JPH026108A - Mold and its manufacture - Google Patents

Mold and its manufacture

Info

Publication number
JPH026108A
JPH026108A JP15641288A JP15641288A JPH026108A JP H026108 A JPH026108 A JP H026108A JP 15641288 A JP15641288 A JP 15641288A JP 15641288 A JP15641288 A JP 15641288A JP H026108 A JPH026108 A JP H026108A
Authority
JP
Japan
Prior art keywords
mold
inserter
ceramic plate
movable mold
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15641288A
Other languages
Japanese (ja)
Inventor
Susumu Genma
弦間 享
Kihachirou Anzai
安西 棋八郎
Kazuo Ebato
江波戸 和男
Kuniaki Osada
長田 邦明
Takashi Shirakawa
敬司 白川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Victor Company of Japan Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd, Victor Company of Japan Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP15641288A priority Critical patent/JPH026108A/en
Publication of JPH026108A publication Critical patent/JPH026108A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • B29C45/2632Stampers; Mountings thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To realize the manufacture of a mold, while the surface hardness of the mold and its abrasion resistance are imposed by a method in which a mold body is made of the alloy of super plasticity, and the high hardness-material having high hardness due to the super plasticity-phenomenon of the alloy of super plasticity is connected to the surface of the mold body. CONSTITUTION:To cannot a ceramic plate 3 to the movable mold 11 of a mold, an inserter 12 is placed in close contact with the rear surface 11a of the movable mold 11 made of the alloy of super plasticity, and further on said inserter, the ceramic plate 3 is placed. The inserter 12 and the ceramic plate 13 are inserted into a furnace in the state where the surface of the inserter is opposite to that of the plate 13. The temperature inside of the furnace is kept at high temperature of 800-1,100 deg.C, and the mold, etc. are heated for about 10-40min. After this heat treatment, when the ceramic plate 13 is pressurized under relatively low load by using a forging machine, the super plasticity phenomenon due to fine crystal grains is generated on the rear surface 11a of the movable mold 11, thereby obtaining the mirror state of high grade flatness. Consequently, the connecting surface of atom level is expanded, and the connection of high strength is obtained between the movable mold 11 and the inserter 12, and further between the inserter 12 and the ceramic plate 13.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金型及びその製造方法に係り、特に金型の表面
硬度を高めるよう構成した金型及びそのwA造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a mold and a method for manufacturing the same, and more particularly to a mold configured to increase the surface hardness of the mold and a method for manufacturing the same.

従来の技術 例えばビデオディスクあるいはコンパクトディスク等の
樹脂成形品は、第7図に示す如く、射出成形用の金型内
に溶融樹脂が注入されることにより所定形状に成形され
る。金型は、第7図中、固定金型1(内面に複数の冷却
溝1aを有する)と、固定金型1の内側端面に固定され
た鏡面ブロック2と、可動金型3(内面に複数の冷却溝
38を有する)と、可動金型3の内側端面に固定された
プレート4と、鏡面ブロック2とプレート4との間に介
在するスタンパ−5と、スタンパ−5の外周に設けられ
鏡面ブロック2に固定されたストッパー6とよりなる。
BACKGROUND ART Resin molded products such as video discs or compact discs are molded into a predetermined shape by injecting molten resin into an injection mold, as shown in FIG. The molds, as shown in FIG. ), a plate 4 fixed to the inner end surface of the movable mold 3, a stamper 5 interposed between the mirror block 2 and the plate 4, and a mirror surface provided on the outer periphery of the stamper 5. It consists of a stopper 6 fixed to the block 2.

スタンパ−5の表面には成形するディスクの記録面に対
応する凹凸形状のパターンが形成されており、スタンパ
−5は可動金型3、プレート4の中央孔3b、4bを貫
通するビン7により支持されている。又、ストッパ6の
段部6aはスタンパ−5の熱変形を考慮して、スタンパ
−5の周縁部より難問している。従って、ディスク成形
時においては、固定金型1の中央の挿入口1bに嵌入す
るスクリュー8より溶融樹脂が上記金型内、即ち鏡面ブ
ロック2、スタンパ−5、ストッパ6により画成された
キャビティ(空間)内に注入されてディスク10が成形
される。
An uneven pattern corresponding to the recording surface of the disk to be molded is formed on the surface of the stamper 5, and the stamper 5 is supported by a movable mold 3 and a bottle 7 passing through the center holes 3b and 4b of the plate 4. has been done. Further, the stepped portion 6a of the stopper 6 is more difficult than the peripheral portion of the stamper 5 in consideration of thermal deformation of the stamper 5. Therefore, during disk molding, the screw 8 inserted into the insertion opening 1b at the center of the fixed mold 1 allows the molten resin to flow into the mold, that is, into the cavity defined by the mirror block 2, the stamper 5, and the stopper 6 ( The disc 10 is formed by injecting the resin into the space (space).

その際、スタンパ−5は熱により伸縮する材質(例えば
ニッケル合金等)で形成されているため、溶融樹脂の注
入に伴い外周方向に伸びる。そして、冷却溝1a、3a
に冷却水が流れているので、スタンパ−5は注入後冷却
されると共に内周方向に縮む。
At this time, since the stamper 5 is made of a material that expands and contracts with heat (for example, a nickel alloy), it expands in the outer circumferential direction as the molten resin is injected. And cooling grooves 1a, 3a
Since cooling water is flowing through the stamper 5, the stamper 5 is cooled after injection and contracts in the inner circumferential direction.

スタンパ−5が上記伸縮動作を繰り返すため、スタンパ
−5とプレート4との間に硬度の高い硬質異物が侵入す
ると、スタンパ−5の伸縮に伴いその都度可成りの圧力
下で摩擦が繰り返され、その結果プレート4及びスタン
パ−5が損傷してしまうといった不都合が生ずる。特に
、第8図に示す如く、スタンパ−5の裏面を研磨する砥
石より剥れた砥粒9がスタンパ−5に食い込んでいる場
合、溶融樹脂注入時スタンバ−5はプレート4に高硬度
の砥粒9が当接した状態のまま、矢印X方向に伸縮変位
することになる。これにより、プレート4の表面が砥粒
9の摺動により削られてしまうばかりか、スタンパ−5
自体が突状に変形してしまう。さらに、砥粒9によって
削られたプレート4の切粉がスタンパ−5の裏面に付着
して凸状のバンプ発生の原因になり、ディスク10表面
に凹部ができてしまいディスク10は成形不良となる。
Since the stamper 5 repeats the above expansion and contraction operation, if a hard foreign object with high hardness enters between the stamper 5 and the plate 4, friction will be repeated under considerable pressure each time as the stamper 5 expands and contracts. As a result, the plate 4 and stamper 5 may be damaged. Particularly, as shown in FIG. 8, if the abrasive grains 9 that have come off from the grindstone that polishes the back surface of the stamper 5 are biting into the stamper 5, the stamper 5 is used as a high-hardness abrasive to the plate 4 when injecting the molten resin. The particles 9 are expanded and contracted in the direction of the arrow X while remaining in contact with each other. As a result, not only the surface of the plate 4 is scraped by the sliding of the abrasive grains 9, but also the stamper 5
The object itself is deformed into a protruding shape. Furthermore, the chips of the plate 4 ground by the abrasive grains 9 adhere to the back surface of the stamper 5, causing convex bumps, and recesses are formed on the surface of the disk 10, resulting in defective molding of the disk 10. .

そこで、金型の表面硬度を高めるべく、種々の方法が考
えられている。その方法としては、■耐摩耗性に優れた
高硬度を有する特殊金属(例えば超硬合金等)をそのま
ま使用して金型を製作する方法、■金型の表面に耐摩耗
性を有する金属としてのクロムをめっきしてW!賀被被
膜形成する方法、■窒化チタン等の硬質物質を付与して
金型を製作する方法、■セラミックスを金型の表面に溶
射して金型の表面硬度を高める方法、等がある。
Therefore, various methods have been considered to increase the surface hardness of the mold. There are two ways to do this: ■ Making a mold using a special metal with high hardness and excellent wear resistance (such as cemented carbide); ■ Using a metal with wear resistance on the surface of the mold. Plated with chrome and W! There are two methods: 1) manufacturing a mold by applying a hard substance such as titanium nitride, and 2) increasing the surface hardness of the mold by thermally spraying ceramics onto the surface of the mold.

発明が解決しようとする課題 しかるに、上記従来の方法では、■の場合、金型自体を
表面硬度の高い材料で製作するため加工が難しく、2段
階加工が必要であり加工の手間が余計にかかるので加工
費が高価になる。又、上記■の場合、クロムめっきでは
必要な硬度が得られず、さらに強度を保持するためめっ
き厚を厚くすると加工費が高価になる。又、上記■の場
合、窒化チタンでは樹脂注入時の押圧強度を充分保持で
きない。又、上記■の場合、セラミックスを溶射しても
、セラミックス層の厚さが充分でなく、しかも面精度が
劣る。このように、従来の方法■〜■では夫々上記のよ
うな課題があり、金型の耐摩耗性を効果的に向上させる
ことが難しいといった課題がある。
Problems to be Solved by the Invention However, in the case of (2), the conventional method described above is difficult to process because the mold itself is made of a material with high surface hardness, and two-step processing is required, which requires additional processing effort. Therefore, processing costs are high. Furthermore, in the case of (2) above, chrome plating does not provide the necessary hardness, and if the plating thickness is increased to maintain strength, processing costs will increase. Furthermore, in the case of (2) above, titanium nitride cannot sufficiently maintain the pressing strength during resin injection. Furthermore, in the case of (2) above, even if ceramics are sprayed, the thickness of the ceramic layer is not sufficient and the surface precision is poor. As described above, each of the conventional methods (1) to (2) has the above-mentioned problems, and it is difficult to effectively improve the wear resistance of the mold.

そこで、本発明は上記課題を解決した金型及びその製造
方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a mold that solves the above problems and a method for manufacturing the same.

課題を解決するための手段及び作用 本発明は、金型本体を超塑性合金により形成し、超塑性
合金の超塑性現象により金型本体の表面に高硬度を有す
る高硬度部材を接合してなり、金型の表面硬度を高め耐
摩耗性を向上させるようにしたものである。
Means and Effects for Solving the Problems The present invention comprises a mold body made of a superplastic alloy, and a high-hardness member having high hardness bonded to the surface of the mold body by the superplastic phenomenon of the superplastic alloy. , the surface hardness of the mold is increased to improve wear resistance.

実施例 第1図及び第2図に本発明の第1実施例を示す。Example A first embodiment of the present invention is shown in FIGS. 1 and 2. FIG.

尚、第1図中、前述の第7図と同一部分には同一符号を
付して、その説明は省略する。
In FIG. 1, the same parts as those in FIG. 7 described above are designated by the same reference numerals, and the explanation thereof will be omitted.

両図中、可動金型11は超塑性合金(本実施例ではステ
ンレス系の超塑性合金を使用する)を母材として製作さ
れている。ITr動金型金型11側裏面11aには複数
の冷却111bが設けられ、中心にはスタンパ−5のビ
ン7が挿通される中央孔11Gが穿設されている。又、
可動金型11は超塑性合金であるが、他の金属と同様加
rが容易である。尚、この超塑性合金は所定の温度に加
熱すると低い応力で超塑性を発生する材質として知られ
ており、超塑性としては微細結晶粒超塑性によるものを
使用する。
In both figures, the movable mold 11 is manufactured using a superplastic alloy (in this embodiment, a stainless steel superplastic alloy is used) as a base material. A plurality of cooling units 111b are provided on the back side 11a of the ITr movable mold 11, and a central hole 11G into which the bottle 7 of the stamper 5 is inserted is bored in the center. or,
Although the movable mold 11 is made of a superplastic alloy, it can be easily worked like other metals. This superplastic alloy is known as a material that generates superplasticity with low stress when heated to a predetermined temperature, and the superplasticity used is one based on fine grain superplasticity.

本発明では後述するように上記の微細結晶粒超塑性現象
を利用するものであり、この微細結晶粒超塑性は超塑性
合金の融点く絶対温度)の172以上の高温で結晶粒を
10〜1μ膳以下に微細化し、低応力を加えると発生す
る。又微細結晶粒超塑性で得られる超塑性合金の表面は
、微細結晶組織であるため極めて平滑な鏡面状態を加工
によって得られる。
As will be described later, the present invention utilizes the above-mentioned fine grain superplasticity phenomenon, and this fine grain superplasticity is achieved by reducing grain size by 10 to 1 μm at a high temperature of 172 or above the melting point of the superplastic alloy (absolute temperature). It occurs when it is refined to a size smaller than that of a plate and low stress is applied. Furthermore, since the surface of the superplastic alloy obtained by fine grain superplasticity has a fine crystal structure, an extremely smooth mirror surface state can be obtained by processing.

上記可動金型11の裏面11aには例えばニッケル合金
により形成された円盤状のインサータ12(中央孔12
aを有する)を介して極めて高い硬度を有する円盤状の
セラミック板13が接合されている。尚、セラミック板
13は比較的厚く、中心には中央孔13aが設けられて
いる。
The back surface 11a of the movable mold 11 is provided with a disk-shaped inserter 12 (central hole 12
A disk-shaped ceramic plate 13 having an extremely high hardness is joined via a ceramic plate 13 having a diameter of 1. Note that the ceramic plate 13 is relatively thick and has a central hole 13a in the center.

可動金型11の裏面11aとインサータ12とは、前述
した超塑性現象により原子接合されている。これにより
可動金型11の冷却5llbはインサータ12によりそ
の開口部分を隙間なく塞がれることになり、冷却水の漏
れが防止される。又、インサータ12とセラミック板1
3とはニッケル合金の原子がセラミック板13の表面に
拡散し、接合される。このように、セラミック板13は
所定の厚さを有するもののインサータ12を介して可動
金型11の表面に強固に接合される。
The back surface 11a of the movable mold 11 and the inserter 12 are atomically bonded by the superplastic phenomenon described above. As a result, the opening of the coolant 5llb of the movable mold 11 is completely closed by the inserter 12, and leakage of cooling water is prevented. In addition, the inserter 12 and the ceramic plate 1
3, atoms of the nickel alloy diffuse into the surface of the ceramic plate 13 and are bonded. In this way, the ceramic plate 13 is firmly joined to the surface of the movable mold 11 via the inserter 12, although it has a predetermined thickness.

尚、インサータ12には可動金型11とセラミック板1
3とを接合する役目を有するとともに、熱処理時、可動
金型11とセラミック板13との熱膨張との差による熱
応力を吸収する役目も有している。
Note that the inserter 12 includes a movable mold 11 and a ceramic plate 1.
It has the role of joining the movable mold 11 and the ceramic plate 13, and also has the role of absorbing thermal stress due to the difference in thermal expansion between the movable mold 11 and the ceramic plate 13 during heat treatment.

可動金型11は上記のように接合されたセラミック板1
3によりその表面硬度及び耐熱強度が高められている。
The movable mold 11 is a ceramic plate 1 joined as described above.
3 increases its surface hardness and heat resistance strength.

よって、硬質異物がスタンバ−5の裏面に食い込んでい
る状態で樹脂注入時スタンパ−5が熱により伸縮しても
、セラミック板13の表面は損傷せず、可動金型11の
表面は耐摩耗性が向上し、長期間の使用も可能となる。
Therefore, even if the stamper 5 expands and contracts due to heat during resin injection with hard foreign matter biting into the back surface of the stamper 5, the surface of the ceramic plate 13 will not be damaged and the surface of the movable mold 11 will be wear-resistant. This improves performance and enables long-term use.

又、セラミック板13は所定以上の厚さを有するため、
可動金型11の表面強度が向上し、溶m1ii1脂注入
時の応力が作用してもその表面に亀裂が生じない。
In addition, since the ceramic plate 13 has a thickness greater than a predetermined value,
The surface strength of the movable mold 11 is improved, and cracks do not occur on the surface even when stress is applied during injection of the molten m1ii1 fat.

しかもセラミック板13は表面にピンホールがなく、面
精度が高く、摩耗係数が低い。さらにはセラミック板1
3は耐食性も有している。
Moreover, the ceramic plate 13 has no pinholes on its surface, has high surface precision, and has a low coefficient of wear. Furthermore, ceramic plate 1
3 also has corrosion resistance.

ここで、上記金型の製造方法、即ち上記可動金型11に
セラミック板13を接合する工程につき第3図(A)〜
(C)を参照して説明する。
Here, the method for manufacturing the mold, that is, the step of joining the ceramic plate 13 to the movable mold 11 will be explained in FIGS.
This will be explained with reference to (C).

まず、第3図(A)に示す如く、超塑性合金により形成
された可動金型11を用意する。尚1.可動金型11の
方面11aには複数の冷却溝11bが設けられ、中心に
は中央孔11Gが穿設されている。
First, as shown in FIG. 3(A), a movable mold 11 made of a superplastic alloy is prepared. Note 1. A plurality of cooling grooves 11b are provided on the side 11a of the movable mold 11, and a central hole 11G is bored in the center.

次に、第3図(B)に示す如く、可動金型11の裏面1
1a上にインサータ12を密着状態となるようt置し、
さらにインサータ12上にセラミック板13を載置する
Next, as shown in FIG. 3(B), the back surface 1 of the movable mold 11 is
Place the inserter 12 on 1a so that it is in close contact with the inserter 12,
Furthermore, the ceramic plate 13 is placed on the inserter 12.

従って、可動金型11は第3区(C)に示す如く、イン
サータ12、セラミック板13が面対向して載置された
状態で類14内に挿入される。類14内のa度は超塑性
が発生しうる所定の温度、本実施例では約800〜11
00℃の^温に保たれ、可動金型11等は約10〜40
分間加熱される。尚、この温度は超塑性合金の融点の1
/2以上の温度である。
Therefore, the movable mold 11 is inserted into the casing 14 with the inserter 12 and the ceramic plate 13 placed face to face, as shown in the third section (C). A degree in class 14 is a predetermined temperature at which superplasticity can occur, in this example, approximately 800 to 11
The temperature is kept at 00℃, and the movable mold 11 etc. is kept at a temperature of about 10~40℃.
Heat for minutes. In addition, this temperature is 1 of the melting point of the superplastic alloy.
/2 or more.

このような熱処理を施した後、例えば鍛造機を使用して
セラミック板13を比較的低い荷重く本実施例では約1
0Ky/7(およそIMPに等しい)の押圧力)で加圧
することにより、可動金型11の裏面11aにおいては
前述した微細結晶粒超塑性現象が発生し、極めて平面度
の高い鏡面状態となる。さらに、インサータ12及びセ
ラミック板13が裏面11aに密着しているため、超塑
性により表面11aの結晶粒がインサータ12表面の微
細な凹凸部分に食い込み、原子レベルの接合面積が拡大
し、可動金型11とインサータ12とは強固に接合され
る。
After performing such heat treatment, the ceramic plate 13 is subjected to a relatively low load using, for example, a forging machine.
By applying pressure with a pressing force of 0 Ky/7 (approximately equal to IMP), the above-mentioned fine grain superplastic phenomenon occurs on the back surface 11a of the movable mold 11, resulting in a mirror-like state with extremely high flatness. Furthermore, since the inserter 12 and the ceramic plate 13 are in close contact with the back surface 11a, the crystal grains on the surface 11a bite into the fine irregularities on the surface of the inserter 12 due to superplasticity, expanding the bonding area at the atomic level, and molding the movable mold. 11 and inserter 12 are firmly joined.

即ち、インサータ12の表面とセラミック板13の表面
との間では、ニッケル合金の原子がセラミック板13の
結晶内に透過して拡散する。従って、インサータ12と
セラミック板13との間においても、強固な接合が行な
われる。このように、可動金型11の材質を超塑性合金
とすることにより、高硬度を有するセラミック板13を
容易に接合することができる。
That is, between the surface of the inserter 12 and the surface of the ceramic plate 13, atoms of the nickel alloy permeate into the crystal of the ceramic plate 13 and diffuse. Therefore, strong bonding is also achieved between the inserter 12 and the ceramic plate 13. In this way, by using the superplastic alloy as the material of the movable mold 11, the ceramic plates 13 having high hardness can be easily joined.

次に、第4図及び第5図に本発明の第2実施例を示す。Next, a second embodiment of the present invention is shown in FIGS. 4 and 5.

両図中、超塑性合金を母材として製作された可動金型1
1の裏面11aに、超塑性合金により円盤状に形成され
たプレート15(中央孔15aを有する)が接合されて
いる。プレート15には円盤状のインサータにッケル合
金製)16を介して高硬度を有するセラミック板17が
接合されている。即ち、セラミック板17はプレート1
5、インサータ16を介して可動金型11の裏面11a
に一体的に接合されている。ここで、上記金型の製造方
法につき第6図(A)〜(D)を参照して説明する。
In both figures, movable mold 1 manufactured using superplastic alloy as the base material.
A disk-shaped plate 15 (having a central hole 15a) made of superplastic alloy is bonded to the back surface 11a of 1. A ceramic plate 17 having high hardness is joined to the plate 15 via a disc-shaped inserter 16 (made of Keckel alloy). That is, the ceramic plate 17 is the plate 1
5. Back surface 11a of movable mold 11 via inserter 16
is integrally joined to. Here, the method for manufacturing the mold will be explained with reference to FIGS. 6(A) to 6(D).

まず、第6図(A)中、可動金型11上に超塑性合金製
のプレート15を面対向させて載置する。
First, as shown in FIG. 6(A), a superplastic alloy plate 15 is placed on the movable mold 11 so as to face each other.

この状態のまま、これらを類14内に挿入し、約800
〜1100℃の温度に約10〜40分間加熱する。
Insert them into class 14 in this state and make approximately 800
Heat to a temperature of ~1100°C for approximately 10-40 minutes.

可動金型11とプレート15とは超塑性合金同士であり
、加熱模炉14より取り出しプレート15を例えばI造
機で加圧することより、超塑性現象が生じ相互に原子結
合される。
The movable mold 11 and the plate 15 are superplastic alloys, and when the plate 15 is taken out of the heating model furnace 14 and pressurized using, for example, an I-making machine, a superplastic phenomenon occurs and atomic bonding occurs with each other.

次に、第6図(C)に示す如く、可動金型11に接合さ
れたプレート15上にインサータ16を面対向させて載
置し、さらにインサータ16上にセラミック板17を載
置する。そして、このように!I4重された状態のまま
、これらを第6図(D)に示す如く類14内に挿入する
Next, as shown in FIG. 6(C), the inserter 16 is placed on the plate 15 joined to the movable mold 11 so as to face each other, and the ceramic plate 17 is placed on the inserter 16. And like this! Insert these into the casing 14 as shown in FIG. 6(D) while still being stacked.

尚、類14内は約10〜40分の間約400〜700℃
の温度に加熱される。その結果、ろう付けの原理により
プレート15に密着するインサータ16は原子結合され
る。さらに、インサータ16とセラミック板17との間
においても、ニッケル合金の原子がセラミック板17内
に拡散して相互に結合される。
In addition, for Class 14, the temperature is about 400 to 700℃ for about 10 to 40 minutes.
heated to a temperature of As a result, the inserter 16, which is in close contact with the plate 15, is atomically bonded by the principle of brazing. Furthermore, between the inserter 16 and the ceramic plate 17, atoms of the nickel alloy diffuse into the ceramic plate 17 and are bonded to each other.

かしくて、超塑性合金製の可動金型11、プレート15
を用いて、上記熱処理を施すことにより所定の厚さを有
するセラミック板17は可動金型11に一体的に結合さ
れる。
A movable mold 11 and a plate 15 made of superplastic alloy.
The ceramic plate 17 having a predetermined thickness is integrally bonded to the movable mold 11 by performing the heat treatment using the above method.

尚、上記実施例では可動金型とセラミック板との間にイ
ンサータあるいは超塑性合金製のプレート等を介在させ
たが、このインサータ及びプレートは必らずしも必要な
ものではなく、無くても良い。又、上記各実施例は射出
成形用の可動金型を例に挙げて説明したが、これに限ら
ないのは勿論であり、例えば固定金型を超塑性合金によ
り形成してその表面にセラミック板を接合するようにし
ても良い。
In the above embodiment, an inserter or a plate made of superplastic alloy was interposed between the movable mold and the ceramic plate, but the inserter and plate are not necessarily necessary and may be omitted. good. Furthermore, although each of the above embodiments has been explained using a movable mold for injection molding as an example, it is of course not limited to this. It is also possible to join them.

又、上記実施例ではディスクを成形する金型として説明
したが、本発明は他のものを成形する金型にも適用でき
、さらにはスタンバ−の無い金型にも適用できる。
Further, although the above embodiment has been described as a mold for molding a disk, the present invention can also be applied to a mold for molding other things, and can even be applied to a mold without a stand bar.

又、上記実施例では高硬度部材としてセラミック板を用
いたが、これに限らず極めて硬度の高い金属板、例えば
超硬合金等を用いても良い。
Further, in the above embodiment, a ceramic plate is used as the high-hardness member, but the present invention is not limited to this, and a metal plate with extremely high hardness, such as cemented carbide, may also be used.

発明の効果 上述の如り11本発明になる金型及びその製造方法は、
表面硬度の高い高硬度部材を金型本体の表面に強固に接
合することができ、金型が硬質異物等により損傷したり
、あるいは成形工程の繰り返しによる摩耗が減少し、金
型の耐摩耗性を向上させて寿命をより延ばずことができ
る。さらに、簡単な熱処理加工を施すだけで超塑性現象
が起きるので、高硬度部材を容易に接合でき、しかも、
金型本体が超塑性合金を母材としているため、通常の金
属と同様に容易に加工することができ加工費を安価にで
きる。又高硬度部材の厚さを厚くしても接合強度が保持
されるため、厚みのある高硬度部材を金型本体に接合で
き、溶融樹脂注入時の応力が作用しても高硬度部材に亀
裂が生ずることもなく、金型全体の強度がより高められ
る等の特長を有する。
Effects of the Invention As mentioned above, the mold and manufacturing method thereof according to the present invention are as follows:
High-hardness parts with high surface hardness can be firmly bonded to the surface of the mold body, reducing mold damage caused by hard foreign objects or wear due to repeated molding processes, and improving the wear resistance of the mold. It is possible to improve the lifespan without further extending the lifespan. Furthermore, since superplasticity occurs just by applying a simple heat treatment process, high hardness members can be easily joined.
Since the mold body is made of a superplastic alloy as a base material, it can be easily processed in the same way as normal metals, reducing processing costs. In addition, since the bonding strength is maintained even when the thickness of the high-hardness member is increased, it is possible to join a thick high-hardness member to the mold body, and even if stress is applied during injection of molten resin, the high-hardness member will not crack. It has the advantage that the strength of the entire mold can be further increased without causing any damage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明になる金型の第1実施例を説
明するための縦断面図、及びその要部拡大図、第3図は
可動金型にセラミック板を接合する工程を説明するため
の工程図、第4図及び第5図は本発明の第2実施例の縦
断面図及びその要部拡大図、第6図は第2実施例の可動
金型にセラミック板を接合する工程を説明するための工
程図、第7図及び第8図は従来の金型を説明するための
縦断面図及びその要部拡大図である。 11・・・可動金型、12.16・・・インサータ、1
3.17・・・セラミック板、14・・・炉、15・・
・プレート。 第 図 第 図 第 図 第 図 第 図 (B) (D)
Figures 1 and 2 are longitudinal cross-sectional views and enlarged views of essential parts for explaining the first embodiment of the mold according to the present invention, and Figure 3 shows the process of joining the ceramic plate to the movable mold. 4 and 5 are longitudinal cross-sectional views and enlarged views of essential parts of the second embodiment of the present invention, and FIG. 6 is a diagram showing the process of joining the movable mold of the second embodiment. FIGS. 7 and 8 are a longitudinal sectional view and an enlarged view of the main parts of a conventional mold. 11...Movable mold, 12.16...Inserter, 1
3.17...Ceramic plate, 14...Furnace, 15...
·plate. (B) (D)

Claims (2)

【特許請求の範囲】[Claims] (1)金型本体を超塑性合金により形成し、前記超塑性
合金の超塑性現象により前記金型本体の表面に高硬度を
有する高硬度部材を接合してなることを特徴とする金型
(1) A mold characterized in that the mold body is formed of a superplastic alloy, and a high-hardness member having high hardness is joined to the surface of the mold body due to the superplastic phenomenon of the superplastic alloy.
(2)超塑性合金により形成された金型本体と、高硬度
を有する高硬度部材とを互いに対向させ、前記金型本体
と高硬度部材とを対向状態のまま炉内に載置し、所定時
間加熱し加圧することにより超塑性を発生させ前記金型
本体と高硬度部材とを接合してなることを特徴とする金
型の製造方法。
(2) A mold body formed of a superplastic alloy and a high-hardness member having high hardness are opposed to each other, and the mold body and the high-hardness member are placed in a furnace in a facing state, and a predetermined position is set. A method for manufacturing a mold, characterized in that the mold body and a high-hardness member are joined together by generating superplasticity by heating and pressurizing for a period of time.
JP15641288A 1988-06-24 1988-06-24 Mold and its manufacture Pending JPH026108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15641288A JPH026108A (en) 1988-06-24 1988-06-24 Mold and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15641288A JPH026108A (en) 1988-06-24 1988-06-24 Mold and its manufacture

Publications (1)

Publication Number Publication Date
JPH026108A true JPH026108A (en) 1990-01-10

Family

ID=15627183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15641288A Pending JPH026108A (en) 1988-06-24 1988-06-24 Mold and its manufacture

Country Status (1)

Country Link
JP (1) JPH026108A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175112A (en) * 2002-11-13 2004-06-24 Maxell Hi Tec Ltd Molding die and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004175112A (en) * 2002-11-13 2004-06-24 Maxell Hi Tec Ltd Molding die and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4975021B2 (en) Thermoplastic resin mold, cavity mold, and method of manufacturing the cavity mold
US4793953A (en) Mold for optical thermoplastic high-pressure molding
US4141531A (en) Disc record press
JPH0336653B2 (en)
TW200403115A (en) Liquid-cooled chilled-casting
JPH028364A (en) Sputtering target and its production
JPH026108A (en) Mold and its manufacture
US7311516B2 (en) Die for molding disk substrate and method of manufacturing disk substrate
JPH0563263B2 (en)
JPS6072657A (en) Method for manufacturing member of molding machine or the like and member manufactured by using said method
JP3839788B2 (en) Mold for molding disk substrate
JP2004195756A (en) Mold for optical disk substrate
JP3320930B2 (en) Mold for resin molding
WO2023248391A1 (en) Method for manufacturing metal joined body, and method for joining die-cast member
JP6528940B2 (en) Preheating member and hot forging method using the same
WO2023248817A1 (en) Method for manufacturing metal bonded body, and method for bonding diecast member
JP2501578B2 (en) Mold for molding
JPH0114979Y2 (en)
JPS58177327A (en) Apparatus for molding disklike recording medium
JPS62284711A (en) Highly heat conductive molding die
JPH10202663A (en) Molding die and its manufacture
JP3255690B2 (en) Optical element molding die and manufacturing method
JP3835626B2 (en) Mold
JPH03117732A (en) Composite friction plate and its manufacture
JPS62234634A (en) Cemented type hot-press working die