JP2004175112A - Molding die and its manufacturing method - Google Patents

Molding die and its manufacturing method Download PDF

Info

Publication number
JP2004175112A
JP2004175112A JP2003381913A JP2003381913A JP2004175112A JP 2004175112 A JP2004175112 A JP 2004175112A JP 2003381913 A JP2003381913 A JP 2003381913A JP 2003381913 A JP2003381913 A JP 2003381913A JP 2004175112 A JP2004175112 A JP 2004175112A
Authority
JP
Japan
Prior art keywords
mold
heat insulating
insulating layer
molding die
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003381913A
Other languages
Japanese (ja)
Other versions
JP4181017B2 (en
Inventor
Yoshitake Kato
良武 加藤
Tomoyuki Miyamoto
智之 宮本
Masayuki Hatsumi
雅之 初見
Yusuke Hirai
雄介 平井
Kazuki Iwashita
一樹 岩下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell High Tech Ltd
Original Assignee
Maxell High Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maxell High Tech Ltd filed Critical Maxell High Tech Ltd
Priority to JP2003381913A priority Critical patent/JP4181017B2/en
Publication of JP2004175112A publication Critical patent/JP2004175112A/en
Application granted granted Critical
Publication of JP4181017B2 publication Critical patent/JP4181017B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable a smooth cavity surface to be easily and securely formed and an occurrence of an abrasion powder due to a stamper to be restrained while the cavity surface corresponding to a molded body surface to be easily formed on an insulation layer composed of a ceramic material. <P>SOLUTION: A nest forming the surface of the cavity is constituted of a nest body composed of stainless steel, the insulation layer 27 and a seal layer 28. The upper surface of the nest body is provided with a recess area 29 of quadrilateral shape having a diameter longer than the length and width of an optical guiding board. The recess area 29 is filled with the insulation material by a plasma powder spray thermal spraying using a zirconia ceramic powder containing a partial stabilizer Y<SB>2</SB>O<SB>3</SB>, then the surface is ground. The insulation layer 27 is formed by providing the surface with a hydrofluoric acid etching treatment for its roughening. The seal layer 28 with a thickness of about 130μm prepared by Ni-P electroless plating is provided on the insulation layer 27 and the nest body around the insulation layer 27. <P>COPYRIGHT: (C)2004,JPO

Description

本発明は、成型用金型、特に、コンパクトディスク(CD)やデジタルバーサタイルディスク(DVD)等の光ディスク用プラスチック基板あるいは、パーソナルコンピュータや携帯電話等に使用される液晶表示装置用またはその他の用途に使用される透明樹脂製の導光板等を形成するために好適な成型用金型及びその製造方法に関する。   INDUSTRIAL APPLICABILITY The present invention is applicable to a molding die, in particular, a plastic substrate for an optical disk such as a compact disk (CD) or a digital versatile disk (DVD), or a liquid crystal display device used for a personal computer or a mobile phone or other uses. The present invention relates to a molding die suitable for forming a light guide plate or the like made of a transparent resin to be used, and a method for manufacturing the same.

一般に、CDやDVD等の光ディスク用プラスチック基板は、鋼材等の金属材料で構成された可動側金型及び固定側金型を使用し、これらの金型が組み合わされたとき形成されるキャビテイ内に記録情報に対応するスタンパを配置して、このキャビテイ内にポリカーボネート樹脂等の溶融プラスチックを充填し、冷却、固化後金型から分離して形成される。   In general, plastic substrates for optical disks such as CDs and DVDs use a movable mold and a fixed mold made of a metal material such as steel, and are mounted in a cavity formed when these molds are combined. A stamper corresponding to the recorded information is arranged, the cavity is filled with a molten plastic such as a polycarbonate resin, cooled, solidified, and separated from a mold.

しかし、近年、光ディスクの高密度化に伴い、このような光ディスク用プラスチック基板の成型においては、サブミクロンオーダーの情報ピットやレーザー案内溝の精密転写が最重要課題となっている。特に高密度化のために、基板厚みを0.6mm以下の薄型とすると、溶融プラスチック樹脂がスタンパの溝深さに対して十分に転写しにくく転写性が悪い問題がある。このような問題は、前記導光板の成形においても生じ、導光板の表面の光反射面となる微小な凹凸面の形成において、十分な転写性が得られず、良好な反射面が形成されない問題がある。   However, in recent years, with the increase in the density of optical disks, precision transfer of information pits and laser guide grooves on the order of submicrons has become the most important issue in molding such plastic substrates for optical disks. In particular, if the substrate thickness is reduced to 0.6 mm or less for higher density, there is a problem that the molten plastic resin is not sufficiently transferred to the groove depth of the stamper, resulting in poor transferability. Such a problem also occurs in the molding of the light guide plate, and in the formation of a minute uneven surface serving as a light reflection surface on the surface of the light guide plate, sufficient transferability cannot be obtained, and a good reflection surface is not formed. There is.

このような問題を解消するために、スタンパと金型コアとの間に溶射法によってセラミックス材による断熱層を形成した成型金型を使用することが提案されている。(例えば、特許文献1)
この方法によれば、スタンパと金型コアとの間に溶射法によってセラミックス材による断熱層を形成するので、充填直後の溶融樹脂温度が、ゲートに近い基板内周部より低い基板外周部でも、樹脂充填直後のスタンパとの境界面温度が樹脂の熱変形温度を越え、しかも基板内周部と外周部とで同じ温度となり、内、外周部とも良好な転写性を得ることができるが、セラミックスによる断熱層を溶射法によって形成するため、スタンパと接触する断熱層の表面の面精度を出すことが困難であり、表面に空隙などによる凹凸部が形成されやすく、その結果、スタンパとの摺接によって、スタンパの摩耗粉が発生する等の問題が生じた。
In order to solve such a problem, it has been proposed to use a molding die in which a heat insulating layer made of a ceramic material is formed between a stamper and a die core by a thermal spraying method. (For example, Patent Document 1)
According to this method, since a heat insulating layer made of a ceramic material is formed between the stamper and the mold core by a thermal spraying method, the molten resin temperature immediately after filling is lower than the inner peripheral portion of the substrate near the gate, even at the outer peripheral portion of the substrate. The boundary surface temperature between the stamper and the resin immediately after filling the resin exceeds the thermal deformation temperature of the resin, and the same temperature is maintained at the inner and outer peripheral portions of the substrate. Since the thermal insulation layer is formed by the thermal spraying method, it is difficult to obtain surface accuracy of the surface of the thermal insulation layer that comes into contact with the stamper, and irregularities such as voids are easily formed on the surface, and as a result, the sliding contact with the stamper is caused. As a result, problems such as generation of abrasion powder of the stamper have occurred.

また、このようなセラミックス材による断熱層を導光板の反射面面等の成形体表面を形成するキャビティ面として利用する場合には、セラミックス材は、一般的に硬度が大きく、断熱層の表面の微細な加工が難しい問題がある。   In addition, when such a heat insulating layer made of a ceramic material is used as a cavity surface that forms the surface of a molded body such as a reflection surface of a light guide plate, the ceramic material generally has a high hardness and the surface of the heat insulating layer has a high hardness. There is a problem that fine processing is difficult.

特開平10−149587号公報JP-A-10-149587

本発明は、このような問題点を解決しようとするもので、表面平滑なキャビティ面が容易かつ確実に形成されてスタンパによる摩耗粉の発生を抑えた成型用金型及びその製造方法を提供することを目的とする。   The present invention is intended to solve such a problem, and provides a molding die in which a smooth cavity surface is easily and reliably formed to suppress generation of abrasion powder by a stamper, and a method of manufacturing the same. The purpose is to:

また、他の目的としては、セラミックス材による断熱層上に、容易かつ確実に成型体表面に対応するキャビティ表面を形成できるようにすることである。   Another object of the present invention is to form a cavity surface corresponding to a molded body surface easily and reliably on a heat insulating layer made of a ceramic material.

本発明は、第1の発明において、金属材料からなる可動側金型及び固定側金型のキャビテイを構成する少なくとも一方の表面に、溶射法によるセラミックからなる断熱層を形成し、この断熱層の表面に封口層を形成したことを特徴とする成型用金型とすることにより、
溶射法によるセラミックからなる断熱層の凹凸表面を封口層で被覆して、表面平滑性を改善できるようにしたものである。
According to the first aspect of the present invention, in the first aspect, a heat insulating layer made of ceramic by a thermal spraying method is formed on at least one surface constituting the cavities of the movable mold and the fixed mold made of a metal material. By forming a molding die characterized by forming a sealing layer on the surface,
The uneven surface of the heat insulating layer made of ceramic by thermal spraying is covered with a sealing layer so that the surface smoothness can be improved.

本発明の第2の発明は、前記断熱層は、ジルコニア、酸化チタン、アルミナ、チタン酸アルミニウムの少なくとも1種から選ばれたセラミック材で構成された前記第1の発明記載の成型用金型とすることにより、溶融樹脂のスタンパあるいはキャビティ面からの情報記録部分あるいは導光板の凹凸反射面の転写性が改善される。   A second invention of the present invention is the molding die according to the first invention, wherein the heat insulating layer is made of a ceramic material selected from at least one of zirconia, titanium oxide, alumina, and aluminum titanate. By doing so, the transferability of the information recording portion from the stamper or cavity surface of the molten resin or the uneven reflection surface of the light guide plate is improved.

本発明の第3の発明は、前記断熱層の表面に、アモルファスのダイヤモンド状炭素質薄膜が形成されている第1または第2発明記載の成形用金型とすることにより、表面平滑で、スタンパの摩耗を防止して、スタンパによる摩耗粉の発生を抑制することができる。   According to a third aspect of the present invention, there is provided a molding die according to the first or second aspect, wherein an amorphous diamond-like carbonaceous thin film is formed on the surface of the heat insulating layer. Can be prevented, and generation of wear powder by the stamper can be suppressed.

本発明の第4の発明は、前記封口層は、ニッケルを主成分とする被膜から構成されている第1発明または第2発明記載の成形用金型とすることにより、導光板の凹凸反射面等の微細な凹凸面に対応するキャビティ面を、容易かつ確実に形成可能とすることができる。   A fourth invention of the present invention provides the molding die according to the first invention or the second invention, wherein the sealing layer is formed of a coating containing nickel as a main component. It is possible to easily and surely form a cavity surface corresponding to a fine uneven surface such as the above.

本発明の第5の発明は、前記断熱層は、ジルコニアで構成された第1の断熱層とその上に積層される酸化クロム、窒化クロム、アルミナ、窒化アルミ、窒化珪素、炭化珪素の少なくとも1種から選ばれた材質からなる第2の断熱層から構成された第1の発明ないし第4の発明のいずれかの1発明に記載の成形用金型とすることにより、断熱層の表面をより平滑とすることができる。   According to a fifth aspect of the present invention, the heat insulating layer comprises a first heat insulating layer made of zirconia and at least one of chromium oxide, chromium nitride, alumina, aluminum nitride, silicon nitride, and silicon carbide laminated thereon. By providing the molding die according to any one of the first to fourth inventions comprising the second heat insulating layer made of a material selected from the species, the surface of the heat insulating layer can be further improved. It can be smooth.

本発明の第6の発明は、金属材料からなる可動側金型及び固定側金型のキャビテイを構成する少なくとも一方の表面に、セラミック材からなる板状部材を金属ろうで固着したことを特徴とする成型用金型とすることによって、表面平滑なセラミックス面が容易かつ確実に形成されてスタンパの摩耗粉の発生を抑えることができる成型金型としたものである。   The sixth invention of the present invention is characterized in that a plate-like member made of a ceramic material is fixed to at least one surface constituting the cavities of the movable mold and the fixed mold made of a metal material with a metal braze. By using a molding die, a ceramic surface having a smooth surface can be easily and reliably formed, and the generation of abrasion powder on the stamper can be suppressed.

本発明の第7の発明は、前記セラミック材からなる板状部材の表面にアモルファスのダイヤモンド状炭素質薄膜を形成した第6発明記載の成型用金型とすることにより、アモルファスのダイヤモンド状炭素質薄膜の良好な耐磨耗性及びセラミックからなる板状部材の表面の表面平滑性の改善により、スタンパの摩耗粉の発生をより抑制することができる。   According to a seventh aspect of the present invention, there is provided a molding die according to the sixth aspect, wherein an amorphous diamond-like carbonaceous thin film is formed on the surface of the plate-like member made of the ceramic material. The good wear resistance of the thin film and the improvement of the surface smoothness of the surface of the plate member made of ceramic can further suppress the generation of abrasion powder on the stamper.

本発明の第8の発明は、前記セラミック材からなる板状部材がジルコニア、酸化チタン、アルミナ、チタン酸アルミニウムの少なくとも1種から選ばれたセラミック材で構成された第6の発明または第7の発明記載の成型用金型とすることによって、溶融樹脂のスタンパからの情報記録部分の転写性が改善されると共に、表面平滑でスタンパの摩耗を防止して、スタンパによる摩耗粉の発生を抑制できるようにしたものである。   An eighth invention of the present invention is the sixth invention or the seventh invention, wherein the plate member made of the ceramic material is made of a ceramic material selected from at least one of zirconia, titanium oxide, alumina, and aluminum titanate. By using the molding die according to the invention, the transferability of the information recording portion from the stamper of the molten resin is improved, and the surface is smooth and the abrasion of the stamper is prevented, so that generation of abrasion powder by the stamper can be suppressed. It is like that.

本発明の第9の発明は、金属材料からなる可動側金型及び固定側金型のキャビテイを構成する少なくとも一方の金型表面に、表面を研磨したセラミックからなる板状部材を、その裏面が前記金型表面に対向するように配置し、前記金属表面と板状部材の裏面間に金属ろうを介在させて加熱し、前記金属ろうを溶融させて前記金型と板状部材とを固着することを特徴とする成型用金型の製造方法とすることにより、セラミックからなる板状部材の表面を面精度よく研磨して容易かつ確実に表面平滑な面を形成できるようにすると共にこのセラミック板状部材を金型表面に確実に固着して、スタンパから転写性の良好な成型物を得ることができるようにしたものである。   According to a ninth aspect of the present invention, a plate-shaped member made of ceramic whose surface is polished is provided on at least one of the mold surfaces constituting the cavities of the movable mold and the fixed mold made of a metal material. It is arranged so as to face the die surface, is heated with a metal braze interposed between the metal surface and the back surface of the plate-shaped member, melts the metal braze, and fixes the die and the plate-shaped member. The method for manufacturing a molding die is characterized in that the surface of a ceramic plate-like member is polished with high surface precision so that a smooth surface can be easily and reliably formed, and the ceramic plate is formed. The shaped member is securely fixed to the surface of the mold so that a molded product having good transferability can be obtained from the stamper.

本発明者らは、従来公知のスタンパと金型コアとの間に、セラミックスによる断熱層を溶射法によって形成した成型金型は、光ディスク基板用スタンパの内、外周部とも良好な転写性を得ることができるが、セラミックスによる断熱層を溶射法によって形成するため、スタンパと接触するセラミックスの面精度を出すことが困難であり、表面に空隙などによる凹凸部が形成されやすく、その結果、スタンパとの摺接によってスタンパが摩耗されて、スタンパの摩耗粉が発生することを究明し、この究明に基づき、その解決策を検討した結果、   The present inventors have found that a molding die in which a heat insulating layer made of ceramics is formed between a conventionally known stamper and a mold core by a thermal spraying method can obtain good transferability in both the inner and outer peripheral portions of the stamper for an optical disk substrate. However, since the thermal insulation layer of ceramics is formed by thermal spraying, it is difficult to obtain the surface accuracy of the ceramics that comes into contact with the stamper, and it is easy to form irregularities such as voids on the surface. As a result of investigating that the stamper is worn by the sliding contact of the stamper and the abrasion powder of the stamper is generated, and based on this investigation, the solution was examined,

(1)ジルコニア、酸化チタン、アルミナ、チタン酸アルミニウム等のセラミック粉末を焼結した板状体は、溶射法に比べその表面に間隙が形成されにくく、良好な表面平滑性を有することに着目し、この板状体を金型表面に、銀ろう、金ろう等の金属ろうを用いて固着すると、セラミック製板状体と金属ろう間で金属がセラミックの固着面部分で拡散して強固な接着性を付与し、成型時の加熱温度、加圧力が印加されても十分に固着が維持されていることを見出した。また、 (1) Focusing on the fact that a plate-like body obtained by sintering a ceramic powder such as zirconia, titanium oxide, alumina, aluminum titanate, etc., is less likely to form a gap on its surface than the thermal spraying method and has good surface smoothness. When the plate is fixed to the surface of the mold using a metal solder such as silver brazing or gold brazing, the metal diffuses between the ceramic plate and the metal brazing at the surface where the ceramic is fixed, resulting in strong adhesion. It has been found that the adhesiveness is imparted, and the fixation is sufficiently maintained even when a heating temperature and a pressing force during molding are applied. Also,

(2)溶射法によって形成されたセラミックスによる断熱層の表面に、水ガラスを塗布するか、無電解メッキ、電気メッキ、プラズマ処理などにより、ニッケル、銅等の被膜を被着して封口層を形成すると、溶射法によって形成されたセラミックス材による断熱層の表面に形成されるセラミック粒子間の間隙が封口されて、良好な表面平滑性が得られることを見出した。 (2) Apply a coating of nickel, copper, etc. to the surface of the thermal insulation layer made of ceramics formed by thermal spraying by applying water glass or electroless plating, electroplating, plasma treatment, etc. to form a sealing layer. It has been found that when formed, the gap between the ceramic particles formed on the surface of the heat insulating layer made of the ceramic material formed by the thermal spraying method is closed, and good surface smoothness can be obtained.

(3)溶射法によって形成されたセラミックスによる断熱層であってもキャビティ面側に断熱機能を有するジルコニアの溶射法による第1の断熱層の上に平坦な被膜を形成しやすい酸化クロム、窒化クロム、アルミナ、窒化アルミ、窒化珪素、炭化珪素の少なくとも1種から選ばれた材質からなる溶射法による第2の断熱層を形成しても良好な表面平滑な表面を得ることができる。即ち、ジルコニアの第1断熱層は、鋼鉄製金型との密着性や熱膨張率が鋼鉄製金型とほぼ等しく、成型時の金型の熱膨張や収縮に対応して割れ等の発生を抑えることができ、好適であるが、良好な転写性を得るには、100μm以上の厚みがあればよく、厚みが増すほど転写性が良くなる。しかし、厚みが増すにつれ、転写性が改善される一方、冷却に要する時間も増し成形サイクルも長くなり生産性が低下するため、転写性、生産性のバランスから1000μm以下とするのが良い。このジルコニアによる断熱層は、溶着粒子間に間隙が形成されやすく、そのため、表面には、空隙などによる凹凸が形成されやすく、良好な表面平坦性が得られ難い。一方、酸化クロム、窒化クロム、アルミナ、窒化アルミ、窒化珪素、炭化珪素等を原料として、溶射法により形成した被膜は、前記溶融粒子間に間隙が形成されにくく、良好な表面平滑性が得られ易い。これらの特徴を考慮し、ジルコニアの溶射法による第1の断熱層の上に平坦な被膜を形成しやすい酸化クロム、窒化クロム、アルミナ、窒化アルミ、窒化珪素、炭化珪素の少なくとも1種から選ばれた材質からなる溶射法による第2の断熱層を形成すると両者の長所が相乗的に発揮して、良好な転写性と共に、良好な表面平滑性の断熱層が容易に得ることができる。この場合、第2の断熱層は、第1の断熱層と第2の断熱層の合計厚の1/10から1/2の範囲とすればよい。 (3) Chromium oxide and chromium nitride which are easy to form a flat coating on the first heat-insulating layer of zirconia having a heat-insulating function on the cavity surface side even if the heat-insulating layer is made of ceramics formed by the thermal spraying method. Even if the second heat insulating layer is formed by a thermal spraying method using a material selected from at least one of alumina, aluminum nitride, silicon nitride, and silicon carbide, a good smooth surface can be obtained. That is, the first heat insulating layer of zirconia has almost the same adhesiveness with the steel mold and the coefficient of thermal expansion as the steel mold, and generates cracks and the like corresponding to the thermal expansion and contraction of the mold at the time of molding. Although it can be suppressed and is preferable, in order to obtain good transferability, it is sufficient if the thickness is 100 μm or more, and the transferability improves as the thickness increases. However, as the thickness is increased, the transferability is improved, while the time required for cooling is increased, the molding cycle is lengthened, and the productivity is reduced. Therefore, the thickness is preferably 1000 μm or less from the balance between the transferability and the productivity. In the heat insulating layer made of zirconia, gaps are easily formed between the deposited particles, so that irregularities such as voids are easily formed on the surface, and it is difficult to obtain good surface flatness. On the other hand, a coating formed by a thermal spraying method using chromium oxide, chromium nitride, alumina, aluminum nitride, silicon nitride, silicon carbide, or the like as a raw material does not easily form a gap between the molten particles, and provides good surface smoothness. easy. In consideration of these characteristics, it is selected from at least one of chromium oxide, chromium nitride, alumina, aluminum nitride, silicon nitride, and silicon carbide, which can easily form a flat film on the first heat-insulating layer formed by spraying zirconia. When the second heat-insulating layer is formed by a thermal spraying method made of a different material, the advantages of both are exhibited synergistically, and a heat-insulating layer having good surface smoothness as well as good transferability can be easily obtained. In this case, the thickness of the second heat insulating layer may be in the range of 1/10 to 1/2 of the total thickness of the first heat insulating layer and the second heat insulating layer.

さらにこの第2の断熱層上に、アモルファスのダイヤモンド状炭素質薄膜や水ガラスを塗布するか、無電解メッキ、電気メッキ、プラズマ処理などにより、ニッケル、銅等の被膜を被着して封口層を形成するとさらに表面平滑性が改善され、好ましい。   Further, on this second heat insulating layer, an amorphous diamond-like carbonaceous thin film or water glass is applied, or a coating of nickel, copper, or the like is applied by electroless plating, electroplating, plasma treatment, or the like to form a sealing layer. Is preferable because the surface smoothness is further improved.

本発明で使用される可動側金型及び固定側金型は、一般に、超硬合金、ステンレス鋼、炭素鋼、軟鋼等の金属から形成され、プラスチック材の射出成型に好適な金型として使用することができる。   The movable mold and the fixed mold used in the present invention are generally formed of a metal such as cemented carbide, stainless steel, carbon steel, or mild steel, and are used as molds suitable for injection molding of plastic materials. be able to.

本発明で使用されるセラミック材からなる板状部材は、プラスチックの成型時に、熱伝導率が低く溶融樹脂の固化を遅延させることのできるいわゆる断熱性を有するものであれば良く、特に、ジルコニア、酸化チタン、アルミナ、チタン酸アルミニウムの少なくとも1種から選ばれたセラミック粉末を焼結した厚みが10mm以下、好ましくは、0.01〜5mm以下の板状体を使用したときには、前記断熱効果が良好でかつ、スタンパ等による摺接によって、摩耗されることもなく、良好な成型が可能となる。この場合、セラミック粉末としては、ジルコニアに、ジルコニアの結晶構造を安定化させるために、3〜15モル%のCaO、Y2O3、MgO、SiO2、CeO2の部分安定化材を含有させたセラミックス粉末を使用することが好ましい。 The plate-shaped member made of a ceramic material used in the present invention may be any material having a so-called heat insulating property capable of delaying solidification of a molten resin at a low heat conductivity during molding of plastic, and particularly, zirconia, When the thickness of the sintered ceramic powder selected from at least one of titanium oxide, alumina and aluminum titanate is 10 mm or less, preferably 0.01 to 5 mm or less, the heat insulating effect is good. In addition, good molding can be performed without being worn by sliding contact with a stamper or the like. In this case, as the ceramic powder, zirconia, in order to stabilize the crystal structure of zirconia, 3-15 mole% of CaO, Y 2 O 3, MgO , is contained SiO 2, CeO 2 parts stabilizer It is preferable to use a ceramic powder.

また、本発明で使用されるセラミック材からなる板状部材は、スタンパと摺接した際、スタンパの外面を摩耗しないように、可及的に、表面が平滑であることが望まれるが、この表面平滑性として、表面粗さが、Rmaxで、0.1μm以下、好ましくは0.05μm以下が好ましく、前述のセラミック板状体のスタンパ摺接面を研磨によって、前記平滑面に仕上げることができる。   Further, the plate-shaped member made of a ceramic material used in the present invention is desired to have as smooth a surface as possible so as not to wear the outer surface of the stamper when slidingly contacting the stamper. As the surface smoothness, the surface roughness is not more than 0.1 μm, preferably not more than 0.05 μm in Rmax, and the above-mentioned smooth surface of the ceramic plate can be finished to the smooth surface by polishing. .

このセラミック板状体のスタンパ摺接面上に、マグネトロンスパッタリング法等でカーボンターゲットを用いてアモルファスのダイヤモンド状炭素質薄膜を0.5〜10μm厚みで形成したときには、その低摩擦性や耐磨耗性等によって、スタンパの摺接時の摩耗を抑制して、良好な結果を得ることができる。   When an amorphous diamond-like carbonaceous thin film having a thickness of 0.5 to 10 μm is formed on the sliding surface of the ceramic plate by a magnetron sputtering method using a carbon target or the like, its low friction and abrasion resistance are reduced. Due to the properties and the like, it is possible to suppress the wear of the stamper at the time of sliding contact and obtain a good result.

本発明で使用される金属ろうは、前記セラミック材からなる板状部材及び金属材料からなる金型と親和性のあるものが選択され、銀ろう及び金ろうが好適であり、これらのろう材を約1〜50μm厚で前記板状部材と金型間に形成され、約700〜1000℃の溶融温度を有し、この溶融温度以上で加熱処理を行うことによって、前記板状部材と金型とを良好に接合することができる。   The metal brazing used in the present invention is selected from those having an affinity for the plate-shaped member made of the ceramic material and the mold made of the metal material, and silver brazing and gold brazing are preferable. It is formed between the plate member and the mold with a thickness of about 1 to 50 μm, has a melting temperature of about 700 to 1000 ° C., and performs a heat treatment at a temperature equal to or higher than the melting temperature to form the plate member and the mold. Can be satisfactorily joined.

本発明でいう溶射法としては、前記セラミック粉末を使用して、窒素ガス、水素ガス、不活性ガス等を電離させて生ずる高温、高速のプラズマジエットに、前記粉末を送り込み、ジエット中で溶融、加速して、金型母材に衝突させて被膜を形成するプラズマ・パウダー・スプレイ法やセラミックの焼結棒を使用し、約3000℃の酸素−アセチレン火炎中で、溶融し、その溶滴をエアジエット流で加速噴射して被膜を形成するローカイド・ロッド・スプレイ法やセラミック粉末を酸素−アセチレン火炎中で溶融し、ノズル口から燃焼炎の流れにのせて加熱しつつ溶射するサーモ・スプレイ法等が利用でき、このようにして形成されたセラミック材からなる断熱層の表面を研磨し、その研磨面に、水ガラスを塗布するか、無電解メッキ、電気めっき、プラズマ処理などにより、ニッケル、銅、クロム等の被膜を1〜500μm厚みで被着して封口層を形成することによって、断熱層の表面に形成される空隙を封口して、表面の平滑な面を形成することができる。特に、Ni−P、Ni−Co−P、Ni−Fe−P等のNi成分を主体とする皮膜を無電解メッキにより形成した場合には、鋼鉄製の金型及び溶射法による断熱層との密着性もよく、良好に封口することができると共に、この封口層の表面に、成型体表面の形状に対応するキャビティ表面を形成する場合には、微細な凹凸からなるキャビティ表面を容易かつ確実に形成が可能となるので好ましい。   As the thermal spraying method in the present invention, using the ceramic powder, nitrogen gas, hydrogen gas, high-temperature generated by ionizing an inert gas, a high-speed plasma jet, sending the powder, melting in the jet, Using a plasma powder spray method or a ceramic sintering rod that accelerates and collides with the mold base material to form a film, it is melted in an oxygen-acetylene flame at about 3000 ° C. Rokaid rod spray method, which forms a coating by accelerated spraying with an air stream, or thermospray method, in which ceramic powder is melted in an oxy-acetylene flame and sprayed while being heated from the nozzle orifice through the flow of combustion flame The surface of the heat-insulating layer made of the ceramic material thus formed is polished, and the polished surface is coated with water glass, or is subjected to electroless plating or electromechanical plating. By applying a coating of nickel, copper, chromium, etc. with a thickness of 1 to 500 μm by plasma treatment or the like to form a sealing layer, the gap formed on the surface of the heat insulating layer is sealed, and the surface is smoothed. Surface can be formed. In particular, when a film mainly composed of a Ni component such as Ni-P, Ni-Co-P, and Ni-Fe-P is formed by electroless plating, a steel mold and a heat-insulating layer formed by a thermal spraying method are used. It has good adhesion and can be sealed well, and when forming a cavity surface corresponding to the shape of the molded product surface on the surface of this sealing layer, the cavity surface consisting of fine irregularities can be easily and reliably formed. It is preferable because formation becomes possible.

本発明の成型金型を用いて成型されるプラスチック材料としては、ポリカーボネート、ポリエーテルイミド、ポリエーテルサルホン、アクリル系樹脂、メタクリル系樹脂、ポリオレフィン系樹脂等熱可塑性樹脂であれば、いずれも使用できる。   As the plastic material molded using the molding die of the present invention, any thermoplastic resin such as polycarbonate, polyetherimide, polyethersulfone, acrylic resin, methacrylic resin, and polyolefin resin is used. it can.

本発明においては、表面平滑なキャビティ面が容易かつ確実に形成されて、スタンパによる摩耗粉の発生を抑えた成型用金型及びその製造方法を提供することができる。   According to the present invention, it is possible to provide a molding die in which a cavity surface having a smooth surface is easily and surely formed to suppress generation of abrasion powder by a stamper, and a method of manufacturing the same.

また、セラミックス材による断熱層上にNi−P等のニッケルを主成分とする封口層を形成した場合には、容易かつ確実に成型体表面に対応するキャビティ表面を形成することができる。   When a sealing layer mainly composed of nickel such as Ni-P is formed on a heat insulating layer made of a ceramic material, a cavity surface corresponding to a surface of a molded body can be easily and reliably formed.

以下本発明による直径120mm、厚み0.2mmのDVDディスク用基板の成型のための成型用金型の一実施例について図面を参照しながら説明する。   An embodiment of a molding die for molding a DVD disk substrate having a diameter of 120 mm and a thickness of 0.2 mm according to the present invention will be described below with reference to the drawings.

図1は、本発明による成型用金型を用いて製造されたDVDディスク用基板の記録情報に対応する凹凸部4に相当する部分の拡大断面図であり、DVDディスク基板1の凹凸部4は、ポリカーボネート樹脂で成型され、凹部2の深さHは、約85nm、凸部3間の間隔W、0.8μmで形成されている。   FIG. 1 is an enlarged cross-sectional view of a portion corresponding to an uneven portion 4 corresponding to recording information of a DVD disk substrate manufactured using a molding die according to the present invention. The concave portion 2 is formed with a depth H of about 85 nm, an interval W between the convex portions 3 and 0.8 μm.

このようなDVDディスク1に使用されるプラスチックディスク基板1を製造する一実施例の成型用金型及び射出成型装置について、図2及び図3に基づいて説明する。   An embodiment of a molding die and an injection molding apparatus for producing the plastic disk substrate 1 used for such a DVD disk 1 will be described with reference to FIGS.

図2は、金型が閉じられた射出成型装置の概略断面図を示し、4は、DVDディスクの記録情報に対応する凹凸面4を形成する面を内面に有するニッケル材からなるスタンパ、5は、固定側金型、6は可動側金型、7はスタンパ外周ホルダーで、これらの金型は、ステンレス系工具鋼から形成されている。これらの金型を射出成型装置上で組み合わせて閉じられると、成型品、この場合、基板1を成型するキャビテイ8が形成される。キャビテイ8は、固定側金型5に取り付けられたゲート部9及び可動側金型6に上下動自在に取り付けられたゲートカット部材10に形成されたランナー12及びスプルー11とに連通されており、樹脂供給口13から供給される射出成型用樹脂は、スプルー11及びランナー12、ゲート部9を経由してキャビテイ8内に充填される。この樹脂の固化後ゲートカット部材10が上方に移動して、射出された樹脂をゲートカット部で切断し、その後可動側金型6が移動して金型が開き、成型品が図示されない突き出しピンにより突き出されて基板1が製造される。なお、固定側金型5は、固定側取り付け板19に、また、可動側金型6は、可動側取り付け板20に、取り付けられている。前述のスタンパ4は、外周部分をスタンパ外周ホルダー7で、また内周は、スタンパ内周ホルダー14で保持されて可動金型6上に取り付けられている。
(実施例1)
FIG. 2 is a schematic cross-sectional view of an injection molding apparatus in which a mold is closed, 4 is a stamper made of a nickel material having a surface forming an uneven surface 4 corresponding to recording information of a DVD disk on the inside, and 5 is a stamper. , A fixed-side mold, 6 is a movable-side mold, 7 is a stamper peripheral holder, and these molds are formed of stainless steel tool steel. When these molds are combined and closed on an injection molding apparatus, a molded product, in this case, a cavity 8 for molding the substrate 1 is formed. The cavity 8 is communicated with a gate portion 9 attached to the fixed mold 5 and a runner 12 and a sprue 11 formed on a gate cut member 10 attached to the movable mold 6 so as to be vertically movable. The injection molding resin supplied from the resin supply port 13 is filled into the cavity 8 via the sprue 11, the runner 12, and the gate 9. After the resin is solidified, the gate cut member 10 moves upward, cuts the injected resin at the gate cut portion, and then the movable mold 6 moves to open the mold, and a molded product is formed by a projecting pin (not shown). And the substrate 1 is manufactured. The fixed mold 5 is attached to the fixed mounting plate 19, and the movable mold 6 is attached to the movable mounting plate 20. The above-described stamper 4 is mounted on the movable mold 6 with its outer peripheral portion held by a stamper outer peripheral holder 7 and its inner periphery held by a stamper inner peripheral holder 14.
(Example 1)

本発明の特徴部分である可動側金型6部分の構造について、図3に従って説明すると、可動側金型6のキャビテイ面15に、ジルコニア粉末を焼結して得られ、表面が研磨された約100μm厚の円盤状板状部材16が約50μm厚みの銀ろう17によって前記キャビテイ面上に固着されている。この場合、セラミックからなる円盤状板状部材16は、この実施例で示すように、基板1の全面に相当する部分の面積で設けても良いが、基板の凹凸面からなる記録情報部分に相当する部分のみに配置しても良い。   The structure of the movable mold 6 which is a feature of the present invention will be described with reference to FIG. 3. The cavity surface 15 of the movable mold 6 is obtained by sintering zirconia powder and the surface is polished. A disk-shaped plate member 16 having a thickness of 100 μm is fixed on the cavity surface by a silver solder 17 having a thickness of about 50 μm. In this case, the disk-shaped plate member 16 made of ceramic may be provided in an area corresponding to the entire surface of the substrate 1 as shown in this embodiment, It may be arranged only in the part to be processed.

この板状部材の16の表面には、アモルファスのダイヤモンド状炭素質薄膜18が、マグネトロンスパッタリング法等でカーボンターゲットを用いて約3μm厚みで形成されている。この場合、ダイヤモンド状炭素質薄膜18だけでなく、この薄膜18と板状部材16との被着性を改善するため、薄膜18と板状部材16との間に、Cr、W、Ti、Si等からなるスパッタリング下地層を形成しても良い。さらに、薄膜18の摩擦係数を改善するため、フッ素含有のダイヤモンド状薄膜を用いても良い。   On the surface of the plate-like member 16, an amorphous diamond-like carbon thin film 18 is formed with a thickness of about 3 μm using a carbon target by a magnetron sputtering method or the like. In this case, not only the diamond-like carbonaceous thin film 18 but also Cr, W, Ti, and Si are provided between the thin film 18 and the plate member 16 in order to improve the adhesion between the thin film 18 and the plate member 16. Alternatively, a sputtering underlayer made of such as above may be formed. Furthermore, in order to improve the friction coefficient of the thin film 18, a diamond-like thin film containing fluorine may be used.

この金型部分は、金型6のキャビテイ面15上に、約750℃の融点を有する銀ろう17を配置し、ジルコニア材からなる円盤状板状部材16をその表面載置し、加熱炉内で、1000℃で加熱されて銀ろう17が溶融され、その後冷却されて銀ろう17が固化して板状部材16が可動側金型6に固着される。この場合、前記加熱処理によって、銀ろうの銀成分がジルコニア材からなる円盤状板状部材16及び金型6の接合面内に拡散して、強固に接合する。   In this mold part, a silver solder 17 having a melting point of about 750 ° C. is arranged on the cavity surface 15 of the mold 6, and a disk-shaped plate member 16 made of zirconia material is placed on the surface thereof. Then, the silver solder 17 is melted by heating at 1000 ° C., and then cooled to solidify the silver solder 17 and the plate member 16 is fixed to the movable mold 6. In this case, the silver component of the silver braze diffuses into the joining surface between the disk-shaped plate-like member 16 and the mold 6 made of a zirconia material by the heat treatment, so that the silver component is firmly joined.

このようにして、固着されたジルコニア材からなる円盤状板状部材16は、研磨装置で研磨され、その表面を面精度よく、表面平滑に研磨される。その後、この金型部分を、マグネトロンスパッタ装置内に導入して、カーボンをターゲットとして板状部材16の表面にアモルファスのダイヤモンド状薄膜18を形成する。このようにして形成された金型部分にスタンパ4を設置して、可動側金型部分を成型装置に組み込む。   The disk-shaped plate member 16 made of the zirconia material thus fixed is polished by the polishing device, and its surface is polished with good surface accuracy and smooth surface. Thereafter, the mold portion is introduced into a magnetron sputtering apparatus, and an amorphous diamond-like thin film 18 is formed on the surface of the plate-like member 16 using carbon as a target. The stamper 4 is set on the mold part formed in this way, and the movable mold part is incorporated into a molding device.

このようにして形成されたダイヤモンド状薄膜18の表面には、ジルコニア粒子間の空隙は、ほとんど認められず、良好な表面平滑性を有すると共に、その表面粗さRmaxは、0.01μmと良好な表面粗さ及び、0.1と低摩擦係数を示し、100万回の成型を行ってもスタンパによる摩耗粉の発生は認められなかった。
(実施例2)
On the surface of the diamond-like thin film 18 thus formed, voids between zirconia particles are scarcely observed, the surface has good surface smoothness, and the surface roughness Rmax is as good as 0.01 μm. It exhibited a surface roughness and a low friction coefficient of 0.1, and no generation of abrasion powder by the stamper was observed even after molding for 1,000,000 times.
(Example 2)

前記実施例1において、アモルファスのダイヤモンド状炭素質薄膜18を省いて同様にして可動側金型部分を作成した。このようにして形成された可動側金型部分の円盤状板状部材16の表面には、ジルコニア粒子間の空隙は、ほとんど認められず、良好な表面平滑性を有すると共に、その表面粗さRmaxは、0.02μmと良好な表面粗さ及び、0.05と低摩擦係数を示し、10万回の成型を行ってもスタンパによる摩耗粉の発生は認められなかった。
(実施例3)
In Example 1, the movable-side mold portion was formed in the same manner except that the amorphous diamond-like carbonaceous thin film 18 was omitted. On the surface of the disk-shaped plate member 16 of the movable mold part thus formed, almost no voids between the zirconia particles are recognized, and the surface has good surface smoothness and the surface roughness Rmax. Showed a good surface roughness of 0.02 μm and a low coefficient of friction of 0.05, and generation of abrasion powder by the stamper was not recognized even after molding 100,000 times.
(Example 3)

図4に示すように、可動側金型6のキャビテイ面15上に、前記プラズマ・パウダー・スプレイ法によって、ジルコニア粉末を使用してジルコニア材からなる断熱層を約100μm厚みで形成し、この表面を研磨した後、約50μm厚みで水ガラスからなる封口層22を形成し、この封口層22上にスタンパ4を設置した。このようにして形成された封口層22の表面は、ジルコニア粒子間の間隙が封口されて、良好な表面平滑性を示すと共に、その表面粗さRmaxは、0.03μmと良好な表面粗さを示し、10万回の成型を行ってもスタンパによる摩耗粉の発生は認められなかった。
(比較例)
As shown in FIG. 4, a heat insulating layer made of a zirconia material is formed on the cavity surface 15 of the movable mold 6 by using the zirconia powder with a thickness of about 100 μm by the plasma powder spray method. After polishing, a sealing layer 22 of water glass having a thickness of about 50 μm was formed, and a stamper 4 was placed on the sealing layer 22. The surface of the sealing layer 22 thus formed has good surface smoothness because the gaps between the zirconia particles are sealed, and has a surface roughness Rmax of 0.03 μm and a good surface roughness. No generation of abrasion powder by the stamper was observed even after molding 100,000 times.
(Comparative example)

前記実施例3において、封口層22を除き同様にして、可動側金型部分を作製した。この断熱層の表面には、ジルコニア粒子間の間隙が多数認められ、その表面粗さ、Rmaxは、0.1μmと粗く、1000回の成型でスタンパの摩耗粉の発生が認められた。   A movable-side mold portion was manufactured in the same manner as in Example 3 except for the sealing layer 22. A large number of gaps between the zirconia particles were found on the surface of the heat insulating layer, and the surface roughness and Rmax were as coarse as 0.1 μm, and generation of abrasion powder of the stamper was observed after 1,000 times of molding.

(実施例4)
実施例3において、封口層として、水ガラス膜に代えて、無電解Ni-Pメッキ膜を使用した以外同様にして可動側金型部分を作製した。この封口層の表面は、ジルコニア粒子間の間隙が封口されて、良好な表面平滑性を示すと共に、その表面粗さRmaxは、0.05μmと良好な表面粗さを示し、10万回の成型を行ってもスタンパによる摩耗粉の発生は認められなかった。
(実施例5)
(Example 4)
In Example 3, a movable mold portion was produced in the same manner except that an electroless Ni-P plating film was used as the sealing layer instead of the water glass film. The surface of the sealing layer has a good surface smoothness with the gaps between the zirconia particles being sealed, and has a surface roughness Rmax of 0.05 μm, which is a good surface roughness. No abrasion powder was generated by the stamper.
(Example 5)

図5は、本発明によって形成される導光板23の平面図、図6は、図5のA−A線上で切断した断面図、図7は、図6のB部の一部を切り欠いた拡大断面図である。   FIG. 5 is a plan view of the light guide plate 23 formed according to the present invention, FIG. 6 is a cross-sectional view taken along line AA of FIG. 5, and FIG. It is an expanded sectional view.

本発明により形成された導光板23は、ポリカーボネートからなり、後述する成型金型により射出成型して形成される。図5及び図6から明らかなように、長さが46mmで、幅が31mmの長方形状で、その表面に段階的に傾斜する反射面24を有しており、図6の左方から入射される光源(図示せず)からの光線がこの反射面で上方に屈曲反射されるようになっている。この反射面24は、図7から明らかなように、0.3mm幅で、図5の幅方向に平行な部分的反射面24aが、長手方向に向かって、7μmづつ段階的に下降傾斜しながら160面形成されて構成されている。このような反射面24は、反射効率を上げるためにも、微小な凹凸となる多数の傾斜する部分的反射面24aが精度良く形成される必要があり、このような微小凹凸を有する反射面24を、通常の超硬合金、ステンレス鋼、炭素鋼等の金属に、直接Ni―Pメッキ膜を形成しそのメッキ膜に凹凸の成型面が形成された金型を使用した場合には、射出される溶融樹脂が金型形状に精度よく対応した状態で、転写され難く、光学的特性に問題があった。本発明では、このような微小な凹凸面を有する導光板成型体を光学的特性が良好な状態で射出成型可能なように、金型の微小な凹凸面に対応するキャビティ表面と前記金属金型間にセラミックス材からなる断熱層を配して、射出される溶融樹脂が精度よく前記キャビティ表面が転写されるようにすると共に、微小な凹凸面を有するキャビティ表面を容易且つ確実に形成できるようにしたものである。   The light guide plate 23 formed by the present invention is made of polycarbonate, and is formed by injection molding using a molding die described later. As is clear from FIG. 5 and FIG. 6, it is a rectangular shape having a length of 46 mm and a width of 31 mm, and has a reflecting surface 24 which is stepwise inclined on the surface thereof. Light from a light source (not shown) is bent upward and reflected by the reflecting surface. As is clear from FIG. 7, the reflecting surface 24 has a width of 0.3 mm, and the partially reflecting surface 24a parallel to the width direction in FIG. 160 surfaces are formed. In order to increase the reflection efficiency, such a reflecting surface 24 needs to be formed with a large number of partially inclined reflecting surfaces 24a having minute irregularities with high accuracy. If a mold with a Ni-P plating film formed directly on a normal cemented carbide, stainless steel, carbon steel, or other metal and the plating film has an uneven molding surface is used, In a state where the molten resin accurately corresponds to the shape of the mold, it is difficult to transfer the molten resin, and there is a problem in optical characteristics. In the present invention, the cavity surface corresponding to the minute uneven surface of the mold and the metal mold are formed so that the light guide plate molded body having such minute uneven surface can be injection-molded with good optical characteristics. A heat insulating layer made of a ceramic material is interposed between the cavity surface and the injected molten resin so that the cavity surface can be accurately transferred, and a cavity surface having minute uneven surfaces can be easily and reliably formed. It was done.

前記良好な光学的特性を有する導光板を得るために、図8で示される成型用金型を提供しようとするものである。図8は、図2に示すような成型装置の固定金型5または可動金型6の中に組み込まれ、キャビティ8の表面を形成する成型金型の入れ子25の断面図を示し、この入れ子25は、ステンレス鋼からなる入れ子本体26と断熱層27と封口層28とから構成されている。この入れ子本体26には、その上面に、前記導光板の長さ及び幅より長い径で深さが0.5mmの四角形状の凹み部29が形成されており、この凹み部29内に、部分安定化材YO3を含有したジルコニア(ZrO)セラミックス粉末を使用し、プラズマ・パウダースプレイ溶射法により断熱材を充填し、研磨して平坦化処理を施し、さらにこの表面にフッ化水素酸でエッチング処理を施し粗面化して断熱層27を形成する。この場合、入れ子本体26と断熱層27の密着性を良くするため、前記凹み部29の四方の内側面を図8に示すように、θ度傾斜した傾斜面30とされている。さらにこの断熱層27上及びこの断熱層27の周辺の入れ子本体26に、Ni-P無電解メッキからなる封口層28が約130μmの厚みで形成されている。ここで、前記傾斜面の角度θは、この実施例では、30度が採用されているが、10〜60度の範囲が好ましく、角度が小さい場合には、断熱層27の入れ子本体との密着性がわるく、この角度が大きくなるにつれ密着性が改善される。しかし、この角度θが大きくなるにつれ、断熱層厚が薄くなって断熱機能が低下する部分が多くなるので、60度までの範囲が好ましい。また、この断熱層の厚みは厚いほど断熱機能が良好となるが、厚くなるに従い、溶射法による断熱層の形成に長時間を要することになるので、100〜1000μm厚みとするのがよい。 An object of the present invention is to provide a molding die shown in FIG. 8 in order to obtain a light guide plate having good optical characteristics. FIG. 8 is a cross-sectional view of a molding die insert 25 that is incorporated into the fixed die 5 or the movable die 6 of the molding apparatus as shown in FIG. 2 and forms the surface of the cavity 8. Is composed of a nesting body 26 made of stainless steel, a heat insulating layer 27, and a sealing layer 28. On the upper surface of the nesting body 26, a rectangular recess 29 having a diameter longer than the length and width of the light guide plate and a depth of 0.5 mm is formed. Using a zirconia (ZrO 2 ) ceramic powder containing a stabilizing material Y 2 O 3 , a heat insulating material is filled by a plasma powder spray spraying method, polished and flattened, and the surface is further treated with hydrogen fluoride. The heat insulating layer 27 is formed by performing an etching treatment with an acid and roughening the surface. In this case, in order to improve the adhesion between the nesting body 26 and the heat insulating layer 27, the inner surfaces on the four sides of the recess 29 are formed as inclined surfaces 30 inclined by θ degrees as shown in FIG. Further, a sealing layer 28 made of Ni-P electroless plating is formed with a thickness of about 130 μm on the heat insulating layer 27 and on the nest body 26 around the heat insulating layer 27. Here, the angle θ of the inclined surface is 30 degrees in this embodiment, but is preferably in the range of 10 to 60 degrees. When the angle is small, the heat insulating layer 27 adheres tightly to the nest body. The lower the angle, the better the adhesion. However, as the angle θ increases, the thickness of the heat insulating layer becomes thinner, and the portion where the heat insulating function is reduced increases. Therefore, the range up to 60 degrees is preferable. Also, the heat insulating layer becomes thicker, the better the heat insulating function. However, the thicker the heat insulating layer, the longer it takes to form the heat insulating layer by the thermal spraying method.

さらに、封口層28の厚みは、前述のように、1μm以上の厚みとすることで、断熱層の表面に形成される空隙を封口して、表面の平滑な面を形成することが可能であるが、さらに、この封口層28の表面をキャビティ表面33として利用する場合には、切削加工する関係上、ある程度の厚みが必要であり、厚みが厚くなるにつれ、Ni-P無電解メッキ法によるNi-P被膜の形成に長時間を要するので、500μm以下の厚みとすることが好ましい。   Further, as described above, by setting the thickness of the sealing layer 28 to 1 μm or more, it is possible to seal the gap formed on the surface of the heat insulating layer and form a smooth surface. However, when the surface of the sealing layer 28 is used as the cavity surface 33, a certain thickness is required due to cutting, and as the thickness increases, the Ni-P electroless plating method is used. Since it takes a long time to form the -P coating, the thickness is preferably 500 μm or less.

この封口層28は、前記断熱層27の表面のエッチング処理により、断熱層27との密着性が改善されるとともに、鋼材からなる入れ子本体26の外周側面に幅(h1)が100〜500μmの広幅の第1段部31及び幅(h2)が10〜100μmの第1の段部31より狭幅の第2段部32を形成し、これらの段部31及び32をも被覆する構造とすることにより、断熱層27及び入れ子本体26との密着性が良好となり、成型時に封口層28の剥離や破損を防止することができる。   The sealing layer 28 is formed by etching the surface of the heat insulating layer 27 so as to improve the adhesion to the heat insulating layer 27 and to provide a wide (h1) having a width (h1) of 100 to 500 μm on the outer peripheral side of the nesting body 26 made of steel. Forming a second step 32 having a width smaller than the first step 31 and the first step 31 having a width (h2) of 10 to 100 μm, and covering these steps 31 and 32 as well. Thereby, the adhesion between the heat insulating layer 27 and the nesting body 26 is improved, and peeling and breakage of the sealing layer 28 during molding can be prevented.

この封口層28の表面は、キャビティ表面33となるが、このキャビティ表面33は、導光板23の反射面24に対応する微細な凹凸面34が前述の長さ、幅、段差でダイヤモンド工具を使用した切削加工によって形成されている。Ni-Pからなる封口層28は、セラミックスからなる断熱層27に比較して加工性が良く、微細な凹凸がダイヤモンド工具を使用した切削加工により、容易に形成することができる。   The surface of the sealing layer 28 becomes a cavity surface 33. The cavity surface 33 has a fine uneven surface 34 corresponding to the reflection surface 24 of the light guide plate 23 using a diamond tool with the above-described length, width and step. It is formed by cutting. The sealing layer 28 made of Ni-P has better workability than the heat insulating layer 27 made of ceramics, and fine irregularities can be easily formed by cutting using a diamond tool.

このような金型を使用し、ポリカーボネートにより、導光板23を射出成型した結果、光学的特性の良好な導光板23を容易かつ確実に成型することができた。
(実施例6)
As a result of injection molding of the light guide plate 23 with polycarbonate using such a mold, the light guide plate 23 having good optical characteristics could be easily and reliably molded.
(Example 6)

この実施例では、DVD用プラスチック基板を作製するに好適な金型の構造を示すもので、図9の断面図でその構造を示す。この金型は、図2の成型装置の可動金型6に対応するものであり、この金型6は、ステンレス鋼からなる円板状本体34の上面に少なくともDVDの記録情報部分に相当する幅のドーナッツ状の凹み部35が形成されており、この凹み部35内に部分安定化材YO3を含有したジルコニア(ZrO)セラミックス粉末を使用し、プラズマ・パウダースプレイ溶射法により断熱材を充填して第1の断熱層36を0.4mm厚みで形成し、続いて、酸化クロム(Cr2O3)粉末を使用してプラズマ・パウダースプレイ溶射法により第2の断熱層37を第1断熱層36上に0.1mm厚みで積層形成し、この第2断熱層37の表面を研磨して、表面を平滑化する。このようにして形成された第2断熱層37の表面は、表面粗さRmaxは、0.03μmとなり、良好な表面粗さを示した。 In this embodiment, a structure of a mold suitable for manufacturing a plastic substrate for DVD is shown, and the structure is shown in a cross-sectional view of FIG. This mold corresponds to the movable mold 6 of the molding apparatus shown in FIG. 2. The mold 6 has a width corresponding to at least a recording information portion of a DVD on the upper surface of a disk-shaped main body 34 made of stainless steel. Is formed, and a zirconia (ZrO 2 ) ceramic powder containing a partial stabilizing material Y 2 O 3 is used in the recess 35, and a heat insulating material is formed by plasma powder spraying. To form a first heat insulating layer 36 having a thickness of 0.4 mm. Subsequently, the second heat insulating layer 37 is formed by a plasma powder spraying method using chromium oxide (Cr 2 O 3 ) powder. A layer having a thickness of 0.1 mm is formed on the first heat insulating layer 36, and the surface of the second heat insulating layer 37 is polished to smooth the surface. The surface of the second heat-insulating layer 37 thus formed had a surface roughness Rmax of 0.03 μm, indicating good surface roughness.

さらに、この第2断熱層37上にアモルファスのダイヤモンド状炭素質薄膜38を、マグネトロンスパッタリング法により、3μm厚で形成されており、この炭素質薄膜38の表面粗さRmaxは、0.01μmとさらに平滑性が改善されている。   Further, an amorphous diamond-like carbonaceous thin film 38 is formed on the second heat insulating layer 37 to a thickness of 3 μm by magnetron sputtering, and the surface roughness Rmax of the carbonaceous thin film 38 is further increased to 0.01 μm. The smoothness has been improved.

この炭素質薄膜38上にスタンパ4を配置して、可動側金型部分を成型装置に組み込み、射出成型を行った結果、100万回の成型を行ってもスタンパによる摩耗粉の発生が認められなかった。   The stamper 4 was placed on the carbon thin film 38, the movable mold part was incorporated into a molding device, and injection molding was performed. As a result, generation of abrasion powder by the stamper was recognized even after performing molding for one million times. Did not.

本発明による成型用金型を使用して、CDやDVD等の光ディスク用プラスチック基板あるいはパーソナルコンピュータや携帯電話等に使用される液晶表示装置用または他の用途に使用される透明樹脂製の導光板等の分野においても有効に利用することができる。なお、本発明の実施例として、光ディスク用プラスチック基板の例を示したが、本発明の成型用金型は、光ディスク用プラスチック基板に限らず、ハードディスク用プラスチック基板やプラスチックレンズ等においても適用できるものである。   Using the molding die according to the present invention, a plastic substrate for an optical disk such as a CD or DVD, or a light guide plate made of a transparent resin used for a liquid crystal display device used for a personal computer or a mobile phone or for other uses It can be used effectively in such fields. As an embodiment of the present invention, an example of a plastic substrate for an optical disk has been described. However, the molding die of the present invention is not limited to the plastic substrate for an optical disk, and can be applied to a plastic substrate for a hard disk, a plastic lens, and the like. It is.

本発明による成型用金型を用いて製造されたDVDディスク用基板の記録情報に対応する凹凸部2に相当する部分の拡大断面図である。FIG. 4 is an enlarged cross-sectional view of a portion corresponding to the concave / convex portion 2 corresponding to recorded information on a DVD disk substrate manufactured by using a molding die according to the present invention. 本発明で使用される成型金型が閉じられた射出成型装置の概略断面図である。FIG. 1 is a schematic sectional view of an injection molding apparatus in which a molding die used in the present invention is closed. 本発明の実施例1の可動側金型部分の断面図である。It is sectional drawing of the movable side metal mold | die part of Example 1 of this invention. 本発明の実施例3の可動側金型部分の断面図である。It is sectional drawing of the movable side metal mold | die part of Example 3 of this invention. 本発明の実施例5による成型金型を用いて製造された導光板の平面図である。FIG. 13 is a plan view of a light guide plate manufactured using a molding die according to Embodiment 5 of the present invention. 図5のA−A線上で切断された断面図である。It is sectional drawing cut | disconnected on the AA of FIG. 図6のB部の拡大断面図である。FIG. 7 is an enlarged sectional view of a portion B in FIG. 本発明の実施例5による成型金型の一部となる入れ子の断面図である。FIG. 13 is a cross-sectional view of a nest forming a part of a molding die according to a fifth embodiment of the present invention. 本発明の実施例6の可動側金型部分の断面図である。It is sectional drawing of the movable side metal mold | die part of Example 6 of this invention.

符号の説明Explanation of reference numerals

1 DVDディスク基板
2 凹凸部
3 凹部
4 スタンパ
5 固定側金型
6 可動側金型
7 スタンパ外周ホルダー
8 キャビテイ
9 ゲート部
10 ゲートカット部材
15 キャビテイ面(固定側金型)
16 板状部材
17 銀ろう
18 ダイヤモンド状薄膜
19 固定側取り付け板
20 可動側取り付け板
21 断熱層
22 封口層
23 導光板
24 反射面
24a 部分的反射面
25 入れ子
26 入れ子本体
27 溶射法による断熱層
28 封口層
29 凹み部
30 傾斜面
31 第1段部
32 第2段部
33 キャビティ表面
34 金型本体
35 ドーナッツ状凹み部
36 第1断熱層
37 第2断熱層
38 炭素質薄膜
Reference Signs List 1 DVD disc substrate 2 Uneven portion 3 Depressed portion 4 Stamper 5 Fixed mold 6 Movable mold 7 Stamper outer peripheral holder 8 Cavity 9 Gate section 10 Gate cut member 15 Cavity surface (fixed mold)
Reference Signs List 16 plate-like member 17 silver solder 18 diamond-like thin film 19 fixed-side mounting plate 20 movable-side mounting plate 21 heat-insulating layer 22 sealing layer 23 light-guiding plate 24 reflecting surface 24a partially reflecting surface 25 nesting 26 nesting body 27 thermal insulating layer 28 by thermal spraying method Sealing layer 29 Depressed portion 30 Inclined surface 31 First step 32 Second step 33 Cavity surface 34 Mold body 35 Donut-shaped recess 36 First heat-insulating layer 37 Second heat-insulating layer 38 Carbon thin film

Claims (9)

金属材料からなる可動側金型及び固定側金型のキャビテイを構成する少なくとも一方の表面に、溶射法によるセラミックからなる断熱層を形成し、この断熱層の表面に封口層を形成したことを特徴とする成型用金型。   A heat insulating layer made of ceramic by thermal spraying is formed on at least one surface of the cavities of the movable mold and the fixed mold made of a metal material, and a sealing layer is formed on the surface of the heat insulating layer. Mold for molding. 前記断熱層は、ジルコニア、酸化チタン、アルミナ、チタン酸アルミニウムの少なくとも1種から選ばれたセラミック材で構成された請求項1記載の成型用金型。   The molding die according to claim 1, wherein the heat insulating layer is made of a ceramic material selected from at least one of zirconia, titanium oxide, alumina, and aluminum titanate. 前記断熱層の表面に、アモルファスのダイヤモンド状炭素質薄膜が形成されている請求項1または請求項2記載の成形用金型。   The molding die according to claim 1, wherein an amorphous diamond-like carbonaceous thin film is formed on a surface of the heat insulating layer. 前記封口層は、ニッケルを主成分とする被膜から構成されている請求項1または請求項2記載の成形用金型。   The molding die according to claim 1, wherein the sealing layer is formed of a coating containing nickel as a main component. 前記断熱層は、ジルコニアで構成された第1の断熱層とその上に積層される酸化クロム、窒化クロム、アルミナ、窒化アルミ、窒化珪素、炭化珪素の少なくとも1種から選ばれた材質からなる第2の断熱層から構成された請求項1ないし請求項4のいずれか1項に記載の成形用金型。   The heat insulating layer is made of a material selected from at least one of chromium oxide, chromium nitride, alumina, aluminum nitride, silicon nitride, and silicon carbide laminated on the first heat insulating layer made of zirconia. The molding die according to any one of claims 1 to 4, comprising two heat insulating layers. 金属材料からなる可動側金型及び固定側金型のキャビテイを構成する少なくとも一方の表面に、セラミック材からなる板状部材を金属ろうで固着したことを特徴とする成型用金型。   A molding die, wherein a plate-like member made of a ceramic material is fixed to at least one surface of the cavities of the movable die and the fixed die made of a metal material with a metal solder. 前記セラミック材からなる板状部材の表面にアモルファスのダイヤモンド状炭素質薄膜を形成した請求項6記載の成型用金型。   The molding die according to claim 6, wherein an amorphous diamond-like carbonaceous thin film is formed on a surface of the plate-shaped member made of the ceramic material. 前記セラミック材からなる板状部材がジルコニア、酸化チタン、アルミナ、チタン酸アルミニウムの少なくとも1種から選ばれたセラミック材で構成された請求項6または請求項7記載の成型用金型。   8. The molding die according to claim 6, wherein the plate member made of the ceramic material is made of a ceramic material selected from at least one of zirconia, titanium oxide, alumina, and aluminum titanate. 金属材料からなる可動側金型及び固定側金型のキャビテイを構成する少なくとも一方の金型表面に、表面を研磨したセラミックからなる板状部材を、その裏面が前記金型表面に対向するように配置し、前記金属表面と板状部材の裏面間に金属ろうを介在させて加熱し、前記金属ろうを溶融させて前記金型と板状部材とを固着することを特徴とする成型用金型の製造方法。
At least one of the mold surfaces constituting the cavities of the movable mold and the fixed mold made of a metal material, a plate-like member made of ceramic whose surface has been polished, such that the back surface faces the mold surface. Disposing, heating with a metal brazing interposed between the metal surface and the back surface of the plate-shaped member, melting the metal brazing, and fixing the mold and the plate-shaped member, wherein a molding die is provided. Manufacturing method.
JP2003381913A 2002-11-13 2003-11-12 Mold for molding Expired - Fee Related JP4181017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003381913A JP4181017B2 (en) 2002-11-13 2003-11-12 Mold for molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002329221 2002-11-13
JP2003381913A JP4181017B2 (en) 2002-11-13 2003-11-12 Mold for molding

Publications (2)

Publication Number Publication Date
JP2004175112A true JP2004175112A (en) 2004-06-24
JP4181017B2 JP4181017B2 (en) 2008-11-12

Family

ID=32716181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003381913A Expired - Fee Related JP4181017B2 (en) 2002-11-13 2003-11-12 Mold for molding

Country Status (1)

Country Link
JP (1) JP4181017B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113045A1 (en) * 2003-06-24 2004-12-29 Tdk Corporation Optical disc molding die having stamper holding surface applied with heat insulating layer and diamond-like carbon film, and molding method using it
JP2006116759A (en) * 2004-10-20 2006-05-11 Nippon Zeon Co Ltd Die for optical material injection-molding, and manufacturing method for optical material
JP2006236607A (en) * 2005-02-22 2006-09-07 Dainippon Ink & Chem Inc Die for manufacturing fuel cell separator and manufacturing method of fuel cell separator
WO2007020769A1 (en) * 2005-08-18 2007-02-22 Konica Minolta Opto, Inc. Metal mold for optical device forming and process for producing the same
JP2007204737A (en) * 2006-01-06 2007-08-16 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition for lightguide plate, and lightguide plate
WO2008035521A1 (en) * 2006-09-20 2008-03-27 Konica Minolta Opto, Inc. Method for manufacturing mold for molding optical element
WO2008053732A1 (en) * 2006-10-31 2008-05-08 Konica Minolta Opto, Inc. Molding die and method for manufacturing the same
JP2008127614A (en) * 2006-11-20 2008-06-05 Mitsubishi Engineering Plastics Corp Thermal spray coating structure, and insert
WO2008069235A1 (en) 2006-12-07 2008-06-12 Sumitomo Heavy Industries, Ltd. Heat insulating mold, mold component, molding machine, and method for manufacturing the heat insulating mold
JP2008246699A (en) * 2007-03-29 2008-10-16 Konica Minolta Opto Inc Optical element molding mold and optical element molding mold manufacturing method
JP2008273125A (en) * 2007-05-07 2008-11-13 Mitsubishi Engineering Plastics Corp Die assembly, injection-molding method, and molded article
JP2009131969A (en) * 2007-11-28 2009-06-18 Mitsubishi Engineering Plastics Corp Molded article of polycarbonate resin composition and injection molding method thereof
EP2072205A1 (en) 2007-12-17 2009-06-24 Rovalma SA Method for producing highly mechanically demanded pieces and specially tools from low cost ceramics or polymers
GB2459389A (en) * 2008-04-25 2009-10-28 Zircotec Ltd Thermal barrier comprising a titania coating
JP2010149421A (en) * 2008-12-25 2010-07-08 Sumitomo Heavy Ind Ltd Resin molding apparatus and molding machine
WO2012008372A1 (en) * 2010-07-12 2012-01-19 神戸セラミックス株式会社 Heat-insulating die and production method thereof
JP2012179911A (en) * 2006-01-06 2012-09-20 Mitsubishi Engineering Plastics Corp Method for manufacturing light guiding plate
JP2014083709A (en) * 2012-10-22 2014-05-12 Polyplastics Co Mold and method for producing crystalline thermoplastic resin molded body
US20140263943A1 (en) * 2011-09-05 2014-09-18 Polyplastics Co., Ltd Mold
WO2014148268A1 (en) * 2013-03-22 2014-09-25 コニカミノルタ株式会社 Injection molding method
JP2017527459A (en) * 2014-06-26 2017-09-21 テーセェーテク スウェーデン アクチエボラグTCTech Sweden AB Method and apparatus for injection molding or embossing / pressing
RU2808303C1 (en) * 2022-04-12 2023-11-28 Шок Гмбх Casting mould for obtaining casting having front and back side from curable casting mass

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120115617A (en) 2011-04-11 2012-10-19 삼성디스플레이 주식회사 Stamper and method of manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234214A (en) * 1988-03-16 1989-09-19 Tdk Corp Molding mold and manufacture thereof
JPH026108A (en) * 1988-06-24 1990-01-10 Victor Co Of Japan Ltd Mold and its manufacture
JPH06218769A (en) * 1993-01-22 1994-08-09 Taiyo Kosakusho:Kk Mold for injecting thermoplastic resin
JPH06246797A (en) * 1992-12-28 1994-09-06 Nippon Steel Chem Co Ltd Prevention of generation of sink in appearance surface of molded product and injection mold
JPH10149587A (en) * 1996-11-20 1998-06-02 Hitachi Ltd Forming method of optical disk substrate
JPH1134112A (en) * 1997-07-11 1999-02-09 Toshiba Mach Co Ltd Precise mold
JPH1148290A (en) * 1997-08-04 1999-02-23 Mitsubishi Eng Plast Kk Molding, method for molding it, and mold assembly
JP2000178736A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2000178738A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2000254922A (en) * 1999-03-08 2000-09-19 Citizen Watch Co Ltd Mold for resin and method for forming hard coating film to mold for resin
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234214A (en) * 1988-03-16 1989-09-19 Tdk Corp Molding mold and manufacture thereof
JPH026108A (en) * 1988-06-24 1990-01-10 Victor Co Of Japan Ltd Mold and its manufacture
JPH06246797A (en) * 1992-12-28 1994-09-06 Nippon Steel Chem Co Ltd Prevention of generation of sink in appearance surface of molded product and injection mold
JPH06218769A (en) * 1993-01-22 1994-08-09 Taiyo Kosakusho:Kk Mold for injecting thermoplastic resin
JPH10149587A (en) * 1996-11-20 1998-06-02 Hitachi Ltd Forming method of optical disk substrate
JPH1134112A (en) * 1997-07-11 1999-02-09 Toshiba Mach Co Ltd Precise mold
JPH1148290A (en) * 1997-08-04 1999-02-23 Mitsubishi Eng Plast Kk Molding, method for molding it, and mold assembly
JP2000178736A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2000178738A (en) * 1998-12-15 2000-06-27 Tdk Corp Member coated with diamond-like carbon film
JP2000254922A (en) * 1999-03-08 2000-09-19 Citizen Watch Co Ltd Mold for resin and method for forming hard coating film to mold for resin
JP2002096335A (en) * 2000-09-25 2002-04-02 Minolta Co Ltd Mold for molding optical element and method for molding optical element

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004113045A1 (en) * 2003-06-24 2004-12-29 Tdk Corporation Optical disc molding die having stamper holding surface applied with heat insulating layer and diamond-like carbon film, and molding method using it
JP2006116759A (en) * 2004-10-20 2006-05-11 Nippon Zeon Co Ltd Die for optical material injection-molding, and manufacturing method for optical material
JP2006236607A (en) * 2005-02-22 2006-09-07 Dainippon Ink & Chem Inc Die for manufacturing fuel cell separator and manufacturing method of fuel cell separator
WO2007020769A1 (en) * 2005-08-18 2007-02-22 Konica Minolta Opto, Inc. Metal mold for optical device forming and process for producing the same
JP2007204737A (en) * 2006-01-06 2007-08-16 Mitsubishi Engineering Plastics Corp Aromatic polycarbonate resin composition for lightguide plate, and lightguide plate
JP2012179911A (en) * 2006-01-06 2012-09-20 Mitsubishi Engineering Plastics Corp Method for manufacturing light guiding plate
TWI382920B (en) * 2006-09-20 2013-01-21 Konica Minolta Opto Inc Method for manufacturing mold for optical element forming
US8318058B2 (en) 2006-09-20 2012-11-27 Konica Minolta Opto, Inc. Method for manufacturing mold for molding optical element
WO2008035521A1 (en) * 2006-09-20 2008-03-27 Konica Minolta Opto, Inc. Method for manufacturing mold for molding optical element
CN101516591B (en) * 2006-09-20 2011-11-30 柯尼卡美能达精密光学株式会社 Method for manufacturing mold for molding optical element
WO2008053732A1 (en) * 2006-10-31 2008-05-08 Konica Minolta Opto, Inc. Molding die and method for manufacturing the same
JPWO2008053732A1 (en) * 2006-10-31 2010-02-25 コニカミノルタオプト株式会社 Mold for molding and manufacturing method thereof
JP2008127614A (en) * 2006-11-20 2008-06-05 Mitsubishi Engineering Plastics Corp Thermal spray coating structure, and insert
WO2008069235A1 (en) 2006-12-07 2008-06-12 Sumitomo Heavy Industries, Ltd. Heat insulating mold, mold component, molding machine, and method for manufacturing the heat insulating mold
JP2008142952A (en) * 2006-12-07 2008-06-26 Sumitomo Heavy Ind Ltd Heat insulating mold, mold component, molding machine, and method for producing heat insulating mold
EP2100710A4 (en) * 2006-12-07 2012-11-07 Sumitomo Heavy Industries Heat insulating mold, mold component, molding machine, and method for manufacturing the heat insulating mold
EP2100710A1 (en) * 2006-12-07 2009-09-16 Sumitomo Heavy Industries, LTD. Heat insulating mold, mold component, molding machine, and method for manufacturing the heat insulating mold
JP2008246699A (en) * 2007-03-29 2008-10-16 Konica Minolta Opto Inc Optical element molding mold and optical element molding mold manufacturing method
US7922146B2 (en) * 2007-03-29 2011-04-12 Konica Minolta Opto, Inc. Optical element forming metal mold and method of manufacturing optical element forming metal mold
JP2008273125A (en) * 2007-05-07 2008-11-13 Mitsubishi Engineering Plastics Corp Die assembly, injection-molding method, and molded article
JP2009131969A (en) * 2007-11-28 2009-06-18 Mitsubishi Engineering Plastics Corp Molded article of polycarbonate resin composition and injection molding method thereof
EP2072205A1 (en) 2007-12-17 2009-06-24 Rovalma SA Method for producing highly mechanically demanded pieces and specially tools from low cost ceramics or polymers
US8283026B2 (en) 2007-12-17 2012-10-09 Rovalma, S.A. Method for producing highly mechanically demanded pieces and specially tools from low cost ceramics or polymers
GB2459389B (en) * 2008-04-25 2013-02-06 Zircotec Ltd An article with a thermal barrier and a method of applying a thermal barrier to a surface of an article
GB2459389A (en) * 2008-04-25 2009-10-28 Zircotec Ltd Thermal barrier comprising a titania coating
JP2010149421A (en) * 2008-12-25 2010-07-08 Sumitomo Heavy Ind Ltd Resin molding apparatus and molding machine
JP4966437B2 (en) * 2010-07-12 2012-07-04 神戸セラミックス株式会社 Thermal insulation mold and manufacturing method thereof
WO2012008372A1 (en) * 2010-07-12 2012-01-19 神戸セラミックス株式会社 Heat-insulating die and production method thereof
TWI477381B (en) * 2010-07-12 2015-03-21 Kobe Ceramics Corp Heat insulation metal mold and method of manufacturing the same
US20140263943A1 (en) * 2011-09-05 2014-09-18 Polyplastics Co., Ltd Mold
JP2014083709A (en) * 2012-10-22 2014-05-12 Polyplastics Co Mold and method for producing crystalline thermoplastic resin molded body
WO2014148268A1 (en) * 2013-03-22 2014-09-25 コニカミノルタ株式会社 Injection molding method
JP2017527459A (en) * 2014-06-26 2017-09-21 テーセェーテク スウェーデン アクチエボラグTCTech Sweden AB Method and apparatus for injection molding or embossing / pressing
RU2808303C1 (en) * 2022-04-12 2023-11-28 Шок Гмбх Casting mould for obtaining casting having front and back side from curable casting mass

Also Published As

Publication number Publication date
JP4181017B2 (en) 2008-11-12

Similar Documents

Publication Publication Date Title
JP4181017B2 (en) Mold for molding
JP4135304B2 (en) Manufacturing method of mold for molding optical element
JPH06218769A (en) Mold for injecting thermoplastic resin
KR100550711B1 (en) Structure and method for molding optical disks
JP3747983B2 (en) Molding method of molded product and mold assembly
JP4650514B2 (en) Optical element molding method
JP4223537B2 (en) Mold for molding disk substrate, mirror plate thereof, method for molding disk substrate, and disk substrate
JP4197183B2 (en) Disk substrate molding die and disk substrate manufacturing method
JP4789818B2 (en) Mold for molding optical product and method for molding optical product
JP3550461B2 (en) Plastic molding method and optical disk manufacturing method
JPH10230524A (en) Mold for optical disc substrate and manufacture
JP2008183765A5 (en)
JP2000135718A (en) Composite stamper
JP2001310358A (en) Mold for molding disk substrate
JP2004195756A (en) Mold for optical disk substrate
JPH1134112A (en) Precise mold
JP3421188B2 (en) Mold assembly for injection compression molding and injection compression molding method
JP6418619B1 (en) Mold, mold manufacturing method, resin molding apparatus and molded product molding method
US20080138510A1 (en) Optical disk mold and method of forming the same
JP2007008172A (en) Mold assembly for molding thermoplastic resin
JPS60151852A (en) Manufacture of digital signal recording and reproducing disk
JP2638695B2 (en) Injection molding stamper
JP2000094480A (en) Molding die and injection molding machine for disk-shaped recording medium
JP2004322358A (en) Mold and mold protecting sheet
JPH11156897A (en) Mold for injecting molding of optical disk board, and molding board

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040428

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080828

R150 Certificate of patent or registration of utility model

Ref document number: 4181017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees