JP2004179356A - 半導体装置の作製方法及び半導体装置 - Google Patents

半導体装置の作製方法及び半導体装置 Download PDF

Info

Publication number
JP2004179356A
JP2004179356A JP2002343258A JP2002343258A JP2004179356A JP 2004179356 A JP2004179356 A JP 2004179356A JP 2002343258 A JP2002343258 A JP 2002343258A JP 2002343258 A JP2002343258 A JP 2002343258A JP 2004179356 A JP2004179356 A JP 2004179356A
Authority
JP
Japan
Prior art keywords
semiconductor film
film
laser
semiconductor
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002343258A
Other languages
English (en)
Other versions
JP2004179356A5 (ja
Inventor
Shunpei Yamazaki
舜平 山崎
Tatsuya Arao
達也 荒尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2002343258A priority Critical patent/JP2004179356A/ja
Publication of JP2004179356A publication Critical patent/JP2004179356A/ja
Publication of JP2004179356A5 publication Critical patent/JP2004179356A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

【課題】本発明は、半導体膜の表面の状態や結晶性にむらが生じるのを抑え、TFTのオン電流、移動度、閾値のばらつきを抑えることができる半導体装置の作製方法と、該作製方法を用いて作製された半導体装置の提供を課題とする。
【解決手段】絶縁表面上に形成された半導体膜に、イオンドーピング法を用いて希ガスを添加し、希ガスの雰囲気下において、希ガスが添加された半導体膜にパルス発振のレーザ光を照射することを特徴とする。またレーザ光の照射の際に、希ガスが添加された半導体膜に超音波による振動を与えても良い。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、レーザ光を用いて半導体膜を結晶化する工程を含む半導体装置の作製方法と、該作製方法を用いて作製された半導体装置に関する。
【0002】
【従来の技術】
多結晶半導体膜を用いた薄膜トランジスタ(多結晶TFT)は、非晶質半導体膜を用いたTFTに比べて移動度が2桁以上高く、半導体表示装置の画素部とその周辺の駆動回路を同一基板上に一体形成できるという利点を有している。
【0003】
多結晶半導体膜は、レーザアニール法を用いることで、安価なガラス基板上に形成することができる。しかし発振器から出力されるレーザ光のエネルギーは、様々な要因によって少なくとも数%の揺らぎを有しており、この揺らぎによって半導体膜の結晶化を均一に行なうことが妨げられている。結晶化が均一に行なわれず、多結晶半導体膜の結晶性にばらつきが生じると、該多結晶半導体膜を活性層として用いるTFTの特性、例えばオン電流、移動度等にばらつきが生じてしまう。
【0004】
例えば、各画素に発光素子と、該発光素子への電流の供給を制御するTFTとが各画素に設けられたアクティブマトリクス型の発光装置の場合、TFTのオン電流にばらつきが生じると、発光素子の輝度もそれに合わせてばらついてしまう。
【0005】
また、大気中においてレーザ光を照射し結晶化を行なった場合、半導体膜の表面に多少なりとも荒れが生じる。この半導体膜の表面の荒れは、レーザ光のエネルギーの強度が強いほど顕著に現れる。そして表面の荒れが著しい領域ほど光が散乱して明るく見えるため、エネルギーの揺らぎに起因する数ミリ間隔の縞状の濃淡が視認される場合がある。
【0006】
なお、半導体膜の表面状態がレーザ光照射時における雰囲気中の酸素と密接な関連性を有していることが、下記特許文献1に記載されている。
【0007】
【特許文献1】
特開2000−138180号公報(第3−4頁)
【0008】
上記特許文献1には、雰囲気中における酸素の含有量が多い程、レーザ光の照射により結晶化された半導体膜の表面の荒れが著しくなることが記載されており、さらにレーザ光の照射の際にArを半導体膜に吹き付けることが記載されている。
【0009】
半導体膜の表面が荒れると、半導体膜と、該半導体膜に接して形成されるゲート絶縁膜との界面における界面準位密度が高くなり、閾値電圧がよりノーマリーオフ側へ変化する。よってレーザ光のエネルギーの揺らぎによって半導体膜の表面の状態にむらが生じると、後に形成されるゲート絶縁膜との界面における界面準位密度にばらつきが生じ、TFTの閾値がばらついてしまう。
【0010】
【発明が解決しようとする課題】
本発明は上述した問題に鑑み、半導体膜の表面の状態や結晶性にむらが生じるのを抑え、TFTのオン電流、移動度、閾値のばらつきを抑えることができる半導体装置の作製方法と、該作製方法を用いて作製された半導体装置の提供を課題とする。
【0011】
【課題を解決するための手段】
レーザ光のエネルギー密度と半導体膜の結晶性との間には密接不可分な関係があると推測される。しかし本発明者らは、輝度のばらつきが視認されるほどの大きな結晶性のばらつきは、数%のエネルギー密度の揺らぎという原因のみでは説明がつかないと考えた。そこで、エネルギー密度の揺らぎによって生じるだろう、結晶性を左右する2次的な要因について考察した。
【0012】
本発明者らは、大気中に存在する酸素または窒素の、レーザ光により溶融した半導体膜への混入に着目した。
【0013】
図8(A)に、空気中においてパルス発振のレーザ光を照射したときの、半導体膜9000の断面図を示す。半導体膜9000のレーザ光が照射された領域9001は、完全に溶融し液相の状態にあるか、もしくは完全に溶融せずとも部分的に液相の状態にあると考えられる。そして溶融したシリコンは空気中の酸素または窒素と反応しやすいため、半導体膜9000の表面には酸化珪素、窒化珪素または窒化酸化珪素等の、極薄い絶縁膜9003が形成される。
【0014】
そして、図8(A)に示した状態からレーザ光を走査したときの、半導体膜9000の断面図を図8(B)に示す。パルス発振の場合、レーザ光の照射される領域は非連続的に移動する。そして半導体膜全面にレーザ光を走査する過程において、図8(B)に示すように、図8(A)においてレーザ光が照射された領域9001と、図8(B)においてレーザ光が照射される領域9002が互いに一部重なる。
【0015】
図8(B)では領域9002がレーザ光の照射により溶融する。レーザ光の照射により瞬間的に溶融した半導体膜は、パルス発振では数十m/s、連続発振では数cm/sの比較的速い速度で再結晶化すると言われており、そのため不純物は熱平衡状態の溶解度以上に半導体膜中に溶解すると推測される。とすると、レーザ光の照射の際に半導体膜に接している絶縁膜中から、半導体膜に不純物が混入しやすいと考えられる。これは特に再結晶化の速度が速い、パルス発振のレーザ光の場合に著しい。
【0016】
したがって、領域9001の表面に形成された絶縁膜9003は、領域9002と重なる部分が溶融し、酸化珪素、窒化珪素または窒化酸化珪素等の切片として領域9002の内部に混入すると考えられる。よってパルス発振の場合において、絶縁膜9003の膜厚はレーザ光のエネルギー密度に依存するので、エネルギー密度の揺らぎは、そのまま不純物濃度のばらつきにつながると予測される。
【0017】
また、レーザ光の照射により瞬間的に溶融した半導体膜は、パルス発振では数十m/s、連続発振では数cm/sの比較的速い速度で再結晶化すると言われており、そのため空気中の不純物は熱平衡状態の溶解度以上に半導体膜中に溶解すると推測される。
【0018】
そして、半導体膜の結晶化に用いられるレーザ光の照射時間は、走査速度にも依存するが、パルス発振だと数〜数十ナノ秒程度であるのに対し、連続発振だと数〜数十マイクロ秒程度と比較的長い。そのため連続発振の方がパルス発振よりも、半導体膜が溶融している時間が長いため、空気中の不純物が半導体膜により混入しやすいと考えられる。
【0019】
そして半導体膜の温度が高いほど気体の溶解度も高まるので、より空気中の不純物が半導体膜中に溶解しやすくなる。よって連続発振の場合において、エネルギー密度の揺らぎにより、半導体膜に与えられる温度に高低差が生じると、半導体膜の不純物の濃度にばらつきが生じると推測される。
【0020】
大気中から混入した酸素や窒素等の不純物は、溶融した半導体膜中における偏析係数が正であるので、再結晶化の際に粒界に偏析しやすい。この粒界偏析(grain boundary segregation)と呼ばれる現象は、固溶度の小さい不純物ほど起きやすい。偏析した酸素や窒素などの不純物は、シリコンと結合し、酸化珪素、窒化酸化珪素、窒化珪素などの絶縁物を形成しやすい。そして粒界に偏析した該絶縁物が、半導体膜中におけるキャリアの移動を妨げ、移動度低下の原因となる。
【0021】
よって、上述したようにパルス発振と連続発振では、半導体膜への不純物の混入のメカニズムが異なっていると予測されるが、いずれの場合においても、エネルギー密度の揺らぎによって生じる不純物濃度のばらつきが、半導体膜の移動度のばらつきの原因となっていると考えられる。
【0022】
そこで本発明者らは、レーザ光の照射による結晶化の前に半導体膜にArをドーピングした後、Ar雰囲気中で該半導体膜にレーザ光を照射して結晶性を高めるようにした。なお、ドーピングする元素はArに限定されず、0族の元素(希ガス元素)であれば良い。またレーザ光を照射する際に必ずしもAr雰囲気にする必要はなく、0族の気体または0族の気体に水素を添加した気体であれば良い。0族の元素は半導体膜中において中性であり、ドーパントととならないということと、シリコンに代表される半導体を構成する元素と化合物を形成しにくいという点で最も適している。特にArは安価であるため、半導体装置の作製工程にかかるコストを抑えることができる。
【0023】
そして、半導体膜にArをドーピングしてからレーザ光を照射する工程までは、半導体膜を酸素が含まれる雰囲気中に曝さないように、例えばロードロック方式のチャンバー内において行なう。例えば半導体膜を成膜する工程を行なうチャンバーと、半導体膜にArをドーピングする工程を行うチャンバーと、半導体膜にレーザ光を照射するチャンバーとを有するマルチチャンバー方式の製造装置を用いることで、半導体膜を大気に曝すことなく、一連の工程を順に行なうことができる。
【0024】
一定体積の液体に溶ける気体の質量は、液体に接している気体の分圧に比例する。よって、半導体膜中に予めAr等をドーピングしておき、なおかつAr等の雰囲気中でレーザ光を照射することで、半導体膜中に大気中から酸素や窒素が入り込むのを効果的に防ぐことができる。またレーザ光照射の際に、半導体膜の表面に絶縁膜が形成されるのを防ぐことができ、該絶縁膜の切片が半導体膜中に入り込むのを防ぐことができる。
【0025】
したがって、エネルギー密度の揺らぎによって生じる不純物濃度のばらつきを抑え、半導体膜の移動度のばらつきを抑えることができる。また該半導体膜を用いて形成されたTFTにおいては、移動度に加えてオン電流のばらつきをも抑えることができる。
【0026】
また、ArなどのSiより原子半径が大きい希ガス元素をドーピングしておくことで、レーザ光により結晶化された半導体膜の配向性を高めることができる。
【0027】
また上記特許文献1に記載されている通り、経験則により酸素が存在する雰囲気中においてレーザ光を照射すると、半導体膜の表面が荒れることが知られている。しかし本発明の構成によって、レーザ光照射による半導体表面の荒れを抑えることができ、界面準位密度のばらつきによって生じる閾値のばらつきを抑えることができる。
【0028】
なお本発明では、触媒元素を半導体膜に添加した後、レーザ光の照射を行ない結晶性を高めるようにしても良い。
【0029】
【発明の実施の形態】
(実施の形態1)
図1を用いて、本発明の半導体装置の作製方法について説明する。
【0030】
まず図1(A)に示すように、基板500上に下地膜501を成膜する。基板500には、例えばバリウムホウケイ酸ガラスや、アルミノホウケイ酸ガラスなどのガラス基板、石英基板、SUS基板等を用いることができる。また、プラスチック等の可撓性を有する合成樹脂からなる基板は、一般的に上記基板と比較して耐熱温度が低い傾向にあるが、作製工程における処理温度に耐え得るのであれば用いることが可能である。
【0031】
下地膜501は基板500中に含まれるNaなどのアルカリ金属やアルカリ土類金属が、半導体膜中に拡散し、半導体素子の特性に悪影響を及ぼすのを防ぐために設ける。よってアルカリ金属やアルカリ土類金属の半導体膜への拡散を抑えることができる酸化珪素や、窒化珪素、窒化酸化珪素などの絶縁膜を用いて形成する。本実施の形態では、プラズマCVD法を用いて窒化酸化珪素膜を10〜400nm(好ましくは50〜300nm)の膜厚になるように成膜する。
【0032】
なお下地膜501は単層であっても複数の絶縁膜を積層したものであっても良い。またガラス基板、SUS基板またはプラスチック基板のように、アルカリ金属やアルカリ土類金属が多少なりとも含まれている基板を用いる場合、不純物の拡散を防ぐという観点から下地膜を設けることは有効であるが、石英基板など不純物の拡散がさして問題とならない場合は、必ずしも設ける必要はない。
【0033】
次に下地膜上に半導体膜502を形成する。半導体膜502の膜厚は25〜100nm(好ましくは30〜60nm)とする。なお半導体膜502は、非晶質半導体であっても良いし、多結晶半導体であっても良い。また半導体は珪素だけではなくシリコンゲルマニウムも用いることができる。シリコンゲルマニウムを用いる場合、ゲルマニウムの濃度は0.01〜4.5atomic%程度であることが好ましい。
【0034】
次に、0族元素をイオンドープ法により半導体膜502に添加する。本実施の形態では0族の元素としてArを用いた例について説明する。ドーピングする0族の元素として、He、Ne、Ar、Kr、Xe等が代表的に挙げられる。0族の元素のドーピングは、半導体膜に導電性を付与するPやBのドーピングと同様に、プラズマ化し、多孔電極で加速してドーピングすることができる。そしてPやBと異なり法律上の規制がないので、ドーピングするガスを水素で希釈しなくとも良く、スループットは高い。例えばArの場合、半導体膜中の濃度が5×1018〜1×1021atoms/cm、望ましくは1×1018〜5×1020atoms/cm程度となるように添加する。また加速電圧は、半導体膜502の厚さ方向におけるArの濃度分布を左右する。よって、膜の表面に向かうほど濃度が高くなるようにするか、膜の基板に近くなるほど濃度が高くなるようにするか、または膜全体の濃度が均一になるようにするかによって、加速電圧を適宜定めるようにする。本実施の形態では加速電圧を30kVとして行なう。
【0035】
なお、0族元素に水素を添加したガスの雰囲気下で、レーザ光の照射を行なうようにしても良い。この場合、水素の分圧を1〜3%とする。
【0036】
次に図1(B)に示すように、半導体膜502を本発明のレーザ照射装置を用いて結晶化する。レーザは、パルス発振または連続発振の気体レーザもしくは固体レーザを用いることができる。気体レーザとして、エキシマレーザ、Arレーザ、Krレーザなどがあり、固体レーザとして、YAGレーザ、YVOレーザ、YLFレーザ、YAlOレーザ、ガラスレーザ、ルビーレーザ、アレキサンドライドレーザ、Ti:サファイアレーザ、Yレーザなどが挙げられる。固体レーザとしては、Cr、Nd、Er、Ho、Ce、Co、Ti、Yb又はTmがドーピングされたYAG、YVO、YLF、YAlOなどの結晶を使ったレーザが適用される。当該レーザの基本波はドーピングする材料によって異なり、1μm前後の基本波を有するレーザ光が得られる。基本波に対する高調波は、非線形光学素子を用いることで得ることができる。
【0037】
またさらに、固体レーザから発せられらた赤外レーザ光を非線形光学素子でグリーンレーザ光に変換後、さらに別の非線形光学素子によって得られる紫外レーザ光を用いることもできる。
【0038】
本実施の形態ではパルス発振のYAGレーザを用いる。例えばYAGレーザを用いる場合、半導体膜に吸収されやすい第2高調波の波長を用いる。そして発振周波数30〜300kHz、エネルギー密度を300〜600mJ/cm(代表的には350〜500mJ/cm)とし、任意のポイントに数ショットずつ照射できるように走査速度を設定すると良い。
【0039】
またレーザ光の照射は、レーザ光の照射はロードロック方式のチャンバー内において、0族のガスが99.99%以上、望ましくは99.9999%以上の雰囲気下において行なう。本実施の形態では0族の気体としてArを用いる。
【0040】
なお、ドーピングする0族元素とレーザ光を照射する際に用いる0族元素とは、必ずしも同じである必要はない。
【0041】
上述した半導体膜502へのレーザ光の照射により、結晶性がより高められた半導体膜503が形成される。
【0042】
次に、図1(C)に示すように半導体膜503をパターニングし、島状の半導体膜507〜509が形成され、該島状の半導体膜507〜509を用いてTFTに代表される各種の半導体素子が形成される。
【0043】
上述したように本発明では、半導体膜中に予めAr等をドーピングしておき、なおかつAr等の雰囲気中でレーザ光を照射することで、半導体膜中に酸素や窒素が入り込むのを効果的に防ぐことができる。したがって、エネルギー密度の揺らぎによって生じる不純物濃度のばらつきを抑え、半導体膜の移動度のばらつきを抑えることができる。また該半導体膜を用いて形成されたTFTにおいては、移動度に加えてオン電流のばらつきをも抑えることができる。
【0044】
また特許文献1に記載されている通り、経験則により酸素が存在する雰囲気中においてレーザ光を照射すると、半導体膜の表面が荒れる。しかしAr等の雰囲気中でレーザ光を照射することで、レーザ光照射による半導体表面の荒れを抑えることができ、界面準位密度のばらつきによって生じる閾値のばらつきを抑えることができる。
【0045】
半導体素子として例えばTFTを作製する場合、島状の半導体膜507〜509を覆うようにゲート絶縁膜を成膜する。ゲート絶縁膜には、例えば酸化珪素、窒化珪素または窒化酸化珪素等を用いることができる。また成膜方法は、プラズマCVD法、スパッタ法などを用いることができる。
【0046】
次に、ゲート絶縁膜上に導電膜を成膜しパターニングすることでゲート電極を形成する。そして、ゲート電極や、あるいはレジストを成膜しパターニングしたものをマスクとして用い、島状の半導体膜507〜509にn型またはp型の導電性を付与する不純物を添加し、ソース領域、ドレイン領域、さらにはLDD領域等を形成する。
【0047】
上記一連の工程によってTFTを形成することができる。なお本発明の半導体装置の作製方法は、島状の半導体膜を形成した後に続く、上述したTFTの作製工程に限定されない。本発明のレーザ光の照射方法を用いて結晶化された半導体膜をTFTの活性層として用いることで、素子間の移動度、閾値及びオン電流のばらつきを抑えることができる。
【0048】
(実施の形態2)
本実施の形態では実施の形態1とは異なり、本発明のレーザ照射装置による結晶化方法に、触媒元素による結晶化方法を組み合わせた例について説明する。
【0049】
まず、半導体膜502を成膜し、該半導体膜502に0族の元素をドーピングを行なう工程まで、実施の形態1の図1(A)までを参照して行なう。次に図2(A)に示すように、半導体膜502の表面に、重量換算で1〜100ppmのNiを含む酢酸ニッケル塩溶液をスピンコート法で塗布した。なお触媒の添加は上記方法に限定されず、スパッタ法、蒸着法、プラズマ処理などを用いて添加しても良い。
【0050】
次に、500〜650℃で4〜24時間、例えば570℃、14時間の加熱処理を行った。この加熱処理により、酢酸ニッケル塩溶液が塗布された表面から、基板500に向かって縦方向に結晶化が促進された半導体膜520が形成される(図2(A))。
【0051】
なお、本実施の形態では触媒元素としてニッケル(Ni)を用いているが、その以外にも、ゲルマニウム(Ge)、鉄(Fe)、パラジウム(Pd)、スズ(Sn)、鉛(Pb)、コバルト(Co)、白金(Pt)、銅(Cu)、金(Au)といった元素を用いても良い。
【0052】
次に図2(B)に示すように、半導体膜520を本発明のレーザ照射装置を用いて結晶化する。本実施の形態ではパルス発振のエキシマレーザ、YAGレーザ、YVOレーザ等を用いる。例えばYAGレーザを用いる場合、半導体膜に吸収されやすい第2高調波の波長を用いる。そして発振周波数30〜300kHz、エネルギー密度を300〜600mJ/cm(代表的には350〜500mJ/cm)とし、任意のポイントに数ショットずつ照射できるように走査速度を設定すると良い。
【0053】
またレーザ光の照射は、レーザ光の照射はロードロック方式のチャンバー内において、0族のガスが99.99%以上、望ましくは99.9999%以上の雰囲気下において行なう。本実施の形態では0族の気体としてArを用いる。
【0054】
なお、ドーピングする0族元素とレーザ光を照射する際に用いる0族元素とは、必ずしも同じである必要はない。
【0055】
上述した半導体膜520へのレーザ光の照射により、結晶性がより高められた半導体膜521が形成される。
【0056】
なお図2(B)に示したように触媒元素を用いて結晶化された半導体膜521内には、触媒元素(ここではNi)がおおよそ1×1019atoms/cm程度の濃度で含まれていると考えられる。次に、半導体膜521内に存在する触媒元素のゲッタリングを行なう。
【0057】
まず、図2(C)に示すように半導体膜521の表面に酸化膜522を形成する。1〜10nm程度の膜厚を有する酸化膜522を形成することで、後のエッチング工程において半導体膜521の表面がエッチングにより荒れるのを防ぐことができる。
【0058】
酸化膜522は公知の方法を用いて形成することができる。例えば、硫酸、塩酸、硝酸などと過酸化水素水を混合させた水溶液や、オゾン水で、半導体膜521の表面を酸化することで形成しても良いし、酸素を含む雰囲気中でのプラズマ処理や、加熱処理、紫外線照射等により形成しても良い。また酸化膜を別途、プラズマCVD法やスパッタ法、蒸着法などで形成しても良い。
【0059】
次に酸化膜522上に、希ガス元素を1×1020 atoms/cm以上の濃度で含むゲッタリング用の半導体膜523を、スパッタ法を用いて25〜250nmの厚さで形成する。ゲッタリング用の半導体膜523は、半導体膜521とエッチングの選択比を大きくするため、半導体膜521よりも膜の密度の低い方がより望ましい。
【0060】
希ガス元素としてはヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)から選ばれた一種または複数種を用いる。
【0061】
次にファーネスアニール法やRTA法を用いて加熱処理を施し、ゲッタリングを行なう。ファーネスアニール法で行う場合には、窒素雰囲気中にて450〜600℃で0.5〜12時間の加熱処理を行う。また、RTA法を用いる場合には、加熱用のランプ光源を1〜60秒、好ましくは30〜60秒点灯させ、それを1〜10回、好ましくは2〜6回繰り返す。ランプ光源の発光強度は任意なものとするが、半導体膜が瞬間的には600〜1000℃、好ましくは700〜750℃程度にまで加熱されるようにする。
【0062】
加熱処理により、半導体膜521内の触媒元素が、拡散により矢印に示すようにゲッタリング用の半導体膜523に移動し、ゲッタリングされる。
【0063】
次にゲッタリング用の半導体膜523を選択的にエッチングして除去する。エッチングは、ClFによるプラズマを用いないドライエッチング、或いはヒドラジンや、テトラエチルアンモニウムハイドロオキサイド(化学式 (CHNOH)を含む水溶液などアルカリ溶液によるウエットエッチングで行うことができる。この時酸化膜522によって半導体膜521がエッチングされるのを防ぐことができる。
【0064】
次に酸化膜522を、フッ酸により除去する。
【0065】
次に、酸化膜522除去後の半導体膜521をパターニングし、島状の半導体膜524〜526を形成する(図2(D))。
【0066】
なお、本発明においてゲッタリング工程は、本実施の形態に示した方法に限定されない。その他の方法を用いて半導体膜中の触媒元素を低減するようにしても良い。
【0067】
次に、島状の半導体膜524〜526を用いてTFTに代表される各種の半導体素子が形成される。
【0068】
なお本実施の形態のように、触媒元素による結晶化の後にレーザ光を照射による結晶化を行うことで、実施の形態1の場合に比べてより半導体膜の結晶性を高めることができる。また実施の形態1ではレーザ光の照射後に結晶核がランダムに発生して結晶化が進む。一方本実施の形態の場合、触媒元素による結晶化の際に形成された結晶が、基板により近い側においてレーザ光の照射により溶融されずに残存し、該結晶を結晶核として結晶化が進む。よってレーザ光の照射による結晶化は基板側から表面に向かって均一に進みやすく、実施の形態1の場合に比べて表面の荒れが抑えられる。よって後に形成される半導体素子、代表的にはTFTの特性のばらつきがより抑えられる。
【0069】
なお本実施の形態では、触媒元素を添加してから加熱処理を行なって結晶化を促進してから、レーザ光の照射により結晶性をより高めている構成について説明した。本発明はこれに限定されず、加熱処理の工程を省略しても良い。具体的には、触媒元素を添加してから加熱処理の代わりにレーザ光の照射を照射し、結晶性を高めるようにしても良い。
【0070】
また本実施の形態では、半導体膜に希ガスをドーピングしてから、触媒元素による結晶化を行なっているが、本発明はこれに限定されない。半導体膜への希ガスのドーピングは、レーザ光による結晶化の前に行なわれていれば良い。よって、触媒元素による結晶化の後に、半導体膜への希ガスのドーピングを行うようにしても良い。
【0071】
(実施の形態3)
本実施の形態では実施の形態2とは異なり、本発明のレーザ照射装置による結晶化方法に、触媒元素による結晶化方法を組み合わせた例について説明する。
【0072】
まず、半導体膜502を成膜し、該半導体膜502に0族の元素をドーピングを行なう工程まで、実施の形態1の図1(A)までを参照して行なう。次に、半導体膜502の上に開口部を有するマスク540を形成する。そして図3(A)に示すように、半導体膜502の表面に重量換算で1〜100ppmのNiを含む酢酸ニッケル塩溶液をスピンコート法で塗布した。なお触媒の添加は上記方法に限定されず、スパッタ法、蒸着法、プラズマ処理などを用いて添加しても良い。塗布された酢酸ニッケル塩溶液は、マスク540の開口部において半導体膜502と接する(図3(A))。
【0073】
次に、500〜650℃で4〜24時間、例えば570℃、14時間の加熱処理を行った。この加熱処理により、酢酸ニッケル塩溶液が塗布された表面から、実線の矢印で示したように結晶化が促進された半導体膜530が形成される(図3(A))。
【0074】
なお、触媒元素は実施の形態2に列記したものを用いることができる。
【0075】
次にマスク540を除去した後、図3(B)に示すように、半導体膜530を本発明のレーザ照射装置を用いて結晶化する。本実施の形態ではパルス発振のエキシマレーザ、YAGレーザ、YVOレーザ等を用いる。例えばYAGレーザを用いる場合、半導体膜に吸収されやすい第2高調波の波長を用いる。そして発振周波数30〜300kHz、エネルギー密度を300〜600mJ/cm(代表的には350〜500mJ/cm)とし、任意のポイントに数ショットずつ照射できるように走査速度を設定すると良い。
【0076】
またレーザ光の照射は、レーザ光の照射はロードロック方式のチャンバー内において、0族のガスが99.99%以上、望ましくは99.9999%以上の雰囲気下において行なう。本実施の形態では0族の気体としてArを用いる。
【0077】
なお、ドーピングする0族元素とレーザ光を照射する際に用いる0族元素とは、必ずしも同じである必要はない。
【0078】
上述した半導体膜531へのレーザ光の照射により、結晶性がより高められた半導体膜531が形成される。
【0079】
なお図3(B)に示したように触媒元素を用いて結晶化された半導体膜531内には、触媒元素(ここではNi)がおおよそ1×1019atoms/cm程度の濃度で含まれていると考えられる。次に、半導体膜531内に存在する触媒元素のゲッタリングを行なう。
【0080】
まず図3(C)に示すように、半導体膜531を覆うように、マスク用の酸化シリコン膜532を150nmの厚さで形成し、パターニングにより開口部を設け、半導体膜531の一部を露出させる。そして、リンを添加して、半導体膜531にリンが添加された領域533を設ける。
【0081】
この状態で、窒素雰囲気中で550〜800℃、5〜24時間、例えば600℃、12時間の熱処理を行うと、半導体膜531にリンが添加された領域533がゲッタリングサイトとして働き、半導体膜531に残存していた触媒元素が、リンの添加されたゲッタリング領域533に偏析する(図3(C))。
【0082】
そして、リンが添加された領域533をエッチングで除去することにより、半導体膜531の残りの領域において、触媒元素の濃度を1×1017atms/cm以下にまで低減させることができる。
【0083】
そして、マスク用の酸化シリコン膜532を除去した後、半導体膜531をパターニングし、島状の半導体膜534〜536を形成する(図3(D))。
【0084】
なお、本発明においてゲッタリング工程は、本実施の形態に示した方法に限定されない。その他の方法を用いて半導体膜中の触媒元素を低減するようにしても良い。
【0085】
次に、図3(D)に示すように半導体膜503をパターニングし、島状の半導体膜534〜536が形成され、該島状の半導体膜534〜536用いてTFTに代表される各種の半導体素子が形成される。
【0086】
本実施の形態のように、触媒元素による結晶化の後にレーザ光を照射による結晶化を行うことで、実施の形態1の場合に比べてより半導体膜の結晶性を高めることができる。また実施の形態1ではレーザ光の照射後に結晶核がランダムに発生して結晶化が進む。一方本実施の形態の場合、触媒元素による結晶化の際に形成された結晶が、基板により近い側においてレーザ光の照射により溶融されずに残存し、該結晶を結晶核として結晶化が進む。よってレーザ光の照射による結晶化は基板側から表面に向かって均一に進みやすく、実施の形態1の場合に比べて表面の荒れが抑えられる。よって後に形成される半導体素子、代表的にはTFTの特性のばらつきがより抑えられる。
【0087】
なお本実施の形態では、触媒元素を添加してから加熱処理を行なって結晶化を促進してから、レーザ光の照射により結晶性をより高めている構成について説明した。本発明はこれに限定されず、加熱処理の工程を省略しても良い。具体的には、触媒元素を添加してから加熱処理の代わりにレーザ光の照射を照射し、結晶性を高めるようにしても良い。
【0088】
また本実施の形態では、半導体膜に希ガスをドーピングしてから、触媒元素による結晶化を行なっているが、本発明はこれに限定されない。半導体膜への希ガスのドーピングは、レーザ光による結晶化の前に行なわれていれば良い。よって、触媒元素による結晶化の後に、半導体膜への希ガスのドーピングを行うようにしても良い。
【0089】
(実施の形態4)
本実施の形態では、ロードロック方式のチャンバーを有するレーザ照射装置の構成について説明する。
【0090】
図4に本実施の形態のレーザ照射装置の構成を示す。レーザ照射室1206は隔壁1230によって囲まれている。なお、レーザ光は指向性およびエネルギー密度の高い光であるため、隔壁1230は反射光が不適切な箇所を照射するのを防ぐために、反射光を吸収させる性質を有していることが好ましい。なお、隔壁内に冷却水が循環させておき、反射光の吸収により隔壁の温度が上昇するのを防ぐようにしても良い。
【0091】
また図4に示すように、隔壁を加熱する手段(隔壁加熱手段)1240を設け、レーザ照射室内を排気する際に、隔壁を加熱するようにしてもよい。
【0092】
そして、ゲート1210は、レーザ照射室1206への基板の搬送口に相当する。また、レーザ照射室1206は、排気ポート1211に接続されている排気系1231によって、レーザ照射室1206内のガスを排気することができる。
また、供給ポート1251に接続されている希ガス供給系1250によって、レーザ照射室1206内への希ガスの供給を行なうことができる。
【0093】
1212はステージであり、基板1203が載置される。位置制御手段1242によってステージの位置を動かすことで、基板の位置を制御し、レーザ光の照射位置を動かすことができる。図4に示すように、ステージ1212に基板を加熱するための手段(基板加熱手段)1241を設けるようにしても良い。
【0094】
隔壁1230に設けられている開口部1232は、レーザ光を透過する窓(透過窓)1233で覆われている。なお、透過窓1233はレーザ光を吸収しにくい材料であることが望ましく、例えば石英等が適している。透過窓1233と隔壁1230の間にはガスケット1236が設けられており、透過窓1233と隔壁1230の隙間から大気がレーザ照射室内に侵入するのを防ぐことができる。
【0095】
まず、半導体膜が成膜された基板1203が搬送され、ゲート1210を閉じた後、排気系1231及び希ガス供給系1250を用いてレーザ照射室1206内を希ガス雰囲気に保つ。
【0096】
レーザ発振装置1213から発振されたレーザ光が光学系1214によってそのビームスポットの形状が加工され、基板1203に照射される。入射角θは戻り光を防ぐために、また均一な照射を行なうために、0°より大きく、より望ましくは5°〜30°程度にするのが望ましい。
【0097】
なお、図4に示すレーザ照射室1206は、マルチチャンバーが有するチャンバーの1つであってもよい。半導体膜への希ガス元素のドーピングを行なうチャンバーを設け、希ガス元素のドーピングからレーザ光の結晶化までの一連の工程を大気に曝すことなくマルチチャンバー内で行なうことで、不純物の半導体膜への混入をより効果的に防ぐことができる。
【0098】
なお上記レーザ照射装置を半導体膜の結晶化に用いることで、半導体膜の結晶性をより均一にすることができる。本発明の半導体装置の製造方法は、集積回路や半導体表示装置の作製方法に用いることができる。特に、液晶表示装置、有機発光素子に代表される発光素子を各画素に備えた発光装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)等の半導体表示装置の画素部に設けられたトランジスタ等の半導体素子に用いた場合、画素部において照射されたレーザ光のエネルギーの分布に起因する横縞が、視認されるのを抑えることができる。
【0099】
(実施の形態5)
図5に本実施の形態のレーザ照射装置の構成を示す。レーザ発振装置1500から発振されたレーザ光は、偏光子1507において直線偏光に変えられ、ビームエキスパンダー1508に入射する。一方、レーザ発振装置1501から発振されたレーザ光は、偏光子1504において直線偏光に変えられた後、偏光板1506において偏光角が90度変えられる。そして、偏光子1507により、レーザ発振装置1500から発振されたレーザ光と共にビームエキスパンダー1508に入射する。
【0100】
なお本実施の形態では、レーザ発振装置1500と偏光子1507との間に、レーザ光を遮るシャッター1502が設けられているが、必ずしも設ける必要はない。また、レーザ発振装置1501と偏光子1504との間に、レーザ光を遮るシャッター1503を設けられているが、必ずしも設ける必要はない。
【0101】
そして、ビームエキスパンダー1508によって、入射してきたレーザ光の広がりを抑え、なおかつ、ビームスポットの大きさを調整することができる。
【0102】
ビームエキスパンダー1508から出射したレーザ光は、シリンドリカルレンズ1509において、ビームスポットの形状が矩形状、楕円状または線状になるように集光される。そして、該集光されたレーザ光は、ミラー1510において反射し、レンズ1511に入射する。入射したレーザ光はレンズ1511によって再び集光され、レーザ照射室1513内の基板1514に照射される。本実施の形態ではレンズ1511としてFθテレセントリックを用いた。
【0103】
本実施の形態においては、偏光子1504、1507、ビームエキスパンダー1508、偏光板1506、シャッター1502、1503、シリンドリカルレンズ1509、ミラー1510、レンズ1511が光学系に含まれる。
【0104】
レーザ照射室1513内において、基板1514はステージ1515上に載置されており、該ステージ1515は3つの位置制御手段1516〜1518によってその位置が制御されている。具体的には、φ方向位置制御手段1516により、水平面内においてステージ1515を回転させることができる。また、X方向位置制御手段1517により、水平面内においてステージ1515をX方向に移動させることができる。また、Y方向位置制御手段1518により、水平面内においてステージ1515をY方向に移動させることができる。各位置制御手段の動作は、中央処理装置1519において制御されている。
【0105】
なお本実施の形態のように、CCD等の受光素子を用いたモニター1512を設け、基板の位置を正確に把握できるようにしても良い。
【0106】
なお、照射面に垂直な平面であって、かつビームスポットの形状を長方形と見立てたときの短辺を含む面または長辺を含む面のいずれか一方を入射面と定義すると、前記レーザ光の入射角度θは、入射面に含まれる前記短辺または前記長辺の長さがW、前記照射面に設置され、かつ、前記レーザ光に対して透光性を有する基板の厚さがdであるとき、θ≧arctan(W/2d)を満たすのが望ましい。なお、レーザ光の軌跡が、前記入射面上にないときは、該軌跡を該入射面に射影したものの入射角度をθとする。この入射角度θでレーザ光が入射されれば、基板の表面での反射光と、前記基板の裏面からの反射光とが干渉せず、一様なレーザ光の照射を行うことができる。以上の議論は、基板の屈折率を1として考えた。実際は、基板の屈折率が1.5前後のものが多く、この数値を考慮に入れると上記議論で算出した角度よりも大きな計算値が得られる。しかしながら、ビームスポットの長手方向の両端のエネルギーは減衰があるため、この部分での干渉の影響は少なく、上記の算出値で十分に干渉減衰の効果が得られる。
【0107】
なお本発明のレーザ照射装置における、光学系は、本実施の形態で示した構成に限定されない。
【0108】
(実施の形態6)
本実施の形態では、レーザ光を照射する際に超音波による振動を半導体膜に与えることができる、レーザ照射装置の構成について説明する。
【0109】
図6(A)に、本実施の形態のレーザ照射装置の断面図を示す。レーザ照射室601は隔壁602によって囲まれている。なお、レーザ光は指向性およびエネルギー密度の高い光であるため、隔壁602は反射光が不適切な箇所を照射するのを防ぐために、反射光を吸収させる性質を有していることが好ましい。なお、隔壁内に冷却水が循環させておき、反射光の吸収により隔壁の温度が上昇するのを防ぐようにしても良い。また、隔壁を加熱する手段(隔壁加熱手段)を設け、レーザ照射室内を排気する際に、隔壁を加熱するようにしてもよい。
【0110】
また、レーザ照射室601は、排気ポート603に接続されている排気系604によって、レーザ照射室601内のガスを排気することができる。また、供給ポート605に接続されている希ガス供給系606によって、レーザ照射室601内への希ガスの供給を行なうことができる。
【0111】
607はステージであり、図6(C)に示すようにその表面に設けられた孔から0族のガスを噴出できるようになっている。このステージ607から噴出されるガスによって、ホバークラフトのように、半導体膜が成膜されている基板608を水平に保つことができる。
【0112】
また609は基板608の一方の端を固定する固定手段に相当し、610は該固定手段の位置を制御することで基板608を走査することができるコンベヤーに相当する。コンベヤー610はステージ607に固定されている。そして図6(B)に示すように、コンベヤー610による固定手段の移動方向と、ステージ607の移動方向とを垂直にすることで、基板608全面にレーザ光を照射することが可能である。
【0113】
また隔壁602には、レーザ光を透過する窓(透過窓)612が設けられている。なお、透過窓612はレーザ光を吸収しにくい材料であることが望ましく、例えば石英等が適している。
【0114】
そして本実施の形態で示すレーザ照射装置は、超音波振動子611を用いて、基板608に水平方向の超音波による振動を与える。具体的には、超音波振動子611によりステージ607、コンベヤー610または固定手段609に水平方向の超音波による振動を与えることで、間接的に基板608にも振動を与えることができる。
【0115】
超音波振動子611として、例えば水晶などで形成される圧電振動子、電歪振動子(BaTiOなど)、磁歪振動子(ニッケル,フェライトなど)やその他の振動子を用いることができる。
【0116】
基板608に与える振動は、100kHz以上30MHz未満の周波数であることが望ましい。超音波による振動を与えることで、レーザ光の照射の際に半導体膜中に溶融した酸素や窒素などの不純物が、該半導体膜が固化する際に結晶粒界に偏析するのを防ぐことができ、また半導体膜の表面をより平坦にすることができる。
【0117】
【実施例】
以下、本発明の実施例について説明する。
【0118】
図7を用いて、本発明のレーザ照射装置を用いて形成される半導体装置の1つである、発光装置の画素の構成について説明する。
【0119】
図7において、基板6000に、下地膜6001が形成されており、該下地膜6001上に複数のトランジスタ6002が形成されている。トランジスタ6002は活性層6003と、ゲート電極6005と、活性層6003とゲート電極6005の間に挟まれたゲート絶縁膜6004と、を有している。
【0120】
活性層6003は、本発明のレーザ照射装置を用いることで結晶化された多結晶半導体膜が用いられている。なお、活性層は珪素だけではなくシリコンゲルマニウムを用いるようにしても良い。シリコンゲルマニウムを用いる場合、ゲルマニウムの濃度は0.01〜4.5atomic%程度であることが好ましい。また窒化炭素が添加された珪素を用いていても良い。
【0121】
またゲート絶縁膜6004は、酸化珪素、窒化珪素または酸化窒化珪素を用いることができる。またそれらを積層した膜、例えばSiO上にSiNを積層した膜を、ゲート絶縁膜として用いても良い。またSiOは、プラズマCVD法でTEOS(Tetraethyl Orthosilicate)とOとを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)、電力密度0.5〜0.8W/cmで放電させて、酸化シリコン膜を形成した。このようにして作製される酸化シリコン膜は、その後400〜500℃の熱アニールによりゲート絶縁膜として良好な特性を得ることができる。また窒化アルミニウムをゲート絶縁膜として用いることができる。窒化アルミニウムは熱伝導率が比較的高く、TFTで発生した熱を効果的に拡散させることができる。またアルミニウムの含まれない酸化珪素や酸化窒化珪素等を形成した後、窒化アルミニウムを積層したものをゲート絶縁膜として用いても良い。また、SiをターゲットとしたRFスパッタ法を用いて形成されたSiOをゲート絶縁膜として用いても良い。
【0122】
またゲート電極6005として、Ta、W、Ti、Mo、Al、Cuから選ばれた元素、または前記元素を主成分とする合金材料もしくは化合物材料で形成する。また、リン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜を用いてもよい。また単層の導電膜ではなく、複数の層からなる導電膜を積層したものであっても良い。
【0123】
例えば、第1の導電膜を窒化タンタル(TaN)で形成し、第2の導電膜をWとする組み合わせ、第1の導電膜を窒化タンタル(TaN)で形成し、第2の導電膜をTiとする組み合わせ、第1の導電膜を窒化タンタル(TaN)で形成し、第2の導電膜をAlとする組み合わせ、第1の導電膜を窒化タンタル(TaN)で形成し、第2の導電膜をCuとする組み合わせで形成することが好ましい。
また、第1の導電膜及び第2の導電膜としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜や、AgPdCu合金を用いてもよい。
【0124】
また、2層構造に限定されず、例えば、タングステン膜、アルミニウムとシリコンの合金(Al−Si)膜、窒化チタン膜を順次積層した3層構造としてもよい。また、3層構造とする場合、タングステンに代えて窒化タングステンを用いてもよいし、アルミニウムとシリコンの合金(Al−Si)膜に代えてアルミニウムとチタンの合金膜(Al−Ti)を用いてもよいし、窒化チタン膜に代えてチタン膜を用いてもよい。なお、導電膜の材料によって、適宜最適なエッチングの方法や、エッチャントの種類を選択することが重要である。
【0125】
またトランジスタ6002は、第1の層間絶縁膜6006で覆われており、第1の層間絶縁膜6006上には第2の層間絶縁膜6007と、第3の層間絶縁膜6008とが積層されている。第1の層間絶縁膜6006は、プラズマCVD法またはスパッタ法を用い、酸化珪素、窒化珪素または酸化窒化珪素膜を単層でまたは積層して用いることができる。また酸素よりも窒素のモル比率が高い酸化窒化珪素膜上に、窒素よりも酸素のモル比率が高い酸化窒化珪素膜を積層した膜を第1の層間絶縁膜6006として用いても良い。なお、第1の層間絶縁膜6006を成膜した後、加熱処理(300〜550℃で1〜12時間の熱処理)を行うと、第1の層間絶縁膜6006に含まれる水素により、活性層6003に含まれる半導体のダングリングボンドを終端する(水素化)ことができる。
【0126】
また第2の層間絶縁膜6007は、非感光性のアクリルを用いることができる。第3の層間絶縁膜6008は、水分や酸素などの発光素子の劣化を促進させる原因となる物質を、他の絶縁膜と比較して透過させにくい膜を用いる。代表的には、例えばDLC膜、窒化炭素膜、RFスパッタ法で形成された窒化珪素膜等を用いるのが望ましい。
【0127】
また図7において6010は陽極、6011は電界発光層、6012は陰極であり、陽極6010と電界発光層6011と陰極6012が重なっている部分が発光素子6013に相当する。トランジスタ6002は、発光素子6013に供給する電流を制御する駆動用トランジスタであり、発光素子6013と直接、または他の回路素子を介して直列に接続されている。
【0128】
電界発光層6011は、発光層単独かもしくは発光層を含む複数の層が積層された構成を有している。
【0129】
陽極6010は第3の層間絶縁膜6008上に形成されている。また第3の層間絶縁膜6008上には隔壁として用いる有機樹脂膜6014が形成されている。有機樹脂膜6014は開口部6015を有しており、該開口部において陽極6010と電界発光層6011と陰極6012が重なり合うことで発光素子6013が形成されている。
【0130】
そして有機樹脂膜6014及び陰極6012上に、保護膜6016が成膜されている。保護膜6016は第3の層間絶縁膜6008と同様に、水分や酸素などの発光素子の劣化を促進させる原因となる物質を、他の絶縁膜と比較して透過させにくい膜を用いる。代表的には、例えばDLC膜、窒化炭素膜、RFスパッタ法で形成された窒化珪素膜等を用いるのが望ましい。また上述した水分や酸素などの物質を透過させにくい膜と、該膜に比べて水分や酸素などの物質を透過させやすい膜とを積層させて、保護膜として用いることも可能である。
【0131】
また有機樹脂膜6014は、電界発光層6011が成膜される前に、吸着した水分や酸素等を除去するために真空雰囲気下で加熱しておく。具体的には、100℃〜200℃、0.5〜1時間程度、真空雰囲気下で加熱処理を行なう。望ましくは3×10−7Torr以下とし、可能であるならば3×10−8Torr以下とするのが最も望ましい。そして、有機樹脂膜に真空雰囲気下で加熱処理を施した後に電界発光層を成膜する場合、成膜直前まで真空雰囲気下に保つことで、信頼性をより高めることができる。
【0132】
また有機樹脂膜6014の開口部6015における端部は、有機樹脂膜6014上に一部重なって形成されている電界発光層6011に、該端部において穴があかないように、丸みを帯びさせることが望ましい。具体的には、開口部における有機樹脂膜の断面が描いている曲線の曲率半径が、0.2〜2μm程度であることが望ましい。
【0133】
上記構成により、後に形成される電界発光層や陰極のカバレッジを良好とすることができ、陽極6010と陰極6012が電界発光層6011に形成された穴においてショートするのを防ぐことができる。また電界発光層6011の応力を緩和させることで、発光領域が減少するシュリンクとよばれる不良を低減させることができ、信頼性を高めることができる。
【0134】
なお図7では、有機樹脂膜6014として、ポジ型の感光性のアクリル樹脂を用いた例を示している。感光性の有機樹脂には、光、電子、イオンなどのエネルギー線が露光された箇所が除去されるポジ型と、露光された箇所が残るネガ型とがある。本発明ではネガ型の有機樹脂膜を用いても良い。また感光性のポリイミドを用いて有機樹脂膜6014を形成しても良い。ネガ型のアクリルを用いて有機樹脂膜6014を形成した場合、開口部6015における端部が、S字状の断面形状となる。このとき開口部の上端部及び下端部における曲率半径は、0.2〜2μmとすることが望ましい。
【0135】
陽極6010は透明導電膜を用いることができる。ITOの他、酸化インジウムに2〜20%の酸化亜鉛(ZnO)を混合した透明導電膜を用いても良い。図7では陽極6010としITOを用いている。陽極6010は、その表面が平坦化されるように、CMP法、ポリビニルアルコール系の多孔質体で拭浄で研磨しても良い。またCMP法を用いた研磨後に、陽極6010の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。
【0136】
また陰極6012は、仕事関数の小さい導電膜であれば公知の他の材料を用いることができる。例えば、Ca、Al、CaF、MgAg、AlLi等が望ましい。
【0137】
なお図7では、発光素子から発せられる光が基板6000側に照射される構成を示しているが、光が基板とは反対側に向かうような構造の発光素子としても良い。
【0138】
また図7ではトランジスタ6002の1つと発光素子の陽極6010が電気的に接続されているが、本発明はこの構成に限定されず、トランジスタ6002の1つと発光素子の陰極6001が接続されていても良い。この場合、陰極は第3の層間絶縁膜6008上に形成される。そしてTiN等を用いて形成される。
【0139】
なお、実際には図7まで完成したら、さらに外気に曝されないように気密性が高く、脱ガスの少ない保護フィルム(ラミネートフィルム、紫外線硬化樹脂フィルム等)や透光性のカバー材でパッケージング(封入)することが好ましい。その際、カバー材の内部を不活性雰囲気にしたり、内部に吸湿性材料(例えば酸化バリウム)を配置したりするとOLEDの信頼性が向上する。
【0140】
なお、本発明の発光装置は上述した作製方法に限定されない。また本発明の半導体装置は発光装置に限定されない。
【0141】
【発明の効果】
本発明では、半導体膜中に予めAr等をドーピングしておき、なおかつAr等の雰囲気中でレーザ光を照射することで、半導体膜中に酸素や窒素が入り込むのを効果的に防ぐことができる。したがって、エネルギー密度の揺らぎによって生じる不純物濃度のばらつきを抑え、半導体膜の移動度のばらつきを抑えることができる。また該半導体膜を用いて形成されたTFTにおいては、移動度に加えてオン電流のばらつきをも抑えることができる。
【0142】
また特許文献1に記載されている通り、経験則により酸素が存在する雰囲気中においてレーザ光を照射すると、半導体膜の表面が荒れる。しかしAr等の雰囲気中でレーザ光を照射することで、レーザ光照射による半導体表面の荒れを抑えることができ、界面準位密度のばらつきによって生じる閾値のばらつきを抑えることができる。
【図面の簡単な説明】
【図1】半導体装置の作製方法を示す図。
【図2】半導体装置の作製方法を示す図。
【図3】半導体装置の作製方法を示す図。
【図4】ロードロック方式のチャンバーを有するレーザ照射装置の構成を示す図。
【図5】レーザ照射装置の構成を示す図。
【図6】レーザ照射装置の構成を示す図。
【図7】本発明のレーザ照射装置を用いて作製された発光装置の断面図。
【図8】半導体膜への不純物の混入のメカニズムを示す図。

Claims (11)

  1. 絶縁表面上に形成された半導体膜に、イオンドーピング法を用いて希ガスを添加し、前記希ガスが添加された半導体膜にレーザ光を照射することを特徴とする半導体装置の作製方法。
  2. 請求項1において、
    前記希ガスはArであることを特徴とする半導体装置の作製方法。
  3. 請求項2において、
    前記第1の希ガスの濃度は、5×1018〜1×1021atoms/cmであることを特徴とする半導体装置の作製方法。
  4. 絶縁表面上に形成された半導体膜に、イオンドーピング法を用いて第1の希ガスを添加し、
    第2の希ガスの雰囲気下において、前記第1の希ガスが添加された半導体膜にレーザ光を照射することを特徴とする半導体装置の作製方法。
  5. 絶縁表面上に形成された半導体膜に、イオンドーピング法を用いて第1の希ガスを添加し、
    第2の希ガスの雰囲気下において、前記第1の希ガスが添加された半導体膜にレーザ光を照射する半導体装置の作製方法であって、
    前記レーザ光の照射の際に、前記第1の希ガスが添加された半導体膜に超音波による振動を与えることを特徴とする半導体装置の作製方法。
  6. 請求項5において、
    前記超音波による振動の周波数は、100kHz以上30MHz未満であることを特徴とする半導体装置の作製方法。
  7. 請求項4乃至請求項6のいずれか1項において、
    前記第1または前記第2の希ガスはArであることを特徴とする半導体装置の作製方法。
  8. 請求項4乃至請求項7のいずれか1項において、
    前記第1の希ガスの濃度は、5×1018〜1×1021atoms/cmであることを特徴とする半導体装置の作製方法。
  9. 請求項1乃至請求項8のいずれか1項において、
    前記レーザ光はパルス発振で出力されていることを特徴とする半導体装置の作製方法。
  10. 請求項1乃至請求項8のいずれか1項において、
    前記レーザ光は連続発振で出力されていることを特徴とする半導体装置の作製方法。
  11. 請求項1乃至請求項10に記載の前記作製方法を用いることで形成された半導体装置。
JP2002343258A 2002-11-27 2002-11-27 半導体装置の作製方法及び半導体装置 Withdrawn JP2004179356A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343258A JP2004179356A (ja) 2002-11-27 2002-11-27 半導体装置の作製方法及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343258A JP2004179356A (ja) 2002-11-27 2002-11-27 半導体装置の作製方法及び半導体装置

Publications (2)

Publication Number Publication Date
JP2004179356A true JP2004179356A (ja) 2004-06-24
JP2004179356A5 JP2004179356A5 (ja) 2005-12-08

Family

ID=32705071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343258A Withdrawn JP2004179356A (ja) 2002-11-27 2002-11-27 半導体装置の作製方法及び半導体装置

Country Status (1)

Country Link
JP (1) JP2004179356A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006093677A (ja) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US7067403B2 (en) 2002-11-08 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device that includes adding noble gas to a semiconductor film and then irradiating the semiconductor film with laser light in the presence of a magnetic field
US7160762B2 (en) 2002-11-08 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
JP2009094496A (ja) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd 半導体装置、及びその作製方法
JP2012049397A (ja) * 2010-08-27 2012-03-08 Sumco Corp シリコンウェーハの製造方法
US8304313B2 (en) 2004-08-23 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US8395084B2 (en) 2005-05-02 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method
US9296068B2 (en) 2004-03-26 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7067403B2 (en) 2002-11-08 2006-06-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device that includes adding noble gas to a semiconductor film and then irradiating the semiconductor film with laser light in the presence of a magnetic field
US7160762B2 (en) 2002-11-08 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
US7585714B2 (en) 2002-11-08 2009-09-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
US7629235B2 (en) 2002-11-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device that includes adding noble gas to a semiconductor film and then irradiating the semiconductor film with laser light in the presence of a magnetic field
US7842589B2 (en) 2002-11-08 2010-11-30 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus with means for applying magnetic field
US9296068B2 (en) 2004-03-26 2016-03-29 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation method and laser irradiation apparatus
JP2006093677A (ja) * 2004-08-23 2006-04-06 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法
US8304313B2 (en) 2004-08-23 2012-11-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
US8395084B2 (en) 2005-05-02 2013-03-12 Semiconductor Energy Laboratory Co., Ltd. Laser irradiation apparatus and laser irradiation method
JP2009094496A (ja) * 2007-09-21 2009-04-30 Semiconductor Energy Lab Co Ltd 半導体装置、及びその作製方法
US8633590B2 (en) 2007-09-21 2014-01-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP2012049397A (ja) * 2010-08-27 2012-03-08 Sumco Corp シリコンウェーハの製造方法

Similar Documents

Publication Publication Date Title
JP4429586B2 (ja) 半導体装置の作製方法
US7253032B2 (en) Method of flattening a crystallized semiconductor film surface by using a plate
US7291523B2 (en) Method of manufacturing a semiconductor device
US7585714B2 (en) Method for manufacturing semiconductor device, semiconductor device, and laser irradiation apparatus
JP5106136B2 (ja) 半導体装置の作製方法
JP2003051446A (ja) 半導体装置の作製方法
JP2002324808A (ja) 半導体装置およびその作製方法
JP2003017411A (ja) レーザ照射装置、並びに半導体装置の作製方法
JP4230160B2 (ja) 半導体装置の作製方法
JP2004179356A (ja) 半導体装置の作製方法及び半導体装置
JP4860055B2 (ja) 半導体装置の作製方法
JP2003173969A (ja) 半導体膜、半導体装置及びこれらの作製方法
JP2004072086A (ja) レーザー照射方法及びレーザー照射装置
JP4212844B2 (ja) 半導体装置の作製方法
JP2004172610A (ja) 半導体装置の作製方法、半導体装置及びレーザ照射装置
JP2004022900A (ja) 半導体装置の作製方法
JP5132637B2 (ja) 半導体装置の作製方法
JP5005881B2 (ja) 半導体装置の作製方法
JP4837871B2 (ja) 半導体装置の作製方法
JP4176366B2 (ja) 半導体装置の作製方法
JP2003332342A (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20051024

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080612

A131 Notification of reasons for refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080716

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080716

A521 Written amendment

Effective date: 20080819

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090428

A761 Written withdrawal of application

Effective date: 20090716

Free format text: JAPANESE INTERMEDIATE CODE: A761