구원 Backlash adjuster and test apparatus for gearbox having the same
KR101187012B1 (en) * 2011-11-03 2012-10-08 한국기계연구원 Gearbox testing apparatus having a chamber and testing method using the same
CN103323280A (en) * 2013-06-24 2013-09-25 任彦领 Combination property testing and analyzing device for shutter rolling machine
CN104729851A (en) * 2015-03-12 2015-06-24 清华大学 Simulation and test device for complex working condition of wind turbine planet gear
CN104913932A (en) * 2015-06-25 2015-09-16 北京工业大学 Test bench for oscillating-tooth continuously variable transmission
CN106226075A (en) * 2016-09-23 2016-12-14 四川大学 High/low temperature gear drive combination property bench
CN106226076A (en) * 2016-09-23 2016-12-14 四川大学 Multifunctional gear transmission combination property bench
CN106225979A (en) * 2016-06-30 2016-12-14 李双阳 A kind of auto parts and components twisting resistance test equipment
CN109855885A (en) * 2019-02-26 2019-06-07 武汉理工大学 Bar breathe out racing car transmission system performance test and match test platform

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009074951A (en) * 2007-09-21 2009-04-09 Nsk Ltd Method and apparatus for testing toroidal type continuously variable transmission
KR101157476B1 (en) * 2011-10-19 2012-07-03 한국기계연구원 Backlash adjuster and test apparatus for gearbox having the same
KR101187012B1 (en) * 2011-11-03 2012-10-08 한국기계연구원 Gearbox testing apparatus having a chamber and testing method using the same
CN103323280A (en) * 2013-06-24 2013-09-25 任彦领 Combination property testing and analyzing device for shutter rolling machine
CN104729851A (en) * 2015-03-12 2015-06-24 清华大学 Simulation and test device for complex working condition of wind turbine planet gear
CN104913932A (en) * 2015-06-25 2015-09-16 北京工业大学 Test bench for oscillating-tooth continuously variable transmission
CN106225979A (en) * 2016-06-30 2016-12-14 李双阳 A kind of auto parts and components twisting resistance test equipment
CN106226075A (en) * 2016-09-23 2016-12-14 四川大学 High/low temperature gear drive combination property bench
CN106226076A (en) * 2016-09-23 2016-12-14 四川大学 Multifunctional gear transmission combination property bench
CN109855885A (en) * 2019-02-26 2019-06-07 武汉理工大学 Bar breathe out racing car transmission system performance test and match test platform

Similar Documents

Publication Publication Date Title
EP1388687A2 (en) Continuously variable power-split transmission
JP2003194207A (en) Toroidal type continuously variable transmission
US6514168B2 (en) Toroidal type continuous variable speed transmission
JP2004184160A (en) Testing device for toroidal type continuously variable transmission
JP2015075148A (en) Toroidal type continuously variable transmission
JP4867540B2 (en) Continuously variable transmission
JP2004169719A (en) Toroidal type continuously variable transmission, and continuously variable transmission device
JP3702597B2 (en) Toroidal type continuously variable transmission
JP2002310252A (en) Troidal continuously variable transmission and continuously variable transmission
JP2004340180A (en) Toroidal type non-stage transmission and testing apparatus therefor
JPH10267049A (en) Dog clutch
JP3702598B2 (en) Half toroidal continuously variable transmission
JP4007136B2 (en) Continuously variable transmission
JP3555228B2 (en) Toroidal type continuously variable transmission
JP2003021210A (en) Toroidal type continuously variable transmission and continuously variable transmission device
JP4072531B2 (en) Power split type continuously variable transmission
JPH06174034A (en) Toroidal type continuously variable transmission
JP2004125119A (en) Continuously-variable transmission
WO2019234812A1 (en) Continuously variable transmission
JP6447065B2 (en) Continuously variable transmission
JP4192398B2 (en) Toroidal continuously variable transmission
JP3309633B2 (en) Toroidal type continuously variable transmission
JP3275406B2 (en) Toroidal type continuously variable transmission
JP5862184B2 (en) Continuously variable transmission
RU2101583C1 (en) Frontal variable-speed friction drive