JP2004175597A - Silica / rare earth oxide combined powder and method of manufacturing the same - Google Patents

Silica / rare earth oxide combined powder and method of manufacturing the same Download PDF

Info

Publication number
JP2004175597A
JP2004175597A JP2002341646A JP2002341646A JP2004175597A JP 2004175597 A JP2004175597 A JP 2004175597A JP 2002341646 A JP2002341646 A JP 2002341646A JP 2002341646 A JP2002341646 A JP 2002341646A JP 2004175597 A JP2004175597 A JP 2004175597A
Authority
JP
Japan
Prior art keywords
rare earth
silica
earth oxide
oxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002341646A
Other languages
Japanese (ja)
Inventor
Atsushi Tamaoki
篤 玉置
Tsuyoshi Fujimoto
津佳 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denko Co Ltd
Original Assignee
Nippon Denko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denko Co Ltd filed Critical Nippon Denko Co Ltd
Priority to JP2002341646A priority Critical patent/JP2004175597A/en
Publication of JP2004175597A publication Critical patent/JP2004175597A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a silica/rare earth oxide combined powder capable of being easily pulverized and disintegrated in use, attaining excellent characteristics as a ceramic product and having <100 nm primary particle diameter and <500 nm average particle diameter and a method of manufacturing the same. <P>SOLUTION: The silica/rare earth oxide combined powder is composed of a combined particle obtained by covering the surface of the oxide of a rare earth element with amorphous silica by 0.1-20 mass% expressed in terms of SiO<SB>2</SB>and the primary particle diameter of the combined particle is controlled to <100nm and the average particle diameter of the aggregate of the combined particle is controlled to <500 nm. In the silica/rare earth oxide combined powder, the rare earth oxide is co-precipitated oxide of ≥2 kinds of rare earth oxide or a solid solution of ≥2 kinds of rare earth oxide. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、微粒子希土類酸化物粉末およびその製造方法に係り、特に一次粒子径がナノオーダーであって、かつその凝集体の平均二次粒子が小さいシリカ・希土類酸化物複合体粉末およびその製造方法に関する。ここに希土類とは、周期律表では原子番号57〜71の元素群に属するものをいうが、本発明で対象とする希土類は上記元素群のほかにイットリウム、スカンジウムを含み、セリウムを除くものをいう。
【0002】
【従来の技術】
希土類元素の酸化物(以下、単に希土類酸化物という)は、強誘電体セラミックス材料、セラミックス用焼結助剤、蛍光体などの構成材料、添加材料として多くの分野で用いられている。その場合、たとえば、セラミックスの製造においては、均一微構造として電気的、磁気的、光学的に優れた特性を得るために一次粒子径及びその一次粒子が凝集した二次粒子の平均粒子径がともに小さいものが求められている。また、積層コンデンサーにおいても薄膜化のために粒子径の小さいものが求められている。このような用途に使用される微粒子希土類酸化物の製造方法としては、特公昭63−5332号公報、特開平4−310516号公報に記載の手段が知られている。また、特開2000−203834号公報には、超微粒子酸化セリウム及び超微粒子金属酸化物・酸化セリウム複合体並びにそれらの製造方法が開示されている。
【0003】
【発明が解決しようとする課題】
しかし、特公昭63−5332号公報、特開平4−310516号公報に記載の手段ではいずれも有機溶剤を使用しているため、安全性に問題があるとともに、沈殿の熟成、ろ過、水洗に長時間を要し、工業的に製造するには容易でなかった。また、特開2000−203834号公報記載の手段は、高い紫外線遮断効果と透明性とを併せ持った紫外線散乱剤を提供することを目的としており、そのため希土類元素がセリウムに限られており、特に焼結体原料として使用されたとき、優れた製品特性が得られるような配慮がなされていない。
【0004】
また、これら従来の技術により製造される微粒子希土類酸化物粉末は、一次粒子は小さいものの、その二次粒子径はフィッシャー社のサブシーブサイザーによる測定で0.5〜2μm程度となっており、上記目的のために要求される500nm未満となっていない。この二次粒子は一次粒子が強固に結合したものであり、そのため、使用に際して十分に粉砕、解砕することが困難であり、セラミックス製品として必要な特性値が得られないという問題があった。
【0005】
本発明は、使用に際して十分に粉砕、解砕することが容易であり、セラミックス製品として良好な特性値が得られる一次粒子径が100nm未満、平均粒子径が500nm未満のシリカ・希土類酸化物複合体粉末及びその製造方法を提案することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、希土類酸化物粉末をその表面に不定形シリカを限定した量で被覆した複合体粒子から構成されるものとすれば、一次粒子が凝集して生成した二次粒子が解砕容易なものになり、かつ希土類酸化物が用いられる用途において本来の効果が得られるとの知見に基づいてなされたものである。具体的には、本発明のシリカ・希土類酸化物複合体粉末は、希土類元素の酸化物表面に不定形シリカをSiOとして0.1〜20mass%被覆してなる複合体粒子からなり、該複合体粒子の一次粒子径がl00nm未満であり、かつ該複合体粒子の凝集体の平均粒子径が500nm未満となっている。上記シリカ・希土類酸化物複合体粉末において、前記希土類の酸化物は2種類以上の希土類酸化物の共沈酸化物又は2種類以上の希土類酸化物の固溶体であることとすることができる。
【0007】
本発明のシリカ・希土類酸化物複合体粉末は、希土類金属塩溶液にアルカリを加えて希土類金属の水酸化物スラリーを生成する段階と、該スラリーに珪酸塩溶液と鉱酸を加えてシリカ・希土類酸化物の複合体スラリーを得る段階と、該シリカ・希土類酸化物の複合体スラリーを水洗、ろ過した後、乾燥又は焼成する段階を順次行うことによって製造することができる。
【0008】
【発明の実施の形態】
本発明において希土類とは、周期律表上原子番号57〜71番に属する元素からセリウムを除き、イットリウム、スカンジウムを含むものである。希土類酸化物とは、酸化イットリウム、酸化ランタン、酸化プラセオジム、酸化ネオジム、酸化サマリウム、酸化ユーロピウム、酸化ガドリニウム、酸化テルビウム、酸化ジスプロシウム、酸化ホルミウム、酸化エルビウム、酸化ツリウム、酸化イッテルビウム、酸化ルテチウム、酸化スカンジウムなどである。これらの酸化物は単独で利用することができるほか、その2種類以上の共沈酸化物、2種類以上の固溶体として利用することもできる。
【0009】
本発明においては、上記希土類酸化物の微粒子には不定形シリカがSiOとして0.1〜20mass%被覆され、シリカ・希土類酸化物の複合体とされる。このように不定形シリカを希土類酸化物粒子の表面に被覆して複合化することによって、一次粒子が凝集することによって生成する二次粒子をジェットミル、パルペライザー、アトライター、ピンミルなどで容易に粉砕、解砕することが可能になる。その結果、二次粒子の平均粒子径が500nm未満のシリカ・希土類酸化物複合体粉末が得られる。
【0010】
このよう容易に粉砕、解砕を可能にしている原因については、本件発明の技術的範囲を限定するものではないが、不定形シリカはその表面にシラノール基(SiOH)を有し、それらが比較的弱い結合(たとえばファンデルワールス結合)によって相互に結びついていることによるものと推定される。
【0011】
このような粉砕、解砕効果の生ずる不定形シリカの被覆量は、希土類酸化物に対してSiOとして0.1〜20mass%である。不定形シリカの被覆量がSiOとして0.1%より少ないと十分な粉砕・解砕効果が得られず、一方20%を超えると、シリカの量が多すぎて希土類酸化物が用いられる用途において本来の効果が得られない。なお、不定形シリカとは、化学組成としてはSiOであるが、X線回折像では明確なSiOのピークを示さないものをいう。
【0012】
上記範囲内であれば、シリカの被覆量は希土類酸化物の用途に応じて選択することができる。たとえば、希土類酸化物を軟磁性フエライト原料として利用する場合には、大量のシリカの存在は好ましくなく、0.1〜10mass%とするのがよい。これによって偏析したシリカがその電気伝導性を下げ、高周波領域での損失を低減する効果を挙げられる。
【0013】
上記シリカ・希土類酸化物複合体粉末の一次粒子径はl00nm未満とする。また、その二次粒子径は平均粒子径が500nm未満とする。これらの値以上では、たとえば、セラミックス用焼結助剤として用いたとき、微細でかつ均一な構造の焼結体が得られず、電気的、磁気的、光学的に優れた特性を得ることができない。
【0014】
本発明のシリカ・希土類酸化物複合体粉末は、例えば、液温を60℃以下、pHを6以上に保った水に希土類金属塩とアルカリ溶液を添加して生成する希土類水酸化物スラリーを80℃以上に加熱し、pHを9以上に保ちながら珪酸ナトリウム溶液と鉱酸溶液を添加して不定形シリカのスラリーを生成させ、水洗、ろ過した後、乾燥又は焼成する方法によって製造することができる。
【0015】
以下、本発明に係るシリカ・希土類酸化物複合体粉末の製造方法を具体的に説明する。本発明のシリカ・希土類酸化物複合体粉末を製造するには、まず、希土類水酸化物スラリーの調製と不定形シリカのと調整が必要である。
【0016】
a.希土類水酸化物スラリーの調整
希土類金属、またはその酸化物、炭酸塩などを塩酸や硝酸などの酸で溶解するか、希土類金属の塩化物又は硝酸塩を水に溶解して希土類金属塩溶液を調整する。このときの希土類金属塩溶液の濃度は適当でよいが、たとえばモル濃度で0.1〜1mol/lとするのがよい。0.1mol/lより薄いと工業生産上効率が悪く、1mol/lより濃いと粒子の凝集が激しくなり所定の粒度の粉末が得られないからである。
【0017】
上記のように調整された希土類金属塩溶液を、水酸化ナトリウムや水酸化カリウムなどのアルカリ金属水酸化物の水溶液またはアンモニア水とともに、60℃以下、pHを6以上に保った水中に同時滴下して水酸化物スラリーを生成させる。その際、滴下速度は、滴下終了まで10min以上かかる速度とし、十分な撹拌を行うとともに、反応液のpHを6以上、好ましくは8以上に保つことが必要である。pHが下がると生成した希土類金属水酸化物が再び溶解してしまうからである。
【0018】
b.不定形シリカの生成
3号珪酸ナトリウム溶液を水で希釈して調整した溶液と塩酸、硝酸、硫酸などの鉱酸を水で希釈した溶液とを調製する。この溶液を撹拌しながら、前記により調整した希土類水酸化物スラリーを滴下して不定形シリカを生成させる。滴下にあたっては、希土類水酸化物スラリーの温度を80℃以上に維持し、滴下速度をたとえば滴下終了まで30min以上掛かるように制御して珪酸ナトリウムのシリカへの加水分解反応が効率的に進むようにする。
【0019】
また、上記滴下の際の珪酸ナトリウム溶液のpHは9以上に保つようにする。これにより珪酸ナトリウム(NaSiO)のゲル化が抑制され、シリカ(SiO)への加水分解反応がスムースに進行する。なお、滴下する珪酸ナトリウムの量は、希土類酸化物に複合化させるSiOとして求めればよい。
【0020】
このようにして得られたシリカ・希土類酸化物複合体スラリーを水洗、ろ過、乾燥、粉砕すれば、目的とするシリカ・希土類酸化物複合体粉末となる。なお、乾燥、粉砕後に焼成してもよい。
【0021】
このようにして製造されたシリカ・希土類酸化物複合体粉末は、透過型電子顕微鏡による観察と、比表面積(BET)を測定することにより、一次粒子径が100nm以下であることが確認できる。また、その凝集体の平均粒子径が500nm未満であることが確認できる。
【0022】
【実施例】
(実施例1)
0.5mol/lの塩化ネオジムNdCl水溶液4l(A液)を調整する。2.5mol/lの水酸化ナトリウムNaOH水溶液4l(B液)を調整する。40℃±2℃に加温した水8lに、撹拌しながらA液とB液を、反応液のpHが9〜11、温度が60℃以下に保てるようにpHと液温を管理しながら同時滴下する。滴下終了後30分撹拌し反応液のpHを8〜9に再調整する。生成した水酸化ネオジムスラリーを水で5回デカンテーション洗浄し水酸化ネオジムスラリーを調整する。
【0023】
3号珪酸ナトリウム溶液(NaSiO,SiO含有率28.5mass%)36gを水に溶解して珪酸ナトリウム溶液(C液)2lを調整する。濃度が2.5mass%の希硫酸溶液(D液)2lを調整する。水酸化ネオジムスラリーを80℃以上に加熱し撹拌しながら、C液とD液をpHが9以上に保てるよう管理して同時に滴下する。両液の滴下終了後30分撹拌し反応液のpHが7〜8になるように希硫酸で調整する。得られた水酸化ネオジムスラリーろ過、水洗、乾燥して、さらに850℃で焼成することにより、不定形シリカSiOを3mass%含有するシリカ・酸化ネオジム複合体を得た。これをジェットミルで粉砕したところ、粉末の一次粒子径は透過型電子顕微鏡による観察で30nm程度であり、かつ凝集粒子(二次粒子)の平均粒子径が150nmで一次粒子の形状がほぼ球状に近いことが確認された。また、比表面積は90m/gであった。
【0024】
(実施例2)
0.5mol/lの塩化イットリウムYCl水溶液4l(A液)を調整する。2.5mol/lの水酸化ナトリウムNaOH水溶液4l(B液)調整する。40±2℃に加温した水8lに、撹拌しながらA液とB液を、反応液のpHが9〜11、温度が50℃以下に保てるように同時滴下する。滴下終了後30分撹拌し反応液のpHを8〜9に再調整する。
【0025】
生成した水酸化イットリウムスラリーを水で5回デカンテーション洗浄し水酸化イットリウムスラリーを調整する。3号珪酸ナトリウム(NaSiO,SiO含有率28.5mass%)80gを水に溶解して珪酸ナトリウム溶液(C液)を調整する。濃度が36mass%の希硫酸溶液(D液)4lを調整する。水酸化イットリウムスラリーを80℃以上に加熱ながら、C液とD液をpHが9以上に保てるように管理しながら同時に滴下する。
【0026】
両液滴下終了後30分撹拌し反応液のpHが7〜8になるように希硫酸で調整する。これをろ過、水洗、乾燥して、さらに850℃で焼成することにより、不定形シリカSiOを10mass含有するシリカ・酸化イットリウム複合体を得た。これをパルぺライザーACM−10で粉砕したところ、粉末の一次粒子径は透過型電子顕微鏡による観察で35nm程度であり、かつ凝集体の平均粒子径が200nmでその形状がほぼ球状であることが確認された。また、比表面積は約85m/gであった。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fine-particle rare-earth oxide powder and a method for producing the same, and in particular, a silica-rare-earth oxide composite powder having a primary particle diameter on the order of nanometers and a small average secondary particle of its aggregate, and a method for producing the same About. Here, the rare earths mean those belonging to the element group of atomic numbers 57 to 71 in the periodic table, but the rare earths targeted in the present invention include those containing yttrium and scandium in addition to the above element groups, excluding cerium. Say.
[0002]
[Prior art]
BACKGROUND ART Oxides of rare earth elements (hereinafter, simply referred to as rare earth oxides) are used in many fields as constituent materials such as ferroelectric ceramic materials, sintering aids for ceramics, phosphors, and additive materials. In this case, for example, in the production of ceramics, both the primary particle diameter and the average particle diameter of the secondary particles obtained by aggregating the primary particles in order to obtain electrical, magnetic, and optically excellent characteristics as a uniform microstructure. Small things are required. In addition, a multilayer capacitor having a small particle diameter is required for thinning. As a method for producing a fine-particle rare earth oxide used for such an application, means described in JP-B-63-5332 and JP-A-4-310516 are known. Also, Japanese Patent Application Laid-Open No. 2000-203834 discloses ultrafine cerium oxide, ultrafine metal oxide / cerium oxide composite, and methods for producing them.
[0003]
[Problems to be solved by the invention]
However, the means described in JP-B-63-5332 and JP-A-4-310516 both use an organic solvent, which poses a safety problem and requires a long time for ripening of precipitates, filtration and washing with water. It was time-consuming and not easy to manufacture industrially. Further, the means described in JP-A-2000-203834 aims to provide an ultraviolet scattering agent having both a high ultraviolet shielding effect and transparency. Therefore, the rare earth element is limited to cerium. No consideration has been given to obtaining excellent product characteristics when used as a raw material for sintering.
[0004]
In addition, although the fine particles of the rare earth oxide powder produced by these conventional techniques have small primary particles, the secondary particle diameter is about 0.5 to 2 μm as measured by Fischer's subsieve sizer. It is not less than 500 nm required for the purpose. These secondary particles are those in which the primary particles are firmly bonded, so that it is difficult to sufficiently pulverize and disintegrate the particles during use, and there is a problem that the characteristic values required for a ceramic product cannot be obtained.
[0005]
The present invention provides a silica-rare earth oxide composite having a primary particle size of less than 100 nm and an average particle size of less than 500 nm, which can be easily pulverized and disintegrated sufficiently for use, and provides good characteristics as a ceramic product. It is an object to propose a powder and a method for producing the same.
[0006]
[Means for Solving the Problems]
The present invention, if it is composed of composite particles in which the surface of the rare earth oxide powder is coated with a limited amount of amorphous silica, the secondary particles formed by aggregation of the primary particles are easily crushed. It has been made based on the finding that the intended effect can be obtained in applications where rare earth oxides are used. Specifically, the silica-rare earth oxide composite powder of the present invention is composed of composite particles obtained by coating the surface of a rare earth element oxide with 0.1 to 20 mass% of amorphous silica as SiO 2. The primary particle diameter of the body particles is less than 100 nm, and the average particle diameter of the aggregate of the composite particles is less than 500 nm. In the silica-rare earth oxide composite powder, the rare earth oxide may be a coprecipitated oxide of two or more rare earth oxides or a solid solution of two or more rare earth oxides.
[0007]
The silica-rare earth oxide composite powder of the present invention comprises the steps of: adding an alkali to a rare earth metal salt solution to form a hydroxide slurry of the rare earth metal; and adding a silicate solution and a mineral acid to the slurry to produce a silica / rare earth element. It can be produced by sequentially performing a step of obtaining an oxide composite slurry, and a step of washing or filtering the silica / rare earth oxide composite slurry, followed by drying or firing.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the rare earths include yttrium and scandium, excluding cerium from elements belonging to atomic numbers 57 to 71 on the periodic table. Rare earth oxides include yttrium oxide, lanthanum oxide, praseodymium oxide, neodymium oxide, samarium oxide, europium oxide, gadolinium oxide, terbium oxide, dysprosium oxide, holmium oxide, erbium oxide, thulium oxide, ytterbium oxide, lutetium oxide, and scandium oxide And so on. These oxides can be used alone, or two or more coprecipitated oxides and two or more solid solutions can be used.
[0009]
In the present invention, the fine particles of the rare earth oxide are coated with amorphous silica in an amount of 0.1 to 20 mass% as SiO 2 to form a silica-rare earth oxide composite. By coating amorphous silica on the surface of rare earth oxide particles and forming a composite, secondary particles generated by agglomeration of primary particles are easily pulverized by a jet mill, pulperizer, attritor, pin mill, etc. , Can be crushed. As a result, a silica-rare earth oxide composite powder having an average secondary particle diameter of less than 500 nm is obtained.
[0010]
Although the cause of such easy pulverization and pulverization is not limited to the technical scope of the present invention, amorphous silica has silanol groups (SiOH) on its surface, It is presumed to be due to the fact that they are interconnected by a very weak connection (for example, van der Waals connection).
[0011]
The coating amount of the amorphous silica that produces such pulverizing and crushing effects is 0.1 to 20 mass% as SiO2 with respect to the rare earth oxide. If the coating amount of amorphous silica is less than 0.1% as SiO 2 , sufficient pulverizing / crushing effect cannot be obtained, while if it exceeds 20%, the amount of silica is too large and rare earth oxide is used. Cannot obtain the original effect. The amorphous silica has a chemical composition of SiO 2 but does not show a clear SiO 2 peak in an X-ray diffraction image.
[0012]
Within the above range, the coating amount of silica can be selected according to the use of the rare earth oxide. For example, when a rare earth oxide is used as a soft magnetic ferrite raw material, the presence of a large amount of silica is not preferable, and the content is preferably set to 0.1 to 10 mass%. This has the effect of reducing the electrical conductivity of the segregated silica and reducing the loss in the high frequency range.
[0013]
The silica / rare earth oxide composite powder has a primary particle diameter of less than 100 nm. In addition, the secondary particle diameter has an average particle diameter of less than 500 nm. Above these values, for example, when used as a sintering aid for ceramics, a sintered body having a fine and uniform structure cannot be obtained, and excellent electrical, magnetic, and optical characteristics may be obtained. Can not.
[0014]
The silica-rare earth oxide composite powder of the present invention is, for example, a rare earth hydroxide slurry formed by adding a rare earth metal salt and an alkaline solution to water maintained at a liquid temperature of 60 ° C. or lower and a pH of 6 or higher. It can be manufactured by a method in which a slurry of amorphous silica is formed by adding a sodium silicate solution and a mineral acid solution while maintaining the pH at 9 ° C or higher while maintaining the pH at 9 or higher, washing with water, filtering, and then drying or calcining. .
[0015]
Hereinafter, the method for producing the silica / rare earth oxide composite powder according to the present invention will be specifically described. In order to produce the silica / rare earth oxide composite powder of the present invention, it is necessary to first prepare a rare earth hydroxide slurry and adjust the amorphous silica.
[0016]
a. Preparation of rare earth hydroxide slurry Dissolve rare earth metal or its oxide, carbonate, etc. with acid such as hydrochloric acid or nitric acid, or dissolve rare earth metal chloride or nitrate in water to prepare rare earth metal salt solution . The concentration of the rare earth metal salt solution at this time may be appropriate, but is preferably, for example, 0.1 to 1 mol / l in molar concentration. If the thickness is less than 0.1 mol / l, the efficiency in industrial production is poor, and if the concentration is more than 1 mol / l, the particles are so agglomerated that a powder having a predetermined particle size cannot be obtained.
[0017]
The rare earth metal salt solution adjusted as described above, together with an aqueous solution of an alkali metal hydroxide such as sodium hydroxide or potassium hydroxide or ammonia water, is dropped simultaneously into water at 60 ° C. or lower and a pH of 6 or higher. To form a hydroxide slurry. At that time, the dropping speed is required to be 10 minutes or more until the end of the dropping, sufficient stirring is performed, and the pH of the reaction solution needs to be maintained at 6 or more, preferably 8 or more. This is because when the pH decreases, the generated rare earth metal hydroxide is dissolved again.
[0018]
b. Production of amorphous silica A solution prepared by diluting a sodium silicate solution No. 3 with water and a solution prepared by diluting a mineral acid such as hydrochloric acid, nitric acid and sulfuric acid with water are prepared. While stirring this solution, the rare earth hydroxide slurry adjusted as described above is added dropwise to form amorphous silica. During the dropping, the temperature of the rare earth hydroxide slurry is maintained at 80 ° C. or higher, and the dropping rate is controlled, for example, so as to take 30 min or more until the end of the dropping so that the hydrolysis reaction of sodium silicate to silica proceeds efficiently. I do.
[0019]
Further, the pH of the sodium silicate solution at the time of the dropping is maintained at 9 or more. Thereby, gelation of sodium silicate (Na 2 SiO 4 ) is suppressed, and the hydrolysis reaction to silica (SiO 2 ) proceeds smoothly. The amount of sodium silicate to be dropped may be determined as SiO 2 to be compounded with the rare earth oxide.
[0020]
The silica / rare earth oxide composite slurry thus obtained is washed with water, filtered, dried, and pulverized to obtain a target silica / rare earth oxide composite powder. In addition, you may bake after drying and pulverization.
[0021]
The silica-rare earth oxide composite powder thus produced can be confirmed to have a primary particle diameter of 100 nm or less by observation with a transmission electron microscope and measuring the specific surface area (BET). In addition, it can be confirmed that the average particle diameter of the aggregate is less than 500 nm.
[0022]
【Example】
(Example 1)
4 l (solution A) of a 0.5 mol / l neodymium chloride NdCl 3 aqueous solution is prepared. Prepare 4 l (solution B) of a 2.5 mol / l sodium hydroxide NaOH aqueous solution. Solution A and Solution B are simultaneously added to 8 liters of water heated to 40 ° C. ± 2 ° C. while controlling the pH and the solution temperature so that the pH of the reaction solution can be kept at 9 to 11 and the temperature at 60 ° C. or less. Drip. After completion of the dropwise addition, the mixture is stirred for 30 minutes to readjust the pH of the reaction solution to 8-9. The generated neodymium hydroxide slurry is decanted and washed five times with water to prepare a neodymium hydroxide slurry.
[0023]
36 g of No. 3 sodium silicate solution (Na 2 SiO 3 , SiO 2 content: 28.5 mass%) is dissolved in water to prepare 2 l of a sodium silicate solution (solution C). 2 l of a diluted sulfuric acid solution (solution D) having a concentration of 2.5 mass% is prepared. While heating and stirring the neodymium hydroxide slurry at 80 ° C. or higher, the solution C and the solution D are simultaneously dropped while maintaining the pH at 9 or higher. After completion of the dropping of both solutions, the mixture is stirred for 30 minutes and adjusted with diluted sulfuric acid so that the pH of the reaction solution becomes 7 to 8. The obtained neodymium hydroxide slurry was filtered, washed with water, dried, and further calcined at 850 ° C. to obtain a silica-neodymium oxide composite containing amorphous silica SiO 2 at 3 mass%. When this was crushed by a jet mill, the primary particle diameter of the powder was about 30 nm as observed by a transmission electron microscope, and the average particle diameter of the aggregated particles (secondary particles) was 150 nm, and the shape of the primary particles was almost spherical. It was confirmed that they were close. Further, the specific surface area was 90 m 2 / g.
[0024]
(Example 2)
Prepare 4 l (solution A) of 0.5 mol / l yttrium chloride YCl 3 aqueous solution. 4 l (solution B) of a 2.5 mol / l sodium hydroxide NaOH aqueous solution is prepared. Solution A and solution B are simultaneously dropped into 8 l of water heated to 40 ± 2 ° C. while stirring so that the pH of the reaction solution can be kept at 9 to 11 and the temperature can be kept at 50 ° C. or less. After completion of the dropwise addition, the mixture is stirred for 30 minutes to readjust the pH of the reaction solution to 8-9.
[0025]
The produced yttrium hydroxide slurry is decanted and washed five times with water to prepare the yttrium hydroxide slurry. 80 g of No. 3 sodium silicate (Na 2 SiO 3 , SiO 2 content: 28.5 mass%) is dissolved in water to prepare a sodium silicate solution (solution C). 4 l of a diluted sulfuric acid solution (solution D) having a concentration of 36 mass% is prepared. While heating the yttrium hydroxide slurry to 80 ° C. or higher, the solution C and the solution D are simultaneously dropped while controlling the pH to be 9 or higher.
[0026]
The mixture is stirred for 30 minutes after completion of the dropping of both droplets, and is adjusted with dilute sulfuric acid so that the pH of the reaction solution becomes 7 to 8. This was filtered, washed with water, dried, and further calcined at 850 ° C. to obtain a silica-yttrium oxide composite containing amorphous silica SiO 2 at 10 mass. When this was pulverized with a Pulperizer ACM-10, the primary particle diameter of the powder was about 35 nm as observed by a transmission electron microscope, and the average particle diameter of the aggregate was 200 nm and the shape was almost spherical. confirmed. Further, the specific surface area was about 85 m 2 / g.

Claims (3)

希土類元素(セリウムを除き、イットリウム、スカンジウムを含む、以下同様)の酸化物表面に不定形シリカをSiOとして0.1〜20mass%被覆してなる複合体粒子からなり、該複合体粒子の一次粒子径がl00nm未満であり、かつ該複合体粒子の凝集体の平均粒子径が500nm未満であることを特徴とするシリカ・希土類酸化物複合体粉末。It is composed of composite particles in which amorphous silica is coated with 0.1 to 20 mass% of SiO 2 on an oxide surface of a rare earth element (excluding cerium, including yttrium and scandium, the same applies hereinafter). A silica / rare earth oxide composite powder, wherein the particle diameter is less than 100 nm and the average particle diameter of the aggregate of the composite particles is less than 500 nm. 希土類元素の酸化物は2種類以上の希土類元素酸化物の共沈酸化物又は2種類以上の希土類酸化物の固溶体であることを特徴とする請求項1記載のシリカ・希土類酸化物複合体粉末。The silica / rare earth oxide composite powder according to claim 1, wherein the rare earth oxide is a coprecipitated oxide of two or more rare earth oxides or a solid solution of two or more rare earth oxides. 希土類金属塩溶液にアルカリを加えて希土類金属の水酸化物スラリーを生成する段階と、
該スラリーに珪酸塩溶液と鉱酸を加えてシリカ・希土類酸化物の複合体スラリーを得る段階と、
該シリカ・希土類酸化物の複合体スラリーを水洗、ろ過した後、乾燥又は焼成する段階と、からなることを特徴とするシリカ・希土類酸化物複合体粉末の製造方法。
Adding alkali to the rare earth metal salt solution to form a rare earth metal hydroxide slurry,
Adding a silicate solution and a mineral acid to the slurry to obtain a silica-rare earth oxide composite slurry;
Washing the silica / rare earth oxide composite slurry with water, filtering and drying or calcining the slurry. A method for producing a silica / rare earth oxide composite powder.
JP2002341646A 2002-11-26 2002-11-26 Silica / rare earth oxide combined powder and method of manufacturing the same Pending JP2004175597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341646A JP2004175597A (en) 2002-11-26 2002-11-26 Silica / rare earth oxide combined powder and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341646A JP2004175597A (en) 2002-11-26 2002-11-26 Silica / rare earth oxide combined powder and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2004175597A true JP2004175597A (en) 2004-06-24

Family

ID=32703911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341646A Pending JP2004175597A (en) 2002-11-26 2002-11-26 Silica / rare earth oxide combined powder and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2004175597A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232558A (en) * 2005-01-26 2006-09-07 Fuji Kagaku Kk Composite metallic compound particle with particle size distribution controlled

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232558A (en) * 2005-01-26 2006-09-07 Fuji Kagaku Kk Composite metallic compound particle with particle size distribution controlled
JP4715998B2 (en) * 2005-01-26 2011-07-06 富士化学株式会社 Composite metal compound particles with controlled particle size distribution

Similar Documents

Publication Publication Date Title
JP5142354B2 (en) ε-Fe2O3 crystal manufacturing method
JP5105503B2 (en) ε Iron oxide production method
US11264155B2 (en) Epsilon-type iron oxide magnetic particles and method for producing the same, magnetic powder, magnetic coating material and magnetic recording medium containing magnetic particles
JP4992003B2 (en) Method for producing metal oxide fine particles
JP6856196B2 (en) Magnetic particles and their manufacturing method
JP5412109B2 (en) Nanoparticles comprising aluminum oxide and oxides of elements of first and second main groups of periodic table of elements and method for producing the same
JP2009501688A (en) Alpha-aluminum oxide-based nanocrystal sintered body, method for producing the same, and use thereof
JP2001152214A (en) Method for producing fine spherical metal powder
JP2007137759A (en) Barium titanate particulate powder and dispersion
WO2014017637A2 (en) MANUFACTURING METHOD FOR Sr FERRITE PARTICLES FOR SINTERED MAGNET, AND MANUFACTURING METHOD FOR Sr FERRITE SINTERED MAGNET
JP5588815B2 (en) Gallium oxide powder
JP6916022B2 (en) Ε Iron oxide powder in which a part of iron sites is replaced with a metal element other than iron, its manufacturing method, and paste
JP2011068507A (en) Spherical multicomponent glass fine particle
JPH01272689A (en) Zinc silicate fluorescent powder and production thereof
JP5729926B2 (en) Gallium oxide powder
JP4649536B1 (en) Gallium oxide powder
JP3877922B2 (en) Method for producing rare earth compound
JP2004175597A (en) Silica / rare earth oxide combined powder and method of manufacturing the same
RU2768724C1 (en) Method of producing nanostructured powder of lithium-zinc-manganese ferrite
JP2004315344A (en) Method for manufacturing single crystal ceramic particle
JP5987778B2 (en) Method for producing rare earth oxide powder
JP2010254574A (en) Spherical multicomponent glass fine particle
JP4822550B2 (en) Spherical multi-component glass particles
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
JP6257243B2 (en) Rare earth titanate powder, method for producing the same, and dispersion containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090303