JP2004170041A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2004170041A
JP2004170041A JP2002339341A JP2002339341A JP2004170041A JP 2004170041 A JP2004170041 A JP 2004170041A JP 2002339341 A JP2002339341 A JP 2002339341A JP 2002339341 A JP2002339341 A JP 2002339341A JP 2004170041 A JP2004170041 A JP 2004170041A
Authority
JP
Japan
Prior art keywords
cooler
refrigerator
duct
refrigeration
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002339341A
Other languages
Japanese (ja)
Inventor
Akihiro Noguchi
明裕 野口
Koji Kashima
弘次 鹿島
Tatsuya Ozaki
達哉 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002339341A priority Critical patent/JP2004170041A/en
Publication of JP2004170041A publication Critical patent/JP2004170041A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator for preserving foods freshly including vegetables. <P>SOLUTION: A ceiling duct 41 is fixed to a ceiling surface of a refrigerating chamber 36 and a wall face cooler 10 is fixed to the upper part of the ceiling duct 41. The ceiling duct 41 receives dew condensation water dropping down and cold air is fed from a room duct 39 through the ceiling duct 41 into the refrigerating chamber 36. In this construction, the cold air is humidified by the dew condensation water when distributed in the ceiling duct 41, and so highly humidified air is supplied into the refrigerating chamber 36. The refrigerating chamber 36 has higher humidity to improve the freshness in preservation of foods including vegetables. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、食品を冷蔵保存する冷蔵庫に関する。
【0002】
【従来の技術】
家庭用冷蔵庫には、間冷蒸発器およびファンを上下段に設置し、ファンから間冷蒸発器を通して冷蔵室内に風を送ることに基づいて冷蔵室内を冷却する構成のものがある。また、業務用冷蔵庫には冷蔵室の壁面に壁面蒸発器を設置し、冷蔵室内を自然対流で冷却する構成のものがある。この業務用冷蔵庫の場合、壁面蒸発器に結露が生じるので、結露水を庫外に排出している。
【0003】
【特許文献1】
特開2000−28257号公報
【0004】
【発明が解決しようとする課題】
野菜等の食品を高鮮度で保存するには庫内の湿度を高める必要がある。しかしながら、上記従来の家庭用冷蔵庫では下部の間冷蒸発器で十分に冷却された空気を上部に送風しているので、間冷蒸発器での除湿量が多くなり、庫内を高湿度に保つことが困難である。また、上記従来の業務用冷蔵庫では結露水を排水しているので、庫内の湿度が低くなる。
本発明は上記事情に鑑みてなされたものであり、その目的は、庫内を高湿度に保つことができる食品の高鮮度保存性に優れた冷蔵庫を提供することにある。
【0005】
【課題を解決するための手段】
<請求項1に係る発明について>
請求項1に係る発明は、壁面冷却器から落下する結露水を受けるダクトを設け、ダクト内に風を送るところに特徴を有する。この壁面冷却器の設置場所は冷蔵室内の天井面が好ましく、壁面冷却器の種別は冷却板に冷却パイプを固定してなるパイプオンシート形が好ましい。
請求項1に係る発明によれば、風がダクト内を流通するときに結露水により加湿されるので、冷蔵室内に高湿度の風が供給される。このため、冷蔵室内の湿度が高くなるので、野菜等の食品の高鮮度保存性が向上する。
【0006】
<請求項2に係る発明について>
請求項2に係る発明は、冷蔵用冷却器で生成された冷気をファンからダクト内に送風するところに特徴を有する。この冷蔵用冷却器は壁面冷却器とは機械的に別の冷却器であり、具体的には冷蔵室内を冷蔵温度に冷却する冷気を生成する冷却器である。
請求項2に係る発明によれば、冷蔵室内に冷蔵用冷却器および壁面冷却器を通して冷風が送られるので、冷風の温度が下がる。このため、冷蔵室内の高湿度化が促進されるので、食品の高鮮度保存性が一層向上する。
【0007】
<請求項3に係る発明について>
請求項3に係る発明は、ダクトに親水処理を施すところに特徴を有する。この親水処理とはダクトに対する結露水の付着性を高める処理を総称するものであり、例えばダクトの表面粗度を粗くすること,ダクトの表面積を大きくすること,ダクトの表面に親水性被膜を形成することを称する。
請求項3に係る発明によれば、ダクトに対する結露水の付着性が高まるので、ダクト内を流通する風と結露水との接触量が増える。このため、風の高湿度化が促進されるので、食品の高鮮度保存性が一層向上する。
【0008】
<請求項4に係る発明について>
請求項4に係る発明は、ダクトに貯留部を設けるところに特徴を有する。この貯留部とは結露水を作為的に貯留する部分を総称するものであり、例えば複数の壁部によって確定される空間部,凹状の空間部を称する。
請求項4に係る発明によれば、ダクトに結露水が作為的に貯留されるので、ダクト内を流通する風と結露水との接触量が増える。このため、風の高湿度化が促進されるので、食品の高鮮度保存性が一層向上する。
【0009】
<請求項5に係る発明について>
請求項5に係る発明は、冷蔵用冷却器と壁面冷却器と冷凍用冷却器とを同時に使用可能な冷凍サイクルを用いたところに特徴を有する。
請求項5に係る発明によれば、冷凍用冷却器だけに冷媒を流す冷凍モードおよび冷蔵用冷却器・壁面冷却器の双方に冷媒を流す冷蔵モード間で運転状態を切換える必要がなくなり、冷蔵用冷却器および壁面冷却器に冷媒を連続的に流すことができる。このため、冷蔵用冷却器および壁面冷却器を相対的に高温度で運転することが可能になるので、冷蔵用冷却器および壁面冷却器での着霜量が減る。従って、冷蔵室の高湿度化が促進されるので、食品の高鮮度保存性が一層向上する。
【0010】
【発明の実施の形態】
以下、本発明の第1実施例を図1〜図3に基づいて説明する。尚、本実施例は本発明をファンクール式の家庭用冷蔵庫に適用したものである。
<冷凍サイクルについて>
図3のコンプレッサ1は中圧加圧用の第1段圧縮室2および高圧加圧用の第2段圧縮室3を内蔵する2段圧縮形のものである。このコンプレッサ1には高圧側吐出口4と中間圧側吸込口5と低圧側吸込口6とが設けられており、低圧側吸込口6から吸込まれる冷媒は第1段圧縮室2内で中間圧に加圧され、中間圧側吸込口5から吸込まれる冷媒と合流して混合される。この混合冷媒は高圧加圧用の第2段圧縮室3内で高圧に加圧され、高圧側吐出口4から吐出される。
【0011】
コンプレッサ1の高圧側吐出口4には凝縮器7が接続されている。この凝縮器7の出口には冷蔵用キャピラリーチューブ8の入口が接続されており、冷蔵用キャピラリーチューブ8の出口には冷蔵用冷却器9の入口が接続されている。この冷蔵用冷却器9の出口には壁面冷却器10の入口が接続されており、壁面冷却器10の出口には気液分離器11の入口が接続されている。この気液分離器11は第1の出口および第2の出口を有するものであり、気液分離器11の第2の出口は冷蔵用サクションパイプ12を介してコンプレッサ1の中間圧側吸込口5に接続され、気液分離器11の第1の出口には冷凍用キャピラリーチューブ13の入口が接続されている。この冷凍用キャピラリーチューブ13の出口には冷凍用冷却器14の入口が接続されており、冷凍用冷却器14の出口はアキュムレータ15および冷凍用サクションパイプ16を介してコンプレッサ1の低圧側吸込口6に接続されている。
【0012】
コンプレッサ1の高圧側吐出口4から吐出された高圧ガス冷媒は凝縮器7内で凝縮して高圧2相冷媒になり、高圧2相冷媒は冷蔵用キャピラリーチューブ8で減圧されることに基づいて中間圧の2相冷媒になる。そして、冷蔵用冷却器9内に流入し、冷蔵用冷却器9内で一部が蒸発する。この冷媒は2相状態で壁面冷却器10内および気液分離器11内に流入し、気液分離器11内で液冷媒およびガス冷媒に分離される。このうちガス冷媒は冷蔵用サクションパイプ12を通って中間圧側吸込口5内に吸込まれる。また、液冷媒は冷凍用キャピラリーチューブ13で減圧され、低圧の2相冷媒となって冷凍用冷却器14内に流入し、アキュムレータ15および冷凍用サクションパイプ16を通ってコンプレッサ1の低圧側吸込口6内に吸込まれる。
【0013】
コンプレッサ1の低圧側吸込口6内に吸込まれた低圧冷媒は第1段圧縮室2内で中間圧に加圧され、中間圧側吸込口5内に吸込まれた冷媒と合流・混合する。そして、第2段圧縮室3内で高圧に加圧され、高圧側吐出口4から吐出される。この冷凍サイクルによれば、冷蔵用冷却器9・壁面冷却器10の双方に冷媒を流す冷蔵モードおよび冷凍用冷却器14だけに冷媒を流す冷凍モード間で運転モードを切換える必要がなくなり、冷蔵用冷却器9と壁面冷却器10と冷凍用冷却器14とを異なる温度で連続使用できるので、冷蔵用冷却器9および壁面冷却器10の温度が必要以上に下がることがない。このため、サイクルの熱効率を高めることができ、しかも、冷蔵用冷却器9および壁面冷却器10での着霜量を減らして冷蔵室内を高湿度に保つことができる。
【0014】
<冷蔵庫の内部構成について>
冷蔵庫本体21は、図1に示すように、前面が開口する矩形箱状をなすものであり、外箱22および内箱23間に断熱材24を充填することに基づいて構成されている。この冷蔵庫本体21内の後端部には機械室25が形成されており、機械室25内にはコンプレッサ1が固定されている。
【0015】
冷蔵庫本体21内には最下部に位置して冷凍室26が形成されている。この冷凍室26の前面には扉27が前後方向へスライド可能に装着されており、冷凍室26の前面は扉27のスライド操作に基づいて開閉される。また、冷蔵庫本体21内には冷凍室26の上段に位置して製氷室28が形成されており、製氷室28の前面には扉29が前後方向へスライド可能に装着されている。この製氷室28は冷凍室26内に通じるものであり、製氷室28の前面は扉29のスライド操作に基づいて開閉される。
【0016】
冷蔵庫本体21内には冷凍室26および製氷室28の後方に位置して冷凍用冷気生成室30が形成されており、冷凍用冷気生成室30内には冷凍用冷却器14が固定されている。この冷凍用冷却器14はフィンアンドチューブ熱交換器を使用した間冷蒸発器からなるものであり、蛇行状の冷却パイプに複数の冷却フィンを固定することに基づいて構成されている。
【0017】
冷凍用冷気生成室30内には冷凍用冷却器14の上方に位置して冷凍用ファン装置31が固定されている。この冷凍用ファン装置31は冷凍用ファンモータ32の回転軸に冷凍用ファン33を固定することに基づいて構成されたものであり、冷凍用ファン33の回転時には、矢印で示すように、冷凍用ファン33から製氷室28内に風が吐出される。この風は製氷室28内から冷凍室26内を通して冷凍用冷気生成室30内に吸引され、冷凍用冷却器14を通して冷凍用ファン33から製氷室28内に再び吐出される。冷凍用冷却器14は風の循環中に風から熱を奪うことに基づいて冷風を生成するものであり、冷凍室26内および製氷室28内は冷凍用冷却器14が生成する冷風により冷却される。
【0018】
冷蔵庫本体21内には製氷室28の上段に位置して野菜室34が形成されている。この野菜室34の前面には扉35が前後方向へスライド可能に装着されており、野菜室34の前面は扉35のスライド操作に基づいて開閉される。また、冷蔵庫本体21内には野菜室34の上段に位置して冷蔵室36が形成されており、冷蔵室36の前面には扉37が垂直な軸を中心に回動可能に装着されている。この冷蔵室36は野菜室34内に通じるものであり、冷蔵室36の前面は扉37の回動操作に基づいて開閉される。尚、野菜室34は冷蔵室に相当するものである。
【0019】
冷蔵庫本体21内には野菜室34の後方に位置して冷蔵用冷気生成室38が形成されており、冷蔵用冷気生成室38内には冷蔵用冷却器9が固定されている。この冷蔵用冷却器9はフィンアンドチューブ熱交換器を使用した間冷蒸発器からなるものであり、蛇行状の冷却パイプに複数の冷却フィンを固定することに基づいて構成されている。また、冷蔵用冷気生成室38の上端部には垂直な庫内ダクト39が接続されている。この庫内ダクト39は冷蔵室36内の後端部に固定されたものであり、庫内ダクト39には冷蔵室36内に開口する複数の吹出口40が形成されている。
【0020】
庫内ダクト39の上端部には天井ダクト41の後端部が接続されており、天井ダクト41の前端部には冷蔵室36内に開口する吹出口42が形成されている。この天井ダクト41は冷蔵室36内の天井面に固定されたものであり、天井ダクト41の内面は後方へ向うに従って下降する傾斜状をなしている。この天井ダクト41の内面には親水性被膜(図示せず)が形成されており、天井ダクト41の内面には親水性被膜を介して水が層状に付着する。尚、天井ダクト41はダクトに相当するものである。
【0021】
冷蔵用冷気生成室38内には冷蔵用冷却器9の上方に位置して冷蔵用ファン装置43が固定されている。この冷蔵用ファン装置43は冷蔵用ファンモータ44の回転軸に冷蔵用ファン45を固定することに基づいて構成されたものであり、冷蔵用ファン45の回転時には、矢印で示すように、冷蔵用ファン45から庫内ダクト39内および天井ダクト41内に風が吐出され、庫内ダクト39の吹出口40および天井ダクト41の吹出口42から冷蔵室36内に吐出される。この風は冷蔵室36内から野菜室34内を通して冷蔵用冷気生成室38内に吸引され、冷蔵用冷却器9を通して冷蔵用ファン45から庫内ダクト39内および天井ダクト41内に再び吐出される。冷蔵用冷却器9は風の循環中に風から熱を奪うことに基づいて冷風を生成するものであり、野菜室34内および冷蔵室36内は冷蔵用冷却器9が生成する冷風により冷却される。尚、冷蔵用ファン45はファンに相当するものである。
【0022】
断熱材24には、図2に示すように、天井ダクト41内に位置して冷却パイプ47が埋設されており、冷却パイプ47と断熱材24との間にはアルミニウム製のテープ48が介在されている。この冷却パイプ47は、図3に示すように、天井ダクト41内の左半部に位置する蛇行状の左パイプ部49と天井ダクト41内の右半部に位置する蛇行状の右パイプ部50とを有するものであり、左パイプ部49は冷蔵用冷却器9側に接続され、右パイプ部50は気液分離器11側に接続されている。また、冷却パイプ47には、図2に示すように、冷却板51が固定されている。この冷却板51は厚さ寸法が「1mm以下」の金属板からなるものであり、内箱23の上面に接触している。
【0023】
冷却パイプ47および冷却板51はパイプオンシート形の壁面冷却器10を構成するものであり、天井ダクト41は壁面冷却器10の下方に配置されている。この壁面冷却器10は天井ダクト41内を流通する冷風を冷却することに基づいて冷風の温度を下げるものであり、天井ダクト41は内箱23の天井面のうち壁面冷却器10に対応する部分から落下する結露水を受ける露受けとしての機能も備えている。
【0024】
上記第1実施例によれば、壁面冷却器10から落下する結露水を受ける天井ダクト41を設け、冷蔵用ファン45から天井ダクト41内に風を送った。このため、風が天井ダクト41内を流通するときに結露水により加湿されるので、冷蔵室36内および野菜室34内に高湿度の風が供給される。このため、冷蔵室36内および野菜室34内の湿度が高くなるので、野菜等の食品の高鮮度保存性が向上する。
【0025】
また、壁面冷却器10とは別の冷蔵用冷却器9で生成された冷気を冷蔵用ファン45から天井ダクト41内に送風したので、冷風の温度が下がる。このため、野菜室34内および冷蔵室36内の高湿度化が促進されるので、食品の高鮮度保存性が一層向上する。
【0026】
また、天井ダクト41の内面に親水性被膜を形成した。このため、天井ダクト41の内面に対する結露水の付着性が高まるので、天井ダクト41内を流通する風と結露水との接触量が増える。従って、風の高湿度化が一層促進されるので、食品の高鮮度保存性が一層向上する。
【0027】
また、冷蔵用冷却器9と壁面冷却器10と冷凍用冷却器14とを同時に使用可能な冷凍サイクルを用いたので、冷凍モードおよび冷蔵モード間で冷凍サイクルの運転状態を切換える必要がなくなり、壁面冷却器9および冷蔵用冷却器10に冷媒を連続的に流すことができる。このため、壁面冷却器9および冷蔵用冷却器10を相対的に高温度で運転することが可能になるので、壁面冷却器9および冷蔵用冷却器10での着霜量が減る。従って、冷蔵室36内および野菜室34内の高湿度化が一層促進されるので、食品の高鮮度保存性が一層向上する。
【0028】
尚、上記第1実施例においては、天井ダクト41の内面に親水性被膜を形成したが、これに限定されるものではなく、例えば天井ダクト41の内面の粗度を粗くすることに基づいて結露水の付着力を高めたり、表面積を大きくすることに基づいて結露水の付着力を高めても良い。この場合、天井ダクト41の内面に複数の溝や凹部を設けると良い。
【0029】
また、上記第1実施例においては、天井ダクト41に結露水の付着性を高める処理を施したが、これに限定されるものではなく、例えば天井ダクト41に結露水を貯留する貯留部を設けても良い。この場合、本発明の第2実施例を示す図4のように、天井ダクト41の内面に複数の壁部61を設けることに基づいて空間状の貯留部62を形成すると良い。
尚、上記第2実施例においては、天井ダクト41に壁部61を設けることに基づいて貯留部62を形成したが、これに限定されるものではなく、例えば天井ダクト41の下面から下方へ突出する凹状の貯留部を形成しても良い。
【0030】
また、上記第1および第2実施例においては、冷蔵庫本体21の断熱材24内に壁面冷却器10を埋設したが、これに限定されるものではなく、例えば内箱23内の天井面に直接的に貼り付けても良い。
【0031】
また、上記第1および第2実施例においては、冷蔵用冷却器9の下流側に壁面冷却器10を直列に接続したが、これに限定されるものではなく、例えば冷蔵用冷却器9の上流側に壁面冷却器10を直列に接続したり、冷蔵用冷却器9および壁面冷却器10を並列に接続しても良い。
【0032】
また、上記第1および第2実施例においては、本発明をファンクール式の冷蔵庫に適用したが、これに限定されるものではなく、例えば直冷式の冷蔵庫に適用しても良い。この構成の場合、冷蔵室内の天井面に壁面冷却器を固定し、壁面冷却器により冷蔵室内を自然対流で冷却する。この壁面冷却器の下方に露受けを兼用するダクトを固定し、ファンからダクト内に送風する。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す図(冷蔵庫の内部構成を示す断面図)
【図2】壁面冷却器の設置状態を示す断面図
【図3】冷凍サイクルを示す図
【図4】本発明の第2実施例を示す図(壁面冷却器の設置状態を示す図)
【符号の説明】
1はコンプレッサ、4は高圧側吐出口、5は中間圧側吸込口、6は低圧側吸込口、7は凝縮器、8は冷蔵用キャピラリーチューブ、9は冷蔵用冷却器、10は壁面冷却器、11は気液分離器、13は冷凍用キャピラリーチューブ、14は冷凍用冷却器、34は野菜室(冷蔵室)、36は冷蔵室、41は天井ダクト(ダクト)、45は冷蔵用ファン(ファン)、62は貯留部を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator for refrigerated storage of food.
[0002]
[Prior art]
Some home refrigerators have a configuration in which an intercooled evaporator and a fan are installed in upper and lower stages, and the refrigerating room is cooled based on sending air from the fan to the refrigerating room through the intercooled evaporator. Some commercial refrigerators have a configuration in which a wall evaporator is installed on the wall of a refrigerator to cool the refrigerator by natural convection. In the case of this commercial refrigerator, dew condensation occurs on the wall evaporator, and condensed water is discharged outside the refrigerator.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-28257
[Problems to be solved by the invention]
In order to store foods such as vegetables with high freshness, it is necessary to increase the humidity in the refrigerator. However, in the above-mentioned conventional home refrigerator, since the air sufficiently cooled by the lower evaporator is sent to the upper part, the amount of dehumidification in the evaporator increases, and the inside of the refrigerator is kept at a high humidity. It is difficult. Further, in the above-mentioned conventional commercial refrigerator, since the dew condensation water is drained, the humidity in the refrigerator becomes low.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a refrigerator that can keep the inside of a refrigerator at high humidity and that is excellent in preservability of foods with high freshness.
[0005]
[Means for Solving the Problems]
<About the invention according to claim 1>
The invention according to claim 1 is characterized in that a duct for receiving dew condensation water falling from the wall cooler is provided, and air is sent into the duct. The location of the wall cooler is preferably the ceiling surface in the refrigerator, and the type of the wall cooler is preferably a pipe-on-sheet type in which a cooling pipe is fixed to a cooling plate.
According to the first aspect of the present invention, the wind is humidified by the condensed water when flowing through the duct, so that the high-humidity wind is supplied to the refrigerator compartment. For this reason, the humidity in the refrigerator compartment increases, and the high freshness preservability of foods such as vegetables is improved.
[0006]
<About the invention according to claim 2>
The invention according to claim 2 is characterized in that the cool air generated by the refrigerating cooler is blown from the fan into the duct. This refrigeration cooler is a mechanically separate cooler from the wall cooler, and specifically, is a cooler that generates cool air for cooling the refrigeration room to the refrigeration temperature.
According to the second aspect of the present invention, since the cool air is sent into the refrigerator compartment through the cooler for cooling and the wall cooler, the temperature of the cool air drops. For this reason, high humidity in the refrigerator compartment is promoted, and the high freshness preservability of the food is further improved.
[0007]
<About the invention according to claim 3>
The invention according to claim 3 is characterized in that the duct is subjected to a hydrophilic treatment. This hydrophilic treatment is a general term for the treatment to increase the adhesion of dew water to the duct. For example, roughening the surface roughness of the duct, increasing the surface area of the duct, and forming a hydrophilic coating on the surface of the duct To do so.
According to the third aspect of the present invention, since the adhesion of the dew water to the duct increases, the amount of contact between the wind flowing in the duct and the dew water increases. For this reason, high humidity of the wind is promoted, and the high freshness preservability of the food is further improved.
[0008]
<About the invention according to claim 4>
The invention according to claim 4 is characterized in that a storage section is provided in a duct. The storage section is a general term for a section that artificially stores dew water, and refers to, for example, a space defined by a plurality of walls and a concave space.
According to the invention of claim 4, since the dew water is stored in the duct artificially, the contact amount between the wind flowing in the duct and the dew water increases. For this reason, high humidity of the wind is promoted, and the high freshness preservability of the food is further improved.
[0009]
<About the invention according to claim 5>
The invention according to claim 5 is characterized in that a refrigeration cycle is used in which a refrigeration cooler, a wall cooler, and a refrigeration cooler can be used simultaneously.
According to the invention according to claim 5, there is no need to switch the operation state between the refrigeration mode in which the refrigerant flows only through the refrigeration cooler and the refrigeration mode in which the refrigerant flows through both the refrigeration cooler and the wall cooler. The refrigerant can be continuously passed through the cooler and the wall cooler. For this reason, since the refrigeration cooler and the wall cooler can be operated at a relatively high temperature, the amount of frost formed in the refrigeration cooler and the wall cooler is reduced. Therefore, the refrigeration compartment is promoted to have a high humidity, and the preservability of food with high freshness is further improved.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In this embodiment, the present invention is applied to a fan-cooled household refrigerator.
<Refrigeration cycle>
The compressor 1 shown in FIG. 3 is of a two-stage compression type having a first-stage compression chamber 2 for medium-pressure pressurization and a second-stage compression chamber 3 for high-pressure pressurization. The compressor 1 is provided with a high-pressure side discharge port 4, an intermediate-pressure side suction port 5, and a low-pressure side suction port 6. Refrigerant sucked from the low-pressure side suction port 6 is supplied to the first-stage compression chamber 2 at an intermediate pressure. And is mixed with the refrigerant sucked from the intermediate pressure side suction port 5. This mixed refrigerant is pressurized to a high pressure in the second-stage compression chamber 3 for high-pressure pressurization, and discharged from the high-pressure side discharge port 4.
[0011]
A condenser 7 is connected to the high pressure side discharge port 4 of the compressor 1. The outlet of the condenser 7 is connected to the inlet of a chilling capillary tube 8, and the outlet of the chilling capillary tube 8 is connected to the inlet of a chiller 9. The outlet of the cooler 9 is connected to the inlet of a wall cooler 10, and the outlet of the cooler 10 is connected to the inlet of a gas-liquid separator 11. The gas-liquid separator 11 has a first outlet and a second outlet. The second outlet of the gas-liquid separator 11 is connected to the intermediate pressure side suction port 5 of the compressor 1 via a refrigeration suction pipe 12. The first outlet of the gas-liquid separator 11 is connected to the inlet of the freezing capillary tube 13. The outlet of the freezing capillary tube 13 is connected to the inlet of a freezing cooler 14, and the outlet of the freezing cooler 14 is connected to the low pressure side suction port 6 of the compressor 1 via an accumulator 15 and a freezing suction pipe 16. It is connected to the.
[0012]
The high-pressure gas refrigerant discharged from the high-pressure side discharge port 4 of the compressor 1 is condensed in the condenser 7 to become a high-pressure two-phase refrigerant, and the high-pressure two-phase refrigerant is depressurized by the capillary tube 8 for refrigeration. It becomes a two-phase refrigerant at pressure. Then, the refrigerant flows into the refrigerator 9 and a part of the refrigerant evaporates in the refrigerator 9. The refrigerant flows into the wall cooler 10 and the gas-liquid separator 11 in a two-phase state, and is separated into a liquid refrigerant and a gas refrigerant in the gas-liquid separator 11. Among them, the gas refrigerant is sucked into the intermediate pressure side suction port 5 through the refrigeration suction pipe 12. The liquid refrigerant is decompressed in the refrigeration capillary tube 13, becomes a low-pressure two-phase refrigerant, flows into the refrigeration cooler 14, passes through the accumulator 15 and the refrigeration suction pipe 16, and has a low-pressure suction port of the compressor 1. It is sucked into 6.
[0013]
The low-pressure refrigerant sucked into the low-pressure side suction port 6 of the compressor 1 is pressurized to an intermediate pressure in the first-stage compression chamber 2, and joins and mixes with the refrigerant sucked into the intermediate-pressure side suction port 5. Then, it is pressurized to a high pressure in the second stage compression chamber 3 and discharged from the high pressure side discharge port 4. According to this refrigeration cycle, it is not necessary to switch the operation mode between a refrigeration mode in which the refrigerant flows through both the refrigeration cooler 9 and the wall surface cooler 10 and a refrigeration mode in which the refrigerant flows only through the refrigeration cooler 14. Since the cooler 9, the wall cooler 10, and the freezing cooler 14 can be continuously used at different temperatures, the temperatures of the refrigerator cooler 9 and the wall cooler 10 are not lowered more than necessary. For this reason, the thermal efficiency of the cycle can be increased, and the amount of frost formed in the refrigerator cooler 9 and the wall cooler 10 can be reduced to keep the refrigerator room at high humidity.
[0014]
<About the internal structure of the refrigerator>
As shown in FIG. 1, the refrigerator main body 21 has a rectangular box shape with an open front surface, and is configured based on filling a heat insulating material 24 between the outer box 22 and the inner box 23. A machine room 25 is formed at the rear end of the refrigerator body 21, and the compressor 1 is fixed in the machine room 25.
[0015]
A freezer compartment 26 is formed in the refrigerator main body 21 at the lowest position. A door 27 is slidably mounted on the front surface of the freezer compartment 26 so as to be slidable in the front-rear direction. The front surface of the freezer compartment 26 is opened and closed based on a sliding operation of the door 27. An ice making room 28 is formed in the refrigerator main body 21 at an upper stage of the freezing room 26, and a door 29 is mounted on the front surface of the ice making room 28 so as to be slidable in the front-rear direction. The ice making room 28 communicates with the freezing room 26, and the front surface of the ice making room 28 is opened and closed based on a sliding operation of a door 29.
[0016]
In the refrigerator main body 21, a freezing cold air generating chamber 30 is formed behind the freezing chamber 26 and the ice making chamber 28, and the freezing cooler 14 is fixed in the freezing cold air generating chamber 30. . The refrigerating cooler 14 is a cold evaporator using a fin and tube heat exchanger, and is configured based on fixing a plurality of cooling fins to a meandering cooling pipe.
[0017]
A refrigeration fan device 31 is fixed in the refrigeration air generation chamber 30 above the refrigeration cooler 14. This refrigeration fan device 31 is configured based on fixing the refrigeration fan 33 to the rotation shaft of a refrigeration fan motor 32. When the refrigeration fan 33 rotates, as shown by an arrow, Wind is discharged from the fan 33 into the ice making chamber 28. This wind is sucked from the ice making room 28 into the freezing room 26 through the freezing room 26, and is discharged again from the freezing fan 33 into the ice making room 28 through the freezing cooler 14. The freezing cooler 14 generates cold air based on removing heat from the wind during the circulation of the wind, and the inside of the freezing room 26 and the inside of the ice making room 28 are cooled by the cool air generated by the freezing cooler 14. You.
[0018]
In the refrigerator main body 21, a vegetable room 34 is formed at an upper stage of the ice making room 28. A door 35 is mounted on the front of the vegetable compartment 34 so as to be slidable in the front-rear direction. The front of the vegetable compartment 34 is opened and closed based on a sliding operation of the door 35. Further, a refrigerator compartment 36 is formed in the refrigerator main body 21 at a position above the vegetable compartment 34, and a door 37 is mounted on the front of the refrigerator compartment 36 so as to be rotatable around a vertical axis. . The refrigerating compartment 36 communicates with the vegetable compartment 34, and the front surface of the refrigerating compartment 36 is opened and closed based on a turning operation of a door 37. The vegetable room 34 corresponds to a refrigerator room.
[0019]
A refrigerator cold air generation chamber 38 is formed in the refrigerator body 21 behind the vegetable room 34, and the refrigerator cooler 9 is fixed in the refrigerator cold air generation chamber 38. The refrigerating cooler 9 is a cold evaporator using a fin-and-tube heat exchanger, and is configured based on fixing a plurality of cooling fins to a meandering cooling pipe. A vertical internal duct 39 is connected to the upper end of the cold air generating chamber 38 for refrigeration. The refrigerator duct 39 is fixed to the rear end of the refrigerator 36, and the refrigerator duct 39 has a plurality of outlets 40 that open into the refrigerator 36.
[0020]
The rear end of the ceiling duct 41 is connected to the upper end of the in-compartment duct 39, and an outlet 42 that opens into the refrigerator compartment 36 is formed at the front end of the ceiling duct 41. The ceiling duct 41 is fixed to a ceiling surface in the refrigerator compartment 36, and the inner surface of the ceiling duct 41 has an inclined shape that descends rearward. A hydrophilic film (not shown) is formed on the inner surface of the ceiling duct 41, and water adheres to the inner surface of the ceiling duct 41 via the hydrophilic film in a layered manner. Note that the ceiling duct 41 corresponds to a duct.
[0021]
A refrigeration fan device 43 is fixed in the refrigeration cool air generation chamber 38 above the refrigeration cooler 9. This refrigeration fan device 43 is configured based on fixing a refrigeration fan 45 to a rotation shaft of a refrigeration fan motor 44. When the refrigeration fan 45 rotates, as shown by an arrow, The wind is discharged from the fan 45 into the inside duct 39 and the inside of the ceiling duct 41, and is discharged from the outlet 40 of the inside duct 39 and the outlet 42 of the ceiling duct 41 into the refrigerator compartment 36. This wind is sucked into the cold air generating chamber 38 from the refrigerator 36 through the vegetable chamber 34, and is discharged again from the cooling fan 9 into the duct 39 inside the refrigerator and the ceiling duct 41 through the cooler 9. . The refrigeration cooler 9 generates cold air based on removing heat from the wind during the circulation of the wind, and the inside of the vegetable room 34 and the inside of the refrigeration room 36 are cooled by the cool air generated by the refrigeration cooler 9. You. The refrigeration fan 45 is equivalent to a fan.
[0022]
As shown in FIG. 2, a cooling pipe 47 is embedded in the heat insulating material 24 and located in the ceiling duct 41, and an aluminum tape 48 is interposed between the cooling pipe 47 and the heat insulating material 24. ing. As shown in FIG. 3, the cooling pipe 47 has a meandering left pipe part 49 located in the left half of the ceiling duct 41 and a meandering right pipe part 50 located in the right half of the ceiling duct 41. The left pipe portion 49 is connected to the refrigerator cooler 9 side, and the right pipe portion 50 is connected to the gas-liquid separator 11 side. Further, a cooling plate 51 is fixed to the cooling pipe 47 as shown in FIG. The cooling plate 51 is made of a metal plate having a thickness of “1 mm or less”, and is in contact with the upper surface of the inner box 23.
[0023]
The cooling pipe 47 and the cooling plate 51 constitute the pipe-on-sheet type wall cooler 10, and the ceiling duct 41 is disposed below the wall cooler 10. The wall cooler 10 lowers the temperature of the cool air based on cooling the cool air flowing through the ceiling duct 41. The ceiling duct 41 is a portion of the ceiling surface of the inner box 23 corresponding to the wall cooler 10. It also has a function as a dew catcher that receives dew condensation water falling from.
[0024]
According to the first embodiment, the ceiling duct 41 for receiving the dew water falling from the wall cooler 10 is provided, and the air is sent from the cooling fan 45 into the ceiling duct 41. For this reason, since the wind is humidified by the dew condensation water when flowing through the ceiling duct 41, high-humidity wind is supplied into the refrigerator compartment 36 and the vegetable compartment 34. For this reason, since the humidity in the refrigerator compartment 36 and the vegetable compartment 34 increases, the high freshness preservability of foods such as vegetables is improved.
[0025]
Further, since the cool air generated by the cooler 9 different from the wall cooler 10 is blown from the cooler fan 45 into the ceiling duct 41, the temperature of the cool air falls. For this reason, high humidity in the vegetable room 34 and the refrigerator room 36 is promoted, and the high freshness preservability of the food is further improved.
[0026]
Further, a hydrophilic film was formed on the inner surface of the ceiling duct 41. For this reason, the adhesion of the dew condensation water to the inner surface of the ceiling duct 41 increases, and the amount of contact between the wind flowing through the ceiling duct 41 and the dew condensation water increases. Therefore, since the increase in the humidity of the wind is further promoted, the high freshness preservability of the food is further improved.
[0027]
In addition, since the refrigerating cycle that can simultaneously use the refrigerating cooler 9, the wall cooler 10, and the refrigerating cooler 14 is used, there is no need to switch the operation state of the refrigerating cycle between the refrigerating mode and the refrigerating mode. The refrigerant can be continuously passed through the cooler 9 and the refrigerator cooler 10. For this reason, since it becomes possible to operate the wall cooler 9 and the refrigerator cooler 10 at a relatively high temperature, the amount of frost on the wall cooler 9 and the refrigerator cooler 10 is reduced. Therefore, since the humidity in the refrigerator compartment 36 and the vegetable compartment 34 is further promoted, the preservability of food with high freshness is further improved.
[0028]
In the first embodiment, the hydrophilic coating is formed on the inner surface of the ceiling duct 41. However, the present invention is not limited to this. For example, dew condensation may occur based on roughening the inner surface of the ceiling duct 41. The adhesion of dew water may be increased based on increasing the adhesion of water or increasing the surface area. In this case, it is preferable to provide a plurality of grooves and recesses on the inner surface of the ceiling duct 41.
[0029]
Further, in the first embodiment, the ceiling duct 41 is subjected to the treatment for increasing the adhesion of the dew condensation water. However, the present invention is not limited to this. For example, the ceiling duct 41 is provided with a storage unit for storing the dew condensation water. May be. In this case, as shown in FIG. 4 showing the second embodiment of the present invention, it is preferable to form a space-like storage section 62 based on providing a plurality of walls 61 on the inner surface of the ceiling duct 41.
In the second embodiment, the storage portion 62 is formed based on the provision of the wall portion 61 on the ceiling duct 41. However, the present invention is not limited to this. For example, the storage portion 62 projects downward from the lower surface of the ceiling duct 41. A concave storage portion may be formed.
[0030]
In the first and second embodiments, the wall cooler 10 is buried in the heat insulating material 24 of the refrigerator main body 21. However, the present invention is not limited to this. You may paste it.
[0031]
In the first and second embodiments, the wall cooler 10 is connected downstream of the cooler 9 in series. However, the present invention is not limited to this. The wall cooler 10 may be connected in series on the side, or the refrigerator cooler 9 and the wall cooler 10 may be connected in parallel.
[0032]
In the first and second embodiments, the present invention is applied to a fan-cooled refrigerator. However, the present invention is not limited to this, and may be applied to, for example, a direct-cooled refrigerator. In the case of this configuration, a wall cooler is fixed to the ceiling surface in the refrigerator, and the refrigerator is cooled by natural convection by the wall cooler. A duct that also serves as a dew holder is fixed below the wall cooler, and a fan blows air into the duct.
[Brief description of the drawings]
FIG. 1 is a view showing a first embodiment of the present invention (a cross-sectional view showing an internal configuration of a refrigerator).
FIG. 2 is a sectional view showing an installation state of a wall cooler; FIG. 3 is a view showing a refrigeration cycle; FIG. 4 is a view showing a second embodiment of the present invention (a view showing an installation state of a wall cooler);
[Explanation of symbols]
1 is a compressor, 4 is a high pressure side discharge port, 5 is an intermediate pressure side suction port, 6 is a low pressure side suction port, 7 is a condenser, 8 is a chiller capillary tube, 9 is a chiller cooler, 10 is a wall cooler, 11 is a gas-liquid separator, 13 is a freezing capillary tube, 14 is a freezing cooler, 34 is a vegetable room (refrigerator room), 36 is a refrigerator room, 41 is a ceiling duct (duct), and 45 is a refrigerator fan (fan). ) And 62 indicate storage units.

Claims (5)

食品が収納される冷蔵室と、
前記冷蔵室の壁面に設けられた壁面冷却器と、
前記壁面冷却器から落下する結露水を受けるダクトと、
前記ダクト内に風を送るファンと
を備えたことを特徴とする冷蔵庫。
A refrigerator room where food is stored,
A wall cooler provided on the wall of the refrigerator compartment,
A duct for receiving dew water falling from the wall cooler,
A refrigerator, comprising: a fan that sends air into the duct.
ファンは、壁面冷却器とは別の冷蔵用冷却器で生成された冷気をダクト内に送風するものであることを特徴とする請求項1記載の冷蔵庫。2. The refrigerator according to claim 1, wherein the fan blows cool air generated by a cooling device different from the wall cooler into the duct. ダクトには、親水処理が施されていることを特徴とする請求項1〜2のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 2, wherein the duct is subjected to a hydrophilic treatment. ダクトには、結露水を貯留する貯留部が設けられていることを特徴とする請求項1〜3のいずれかに記載の冷蔵庫。The refrigerator according to any one of claims 1 to 3, wherein the duct is provided with a storage unit that stores dew water. 低圧側吸込口,中間圧側吸込口,高圧側吐出口を有する2段圧縮形のコンプレッサと、
前記コンプレッサの高圧側吐出口に凝縮器および冷蔵用キャピラリーチューブを介して接続された冷蔵用冷却器と、
前記冷蔵用冷却器の出口に接続され、第1の出口および第2の出口を有する気液分離器と、
前記気液分離器の第1の出口に冷凍用キャピラリーチューブを介して接続された冷凍用冷却器とを備え、
前記コンプレッサの中間圧側吸込口および低圧側吸込口には、前記気液分離器の第2の出口および前記冷凍用冷却器の出口が接続され、
前記冷蔵用冷却と前記気液分離器との間には、壁面冷却器が介在されていることを特徴とする請求項2〜4のいずれかに記載の冷蔵庫。
A two-stage compression type compressor having a low pressure side suction port, an intermediate pressure side suction port, and a high pressure side discharge port,
A refrigerator for cooling connected to a high pressure side discharge port of the compressor via a condenser and a capillary tube for cooling,
A gas-liquid separator connected to an outlet of the refrigerator cooler and having a first outlet and a second outlet;
A refrigeration cooler connected to a first outlet of the gas-liquid separator via a refrigeration capillary tube;
A second outlet of the gas-liquid separator and an outlet of the refrigeration cooler are connected to the intermediate pressure side suction port and the low pressure side suction port of the compressor,
The refrigerator according to any one of claims 2 to 4, wherein a wall cooler is interposed between the refrigeration cooling and the gas-liquid separator.
JP2002339341A 2002-11-22 2002-11-22 Refrigerator Pending JP2004170041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339341A JP2004170041A (en) 2002-11-22 2002-11-22 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339341A JP2004170041A (en) 2002-11-22 2002-11-22 Refrigerator

Publications (1)

Publication Number Publication Date
JP2004170041A true JP2004170041A (en) 2004-06-17

Family

ID=32702307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339341A Pending JP2004170041A (en) 2002-11-22 2002-11-22 Refrigerator

Country Status (1)

Country Link
JP (1) JP2004170041A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101033A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Refrigerator
JP2007101034A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Refrigerator
JP2008089201A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
JP2008292120A (en) * 2007-05-28 2008-12-04 Hoshizaki Electric Co Ltd Refrigerated showcase
CN104457102A (en) * 2014-12-23 2015-03-25 合肥美的电冰箱有限公司 Air channel structure and refrigerator
CN111854265A (en) * 2019-04-30 2020-10-30 松下电器研究开发(苏州)有限公司 Refrigerator and control method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101033A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Refrigerator
JP2007101034A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Refrigerator
JP4581954B2 (en) * 2005-10-03 2010-11-17 パナソニック株式会社 refrigerator
JP2008089201A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Refrigerator
JP2008292120A (en) * 2007-05-28 2008-12-04 Hoshizaki Electric Co Ltd Refrigerated showcase
CN104457102A (en) * 2014-12-23 2015-03-25 合肥美的电冰箱有限公司 Air channel structure and refrigerator
CN111854265A (en) * 2019-04-30 2020-10-30 松下电器研究开发(苏州)有限公司 Refrigerator and control method thereof
CN111854265B (en) * 2019-04-30 2022-06-14 松下电器研究开发(苏州)有限公司 Refrigerator and control method thereof

Similar Documents

Publication Publication Date Title
WO2010119591A1 (en) Freezer-refrigerator and cooling storage unit
JP2005337700A (en) Refrigerant cooling circuit
JP2005326138A (en) Cooling device and vending machine with it
WO2011114656A1 (en) Refrigerator
KR20030004899A (en) Refrigerator with condenser and backcover in one
JP2010043750A (en) Refrigerator-freezer
CN104823010B (en) Refrigerator
JP2005106454A (en) Refrigerator
JP2004170041A (en) Refrigerator
JP2005257149A (en) Refrigerator
JP2004324902A (en) Freezing refrigerator
JP5964702B2 (en) Refrigerator
JP2005345061A (en) Refrigerator
JP2002107044A (en) Refrigerator
JP2003106693A (en) Refrigerator
JP2006189209A (en) Cooling storage
KR102174385B1 (en) A refrigerator and a control method the same
JP2002267317A (en) Refrigerator
JP2004132618A (en) Refrigerator
JP2005098605A (en) Refrigerator
JP2004011997A (en) Refrigerator
JP3875563B2 (en) refrigerator
CN110249192A (en) Freezer
JP2006023035A (en) Refrigerator
JP3789636B2 (en) Freezer refrigerator