JP2004180491A - Permanent magnet type dynamo-electric machine and apparatus - Google Patents

Permanent magnet type dynamo-electric machine and apparatus Download PDF

Info

Publication number
JP2004180491A
JP2004180491A JP2003349579A JP2003349579A JP2004180491A JP 2004180491 A JP2004180491 A JP 2004180491A JP 2003349579 A JP2003349579 A JP 2003349579A JP 2003349579 A JP2003349579 A JP 2003349579A JP 2004180491 A JP2004180491 A JP 2004180491A
Authority
JP
Japan
Prior art keywords
angle
rotor
permanent magnet
electric machine
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003349579A
Other languages
Japanese (ja)
Inventor
Shinichi Yamaguchi
信一 山口
Haruyuki Yonetani
晴之 米谷
Tomohiro Kikuchi
友弘 菊池
Takashi Miyazaki
高志 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003349579A priority Critical patent/JP2004180491A/en
Publication of JP2004180491A publication Critical patent/JP2004180491A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet type dynamo-electric machine and apparatus, capable of reducing the cogging torque more efficiently than the case, in which the theoretical angle is adopted for a stepped skew angle, and is also capable of reducing torque ripples. <P>SOLUTION: The permanent magnet type dynamo-electric machine and apparatus includes a rotor 30 provided with four tiers of permanent magnets 32a, 32b, 32c, 32d in the axial direction on the circumferential surfaces of a rotor core 31, and a stator having a stator winding that generates a magnetic field which causes the rotor 30 to rotate in the inner perimeter of the stator core. Between the permanent magnets 32a and 32b, and between 32c and 32d, there are provided stepped skew angles θ<SB>e1</SB>(electrical angles), with the lower limit values being set to not smaller than 30° and with upper limit values being set equal to 52°. <P>COPYRIGHT: (C)2004,JPO

Description

この発明は、電動モータ等の永久磁石式回転電機に関し、特に、コギングトルクの低減を図るようにした永久磁石式回転電機に関するものである。   The present invention relates to a permanent magnet type rotating electric machine such as an electric motor, and more particularly to a permanent magnet type rotating electric machine designed to reduce cogging torque.

永久磁石式回転電機の一般的な構成においては、固定子の中に回転子が配置されている。固定子は、円筒形状をなす固定子鉄心の内周に複数個の固定子巻線を設けて複数個の磁極を形成している。回転子は、固定子の中心を回転軸心として回転できるように回転子鉄心が配設され、回転子鉄心の表面、あるいは内部に永久磁石が設けられ、永久磁石はN極とS極が交互に並ぶように配置されている。この回転電機では、固定子巻線に適宜通電し、回転磁界を形成することにより、回転子が回転軸心回りに回転する。   In a general configuration of a permanent magnet type rotating electric machine, a rotor is arranged in a stator. The stator has a plurality of stator windings provided on the inner periphery of a cylindrical stator core to form a plurality of magnetic poles. The rotor is provided with a rotor core so that it can rotate around the center of the stator as a rotation axis, and a permanent magnet is provided on or inside the rotor core, and the permanent magnet has an N pole and an S pole alternately. It is arranged so that it may line up. In this rotating electric machine, the rotor is rotated around the rotation axis by appropriately supplying a current to the stator winding and forming a rotating magnetic field.

上述のような永久磁石式回転電機にあっては、コギングトルクと称される回転トルク変動が発生する。コギングトルクは、振動や騒音を発生するばかりでなく、回転電機の制御性能を低下させる要因となる。   In the above-described permanent magnet type rotating electric machine, a rotating torque fluctuation called cogging torque occurs. The cogging torque not only generates vibration and noise, but also reduces control performance of the rotating electric machine.

従来、コギングトルクを低減するために、永久磁石を回転子鉄心の軸方向に複数段配列し、回転子鉄心の円周方向にずらすことによって、スキューの効果をもたらす工夫がなされており、複数個の永久磁石が回転子鉄心の軸方向の位置によって周方向の位置がずれるように、すなわち、スキュー角θの角度(以下、段スキュー角という)で固定子鉄心表面にならぶようにしている(例えば、特許文献1参照)。 Conventionally, in order to reduce the cogging torque, permanent magnets are arranged in multiple stages in the axial direction of the rotor core, and shifted in the circumferential direction of the rotor core, thereby devising a skew effect. the permanent magnet as the circumferential direction of the position shifts by the axial position of the rotor core, namely, the angle of skew angle theta m (hereinafter, stage referred skew angle) so that arranged in the stator core surface ( For example, see Patent Document 1).

段スキュー角θ(機械角)は、理論的に求められる角度(以下、理論角という)を用いている。コギングトルクが最小となる理論角(機械角)は、(360/固定子磁極数と回転子磁極数の最小公倍数)/軸方向永久磁石の段数によって決定される(例えば、特許文献2参照)。 As the step skew angle θ m (mechanical angle), an angle theoretically obtained (hereinafter, referred to as a theoretical angle) is used. The theoretical angle (mechanical angle) at which the cogging torque is minimized is determined by (360 / the least common multiple of the number of stator magnetic poles and the number of rotor magnetic poles) / the number of stages of axial permanent magnets (for example, see Patent Document 2).

例えば、回転電機の固定子磁極数が12、回転子磁極数が8、永久磁石の段数が4であり上側2段間及び下側2段間の各々の部分にてコギングトルクを低減する場合には、各々の段スキュー角θは7.5゜(=360/24/2,電気角θでは30゜(電気角度=機械角度×極数/2の関係式より算出される))となる。 For example, when the number of stator magnetic poles of the rotating electric machine is 12, the number of rotor magnetic poles is 8, and the number of permanent magnet stages is 4, and the cogging torque is reduced between the upper two stages and the lower two stages, respectively. It is, each of the row-to-row skew angle theta m 7.5 ° and (= 360/24/2, an electrical angle theta e in 30 ° (electrical angle = calculated from the equation machine angle × poles / 2)) Become.

しかしながら、段スキュー角θを上記のように理論的に決定し、実際の回転電機に適用した場合、コギングトルクの低減はまだ不十分であると考えられる。その理由は、段スキューを採用したことによって軸方向漏洩磁束が発生するが、この漏洩磁束による磁気飽和の影響が考慮されていないからである。コギングトルクの原因となる漏洩磁束は、永久磁石の段部、回転子鉄心内部での漏洩磁束等もあるが、固定子鉄心内部における漏洩磁束がコギングトルクの主たる原因となっている。 However, when the step skew angle θ m is theoretically determined as described above and applied to an actual rotating electric machine, it is considered that the reduction of the cogging torque is still insufficient. The reason is that the adoption of the step skew causes an axial leakage magnetic flux, but does not take into account the effect of magnetic saturation due to the leakage magnetic flux. Leakage magnetic flux that causes cogging torque includes a stepped portion of a permanent magnet, leakage magnetic flux inside a rotor core, and the like, but leakage magnetic flux inside a stator iron core is a main cause of cogging torque.

実開昭61−17876号公報(第4−第6頁、第1−第6図)Japanese Utility Model Laid-Open Publication No. 61-17876 (pages 4 to 6, FIG. 1 to FIG. 6) 特開2000−308286号公報(第3−第4頁、図2、図3)JP-A-2000-308286 (pages 3 to 4, FIGS. 2 and 3)

上述のように、従来の段スキューを採用した回転電機では、段スキュー角度に理論角を採用しているために、コギングトルクを十分に低減できていないという問題があった。   As described above, the conventional rotary electric machine employing the step skew has a problem that the cogging torque cannot be sufficiently reduced because the theoretical angle is adopted as the step skew angle.

この発明は、上記のような問題を解決するものであり、段スキュー角度に理論角を採用した場合よりもコギングトルクを効率よく低減し、併せてトルクリップルをも低減することができる永久磁石式回転電機を提供するものである。   The present invention solves the above-described problem, and a permanent magnet type that can reduce cogging torque more efficiently than when a theoretical angle is adopted as a step skew angle and can also reduce torque ripple. It is intended to provide a rotating electric machine.

この発明に係る永久磁石式回転電機は、回転子鉄心の外周面に軸方向に4段の永久磁石を設け、上記永久磁石の上側2段及び下側2段それぞれの段の間に上記回転子鉄心の周方向に段スキュー角θe1(電気角)を設け、上記上側2段と下側2段との間に段スキュー角θe2(電気角)を設けた回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備え、
上記段スキュー角θe1の下限値を、下記式(1)で求められる理論角θ(電気角)より大きな値とし、
上記段スキュー角θe1の上限値を、上記理論角θの約1.7倍としたものである。
(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角度)
…(1)
In the permanent magnet type rotating electric machine according to the present invention, four stages of permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and the rotor is provided between the upper two stages and the lower two stages of the permanent magnet. the stage skew angle theta e1 (electrical angle) in the circumferential direction of the core is provided, a rotor having a row-to-row skew angle theta e2 (electrical angle) between the upper two and the lower two, the rotor A stator having a cylindrical stator core provided with a stator winding that generates a rotating magnetic field that rotates the rotor,
The lower limit of the step skew angle θ e1 is set to a value larger than the theoretical angle θ s (electrical angle) obtained by the following equation (1).
The upper limit of the step skew angle θ e1 is about 1.7 times the theoretical angle θ s .
(180 x number of rotor poles / smallest multiple of stator pole number and rotor pole number) / 2 (electrical angle)
… (1)

また、回転子鉄心の外周面に軸方向に4段の永久磁石を設け、上記永久磁石の上側2段及び下側2段それぞれの段の間に上記回転子鉄心の周方向に段スキュー角θe2(電気角)を設け、上記上側2段と下側2段との間に段スキュー角θe1(電気角)を設けた回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備え、
上記段スキュー角θe1の下限値を、下記式(2)で求められる理論角θ(電気角)より大きな値とし、
上記段スキュー角θe1の上限値を上記理論角θの約1.2倍以下とした、
ことを特徴とする永久磁石式回転電機。
(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角度)
…(2)
Further, four permanent magnets are provided in the outer circumferential surface of the rotor core in the axial direction, and a step skew angle θ in the circumferential direction of the rotor core is provided between the upper two stages and the lower two stages of the permanent magnet. e2 (electrical angle), a rotor having a step skew angle θ e1 (electrical angle) between the upper two stages and the lower two stages, and the rotor is disposed inside. A stator having a cylindrical stator core provided with a stator winding that generates a rotating magnetic field to rotate,
The lower limit of the step skew angle θ e1 is set to a value larger than the theoretical angle θ s (electrical angle) obtained by the following equation (2).
The upper limit of the step skew angle θ e1 is set to about 1.2 times or less of the theoretical angle θ s ,
A permanent magnet type rotating electric machine characterized by the above-mentioned.
(180 x number of rotor poles / smallest multiple of stator pole number and rotor pole number) / 2 (electrical angle)
… (2)

上記発明に係る永久磁石式回転電機の構成によれば、段スキュー角θe1を理論角θとした場合よりも低く、またはそれ以下にコギングトルク基本波成分を低減し、かつ、トルクリップルを低減することができる。 According to the configuration of the permanent magnet type rotating electric machine according to the above invention, the cogging torque fundamental component is reduced to a value lower than or less than the case where the step skew angle θ e1 is set to the theoretical angle θ s , and the torque ripple is reduced. Can be reduced.

以下に、図面に基づき、この発明に係る永久磁石式回転電機の好適な実施の形態を詳細に説明する。   Hereinafter, preferred embodiments of a permanent magnet type rotating electric machine according to the present invention will be described in detail with reference to the drawings.

実施の形態1.
図1、図2及び図3は、この発明の実施の形態1を示す斜視図及び断面図である。図1に示したように、回転子30は、回転子鉄心31外周面に上側の永久磁石32a及び永久磁石32bと下側の永久磁石32c及び永久磁石32dが貼り付けられ、上側2段及び下側2段それぞれの段スキュー角と上側2段と下側2段との間の段スキュー角を考慮した4段構造になっており、各段は、N極とS極が交互に並ぶように配置されている。
Embodiment 1 FIG.
1, 2 and 3 are a perspective view and a sectional view, respectively, showing Embodiment 1 of the present invention. As shown in FIG. 1, the rotor 30 has an upper permanent magnet 32 a and a lower permanent magnet 32 d and a lower permanent magnet 32 c and a lower permanent magnet 32 d attached to the outer peripheral surface of the rotor core 31, and the upper two stages and the lower It has a four-stage structure in consideration of the skew angle of each of the two stages and the skew angle between the upper two stages and the lower two stages. In each stage, the N pole and the S pole are arranged alternately. Are located.

図2に示したように、上側の永久磁石32aと永久磁石32bとの間及び下側の永久磁石32cと永久磁石32dとの間はそれぞれ、円周方向にずらして段スキュー角θe1(電気角)を設け、上側の永久磁石32a及び永久磁石32bと下側の永久磁石32c及び永久磁石32dとの間は、円周方向にずらして段スキュー角θe2(電気角)を設けている。段スキュー角θe1(電気角度)は、(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/軸方向永久磁石の段数(この場合、上側2段間と下側2段間の各々の部分にてコギングトルクを低減するため、軸方向永久磁石の段数は2となる)の式で求められる理論角θよりも大きく、理論角θの約1.7倍以下の範囲としている。また、段スキュー角θe2は理論角θの1/2としている。前述のように、段スキュー角θe1を機械角で表わした式は、電気角度=機械角度×局数/2の関係式より、(360/固定子磁極数と回転子磁極数の最小公倍数)/軸方向永久磁石の段数である。 As shown in FIG. 2, the step skew angle θ e1 (electricity) is shifted in the circumferential direction between the upper permanent magnet 32a and the permanent magnet 32b and between the lower permanent magnet 32c and the permanent magnet 32d. A step skew angle θ e2 (electric angle) is provided between the upper permanent magnets 32a and 32b and the lower permanent magnets 32c and 32d in the circumferential direction. The step skew angle θ e1 (electrical angle) is (180 × number of rotor poles / minimum common multiple of stator pole number and rotor pole number) / number of axial permanent magnets (in this case, between the upper two steps and the lower side). to reduce the cogging torque at each portion between the two stages, the number of stages of axial permanent magnet is greater than the theoretical angle theta s obtained by the equation of a 2), about 1.7 times the theoretical angle theta s The range is as follows. The step skew angle θ e2 is set to of the theoretical angle θ s . As described above, the equation expressing the step skew angle θ e1 as a mechanical angle is obtained from the relational expression of electrical angle = mechanical angle × number of stations / 2 (360 / the least common multiple of the number of stator magnetic poles and the number of rotor magnetic poles). / The number of stages of the permanent magnet in the axial direction.

固定子20は、図3に示したように、円筒形状をなす固定子鉄心21の内周に複数個の固定子巻線22を設けて複数個の磁極を形成している。回転子30は、固定子20の中心を回転軸心として回転できるように回転子鉄心31が配設され、固定子巻線22に適宜通電し、回転磁界を形成することにより、回転子30が回転軸心回りに回転する。   As shown in FIG. 3, the stator 20 has a plurality of stator windings 22 provided on the inner periphery of a cylindrical stator core 21 to form a plurality of magnetic poles. The rotor 30 is provided with a rotor core 31 so that the rotor 30 can rotate around the center of the stator 20 as a rotation axis. The rotor 30 is appropriately energized to the stator winding 22 to form a rotating magnetic field. It rotates around the rotation axis.

図1、図2及び図3においては、回転子磁極数が8、固定子磁極数が12、永久磁石段数が2段(上側2段、下側2段)であるので、段スキュー角θe1を、30゜(理論角θ)よりも大きく、約52゜(理論角θの約1.7倍)以下の範囲としている。また、段スキュー角θe2は、15゜(理論角θの1/2)としている。 1, 2 and 3, the number of rotor magnetic poles is 8, the number of stator magnetic poles is 12, and the number of permanent magnet stages is 2 (upper 2 stages, lower 2 stages), so that the step skew angle θ e1 Is larger than 30 ° (theoretical angle θ s ) and about 52 ° (about 1.7 times the theoretical angle θ s ) or less. The step skew angle θ e2 is set to 15 ° (1 / of the theoretical angle θ s ).

段スキュー角θe1は、理論角θよりも大きく、理論角θの約1.7倍以下の範囲とすることによって、段スキュー角θe1を理論角θとした場合よりも効率的にコギングトルクの基本波成分(6f成分)を低減することができ、併せてトルクリップルも低減することができる。 Row skew angle theta e1 is greater than the theoretical angle theta s, by about 1.7 times or less of the range of the theoretical angle theta s, more efficient than the row-to-row skew angle theta e1 and the theoretical angle theta s In addition, the fundamental component (6f component) of the cogging torque can be reduced, and the torque ripple can also be reduced.

また、段スキュー角θe2を理論角θの1/2とすることによって、コギングトルクの第2次高調波成分を低減することができる。 Further, by setting the step skew angle θ e2 to 理論 of the theoretical angle θ s , the second harmonic component of the cogging torque can be reduced.

以下、コギングトルク及びトルクリップルと段スキュー角θe1、θe2との関係を説明し、この実施の形態において、コギングトルク及びトルクリップルを低減することができることを示す。 Hereinafter, the relationship between the cogging torque and the torque ripple and the step skew angles θ e1 and θ e2 will be described, and it is shown that the cogging torque and the torque ripple can be reduced in this embodiment.

図4及び図5は、回転子及び回転電機(回転子磁極数が8、固定子磁極数が12、永久磁石段数が2)について、3次元磁界解析を実施した結果を示すものである。   4 and 5 show the results of three-dimensional magnetic field analysis performed on a rotor and a rotating electric machine (the number of rotor magnetic poles is 8, the number of stator magnetic poles is 12, and the number of permanent magnet stages is 2).

図4は、コギングトルク基本波成分に関する結果、図5は、コギングトルク第2次高調波に関する結果であり、それぞれ、段スキューなしの場合のコギングトルクに対する段スキューを施した場合のコギングトルクの比であるコギングトルク比と段スキュー角(電気角)θe1との関係を、固定子鉄心20の磁気特性が理想的な場合(磁気特性A)、加工工作の過程で磁気特性が劣化している場合(磁気特性B)、加工工作によってさらに磁気特性が劣化した場合(磁気特性C)について示している。 FIG. 4 shows the result regarding the cogging torque fundamental component, and FIG. 5 shows the result regarding the cogging torque second harmonic. The ratio of the cogging torque when the stage skew is applied to the cogging torque without the stage skew, respectively. The relationship between the cogging torque ratio and the step skew angle (electrical angle) θ e1 is determined when the magnetic characteristics of the stator core 20 are ideal (magnetic characteristics A). The case (magnetic characteristic B) and the case where the magnetic characteristic is further deteriorated by the machining (magnetic characteristic C) are shown.

図6は、解析に使用した固定子鉄心20の磁気特性A、B及びC(BH特性の関係)を示している。同図における磁束密度比は、磁気特性Aの材料の飽和磁束密度を基準値として、この基準値との比を表している。磁気特性Aはカタログ値相当の磁気特性であり、加工の影響がない場合を示しており、磁気特性Bは実機状態に相当し、磁化力H=1000A/m近辺における磁束密度比が磁気特性Aと比較して20%程度低下した特性のものであり、また、磁気特性Cは磁化力H=1000A/m近辺における磁束密度比が磁気特性Aと比較して40%程度低下した特性のものである。   FIG. 6 shows the magnetic characteristics A, B and C (relationship between BH characteristics) of the stator core 20 used for the analysis. The magnetic flux density ratio in the figure represents the ratio with the reference value with the saturation magnetic flux density of the material having the magnetic characteristic A as a reference value. The magnetic characteristic A is a magnetic characteristic equivalent to a catalog value, and shows a case where there is no influence of processing. The magnetic characteristic B corresponds to the actual machine state, and the magnetic flux density ratio near the magnetizing force H = 1000 A / m is the magnetic characteristic A. The magnetic characteristic C is a characteristic in which the magnetic flux density ratio at a magnetizing force H around 1000 A / m is reduced by approximately 40% as compared with the magnetic characteristic A. is there.

図4から、コギングトルク基本波成分については、固定子鉄心の磁気特性が磁気特性Aから順次、磁気特性B、磁気特性Cと劣化するに伴い、コギングトルク比が最小となる段スキュー角θe1が大きくなっていることが分かる(これは、前述のように、段スキューを採用した場合、固定子鉄心内部に軸方向漏洩磁束が発生するためである)。すなわち、固定子鉄心の磁気特性が劣化するに伴い、コギングトルクが最小となる段スキュー角θe1は理論角30゜よりも大きくなっている。従って、磁気特性Bにおいては、段スキュー角θe1を理論角30゜とした場合、(1)の点におけるコギングトルク比(約0.18)になるのに対して、理論角30゜を越え、(1)の点におけるコギングトルク比(0.18)以下となる段スキュー角θe1の最大値((2)の点における段スキュー角θe1(約37゜))以下とすることによって、コギングトルクの基本波成分を理論角30゜とした場合よりも低く、またはそれ以下に低減することができる。また、磁気特性Cにおいても同様に、(3)の点におけるコギングトルク比(約0.23)以下となる段スキュー角θe1の最大値((4)の点における段スキュー角θe1=約43゜)以下とすることによって、コギングトルクの基本波成分を理論角30゜とした場合よりも低く、またはそれ以下に低減することができる。 From FIG. 4, as for the cogging torque fundamental wave component, the step skew angle θ e1 at which the cogging torque ratio is minimized as the magnetic characteristics of the stator core degrade from the magnetic characteristics A to the magnetic characteristics B and C sequentially. (This is because, as described above, when step skew is employed, an axial leakage magnetic flux is generated inside the stator core). That is, as the magnetic characteristics of the stator core deteriorate, the step skew angle θ e1 at which the cogging torque is minimized is larger than the theoretical angle of 30 °. Accordingly, in the magnetic characteristics B, when the step skew angle θ e1 is set to the theoretical angle of 30 °, the cogging torque ratio at the point (1) (about 0.18) is obtained, but the theoretical angle exceeds the theoretical angle of 30 °. , The cogging torque ratio (0.18) at the point (1) or less, the step skew angle θ e1 at the point (2) (the step skew angle θ e1 (about 37 °)) or less, The fundamental wave component of the cogging torque can be reduced to less than or less than the case where the theoretical angle is 30 °. Similarly, in the magnetic properties C, (3) the cogging torque ratio at a point (about 0.23) or less become the maximum value of the row-to-row skew angle theta e1 ((4) stage skew angle theta e1 = approximately at the point of 43 °) or less, the fundamental wave component of the cogging torque can be reduced to less than or less than the case where the theoretical angle is 30 °.

また、図5から、コギングトルク第2次高調波成分に関しては、段スキュー角θe2が理論角θの1/2または3/2(電気角15゜、電気角45゜)である時に、コギングトルク比が最小となることが分かる。これは、コギングトルク第2次高調波成分は、軸方向漏洩磁束の影響(磁気飽和の影響)を受けにくいことによるものであり、コギングトルク第2次高調波成分の低減には段スキュー角θe2を理論角θの1/2または3/2とするのがよいと考えられる。 Also, from FIG. 5, regarding the second harmonic component of the cogging torque, when the step skew angle θ e2 is ま た は or 3/2 of the theoretical angle θ s (electrical angle 15 °, electrical angle 45 °), It can be seen that the cogging torque ratio is minimized. This is because the second harmonic component of the cogging torque is hardly affected by the axial leakage magnetic flux (the effect of magnetic saturation), and the step skew angle θ is required to reduce the second harmonic component of the cogging torque. the e2 is to 1/2 or 3/2 of the theoretical angle θ s is considered good.

一方、通電時のトルクリップルと段スキュー角との関係は、一般に、スキュー係数と称される巻線係数を用いて検討する。回転電機における第ν次高調波成分に対するスキュー係数κsvは次式(3)で与えられる。但し、γはスキュー角である。 On the other hand, the relationship between the torque ripple and the step skew angle during energization is generally examined using a winding coefficient called a skew coefficient. The skew coefficient κ sv for the νth harmonic component in the rotating electric machine is given by the following equation (3). Here, γ is a skew angle.

κsv=sin(νγ/2)/(νγ/2) …(3) κ sv = sin (νγ / 2) / (νγ / 2) (3)

ここで、段スキュー角をγとすると、γ=γ/2であるから、段スキューを採用した場合のスキュー係数κdsvは次式(4)で与えられる。 Here, assuming that the step skew angle is γ d , γ d = γ / 2, so that the skew coefficient κ dsv when the step skew is adopted is given by the following equation (4).

κdsv=sin(νγ)/(νγ) …(4) κ dsv = sin (νγ d ) / (νγ d ) (4)

また、永久磁石式回転電機のトルクリップルは、電源周波数の6倍の成分(以下6f成分という)が支配的となる。一般に、トルクリップル6f成分は5次及び7次の高調波成分に起因して発生する。   In the torque ripple of the permanent magnet type rotating electric machine, a component that is six times the power supply frequency (hereinafter referred to as a 6f component) is dominant. Generally, the torque ripple 6f component is generated due to the fifth and seventh harmonic components.

図7は、上記式(3)より算出される段スキュー角γに対する5次及び7次のスキュー係数を示す図である。トルクリップル6f成分に対する5次及び7次高調波成分の影響度合は、近似的に次数の2乗の逆数に関係すると考えられ、5次成分の影響度合は1/5=0.04、7次成分の影響度合は1/7=0.02と考えられる。 Figure 7 is a diagram illustrating a fifth-order and seventh-order skew coefficient for stage skew angle gamma d calculated from the above equation (3). The degree of influence of the fifth and seventh harmonic components on the torque ripple 6f component is considered to be approximately related to the reciprocal of the square of the order, and the degree of influence of the fifth order component is 1/5 2 = 0.04, 7 The degree of influence of the next component is considered to be 1/7 2 = 0.02.

図8は、図7のスキュー係数と5次及び7次成分のトルクリップル6f成分に関する影響度合を考慮した段スキュー角に対するトルクリップル6f成分係数を示す図である。同図より、トルクリップル6f成分係数は、段スキュー角γが30゜を越えると、30゜におけるトルクリップル6f成分係数より小さな値になる。従って、段スキュー角γを、コギングトルク基本波成分に対する理論角θである30゜以上とすることによって、トルクリップル6f成分を低減することができると考えられる。 FIG. 8 is a diagram showing the torque skew 6f component coefficient with respect to the step skew angle in consideration of the skew coefficient of FIG. 7 and the degree of influence on the torque ripple 6f component of the fifth and seventh order components. As shown in the figure, when the step skew angle γ d exceeds 30 °, the torque ripple 6f component coefficient becomes smaller than the torque ripple 6f component coefficient at 30 °. Therefore, it is considered that the torque ripple 6f component can be reduced by setting the step skew angle γ d to 30 ° or more, which is the theoretical angle θ s with respect to the cogging torque fundamental wave component.

以上は、上側2段または下側2段の構造について、3次元磁界解析を行った結果を示している。段スキュー角θe2は、磁気飽和の影響がないので、理論角θの1/2または3/2とすればよい。しかし、段スキュー角θe1は、磁気飽和の影響があり、この実施の形態においては、上側2段と下側2段の4段構造になっているので、磁気飽和の影響度合が上記3次元磁界解析とは異なることが考えられる。 The above shows the results of performing a three-dimensional magnetic field analysis on the structure of the upper two stages or the lower two stages. Since the step skew angle θ e2 is not affected by magnetic saturation, it may be set to 1 / or 3/2 of the theoretical angle θ s . However, the step skew angle θ e1 is affected by magnetic saturation, and in this embodiment, the upper skew angle θ e1 has a four-stage structure of two upper steps and two lower steps. It may be different from the magnetic field analysis.

図9は、上側2段と下側2段の4段構造について、段スキュー角θe1を変化させた場合のコギングトルク基本波成分を、実機によって実測した結果を示す図であり、段スキュー角θe1に対するコギングトルク比(段スキュー角θe1=0のコギングトルクを基準とした)を示している。なお、実機は、回転子磁極数を8、固定子磁極数を12としている。 FIG. 9 is a diagram showing the results of actually measuring the cogging torque fundamental wave component when the stage skew angle θ e1 is changed for a four-stage structure of two upper stages and two lower stages by an actual machine. The cogging torque ratio with respect to θ e1 (based on the cogging torque at the stage skew angle θ e1 = 0) is shown. The actual machine has eight rotor magnetic poles and twelve stator magnetic poles.

図9に示されているように、段スキュー角θe1が理論角30゜の時のコギングトルク比は0.28である。コギングトルク比を0.28より小さく、あるいは0.28以下とするためには、段スキュー角θe1を30゜より大きく、約52゜(理論角30゜の約1.7倍)以下とすればよい。すなわち、段スキュー角θe1を理論角θよりも大きく、理論角θの約1.7倍以下とすればよいと推察される。 As shown in FIG. 9, when the step skew angle θ e1 is the theoretical angle of 30 °, the cogging torque ratio is 0.28. In order to make the cogging torque ratio smaller than 0.28 or smaller than 0.28, the step skew angle θ e1 is larger than 30 ° and is smaller than about 52 ° (about 1.7 times the theoretical angle of 30 °). Just fine. That is, greater than the theoretical angle theta s a stage skew angle theta e1, is inferred that it may be more than about 1.7 times the theoretical angle theta s.

また、コギングトルク比を0.28の1/2程度としたい場合には、段スキュー角θe1を36゜以上、44゜以下、すなわち、理論角θの約1.2倍以上、約1.47倍以下とすればよいことが分かる。 When the cogging torque ratio is desired to be about 1/2 of 0.28, the step skew angle θ e1 is 36 ° or more and 44 ° or less, that is, about 1.2 times or more of the theoretical angle θ s and about 1 It can be seen that it is sufficient to set it to .47 or less.

実施の形態2.
上記実施の形態1では、上側2段の永久磁石及び下側2段の永久磁石それぞれに、段スキュー角θe1を設けてコギングトルクの基本波成分及びトルクリップルを低減し、上側2段の永久磁石と下側2段の永久磁石との間に段スキュー角θe2を設けてコギングトルクの第2次高調波成分を低減するようにした。
Embodiment 2 FIG.
In the first embodiment, a step skew angle θ e1 is provided for each of the upper two-stage permanent magnets and the lower two-stage permanent magnets to reduce the fundamental wave component of cogging torque and the torque ripple. A step skew angle θe2 is provided between the magnet and the lower two-stage permanent magnet to reduce the second harmonic component of the cogging torque.

この実施の形態では、上側2段の永久磁石及び下側2段の永久磁石それぞれに、段スキュー角θe2を設けてコギングトルクの第2次高調波成分を低減し、上側2段の永久磁石と下側2段の永久磁石との間に段スキュー角θe1を設けてコギングトルクの基本波成分及びトルクリップルを低減するものである。 In this embodiment, a step skew angle θ e2 is provided for each of the upper two-stage permanent magnet and the lower two-stage permanent magnet to reduce the second harmonic component of the cogging torque. A step skew angle θ e1 is provided between the lower permanent magnet and the lower two permanent magnets to reduce the fundamental wave component of cogging torque and the torque ripple.

図10は、上側2段の永久磁石及び下側2段の永久磁石それぞれに、段スキュー角θe2を設け、上側2段の永久磁石と下側2段の永久磁石との間に段スキュー角θe1を設けた場合の段スキュー角θe1とコギングトルク基本は成分のコギングトルク比との関係を実機で実測した結果を示す図である。なお、実機は、回転子磁極数を8、固定子磁極数を12としている。 FIG. 10 shows that a step skew angle θ e2 is provided for each of the upper two-stage permanent magnet and the lower two-stage permanent magnet, and the step skew angle is set between the upper two-stage permanent magnet and the lower two-stage permanent magnet. FIG. 9 is a diagram showing the results of actual measurement of the relationship between the step skew angle θ e1 and the cogging torque basic component cogging torque ratio in the case where θ e1 is provided. The actual machine has eight rotor magnetic poles and twelve stator magnetic poles.

図10に示されているように、段スキュー角θe1が理論角30゜の時のコギングトルク比は0.15である。コギングトルク比を0.15より小さく、あるいは0.15以下とするためには、段スキュー角θe1を30゜より大きく、約35゜(理論角30゜の約1.2倍)以下とすればよい。すなわち、段スキュー角θe1を理論角θよりも大きく、理論角θの約1.2倍以下とすればよいと推察される。 As shown in FIG. 10, when the step skew angle θ e1 is the theoretical angle of 30 °, the cogging torque ratio is 0.15. In order to make the cogging torque ratio smaller than 0.15 or smaller than 0.15, the step skew angle θ e1 is larger than 30 ° and is smaller than about 35 ° (about 1.2 times the theoretical angle of 30 °). Just fine. That is, greater than the theoretical angle theta s a stage skew angle theta e1, is inferred that it may be more than about 1.2 times the theoretical angle theta s.

この発明に係る永久磁石式回転電機の実施の形態1を示す斜視図である。1 is a perspective view showing a first embodiment of a permanent magnet type rotating electric machine according to the present invention. この発明に係る永久磁石式回転電機の実施の形態1を示す断面図である。FIG. 1 is a cross-sectional view illustrating Embodiment 1 of a permanent magnet type rotating electric machine according to the present invention. この発明に係る永久磁石式回転電機の実施の形態1を示す平面図である。FIG. 1 is a plan view showing a first embodiment of a permanent magnet type rotating electric machine according to the present invention. 図1〜図3の上側2段の部分または下側2段のみをモデル化(2段)した回転子及び回転電機について、3次元磁界解析を実施して得られたコギングトルク基本波成分の結果を示す図である。Results of cogging torque fundamental wave components obtained by performing a three-dimensional magnetic field analysis on a rotor and a rotating electric machine in which only the upper two stages or the lower two stages of FIGS. 1 to 3 are modeled (two stages). FIG. 図1〜図3の上側2段の部分または下側2段のみをモデル化(2段)した回転子及び回転電機について、3次元磁界解析を実施して得られたコギングトルク高調波成分の結果を示す図である。Results of harmonic components of cogging torque obtained by performing three-dimensional magnetic field analysis on a rotor and a rotating electric machine in which only the upper two stages or only the lower two stages in FIGS. 1 to 3 are modeled (two stages). FIG. 3次元解析に用いた回転子鉄心の磁気特性を示す図である。It is a figure showing the magnetic characteristic of the rotor core used for three-dimensional analysis. 段スキュー角に対する5次及び7次のスキュー係数を示す図である。It is a figure which shows the 5th-order and 7th-order skew coefficient with respect to step skew angle. 段スキュー角に対するトルクリップル6f成分係数を示す図である。It is a figure which shows the torque ripple 6f component coefficient with respect to step skew angle. 実施の形態1の永久磁石式回転電機の実機による実測結果を示す図である。FIG. 4 is a diagram showing a result of actual measurement of the permanent magnet type rotating electric machine according to the first embodiment using an actual machine. 実施の形態2の永久磁石式回転電機の実機による実測結果を示す図である。FIG. 13 is a diagram illustrating an actual measurement result of a permanent magnet type rotating electric machine according to the second embodiment using an actual machine.

符号の説明Explanation of reference numerals

20 固定子、21 固定子鉄心、22 固定子巻線、30 回転子、
31 回転子鉄心、32a,32b,32c,32d 永久磁石。
20 stator, 21 stator core, 22 stator winding, 30 rotor,
31 rotor core, 32a, 32b, 32c, 32d permanent magnet.

Claims (6)

回転子鉄心の外周面に軸方向に4段の永久磁石を設け、上記永久磁石の上側2段及び下側2段それぞれの段の間に上記回転子鉄心の周方向に段スキュー角θe1(電気角)を設け、上記上側2段と下側2段との間に段スキュー角θe2(電気角)を設けた回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備え、
上記段スキュー角θe1の下限値を、下記式(1)で求められる理論角θ(電気角)より大きな値とし、
上記段スキュー角θe1の上限値を、上記理論角θの約1.7倍とした、
ことを特徴とする永久磁石式回転電機。
(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角度)
…(1)
Four permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and a step skew angle θ e1 (in the circumferential direction of the rotor core) between the upper two stages and the lower two stages of the permanent magnet. An electric angle), a rotor provided with a step skew angle θ e2 (electrical angle) between the upper two steps and the lower two steps, and the rotor arranged inside, and the rotor is rotated. A stator having a cylindrical stator core provided with a stator winding that generates a rotating magnetic field,
The lower limit of the step skew angle θ e1 is set to a value larger than the theoretical angle θ s (electrical angle) obtained by the following equation (1).
The upper limit of the step skew angle θ e1 is set to about 1.7 times the theoretical angle θ s ,
A permanent magnet type rotating electric machine characterized by the above-mentioned.
(180 x number of rotor poles / smallest multiple of stator pole number and rotor pole number) / 2 (electrical angle)
… (1)
回転子鉄心の外周面に軸方向に4段の永久磁石を設け、上記永久磁石の上側2段及び下側2段それぞれの段の間に上記回転子鉄心の周方向に段スキュー角θe2(電気角)を設け、上記上側2段と下側2段との間に段スキュー角θe1(電気角)を設けた回転子と、該回転子を内部に配置し、該回転子を回転させる回転磁界を発生する固定子巻線を設けた円筒形状の固定子鉄心を有する固定子とを備え、
上記段スキュー角θe1の下限値を、下記式(2)で求められる理論角θ(電気角)より大きな値とし、
上記段スキュー角θe1の上限値を上記理論角θの約1.2倍以下とした、
ことを特徴とする永久磁石式回転電機。
(180×回転子磁極数/固定子磁極数と回転子磁極数の最小公倍数)/2 (電気角度)
…(2)
Four permanent magnets are provided in the axial direction on the outer peripheral surface of the rotor core, and a step skew angle θ e2 (in the circumferential direction of the rotor core) between the upper two stages and the lower two stages of the permanent magnets. An electric angle), a rotor having a step skew angle θ e1 (electrical angle) between the upper two steps and the lower two steps, and the rotor arranged inside, and the rotor is rotated. A stator having a cylindrical stator core provided with a stator winding that generates a rotating magnetic field,
The lower limit of the step skew angle θ e1 is set to a value larger than the theoretical angle θ s (electrical angle) obtained by the following equation (2).
The upper limit of the step skew angle θ e1 is set to about 1.2 times or less of the theoretical angle θ s ,
A permanent magnet type rotating electric machine characterized by the above-mentioned.
(180 x number of rotor poles / smallest multiple of stator pole number and rotor pole number) / 2 (electrical angle)
… (2)
上記回転子の磁極数と上記固定子の磁極数との比が2:3の回転電機であって、上記段スキュー角θe1の下限値を理論角30゜よりも大きな値とし、上記段スキュー角θe1の上限値を約52゜としたことを特徴とする請求項1記載の永久磁石式回転電機。 A rotating electric machine having a ratio of the number of magnetic poles of the rotor to the number of magnetic poles of the stator of 2: 3, wherein a lower limit of the step skew angle θ e1 is set to a value larger than a theoretical angle of 30 °; The permanent magnet type rotating electric machine according to claim 1, wherein an upper limit value of the angle θe1 is set to about 52 °. 上記回転子の磁極数と上記固定子の磁極数との比が2:3の回転電機であって、上記段スキュー角θe1の下限値を約36゜とし、上記段スキュー角θe1の上限値を約44゜としたことを特徴とする請求項1記載の永久磁石式回転電機。 A rotating electric machine wherein the ratio of the number of magnetic poles of the rotor to the number of magnetic poles of the stator is 2: 3, wherein the lower limit of the step skew angle θ e1 is about 36 ° and the upper limit of the step skew angle θ e1 is 2. The permanent magnet type rotating electric machine according to claim 1, wherein the value is about 44 [deg.]. 上記回転子の磁極数と上記固定子の磁極数との比が2:3の回転電機であって、上記段スキュー角θe1の下限値を理論角30゜よりも大きな値とし、上記段スキュー角θe1の上限値を約35゜としたことを特徴とする請求項2記載の永久磁石式回転電機。 A rotating electric machine having a ratio of the number of magnetic poles of the rotor to the number of magnetic poles of the stator of 2: 3, wherein a lower limit of the step skew angle θ e1 is set to a value larger than a theoretical angle of 30 °; 3. The permanent magnet type rotating electric machine according to claim 2, wherein an upper limit value of the angle [theta] e1 is set to about 35 [deg.]. 上記段スキュー角θe2を上記理論角θの1/2としたことを特徴とする請求項1または2記載の永久磁石式回転電機。 3. The permanent magnet type rotating electric machine according to claim 1, wherein the step skew angle [theta] e2 is set to [1/2] of the theoretical angle [theta] s .
JP2003349579A 2002-11-11 2003-10-08 Permanent magnet type dynamo-electric machine and apparatus Pending JP2004180491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349579A JP2004180491A (en) 2002-11-11 2003-10-08 Permanent magnet type dynamo-electric machine and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002326384 2002-11-11
JP2003349579A JP2004180491A (en) 2002-11-11 2003-10-08 Permanent magnet type dynamo-electric machine and apparatus

Publications (1)

Publication Number Publication Date
JP2004180491A true JP2004180491A (en) 2004-06-24

Family

ID=32716100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349579A Pending JP2004180491A (en) 2002-11-11 2003-10-08 Permanent magnet type dynamo-electric machine and apparatus

Country Status (1)

Country Link
JP (1) JP2004180491A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1968081A1 (en) 2007-03-09 2008-09-10 Jtekt Corporation Brushless motor and electric power steering device having brushless motor
KR100961654B1 (en) 2008-04-14 2010-06-09 대영공업 주식회사 A rotor for outer type bldc motor
US7876013B2 (en) 2008-03-05 2011-01-25 Mitsuba Corporation Brushless motor
US7973442B2 (en) * 2007-05-23 2011-07-05 Toyota Jidosha Kabushiki Kaisha Permanent magnet-type rotary electric machine and production method for rotor for permanent magnet-type rotary electric machine
EP2348612A1 (en) * 2010-01-20 2011-07-27 Siemens Aktiengesellschaft Magnetic component part for a rotor assembly
US8421294B2 (en) 2007-12-28 2013-04-16 Mitsubishi Electric Corporation Rotary electric machine including auxiliary slot with center opposed to specified rotor portion
KR20150048863A (en) * 2012-08-31 2015-05-07 더 스위치 드라이브 시스템즈 오와이 A rotor of a permanent magnet electrical machine
JP2015534803A (en) * 2012-10-09 2015-12-03 インテグラル パワートレイン リミテッドIntegral Powertrain Limited Rotating device, motor, and motor cooling method
KR20170064543A (en) * 2014-10-29 2017-06-09 폭스바겐 악티엔 게젤샤프트 Rotor of an electric machine, electric machine, and method for producing a rotor of an electric machine
KR20220158167A (en) 2021-05-21 2022-11-30 한국전자기술연구원 Rotor Skew Structure for Reducing Cogging Torque and Rotor Skew Method for Reducing Cogging Torque

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1968081A1 (en) 2007-03-09 2008-09-10 Jtekt Corporation Brushless motor and electric power steering device having brushless motor
US7973442B2 (en) * 2007-05-23 2011-07-05 Toyota Jidosha Kabushiki Kaisha Permanent magnet-type rotary electric machine and production method for rotor for permanent magnet-type rotary electric machine
US8421294B2 (en) 2007-12-28 2013-04-16 Mitsubishi Electric Corporation Rotary electric machine including auxiliary slot with center opposed to specified rotor portion
US7876013B2 (en) 2008-03-05 2011-01-25 Mitsuba Corporation Brushless motor
KR100961654B1 (en) 2008-04-14 2010-06-09 대영공업 주식회사 A rotor for outer type bldc motor
EP2348612A1 (en) * 2010-01-20 2011-07-27 Siemens Aktiengesellschaft Magnetic component part for a rotor assembly
US8648511B2 (en) 2010-01-20 2014-02-11 Siemens Aktiengesellschaft Magnetic component part for a rotor assembly
KR101706607B1 (en) * 2012-08-31 2017-02-15 더 스위치 드라이브 시스템즈 오와이 A rotor of a permanent magnet electrical machine
KR20150048863A (en) * 2012-08-31 2015-05-07 더 스위치 드라이브 시스템즈 오와이 A rotor of a permanent magnet electrical machine
JP2015534803A (en) * 2012-10-09 2015-12-03 インテグラル パワートレイン リミテッドIntegral Powertrain Limited Rotating device, motor, and motor cooling method
KR20170064543A (en) * 2014-10-29 2017-06-09 폭스바겐 악티엔 게젤샤프트 Rotor of an electric machine, electric machine, and method for producing a rotor of an electric machine
KR101943775B1 (en) * 2014-10-29 2019-01-29 폭스바겐 악티엔 게젤샤프트 Rotor of an electric machine, electric machine, and method for producing a rotor of an electric machine
EP3189582B1 (en) * 2014-10-29 2019-12-25 Volkswagen Aktiengesellschaft Rotor for an electric machine, electric machine and method for producing a rotor of an electric machine.
US10693332B2 (en) 2014-10-29 2020-06-23 Volkswagen Aktiengesellschaft Rotor of an electric machine, electric machine, and method for producing a rotor of an electric machine
KR20220158167A (en) 2021-05-21 2022-11-30 한국전자기술연구원 Rotor Skew Structure for Reducing Cogging Torque and Rotor Skew Method for Reducing Cogging Torque
KR102590333B1 (en) * 2021-05-21 2023-10-19 한국전자기술연구원 Rotor Skew Structure for Reducing Cogging Torque and Rotor Skew Method for Reducing Cogging Torque

Similar Documents

Publication Publication Date Title
JP5012837B2 (en) Manufacturing method of permanent magnet type rotating electrical machine
US7067948B2 (en) Permanent-magnet rotating machine
US7595575B2 (en) Motor/generator to reduce cogging torque
KR101288732B1 (en) Permanent-magnet type synchronous motor
EP0740397B1 (en) Stator structure for rotary electric machine
JP5248751B2 (en) Slotless permanent magnet type rotating electrical machine
JP4415634B2 (en) Permanent magnet rotating electric machine
WO2004093298A1 (en) Permanent magnet type motor
JP2007014110A (en) Rotary electric machine
CA2499164A1 (en) An electrical motor/generator having a number of stator pole cores being larger than a number of rotor pole shoes
JP2004180491A (en) Permanent magnet type dynamo-electric machine and apparatus
JP5419991B2 (en) Permanent magnet synchronous motor
JP2006262603A (en) Rotary electric machine
JP4303579B2 (en) Three-dimensional stator structure rotating machine
US20070075602A1 (en) DC motor and manufacturing method for the same
JP2005057941A (en) Rotary electric machine
JP2001231240A (en) Stepping motor
JPH09117081A (en) Rotor for permanent magnet synchronous motor
JP2018182118A (en) Magnetizing device and magnetizing method
JP2007104758A (en) Dc motor
JP4042279B2 (en) Brushless motor
JP2000152581A (en) Brushless motor and stator of brushless motor
WO2002082622A1 (en) Permanent magnet type synchronous motor
JP2010141985A (en) Direct current motor
US20210167647A1 (en) Vibration and noise reduction motor, rotor magnetizing structure of motor, and skew magnetizing yoke

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424