JP2004182947A - Carbon fiber for reinforcing high conductive resin - Google Patents

Carbon fiber for reinforcing high conductive resin Download PDF

Info

Publication number
JP2004182947A
JP2004182947A JP2002354820A JP2002354820A JP2004182947A JP 2004182947 A JP2004182947 A JP 2004182947A JP 2002354820 A JP2002354820 A JP 2002354820A JP 2002354820 A JP2002354820 A JP 2002354820A JP 2004182947 A JP2004182947 A JP 2004182947A
Authority
JP
Japan
Prior art keywords
carbon fiber
resin
carbon
resin composition
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002354820A
Other languages
Japanese (ja)
Other versions
JP2004182947A5 (en
Inventor
Naoki Sugiura
直樹 杉浦
Akihiko Fukushima
昭彦 福島
Manabu Kaneko
学 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002354820A priority Critical patent/JP2004182947A/en
Publication of JP2004182947A publication Critical patent/JP2004182947A/en
Publication of JP2004182947A5 publication Critical patent/JP2004182947A5/ja
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber capable of further improving the conductivity of a carbon fiber-reinforced resin molding compound without impairing outstanding characteristics of conductive fibers with a low specific gravity inherent in carbon fibers, and to provide a carbon fiber-reinforced resin composition which has acquired sufficient conductivity and mechanical strength by containing the carbon fiber. <P>SOLUTION: The carbon fiber for reinforcing resins comprises a carbon fiber which has a strand modulus of 200-400 GPa and in which a ratio of numbers of surface atoms (O<SB>1s</SB>/C<SB>1s</SB>) as measured by ESCA satisfies equation (1): 0.02-3.9×10<SP>-5</SP>×E≤O<SB>1s</SB>/C<SB>1s</SB>≤0.12-1.8×10<SP>-4</SP>×E (1) (wherein E denotes the strand modulus represented by GPa of the carbon fiber) in an amount of 20 mass% or more. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、優れた導電性を有する繊維強化複合材料を得る為の炭素繊維、並びに該炭素繊維を強化材とする炭素繊維強化樹脂組成物に関する。
【0002】
【従来の技術】
樹脂成形物に導電性を付与する要請が最近急速に高まってきている。成形物に導電性を付与する方法としては、例えば、成形物表面に導電性塗料を塗布する方法、金属や導電性繊維布を貼布する方法、及び、導電性材料を添加した成形材料を成形する方法等が挙げられる。中でも、導電性材料として炭素繊維を添加した成形材料を成形する方法は、導電性塗料を塗布する場合等と比べ、使用途中で導電性付与材料が剥がれて効果が低下する問題もなく、経済面でも性能面でも優れている。
【0003】
【発明が解決しようとする課題】
しかし、炭素繊維を添加した成形品は、他の導電性を有する成形品と比べ、導電性が若干低く、近年の成形品に要求される導電性を満足し得ない。導電性をより向上させる方法には、より多くの炭素繊維を添加する方法があるが、炭素繊維の添加量が増加すると成形性が悪化し、得られる成形品の外観特性を保持できないという問題がある。また、添加する炭素繊維のグラファイト結晶のサイズや、その結晶化度を上げて炭素繊維そのものの導電性を高くする方法は、炭素繊維が脆くなり、その結果成形品の加工段階で炭素繊維が折損して工程通過性が悪化する問題がある。また、表面に金属をメッキした炭素繊維を用いる試みもされているが(特公平1−46636号公報)、金属で被覆した炭素繊維は、良好な導電性を示すものの、比重が大きくなり、比剛性、比強度に優れるという炭素繊維の本来の特徴を著しく損なうことになる。
一方、成形品に添加される炭素繊維を成形品内に良好に分散させ、さらに界面の接着性を上げることにより、成型品の機械的特性を向上させる方法もあり、例えば、炭素繊維に付着させるサイジング剤を改良する方法、及び、炭素繊維の表面を処理して炭素繊維表面に活性な酸素官能基を導入する方法が挙げられる(特開平2−292334号公報等)。特に、後者の炭素繊維の表面処理は、マトリックス樹脂との濡れ性や界面接着性を向上させる観点から、樹脂強化用の炭素繊維においては、従来から必然的に行われていた方法でもある。従って、炭素繊維強化樹脂組成物の十分な機械的強度を担保するために、炭素繊維には必ず表面処理が施され、表面の原子数比O1s/C1sが一定水準以上(例えば、0.1以上)になる様、十分に表面処理が施されていた。
【0004】
【特許文献1】
特公平1−46636号公報
【特許文献2】
特開平2−292334号公報
【0005】
しかし、炭素繊維の導電性を向上させるために炭素繊維に対して表面処理を施して表面の原子数比O1s/C1sを調節した例はない。これは、表面処理により、炭素繊維のそれ自身の導電性は大きく変化しないからである。しかしながら、実際は、炭素繊維自身の導電性が変わらないにもかかわらず、炭素繊維表面の原子数比O1s/C1sを調節することにより、該炭素繊維を含む繊維強化樹脂組成物の成型品の導電性は、有意に調節することができることがわかった。
従って、本発明の第1の目的は、炭素繊維が本来的に有する低比重の導電性繊維という優れた特性を損なわずに、成形品の導電性を向上させることができる樹脂強化用炭素繊維を提供することにある。
本発明の第2の目的は、上記炭素繊維で添加され、十分な導電性と機械的強度を有する炭素繊維強化樹脂組成物を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、炭素繊維を表面処理を施さないか、極く僅かに表面処理を施して表面の原子数比O1s/C1sを所望範囲に制御した炭素繊維を添加すると、従来品に比べ遥かに高い導電性を有する炭素繊維強化樹脂組成物が得られることを見出した。
さらに本発明者らは、膨大な実験を繰り返してあらゆるデータを取り、炭素繊維のストランド弾性率と炭素繊維の表面原子数比(O1s/C1s)が一定の関係にある炭素繊維と、炭素繊維の表面原子数比(O1s/C1s)の異なる他の炭素繊維とを組み合わせることにより、導電性と機械的物性との良好なバランスを有する炭素繊維を提供でき、及びこの炭素繊維と所望のマトリックス樹脂とを組み合わせることにより、導電性と機械的物性との良好なバランスを有する炭素繊維強化樹脂組成物を提供できることを見出した。
即ち、本発明は、ストランド弾性率が200〜400GPaであり、ESCAで測定される表面原子数比(O1s/C1s)が次式(1):
0.02−3.9×10−5×E≦O1s/C1s≦0.12−1.8×10−4×E (1)
(式中、Eは、該炭素繊維が有するGPaで表されたストランド弾性率である。)を満たす炭素繊維を、20質量%以上含むことを特徴とする、樹脂強化用炭素繊維に関するものである。
また、本発明は、マトリックス樹脂と、上記樹脂強化用炭素繊維5〜40質量%とを含む、炭素繊維強化樹脂組成物に関するものである。
【0007】
【発明の実施の形態】
(1)樹脂強化用炭素繊維
上述の通り、本発明は、特定のストランド弾性率と、炭素繊維表面の特定の原子数比を有する樹脂強化用炭素繊維に関する。以下、本発明の樹脂強化用炭素繊維の特性及び含有量を中心に説明する。
(1−1)ストランド弾性率
本発明の樹脂強化用炭素繊維は、200〜400GPa、好ましくは230〜350GPaのストランド弾性率を有する。200GPa以上であれば、補強繊維としての効果が十分に得られ、400GPa以下であれば、炭素繊維の工程通過性に影響を与えることはなく、また、本発明の炭素繊維を含む炭素繊維強化樹脂を成形する際に繊維切断が顕著になることもなく、好適である。
ここで、ストランド弾性率は、例えば、JIS R7601に記載された樹脂含浸ストランド弾性率の測定方法に準拠して測定される。具体的には、樹脂として、エピコート828を100質量部、無水メチルナジック酸を90質量部、ベンジルメチルアミンを1.5質量部、及び、アセトンを50質量部含有する樹脂溶液を準備し、本発明の炭素繊維を含浸させる。樹脂含浸した炭素繊維を室温下、約10時間放置してアセトンを除去した後、90℃で2時間、その後150℃で4時間処理して硬化して試験片を得、JIS R7601に記載された樹脂含浸ストランド弾性率の測定方法に従って測定する。
【0008】
(1−2) 樹脂強化用炭素繊維表面の原子数比(O1s/C1s
本発明の樹脂強化用炭素繊維の表面原子数比(O1s/C1s)は、炭素繊維のストランド弾性率に関連して、以下の式(1)を満たすものである。
0.02−3.9×10−5×E≦O1s/C1s≦0.12−1.8×10−4×E (1)
式中、Eは、該炭素繊維が有するGPaで表されたストランド弾性率(無次元数)である。例えば、炭素繊維のストランド弾性率が240GPaである場合、式(1)のEの値は、240となる。
また、本発明の炭素繊維の表面の原子数比(O1s/C1s)の好ましい範囲は、以下の式(2)を満たすものである。
0.03−3.9×10−5×E≦O1s/C1s≦0.11−1.8×10−4×E (2)
ここで、炭素繊維の表面原子数比(O1s/C1s)は、ESCAで測定された値である。より具体的には、例えば、VG社製ESCALAB220iXL装置を用いてAl−MonokαをX線源として測定した値である。
【0009】
炭素繊維の表面の原子数比O1s/C1sは、炭素繊維製造工程における最高処理温度によって変化する。例えば、最高処理温度を比較的低く抑えて製造したストランド弾性率の小さい炭素繊維(例えば、235GPa)では、表面処理をしていない状態の表面の原子数比O1s/C1sが約0.05である。これに対し、最高処理温度を比較的高くして製造したストランド弾性率の大きい炭素繊維(例えば、392GPa)では、表面処理をしていない状態の表面の原子数比O1s/C1sが約0.02となる。さらに、炭素繊維表面の酸化し易さは、最高焼成温度の上昇により低下し、その結果、ストランド弾性率の高い炭素繊維のO1s/C1sの値は、弾性率のアップにより小さくなる傾向にある。
従って、炭素繊維製造工程を経て得られた本発明の樹脂強化用炭素繊維の表面原子数比O1s/C1sは、上記炭素繊維製造工程における処理温度の違いによる変化を考慮に入れた上で、炭素繊維の表面を種々の方法によって処理することによって制御することができる。一般的な表面処理方法としては、電気化学的に表面酸化処理を行う方法;空気酸化処理、オゾン酸化処理等の気相酸化処理を行う方法;薬剤酸化処理を行う方法が挙げられる。好ましくは、炭素繊維を、例えば、電解質に浸漬し、炭素繊維を陽極にして、電解質水溶液を介して陰極に電気を流し、電気化学的に炭素繊維の表面酸化処理を行う。ここで、電解質としては、例えば、硝酸、硫酸、リン酸、塩酸、硝酸塩水溶液、硫酸塩水溶液、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸アンモニウム水溶液、及び重炭酸アンモニウム水溶液等が挙げられる。
このように、本発明では、炭素繊維製造工程における最高処理温度を変化させて炭素繊維のストランド弾性率を制御し、得られた炭素繊維が有する表面原子数比O1s/C1sに応じて表面処理条件を変化させて炭素繊維の表面原子数比O1s/C1sを制御することで、目的とする樹脂強化用炭素繊維が得られる。
【0010】
(1−3)樹脂強化用炭素繊維の繊維長
本発明の樹脂強化用炭素繊維の繊維長は、対象とする成形方法によって異なるが、通常1〜50mm長、好ましくは、3〜40mm長の範囲であることが望ましい。1mm以上であれば取り扱い性が劣ったり、チョップドファイバーの形態とした炭素繊維の生産性が低下することもなく、50mm以下であれば、成形時の工程通過性が悪化することもないので好ましい。
【0011】
(1−4)樹脂強化用炭素繊維の形態
本発明に用いる樹脂強化用炭素繊維は、多数の炭素繊維フィラメントを収束してなるトウの形態で使用される。トウ形態は、本質的に制約はなく、1本のトウ当たり1,000本の炭素繊維フィラメントを含む細いトウから、100,000本の炭素繊維フィラメントを含む所謂ラージトウまでを含む。
また、本発明の炭素繊維は、工程通過性及び取扱い性の向上のため、サイジング剤や集束剤を付与して、収束性を高めてもよい。ここで使用されるサイジング剤及び集束剤としては、本発明の炭素繊維を含む炭素繊維強化樹脂組成物で使用されるマトリックス樹脂との相溶性に優れたものであればよいが、例えば、サイジング剤としては、エポキシ樹脂と界面活性剤との混合物、ウレタン樹脂と界面活性剤との混合物、ナイロン樹脂と界面活性剤との混合物およびこれら化合物の混合物などが挙げられる。
【0012】
(1−5)樹脂強化用炭素繊維の含有量
上記特性を有する本発明の樹脂強化用炭素繊維は、炭素繊維全体の質量に対し、少なくとも20質量%、好ましくは、30質量%以上含有することが適当である。本発明の炭素繊維を20質量%以上含有することにより、本発明の炭素繊維を含む成形品の導電性を大きく増大させることができる。
本発明の炭素繊維は、特に機械的強度よりも導電性を重要視する用途向けには、本発明の炭素繊維単独でも使用できるが、炭素繊維表面の原子数比O1s/C1sの異なる炭素繊維を複数種使用し、その混合割合を変化させることで 本発明の炭素繊維を含む炭素繊維強化樹脂組成物の導電性と機械的特性のバランスを制御することができる。
例えば、炭素繊維表面の原子数比O1s/C1sの異なる炭素繊維を2種類使用する場合、上述した所望の表面原子数比O1s/C1sを有する本発明の炭素繊維は、炭素繊維全体の質量に対し、20質量%〜80質量%、好ましくは、50質量%含有することが適当である。また、各炭素繊維に付着するサイジング剤の種類、及び炭素繊維の繊維長は同一でも異なっていてもよい。
複数種の炭素繊維を使用する場合、これらの炭素繊維の混合は、炭素繊維を製造する段階及び炭素繊維強化樹脂組成物を製造する段階のうち、どの段階で行われても良いが、付着させるサイジング剤や繊維長を同一にするためには、炭素繊維前駆体を焼成して炭素繊維を製造した後であって、サイジング剤を付着した後の、炭素繊維を切断処理する段階で混合するのが望ましい。
【0013】
(2)炭素繊維強化樹脂組成物
本発明の炭素繊維強化樹脂組成物は、上記本発明の樹脂強化用炭素繊維と、マトリックス樹脂と、場合により添加剤とを含む。
(2−1)炭素繊維
本発明の炭素繊維強化樹脂組成物は、上記本発明の樹脂強化用炭素繊維を、炭素繊維強化樹脂組成物全体の質量に対し、例えば、5〜40質量%、好ましくは、10〜30質量%含むものである。このような範囲であれば、炭素繊維を添加したことによる、導電性、機械物性の向上が顕著であるので好適である。
【0014】
(2−2)マトリックス樹脂
本発明の炭素繊維強化樹脂組成物に使用されるマトリックス樹脂としては、公知の熱可塑性樹脂及び熱硬化性樹脂等を使用することができる。ここで、熱可塑性樹脂としては、例えば、ポリカーボネート樹脂、ポリアミド樹脂、ポエステル樹脂、ABS樹脂、ポリスチレン系樹脂、PPE系樹脂、POM樹脂、ポリオレフィン樹脂、その他の工業的に有用なエンジニアリング樹脂及びこれらのポリマーアロイ樹脂等が挙げられる。又、熱硬化性樹脂としては、例えば、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂等が挙げられる。本発明で使用される好ましいマトリックス樹脂は、ABS樹脂、ポリカーボネート、及びこれらの混合物である。
(2−3)添加剤
本発明の炭素繊維強化樹脂組成物には、各種フィラー、エラストマー(ゴム)、カーボンブラック、金属酸化物及びセラミックス等の粒状物、難燃剤等の添加剤を加えることができる。添加剤は、本発明の炭素繊維強化樹脂組成物に対し、例えば、0〜30質量%、好ましくは、0〜15質量%含有することが適当である。
【0015】
(2−4) 炭素繊維強化樹脂組成物の製造方法
本発明の炭素繊維強化樹脂組成物は、上記本発明の樹脂強化用炭素繊維と、マトリックス樹脂と、場合によって添加剤とを、公知の方法により混合することによって調製される。また、本発明の炭素繊維強化樹脂組成物は、公知の方法を用いて成形することができる。成形方法としては、熱可塑性樹脂である場合に於いては、射出成形を採用することが一般的である。一方、マトリックス樹脂が熱硬化性樹脂である場合に於いては、プレス成形、SMC並びにBMCによる高圧プレス成形法が挙げられる。
【0016】
(2−5)炭素繊維強化樹脂組成物の導電性
本発明の炭素繊維強化樹脂組成物は、良好な電気的特性、特に導電性を示すものである。従来にない良好な導電性を示す理由及びそのメカニズムの詳細は不明であるが、炭素繊維表面の表面特性が大いに寄与しているものと考えられる。導電性は、例えば、2点間抵抗値が10Ω未満、好ましくは、8Ω未満であることが好適である。2点間抵抗値は、例えば、次のようにして測定される。射出成形機にて射出成形した本発明の炭素繊維強化組成物(100mm×100mm×2mm)の平板を準備し、ついで、対角線上にインサート金属金具を2つ熱インサートする。この炭素繊維強化樹脂組成物の2点間の抵抗値をテスター(1.5V駆動)で測定する。
(2−6)炭素繊維強化樹脂組成物の機械的強度
本発明の炭素繊維強化樹脂組成物の機械的強度は、例えば、3点曲げ試験における曲げ強度で、100MPa以上、好ましくは、100〜180MPaであることが好適である。曲げ強度は、例えば、射出成形機にて射出成形した本発明の炭素繊維強化組成物(125mm×12.5mm×3.2mm)の平板を準備し、ASTM D790に準拠して測定される。
【0017】
【実施例】
[炭素繊維の調製]
表面処理前の炭素繊維パイロフィル TR30S(三菱レイヨン社製;ストランド弾性率=240GPa)を準備し、これを10%重炭酸アンモニウム溶液中に浸漬して、電気化学的に炭素繊維表面を電解酸化処理した。これにより、ストランド弾性率が240GPaであり、炭素繊維表面の原子数比(O1s/C1s)が0.05である炭素繊維を得た。
また、表面処理前の炭素繊維パイロフィル TR30Sを上記と同様にして表面酸化処理し、ストランド弾性率が240GPaであり、炭素繊維表面の原子数比(O1s/C1s)が0.01並びに0.13である炭素繊維を得た。
なお、ストランド弾性率は、JIS R7601に記載された樹脂含浸ストランド弾性率の測定方法に準拠して測定した。具体的には、樹脂として、エピコート828を100質量部、無水メチルナジック酸を90質量部、ベンジルメチルアミンを1.5質量部、及び、アセトンを50質量部含有する樹脂溶液を準備し、本発明の炭素繊維を含浸させる。樹脂含浸した炭素繊維を室温下、約10時間放置してアセトンを除去した後、90℃で2時間、その後150℃で4時間処理して硬化して試験片を得、JIS R7601に記載された樹脂含浸ストランド弾性率の測定方法に従って測定した。
また、炭素繊維の表面原子数比(O1s/C1s)は、VG社製ESCALAB220iXL装置を用いて、Al−MonokαをX線源として測定した。
得られた上記3種類の炭素繊維を単独若しくは混合して、実施例1〜4及び比較例1〜3の炭素繊維を得た。下記表1に、これら実施例及び比較例で使用した炭素繊維の種類とその含有量を示す。なお、ストランド弾性率が240GPaの場合、式(1)で示される好ましい表面原子数比(O1s/C1s)の範囲は、0.01064≦O1s/C1s≦0.0768であるので、表面原子数比(O1s/C1s)が0.01並びに0.13である炭素繊維は、参考例である。
【0018】
表1

Figure 2004182947
【0019】
さらに、炭素繊維原材料として表面処理前の炭素繊維パイロフィル MR35E(三菱レイヨン社製;ストランド弾性率=300GPa)を使用した以外は、上記と同様にして炭素繊維を表面酸化処理し、ストランド弾性率が300GPaであり、炭素繊維表面の原子数比(O1s/C1s)が、それぞれ0.008、0.05、0.1である炭素繊維を得た。これらの炭素繊維は混合せずに単独で使用した。
下記表2に、これらの炭素繊維の種類とその含有量を示す。なお、ストランド弾性率が300GPaの場合、式(1)で示される好ましい表面原子数比(O1s/C1s)の範囲は、0.0083≦O1s/C1s≦0.066であるので、表面原子数比(O1s/C1s)が0.008並びに0.1である炭素繊維は、参考例である。
表2
Figure 2004182947
【0020】
[炭素繊維強化樹脂組成物の調製]
上記のようにして調製された実施例1〜6及び比較例1〜6の炭素繊維にサイジング剤を炭素繊維質量(g)当たり0.035g付与して集束性を施した後、カッター切断して繊維長が6mmのチョップドファイバーの形態とした。その後、このチョップドファイバーとした炭素繊維とマトリックス樹脂としてのポリカーボネート/ABSアロイ樹脂ペレット(三菱レイヨン社製:ダイヤアロイTC−7F)とを、炭素繊維の質量が炭素繊維強化樹脂組成物全体の質量に対して20質量%又は30質量%になるように配合し、サイドフィード式30mmベント二軸押出し機にて溶融混合(シリンダー温度270℃)してストランド状に押出した。得られたストランド状の炭素繊維強化樹脂組成物を水冷し、切断して乾燥し、炭素繊維強化樹脂組成物ペレットを得た。
【0021】
[炭素繊維強化樹脂組成物の評価]
得られた炭素繊維強化樹脂組成物のコンポジット特性を評価するため、以下のようにして試験片を製造し、2点間抵抗値及び曲げ強度を測定した。
(a)2点間抵抗値
得られた炭素繊維強化樹脂組成物ペレットを射出成形機(シリンダー温度270℃)に通過させ、100mm×100mm×2mmの平板を作製して炭素繊維強化樹脂組成物の試験片を得た。この試験片の対角線上にインサート金属金具を2つ熱インサートし、2点間の抵抗値(Ω)をテスター(1.5V起動)で測定した。
(b)曲げ強度
炭素繊維強化樹脂組成物ペレットを射出成形機(シリンダー温度270℃)に通過させ、125mm×12.5mm×3.2mmの平板を作製して炭素繊維強化樹脂組成物の試験片を得た。この試験片の3点曲げ試験における曲げ強度(MPa)を、ASTM D790に準拠して測定した。
これらの結果を、表3に示す。
【0022】
表3
Figure 2004182947
*実施例1a及びb並びに比較例1a及びbは、それぞれ表1の実施例1並びに比較例1の炭素繊維を使用。実施例2〜6並びに比較例2〜6は、それぞれ表1及び表2の実施例2〜6並びに比較例2〜6の炭素繊維を使用。
【0023】
【発明の効果】
以上説明したように、ESCAで測定される炭素繊維の表面原子数比(O1s/C1s)が特定の値を有するストランド弾性率200〜400GPaの炭素繊維を所定量含む樹脂強化用炭素繊維は、熱可塑性樹脂のようなマトリックス樹脂と複合化することにより、得られた炭素繊維強化樹脂組成物の導電性を向上し、かつ優れた機械的強度を発揮することができる。また、上記樹脂強化用炭素繊維の繊維長を5〜50mmとしたチョップドファイバーの形態にすることにより、炭素繊維の製造工程およびマトリックス樹脂との複合化工程において、優れた加工性及び取り扱い性を発揮することができる。さらに本発明の炭素繊維強化樹脂組成物は、炭素繊維とマトリックス樹脂との濡れ性及び界面接着性が低下し、得られた炭素繊維強化樹脂組成物の機械的特性はわずかに低下するものの、導電性を重視する用途には十分な機械的特性である。特に、本発明のチョップドファイバーの形態の炭素繊維を含む炭素繊維強化樹脂組成物は、高度の衝撃強度や引張強さが要求される長繊維の形態の炭素繊維を含む炭素繊維強化樹脂組成物と異なり、一般に、中程度の引張強さや良好な曲げ強度が要求される用途において好ましく使用されるものであるから、優れた導電性を有し、かつ、十分な機械的特性を有するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon fiber for obtaining a fiber reinforced composite material having excellent conductivity, and a carbon fiber reinforced resin composition using the carbon fiber as a reinforcing material.
[0002]
[Prior art]
Recently, demands for imparting conductivity to resin molded articles have been rapidly increasing. Examples of a method for imparting conductivity to a molded product include a method of applying a conductive paint to the surface of the molded product, a method of applying a metal or conductive fiber cloth, and a method of forming a molding material to which a conductive material is added. And the like. Above all, the method of molding a molding material to which carbon fiber is added as a conductive material is free from the problem that the conductivity-imparting material is peeled off during use and the effect is reduced as compared with a case where a conductive paint is applied, and is economically advantageous. But it is also excellent in performance.
[0003]
[Problems to be solved by the invention]
However, a molded article to which carbon fibers are added has a slightly lower conductivity than a molded article having another conductivity, and cannot satisfy the conductivity required for a molded article in recent years. As a method of improving conductivity, there is a method of adding more carbon fibers.However, when the added amount of carbon fibers increases, moldability deteriorates, and the problem that the appearance characteristics of the obtained molded product cannot be maintained. is there. In addition, the method of increasing the size of the graphite crystal of the carbon fiber to be added and increasing the crystallinity thereof to increase the conductivity of the carbon fiber itself makes the carbon fiber brittle, and as a result, the carbon fiber breaks at the processing stage of the molded article. As a result, there is a problem that the process passability deteriorates. Attempts have also been made to use carbon fibers plated with metal on the surface (Japanese Patent Publication No. 4-46636). However, although carbon fibers coated with metal exhibit good conductivity, the specific gravity increases, This significantly impairs the original characteristics of carbon fibers, which are excellent in rigidity and specific strength.
On the other hand, there is a method of improving the mechanical properties of the molded article by dispersing the carbon fibers added to the molded article well in the molded article and further increasing the adhesiveness of the interface, for example, by attaching the carbon fiber to the carbon fiber. A method of improving the sizing agent and a method of treating the surface of the carbon fiber to introduce an active oxygen functional group on the surface of the carbon fiber (JP-A-2-292334). In particular, the latter surface treatment of carbon fiber is a method which has been conventionally performed in the carbon fiber for resin reinforcement from the viewpoint of improving the wettability with the matrix resin and the interfacial adhesion. Therefore, in order to ensure a sufficient mechanical strength of the carbon fiber reinforced resin composition, the carbon fiber is always subjected to a surface treatment, and the atomic ratio O 1s / C 1s on the surface is equal to or higher than a certain level (for example, 0.1%) . (1 or more).
[0004]
[Patent Document 1]
Japanese Patent Publication No. 1-46636 [Patent Document 2]
JP-A-2-292334
However, there is no example in which a carbon fiber is subjected to a surface treatment to improve the conductivity of the carbon fiber to adjust the atomic ratio O 1s / C 1s on the surface. This is because the surface treatment does not significantly change the conductivity of the carbon fiber itself. However, in practice, despite the fact that the conductivity of the carbon fiber itself does not change, by adjusting the atomic ratio O 1s / C 1s on the surface of the carbon fiber, the molded article of the fiber-reinforced resin composition containing the carbon fiber can be formed. It has been found that the conductivity can be adjusted significantly.
Accordingly, a first object of the present invention is to provide a carbon fiber for resin reinforcement capable of improving the conductivity of a molded product without impairing the excellent properties of a conductive fiber having a low specific gravity, which carbon fiber originally has. To provide.
A second object of the present invention is to provide a carbon fiber reinforced resin composition which is added with the carbon fiber and has sufficient conductivity and mechanical strength.
[0006]
[Means for Solving the Problems]
The present inventors do not perform surface treatment on carbon fibers, or add very little surface treatment to add carbon fibers whose surface atomic ratio O 1s / C 1s is controlled to a desired range. It has been found that a carbon fiber reinforced resin composition having much higher conductivity can be obtained.
Further, the present inventors have taken a lot of data by repeating an enormous amount of experiments, and have found that a carbon fiber having a fixed relationship between the strand elastic modulus of carbon fiber and the surface atomic ratio of the carbon fiber (O 1s / C 1s ) has a constant By combining with another carbon fiber having a different surface atomic ratio (O 1s / C 1s ) of the fiber, a carbon fiber having a good balance between conductivity and mechanical properties can be provided. It has been found that a carbon fiber reinforced resin composition having a good balance between conductivity and mechanical properties can be provided by combining the above matrix resin.
That is, in the present invention, the strand elastic modulus is 200 to 400 GPa, and the surface atomic ratio (O 1s / C 1s ) measured by ESCA is represented by the following formula (1):
0.02-3.9 × 10 −5 × E ≦ O 1s / C 1s ≦ 0.12-1.8 × 10 −4 × E (1)
(In the formula, E is a strand elastic modulus represented by GPa of the carbon fiber.) The present invention relates to a carbon fiber for resin reinforcement characterized by containing 20% by mass or more of a carbon fiber satisfying the above formula. .
The present invention also relates to a carbon fiber reinforced resin composition comprising a matrix resin and 5 to 40% by mass of the resin reinforcing carbon fibers.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
(1) Carbon Fiber for Resin Reinforcement As described above, the present invention relates to a carbon fiber for resin reinforcement having a specific strand elastic modulus and a specific atomic ratio of the carbon fiber surface. Hereinafter, the characteristics and the content of the carbon fiber for resin reinforcement of the present invention will be mainly described.
(1-1) Strand elastic modulus The carbon fiber for resin reinforcement of the present invention has a strand elastic modulus of 200 to 400 GPa, preferably 230 to 350 GPa. If it is 200 GPa or more, the effect as a reinforcing fiber is sufficiently obtained, and if it is 400 GPa or less, it does not affect the processability of the carbon fiber, and the carbon fiber reinforced resin containing the carbon fiber of the present invention. It is preferable that fiber cutting does not become remarkable when molding is used.
Here, the strand elastic modulus is measured in accordance with, for example, a method for measuring a resin-impregnated strand elastic modulus described in JIS R7601. Specifically, as a resin, a resin solution containing 100 parts by mass of Epicoat 828, 90 parts by mass of methylnadic anhydride, 1.5 parts by mass of benzylmethylamine, and 50 parts by mass of acetone was prepared. Impregnating the carbon fibers of the invention. The resin-impregnated carbon fiber was left at room temperature for about 10 hours to remove acetone, then treated at 90 ° C. for 2 hours and then at 150 ° C. for 4 hours and cured to obtain a test piece, which was described in JIS R7601. It is measured according to the method for measuring the elastic modulus of the resin-impregnated strand.
[0008]
(1-2) Atomic number ratio (O 1s / C 1s ) of carbon fiber surface for resin reinforcement
The surface atomic ratio (O 1s / C 1s ) of the carbon fiber for resin reinforcement of the present invention satisfies the following expression (1) in relation to the strand elastic modulus of the carbon fiber.
0.02-3.9 × 10 −5 × E ≦ O 1s / C 1s ≦ 0.12-1.8 × 10 −4 × E (1)
In the formula, E is a strand elastic modulus (dimensionless number) represented by GPa of the carbon fiber. For example, when the strand elastic modulus of the carbon fiber is 240 GPa, the value of E in Expression (1) is 240.
The preferred range of the atomic ratio (O 1s / C 1s ) on the surface of the carbon fiber of the present invention satisfies the following expression (2).
0.03-3.9 × 10 −5 × E ≦ O 1s / C 1s ≦ 0.11-1.8 × 10 −4 × E (2)
Here, the surface atomic ratio (O 1s / C 1s ) of the carbon fiber is a value measured by ESCA. More specifically, for example, it is a value measured using Al-Monokα as an X-ray source using an ESCALAB220iXL device manufactured by VG.
[0009]
The atomic ratio O 1s / C 1s on the surface of the carbon fiber changes depending on the maximum processing temperature in the carbon fiber manufacturing process. For example, in a carbon fiber (for example, 235 GPa) having a low strand elastic modulus manufactured by keeping the maximum treatment temperature relatively low, the atomic ratio O 1s / C 1s of the surface without surface treatment is about 0.05. It is. On the other hand, in the case of a carbon fiber (for example, 392 GPa) having a high strand elasticity manufactured at a relatively high maximum treatment temperature, the atomic ratio O 1s / C 1s of the surface without surface treatment is about 0. .02. Further, the oxidizability of the carbon fiber surface decreases with an increase in the maximum firing temperature, and as a result, the value of O 1s / C 1s of the carbon fiber having a high strand elastic modulus tends to decrease as the elastic modulus increases. is there.
Accordingly, the surface atomic ratio O 1s / C 1s of the carbon fiber for resin reinforcement of the present invention obtained through the carbon fiber production process is obtained by taking into account the change due to the difference in the treatment temperature in the carbon fiber production process. Can be controlled by treating the surface of the carbon fiber by various methods. Examples of a general surface treatment method include a method of electrochemically performing a surface oxidation treatment; a method of performing a gas phase oxidation treatment such as an air oxidation treatment and an ozone oxidation treatment; and a method of performing a chemical oxidation treatment. Preferably, the carbon fibers are immersed in, for example, an electrolyte, the carbon fibers are used as an anode, electricity is supplied to a cathode through an aqueous electrolyte solution, and the surface of the carbon fibers is electrochemically oxidized. Here, examples of the electrolyte include nitric acid, sulfuric acid, phosphoric acid, hydrochloric acid, an aqueous solution of nitrate, an aqueous solution of sulfate, an aqueous solution of sodium hydroxide, an aqueous solution of potassium hydroxide, an aqueous solution of ammonium carbonate, and an aqueous solution of ammonium bicarbonate.
As described above, in the present invention, the maximum treatment temperature in the carbon fiber manufacturing process is changed to control the strand elastic modulus of the carbon fiber, and the surface atomic ratio O 1s / C 1s of the obtained carbon fiber is adjusted according to the surface atomic ratio. By controlling the surface atomic ratio O 1s / C 1s of the carbon fiber by changing the treatment conditions, the intended carbon fiber for resin reinforcement can be obtained.
[0010]
(1-3) Fiber length of resin-reinforced carbon fiber The fiber length of the resin-reinforced carbon fiber of the present invention varies depending on the molding method to be used, but is usually in the range of 1 to 50 mm, preferably 3 to 40 mm. It is desirable that When it is 1 mm or more, it is preferable that the handling property is not inferior or the productivity of the carbon fiber in the form of chopped fiber does not decrease, and when it is 50 mm or less, the process passability during molding does not deteriorate.
[0011]
(1-4) Form of carbon fiber for resin reinforcement The carbon fiber for resin reinforcement used in the present invention is used in the form of a tow obtained by converging a large number of carbon fiber filaments. The tow morphology is essentially unlimited and includes thin tows containing 1,000 carbon fiber filaments per tow to so-called large tows containing 100,000 carbon fiber filaments.
Further, the carbon fiber of the present invention may be provided with a sizing agent or a sizing agent to enhance the convergence in order to improve process passability and handleability. The sizing agent and the sizing agent used here may be any as long as they have excellent compatibility with the matrix resin used in the carbon fiber-reinforced resin composition containing the carbon fibers of the present invention. Examples thereof include a mixture of an epoxy resin and a surfactant, a mixture of a urethane resin and a surfactant, a mixture of a nylon resin and a surfactant, and a mixture of these compounds.
[0012]
(1-5) Content of Resin-Reinforcing Carbon Fiber The resin-reinforcing carbon fiber of the present invention having the above-mentioned properties contains at least 20% by mass, preferably 30% by mass or more based on the mass of the entire carbon fiber. Is appropriate. By containing 20% by mass or more of the carbon fiber of the present invention, the conductivity of a molded article containing the carbon fiber of the present invention can be greatly increased.
Although the carbon fiber of the present invention can be used alone for the use in which conductivity is more important than mechanical strength, carbon fibers having different atomic ratios O 1s / C 1s on the carbon fiber surface can be used. By using a plurality of types of fibers and changing the mixing ratio, the balance between the conductivity and the mechanical properties of the carbon fiber reinforced resin composition containing the carbon fibers of the present invention can be controlled.
For example, when using two different carbon fibers of the atomic ratio O 1s / C 1s carbon fiber surfaces, the carbon fiber of the present invention having the desired number of surface atomic ratio O 1s / C 1s described above, the entire carbon fiber It is suitable to contain 20% by mass to 80% by mass, preferably 50% by mass, based on the mass of The type of sizing agent attached to each carbon fiber and the fiber length of the carbon fibers may be the same or different.
When a plurality of types of carbon fibers are used, the mixing of these carbon fibers may be performed at any stage among the stages of producing the carbon fibers and the stage of producing the carbon fiber reinforced resin composition, In order to make the sizing agent and the fiber length the same, after firing the carbon fiber precursor to produce the carbon fiber, and after attaching the sizing agent, mixing at the stage of cutting the carbon fiber Is desirable.
[0013]
(2) Carbon fiber reinforced resin composition The carbon fiber reinforced resin composition of the present invention contains the carbon fiber for resin reinforcement of the present invention, a matrix resin, and optionally an additive.
(2-1) Carbon fiber The carbon fiber reinforced resin composition of the present invention is preferably such that the resin reinforcing carbon fiber of the present invention is, for example, 5 to 40% by mass, preferably 5 to 40% by mass, based on the total mass of the carbon fiber reinforced resin composition. Contains 10 to 30% by mass. Within such a range, the addition of carbon fiber is preferable because the improvement in conductivity and mechanical properties is remarkable.
[0014]
(2-2) Matrix resin As the matrix resin used in the carbon fiber reinforced resin composition of the present invention, known thermoplastic resins and thermosetting resins can be used. Here, examples of the thermoplastic resin include, for example, polycarbonate resin, polyamide resin, polyester resin, ABS resin, polystyrene resin, PPE resin, POM resin, polyolefin resin, other industrially useful engineering resins and polymers thereof. Alloy resin and the like. Examples of the thermosetting resin include an unsaturated polyester resin, a vinyl ester resin, and a phenol resin. Preferred matrix resins used in the present invention are ABS resins, polycarbonates, and mixtures thereof.
(2-3) Additives The carbon fiber reinforced resin composition of the present invention may contain various fillers, elastomers (rubber), carbon black, particulates such as metal oxides and ceramics, and additives such as flame retardants. it can. The additive is suitably contained, for example, in an amount of 0 to 30% by mass, and preferably 0 to 15% by mass, based on the carbon fiber reinforced resin composition of the present invention.
[0015]
(2-4) Method for Producing Carbon Fiber Reinforced Resin Composition The carbon fiber reinforced resin composition of the present invention comprises the above-mentioned carbon fiber for resin reinforcement of the present invention, a matrix resin, and, if necessary, an additive. Prepared by mixing. Further, the carbon fiber reinforced resin composition of the present invention can be molded by using a known method. As a molding method, when a thermoplastic resin is used, injection molding is generally employed. On the other hand, when the matrix resin is a thermosetting resin, press molding, a high-pressure press molding method using SMC and BMC can be used.
[0016]
(2-5) Conductivity of Carbon Fiber Reinforced Resin Composition The carbon fiber reinforced resin composition of the present invention exhibits good electrical properties, particularly conductivity. Although the reason for the unprecedented good conductivity and the details of the mechanism are unknown, it is considered that the surface properties of the carbon fiber surface contribute greatly. As for the conductivity, for example, it is suitable that the resistance value between two points is less than 10Ω, preferably less than 8Ω. The resistance between two points is measured, for example, as follows. A flat plate of the carbon fiber reinforced composition of the present invention (100 mm × 100 mm × 2 mm) injection-molded by an injection molding machine is prepared, and then two insert metal fittings are hot-inserted diagonally. The resistance value between two points of the carbon fiber reinforced resin composition is measured with a tester (1.5 V drive).
(2-6) Mechanical strength of carbon fiber reinforced resin composition The mechanical strength of the carbon fiber reinforced resin composition of the present invention is, for example, a bending strength in a three-point bending test of 100 MPa or more, preferably 100 to 180 MPa. It is preferred that The bending strength is measured, for example, according to ASTM D790 by preparing a flat plate of the carbon fiber reinforced composition (125 mm × 12.5 mm × 3.2 mm) of the present invention injection-molded by an injection molding machine.
[0017]
【Example】
[Preparation of carbon fiber]
Carbon fiber Pyrofil TR30S (manufactured by Mitsubishi Rayon Co., Ltd .; strand elastic modulus = 240 GPa) before surface treatment was prepared, immersed in a 10% ammonium bicarbonate solution, and electrochemically oxidized the carbon fiber surface. . As a result, a carbon fiber having a strand elastic modulus of 240 GPa and an atomic ratio (O 1s / C 1s ) on the surface of the carbon fiber of 0.05 was obtained.
The carbon fiber Pyrofil TR30S before the surface treatment was subjected to surface oxidation treatment in the same manner as described above, the strand elastic modulus was 240 GPa, and the atomic ratio of the carbon fiber surface (O 1s / C 1s ) was 0.01 and 0.1. 13 was obtained.
The strand elastic modulus was measured according to the method for measuring the resin-impregnated strand elastic modulus described in JIS R7601. Specifically, as a resin, a resin solution containing 100 parts by mass of Epicoat 828, 90 parts by mass of methylnadic anhydride, 1.5 parts by mass of benzylmethylamine, and 50 parts by mass of acetone was prepared. The carbon fibers of the invention are impregnated. The resin-impregnated carbon fiber was left at room temperature for about 10 hours to remove acetone, then treated at 90 ° C. for 2 hours and then at 150 ° C. for 4 hours and cured to obtain a test piece, which was described in JIS R7601. It was measured according to the method for measuring the resin-impregnated strand elastic modulus.
Further, the surface atomic ratio (O 1s / C 1s ) of the carbon fiber was measured using an ES-CALB220iXL device manufactured by VG, using Al-Monokα as an X-ray source.
The obtained three types of carbon fibers were used alone or in combination to obtain carbon fibers of Examples 1 to 4 and Comparative Examples 1 to 3. Table 1 below shows the types and the contents of the carbon fibers used in these Examples and Comparative Examples. When the strand elastic modulus is 240 GPa, the preferable range of the surface atomic ratio (O 1s / C 1s ) represented by the formula (1) is 0.01064 ≦ O 1s / C 1s ≦ 0.0768. Carbon fibers having a surface atomic ratio (O 1s / C 1s ) of 0.01 and 0.13 are reference examples.
[0018]
Table 1
Figure 2004182947
[0019]
Further, except that carbon fiber Pyrofil MR35E before surface treatment (manufactured by Mitsubishi Rayon Co., Ltd .; strand elastic modulus = 300 GPa) was used as the carbon fiber raw material, the surface of the carbon fiber was oxidized in the same manner as described above, and the strand elastic modulus was 300 GPa. And carbon fibers having an atomic ratio (O 1s / C 1s ) on the carbon fiber surface of 0.008, 0.05, and 0.1, respectively, were obtained. These carbon fibers were used alone without mixing.
Table 2 below shows the types of these carbon fibers and their contents. When the strand elastic modulus is 300 GPa, the preferable range of the surface atomic ratio (O 1s / C 1s ) represented by the formula (1) is 0.0083 ≦ O 1s / C 1s ≦ 0.066. Carbon fibers having a surface atomic ratio (O 1s / C 1s ) of 0.008 and 0.1 are reference examples.
Table 2
Figure 2004182947
[0020]
[Preparation of carbon fiber reinforced resin composition]
The sizing agent was applied to the carbon fibers prepared in Examples 1 to 6 and Comparative Examples 1 to 6 in an amount of 0.035 g per mass (g) of the carbon fibers to give a sizing property, and then the cutter was cut with a cutter. The shape of the chopped fiber was 6 mm. Thereafter, the carbon fibers as chopped fibers and polycarbonate / ABS alloy resin pellets (Mitsubishi Rayon Co., Ltd .: Diamond Alloy TC-7F) as matrix resin were added to the mass of the carbon fiber reinforced resin composition as a whole. The mixture was blended so as to be 20% by mass or 30% by mass, and was melt-mixed (cylinder temperature: 270 ° C.) by a side-feed type 30 mm vent twin-screw extruder and extruded into a strand. The obtained strand-shaped carbon fiber reinforced resin composition was water-cooled, cut and dried to obtain carbon fiber reinforced resin composition pellets.
[0021]
[Evaluation of carbon fiber reinforced resin composition]
In order to evaluate the composite characteristics of the obtained carbon fiber reinforced resin composition, a test piece was manufactured as described below, and the resistance between two points and the bending strength were measured.
(A) The carbon fiber reinforced resin composition pellets obtained at the two-point resistance value were passed through an injection molding machine (cylinder temperature: 270 ° C.) to produce a flat plate of 100 mm × 100 mm × 2 mm to prepare a carbon fiber reinforced resin composition. A test piece was obtained. Two insert metal fittings were hot-inserted on the diagonal line of the test piece, and the resistance value (Ω) between the two points was measured with a tester (1.5 V startup).
(B) Flexural strength carbon fiber reinforced resin composition pellets are passed through an injection molding machine (cylinder temperature 270 ° C.) to produce a 125 mm × 12.5 mm × 3.2 mm flat plate, and a test piece of carbon fiber reinforced resin composition Got. The bending strength (MPa) of this test piece in a three-point bending test was measured in accordance with ASTM D790.
Table 3 shows the results.
[0022]
Table 3
Figure 2004182947
* Examples 1a and b and Comparative Examples 1a and b use the carbon fibers of Example 1 and Comparative Example 1 in Table 1, respectively. Examples 2 to 6 and Comparative Examples 2 to 6 use the carbon fibers of Examples 2 to 6 and Comparative Examples 2 to 6 in Tables 1 and 2, respectively.
[0023]
【The invention's effect】
As described above, a carbon fiber for resin reinforcement containing a predetermined amount of a carbon fiber having a strand elastic modulus of 200 to 400 GPa having a specific value of the surface atomic ratio (O 1s / C 1s ) of the carbon fiber measured by ESCA has a specific value. By forming a composite with a matrix resin such as a thermoplastic resin, the conductivity of the obtained carbon fiber reinforced resin composition can be improved and excellent mechanical strength can be exhibited. In addition, by forming the carbon fiber for resin reinforcement into a chopped fiber having a fiber length of 5 to 50 mm, excellent processability and handleability are exhibited in a carbon fiber manufacturing process and a composite process with a matrix resin. can do. Further, the carbon fiber reinforced resin composition of the present invention has reduced wettability and interfacial adhesion between the carbon fiber and the matrix resin, and although the mechanical properties of the obtained carbon fiber reinforced resin composition are slightly reduced, It is a mechanical property sufficient for applications that emphasize properties. In particular, the carbon fiber reinforced resin composition containing carbon fibers in the form of chopped fibers of the present invention is a carbon fiber reinforced resin composition containing carbon fibers in the form of long fibers required to have high impact strength and tensile strength. In contrast, they are generally preferably used in applications requiring moderate tensile strength and good bending strength, and therefore have excellent electrical conductivity and sufficient mechanical properties.

Claims (4)

ストランド弾性率が200〜400GPaであり、ESCAで測定される表面原子数比(O1s/C1s)が次式(1)を満たす炭素繊維を、20質量%以上含むことを特徴とする、樹脂強化用炭素繊維。
0.02−3.9×10−5×E≦O1s/C1s≦0.12−1.8×10−4×E (1)
(式中、Eは、該炭素繊維が有するGPaで表されたストランド弾性率である。)
A resin having a strand elastic modulus of 200 to 400 GPa and containing at least 20% by mass of carbon fiber whose surface atomic ratio (O 1s / C 1s ) measured by ESCA satisfies the following formula (1). Carbon fiber for reinforcement.
0.02-3.9 × 10 −5 × E ≦ O 1s / C 1s ≦ 0.12-1.8 × 10 −4 × E (1)
(In the formula, E is a strand elastic modulus expressed by GPa of the carbon fiber.)
繊維長が1〜50mmである、請求項1に記載の樹脂強化用炭素繊維。The carbon fiber for resin reinforcement according to claim 1, wherein the fiber length is 1 to 50 mm. マトリックス樹脂と、請求項2記載の樹脂強化用炭素繊維5〜40質量%とを含む、炭素繊維強化樹脂組成物。A carbon fiber reinforced resin composition comprising a matrix resin and 5 to 40% by mass of the resin reinforcing carbon fiber according to claim 2. マトリックス樹脂が、熱可塑性樹脂である、請求項3記載の炭素繊維強化樹脂組成物。The carbon fiber reinforced resin composition according to claim 3, wherein the matrix resin is a thermoplastic resin.
JP2002354820A 2002-12-06 2002-12-06 Carbon fiber for reinforcing high conductive resin Pending JP2004182947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354820A JP2004182947A (en) 2002-12-06 2002-12-06 Carbon fiber for reinforcing high conductive resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354820A JP2004182947A (en) 2002-12-06 2002-12-06 Carbon fiber for reinforcing high conductive resin

Publications (2)

Publication Number Publication Date
JP2004182947A true JP2004182947A (en) 2004-07-02
JP2004182947A5 JP2004182947A5 (en) 2006-01-26

Family

ID=32755689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354820A Pending JP2004182947A (en) 2002-12-06 2002-12-06 Carbon fiber for reinforcing high conductive resin

Country Status (1)

Country Link
JP (1) JP2004182947A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
JP2018202810A (en) * 2017-06-08 2018-12-27 富士加飾株式会社 Recycled carbon fiber bundles and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006140142A (en) * 2004-10-15 2006-06-01 Showa Denko Kk Conductive paste, its manufacturing method and usage
JP2018202810A (en) * 2017-06-08 2018-12-27 富士加飾株式会社 Recycled carbon fiber bundles and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2610671B2 (en) Fiber reinforced thermoplastic resin composition
US4702859A (en) Electrically conductive polyamide resin composition
KR20160042766A (en) Reinforced polyamide moulding compositions and injection mouldings produced therefrom
KR920010611B1 (en) Reinforced molding resin composition
JPH0618929B2 (en) Glass fiber reinforced polypropylene composition
JP2003012939A (en) Carbon-containing resin composition, molding material and molded product
JP2002088259A (en) Molding material, its manufacturing method and its molded article
CN105623248A (en) Polyamide composite material and preparation method thereof
CN111040440B (en) Low-density high-wear-resistance nylon composite material and preparation method and application thereof
JPH083396A (en) Filament-reinforced columnar material composed of filament-reinforced crystalline propylene resin composition and propeller type fan produced therefrom
JPH0583044B2 (en)
JP4278969B2 (en) Carbon fiber bundle, chopped carbon fiber bundle and carbon fiber reinforced resin composition for fiber reinforced resin exhibiting high conductivity
CN109161194A (en) A kind of fishing rod high-strength tenacity composite material
JP2002317384A (en) Electrically conductive fiber bundle for filament pellet, filament pellet made thereof, and formed article produced by using the same
JP2004182947A (en) Carbon fiber for reinforcing high conductive resin
JP2001329072A (en) Carbon fiber reinforced resin composite, molded article, and method for recovery of carbon fiber
WO2021002315A1 (en) Resin composition and molded article
CN112920555B (en) TPEE composite material suitable for high-speed extrusion and preparation method thereof
JP2000303362A (en) Sizing agent and chopped carbon fiber treated with the sizing agent
JPS6231107B2 (en)
CN111704797A (en) Low-warpage, conductive and high-mechanical-property fiber-reinforced nylon composite material and preparation method thereof
CN110240801A (en) A kind of high performance carbon fiber enhanced nylon composite material and preparation method
JP2001139831A (en) Carbon fiber-based bulk molding compound material and molded article
JPH1077350A (en) Chopped strand of carbon fiber
JPH04279638A (en) Electrically conductive fiber-reinforced thermoplastic

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080421