JP2004144462A - 冷凍サイクルの運転方法 - Google Patents

冷凍サイクルの運転方法 Download PDF

Info

Publication number
JP2004144462A
JP2004144462A JP2003181204A JP2003181204A JP2004144462A JP 2004144462 A JP2004144462 A JP 2004144462A JP 2003181204 A JP2003181204 A JP 2003181204A JP 2003181204 A JP2003181204 A JP 2003181204A JP 2004144462 A JP2004144462 A JP 2004144462A
Authority
JP
Japan
Prior art keywords
constant
differential pressure
expansion valve
valve
electronic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003181204A
Other languages
English (en)
Inventor
Hisatoshi Hirota
広田 久寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TGK Co Ltd
Original Assignee
TGK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TGK Co Ltd filed Critical TGK Co Ltd
Priority to JP2003181204A priority Critical patent/JP2004144462A/ja
Priority to EP03018862A priority patent/EP1394484A3/en
Priority to US10/604,847 priority patent/US6997001B2/en
Publication of JP2004144462A publication Critical patent/JP2004144462A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3214Control means therefor for improving the lubrication of a refrigerant compressor in a vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3225Cooling devices using compression characterised by safety arrangements, e.g. compressor anti-seizure means or by signalling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/3285Cooling devices output of a control signal related to an expansion unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

【課題】エバポレータにオイルが溜まることがなく、成績係数がよく、オイル循環が十分に確保された冷凍サイクルの運転方法を提供すること。
【解決手段】エバポレータ4の出口における冷媒を、通常運転時は、常に過熱状態になるよう電子膨張弁3を制御し、周期的に所定期間だけ、過熱度制御装置6により強制的に負の過熱度を有するように制御する構成にした。これにより、通常運転時には、可変容量コンプレッサ1に吸入される冷媒が常に過熱度を有しているため、冷凍サイクルは成績係数の良い状態で運転することができ、可変容量コンプレッサ1を駆動するエンジンは省燃費運転が可能になる。また、一時的に、負の過熱度を有するように制御することで、エバポレータ4に溜まっている潤滑オイルを可変容量コンプレッサ1側に流出させることができ、潤滑オイル枯渇による可変容量コンプレッサ1の焼き付きが防止される。
【選択図】    図1

Description

【0001】
【発明の属する技術分野】
本発明は冷凍サイクルの運転方法に関し、特に自動車用エアコン装置にて電子容量制御弁を有する可変容量コンプレッサと膨張弁とを備えた冷凍サイクルの運転方法に関する。
【0002】
【従来の技術】
従来より、自動車用エアコン装置では、エンジンの回転数が変動しても、冷凍サイクルを流れる冷媒の流量を冷房負荷に応じた所定値に保つことができるように冷媒の吐出容量を連続的に変化させることができる可変容量コンプレッサを用いている。
【0003】
可変容量コンプレッサは、密閉されたクランク室内にエンジンの駆動力が伝達される回転軸に対して傾斜角可変に設けられた斜板を有し、クランク室の圧力を制御することによって斜板の傾斜角度を変更し、これによって斜板に連結されたピストンのストローク量を変更することで、吐出される冷媒の容量を可変するようにした斜板式のものが知られている。
【0004】
クランク室の圧力は、容量制御弁によって制御される。この容量制御弁は、可変容量コンプレッサの吸入圧力に感応して吐出室からクランク室に導入する圧力を制御する。たとえば、冷房負荷が低下して、吸入圧力が設定圧力より低下した場合、容量制御弁は、吸入圧力の低下を感知して弁開度を大きくし、これにより、吐出室からクランク室に導入する圧力を増やすよう制御する。クランク室の圧力と吸入圧力との差圧が大きくなることにより、斜板の傾斜角度が小さくなり、ピストンストロークが小さくなって、可変容量コンプレッサの容量が小さくなる。この結果、吸入圧力が設定圧力に制御され、エバポレータの吹き出し温度を一定に維持することができるようになる。
【0005】
このような吸入圧力を一定に制御するようにした可変容量コンプレッサを用いた冷凍サイクルでは、膨張弁としてクロスチャージ方式の温度式膨張弁が用いられている。クロスチャージは、温度式膨張弁の特性を示した図3において特性Aで示したように、膨張弁の感温筒内の圧力特性を、冷凍サイクルに使用している冷媒の飽和蒸気圧曲線よりも勾配を緩くしたものである。
【0006】
このクロスチャージを使用すると、エバポレータ出口の温度が低い低負荷時では、感温筒内の圧力が冷媒の飽和蒸気圧曲線より高くなるので、膨張弁は、開きっ放しとなり、エバポレータ出口の圧力に応答しなくなる。したがって、膨張弁の制御は、可変容量コンプレッサの可変容量域で、エバポレータ出口の圧力にほぼ等しい吸入圧力を一定に制御するようにした可変容量コンプレッサの制御と競合しなくなり、ハンチングのない安定した制御が可能になる。
【0007】
また、低負荷時では、膨張弁が開きっ放しとなることにより、エバポレータ出口の冷媒は、完全に蒸発していない液を含んだ状態で可変容量コンプレッサに戻される。高負荷運転時は、冷媒流量が多いので、冷媒に含まれている可変容量コンプレッサの潤滑オイルの循環量も多い。低負荷時で可変容量コンプレッサが小容量運転しているときには、液を含んだ冷媒が可変容量コンプレッサに戻されるので、冷媒流量が少なくても十分なオイル循環が確保され、オイル不足による可変容量コンプレッサの焼き付きが防止されている。
【0008】
この吸入圧力一定制御の可変容量コンプレッサ以外に、冷媒の吐出流量を一定に制御する流量制御の可変容量コンプレッサも知られている。このような流量制御の可変容量コンプレッサを使用した冷凍サイクルでも、安定制御と低負荷時におけるオイル循環の確保という観点からクロスチャージ方式の温度式膨張弁が用いられている。しかし、膨張弁にクロスチャージ方式の温度式膨張弁を用いることは、低負荷運転時にエバポレータから可変容量コンプレッサへの液戻りがあるため、冷媒に含まれている液の蒸発をエバポレータの代わりに可変容量コンプレッサが行うことになり、その結果、冷凍サイクルの成績係数が悪くなり、自動車の燃費が悪くなる。
【0009】
これに対し、流量制御の可変容量コンプレッサに、図3において特性Bで示したようなノーマルチャージ方式の温度式膨張弁を用いた冷凍サイクルも知られている(たとえば特許文献1参照。)。
【0010】
ノーマルチャージは、エバポレータ出口の冷媒温度が冷凍サイクルに使用している冷媒の飽和蒸気圧曲線よりも常に高い温度、すなわち過熱度SHを有しているので、成績係数を良くすることができる。ノーマルチャージ方式の温度式膨張弁を用いたことにより潤滑オイルの循環量が減るという点に関しては、流量制御の可変容量コンプレッサが、必要なオイル戻り量を確保するための最小流量を下回らないように冷媒流量を制御することで、オイル不足による可変容量コンプレッサの焼き付きを回避している。
【0011】
【特許文献1】
特開2001−133053号公報(段落番号〔0016〕〜〔0017〕、図2,図3)
【0012】
【発明が解決しようとする課題】
しかしながら、流量制御の可変容量コンプレッサとノーマルチャージの温度式膨張弁とを用いた冷凍サイクルでは、エバポレータに入った液冷媒は、ここで蒸発し、過熱状態のガス冷媒となって出て行くが、液冷媒によって運ばれてきた潤滑オイルはすべてが蒸発して出て行くのではないので、エバポレータから出て行く冷媒が過熱状態で長時間冷凍サイクルを運転すると、エバポレータにオイルが溜まっていき、これにより循環しているオイルが不足し、やがて可変容量コンプレッサはオイル切れにより壊れてしまうという問題点があった。
【0013】
本発明はこのような点に鑑みてなされたものであり、エバポレータにオイルが溜まることがなく、成績係数がよく、オイル循環が十分に確保された冷凍サイクルの運転方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明では上記問題を解決するために、電子容量制御弁を有する可変容量コンプレッサと膨張弁とを用いた冷凍サイクルの運転方法において、通常運転時では、エバポレータの出口における冷媒が常に過熱度を有するように制御し、周期的に所定期間、前記可変容量コンプレッサの前記電子容量制御弁および前記膨張弁の少なくとも一方により前記エバポレータの出口における冷媒の過熱度を強制的になくす側に制御するオイル循環モードで運転する、ようにしたことを特徴とする冷凍サイクルの運転方法が提供される。
【0015】
このような冷凍サイクルの運転方法によれば、通常運転時では、エバポレータの出口における冷媒が常に過熱度を有するように制御することにより、可変容量コンプレッサは常に十分に蒸発された過熱状態の冷媒を吸入させて成績係数の良い状態で運転し、周期的に所定期間、エバポレータの出口における冷媒の過熱度を強制的になくす側に制御することで、湿った冷媒を可変容量コンプレッサに吸入させるようにし、エバポレータに溜まっていたオイルを流出させて可変容量コンプレッサに潤滑オイルを確実に戻すようにしている。
【0016】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明を適用した冷凍サイクルの構成を示すシステム図、図2は冷凍サイクルにおける冷媒の状態を示すモリエル線図である。
【0017】
冷凍サイクルは、冷媒を圧縮する可変容量コンプレッサ1と、圧縮された冷媒を凝縮するコンデンサ2と、凝縮された冷媒を断熱膨張させる電子膨張弁3と、断熱膨張された冷媒を蒸発させるエバポレータ4とを備え、可変容量コンプレッサ1は、冷媒の吐出容量を制御する電子容量制御弁5を備えている。過熱度制御装置6は、本発明による運転方法を実施するもので、電子膨張弁3に接続されている。
【0018】
このような構成の冷凍サイクルにおいて、その動作を図2に示したモリエル線図を参照しながら説明する。このモリエル線図は、可変容量コンプレッサ1、コンデンサ2、電子膨張弁3およびエバポレータ4における冷媒の状態を示すもので、縦軸は絶対圧力、横軸はエンタルピを表わしている。
【0019】
冷凍サイクルは、モリエル線図のa−b−c−d−aで示される線に沿って動作する。すなわち、可変容量コンプレッサ1がエバポレータ4で蒸発したガス冷媒を圧縮し(a→b)、圧縮することで高温高圧となったガス冷媒をコンデンサ2にて凝縮し(b→c)、凝縮された液冷媒を電子膨張弁3により断熱膨張し(c→d)、断熱膨張することにより気液二相状態となった冷媒をエバポレータ4にて蒸発する(d→a)。この冷媒がエバポレータ4で蒸発するときに、車室内の空気から蒸発潜熱を奪って車室内の空気を冷却する。
【0020】
このとき、電子膨張弁3は、エバポレータ4の出口における冷媒が飽和蒸気線を越えて所定の過熱度SHを有するように制御され、つまり、ノーマルチャージの温度式膨張弁と同じように制御し、常に過熱状態の冷媒を可変容量コンプレッサ1に送り込むことができる。これにより、成績係数が良くなり、可変容量コンプレッサ1を駆動しているエンジンの負荷が小さくなるので、省燃費に繋がる。すなわち、成績係数は、冷凍能力とそれに必要な圧縮仕事の熱当量との比、つまり、
【0021】
【数1】
成績係数=冷凍能力/圧縮仕事の熱当量・・・(1)
で表される。冷凍能力は、モリエル線図上では、エバポレータ4が液と蒸気の混合状態の冷媒(d点)が過熱状態の冷媒(a点)になるまでの幅h1に相当し、圧縮仕事の熱当量は、可変容量コンプレッサ1が過熱状態の冷媒をa点からb点まで圧縮するときの幅h2に相当する。したがって、エバポレータ4の冷凍能力(h1)が大きく、可変容量コンプレッサ1の圧縮仕事(h2)が小さいほど、冷凍サイクルの成績係数は良いことになる。ここでは、電子膨張弁3をエバポレータ4の出口における冷媒が常に所定の過熱度SHを有するように制御することで冷凍サイクルの成績係数を良くしている。
【0022】
エバポレータ4の出口における冷媒を常に過熱状態になるように冷凍サイクルを運転すると、エバポレータ4に可変容量コンプレッサ1の潤滑オイルが溜まってくるので、本発明では、過熱度制御装置6が周期的に所定期間、強制的にオイル循環モードで運転するようにしている。
【0023】
すなわち、過熱度制御装置6は、エバポレータ4の出口における冷媒の過熱度を強制的になくす側に電子膨張弁3を制御する。実際には、過熱度制御装置6は、一時的に負の過熱度を有するように電子膨張弁3を制御する。これは、電子膨張弁3がその特性を自由に設定できることで可能となるものであり、ノーマルチャージの温度式膨張弁では常に設定された過熱度になるように制御するので、そのような制御はすることはできない。これにより、エバポレータ4の出口における冷媒の状態は、モリエル線図上のa0点に移り、可変容量コンプレッサ1は、液と蒸気とが混合状態にある冷媒をモリエル線図上のb0点まで圧縮することになる。このオイル循環モードの間、冷凍サイクルの成績係数は、一時的に悪化するが、短期間に十分に湿った冷媒を可変容量コンプレッサ1に吸い込ませることにより、可変容量コンプレッサ1に十分な量の潤滑オイルを供給できるだけでなく、エバポレータ4に溜まっていた潤滑オイルを可変容量コンプレッサ1へ流出させることができる。
【0024】
過熱度制御装置6による強制的なオイル循環モードの運転周期は、冷房負荷に応じて変化させることができる。たとえば冷房負荷が小さいときは、周期を長く設定し、冷房負荷が大きいときは、周期を短く設定する。
【0025】
次に、可変容量コンプレッサ1および電子膨張弁3の制御方式に応じた過熱度制御装置6の具体的な制御方法について説明する。
まず、可変容量コンプレッサ1が電子容量制御弁5によって吐出圧力と吸入圧力との差圧が一定になるよう制御される差圧一定制御式とした場合、電子膨張弁3としては、電子容量制御弁5の制御と競合しないようにするために、冷媒流量が一定になるように制御する定流量制御式のものが使用される。
【0026】
この定流量制御式の電子膨張弁3において、オイル循環モードにするには、過熱度制御装置6は、電子膨張弁3を一時的に流量が増える側に設定する。これにより、電子膨張弁3を通過する冷媒流量が急増するため、エバポレータ4は、蒸発し切れていない十分に湿った状態の冷媒を可変容量コンプレッサ1に送り出すとともに、エバポレータ4に溜まっていた潤滑オイルを流出させることができる。これは、過熱度制御装置6がエバポレータ4の出口の冷媒を負の過熱度を有するように制御したことに他ならない。
【0027】
また、可変容量コンプレッサ1が差圧一定制御式で、電子膨張弁3が定流量制御式の場合、過熱度制御装置6は、図1に破線で示したように、オイル循環モードのときに、電子容量制御弁5を一時的に差圧が減る側に設定してもよい。可変容量コンプレッサ1において、吐出圧力と吸入圧力との差圧が小さく設定されるということは、冷媒流量が増える側に制御されることを意味している。これにより、可変容量コンプレッサ1に吸引される冷媒流量が急増するため、可変容量コンプレッサ1は、エバポレータ4から湿った冷媒を吸引するとともに、エバポレータ4に溜まっていた潤滑オイルを吸い出すことができる。
【0028】
さらに、可変容量コンプレッサ1が差圧一定制御式で、電子膨張弁3が定流量制御式の場合、過熱度制御装置6は、電子膨張弁3および電子容量制御弁5を同時に制御してもよい。すなわち、過熱度制御装置6は、電子膨張弁3を流量が増える側に設定すると同時に、電子容量制御弁5を差圧が減る側に設定するように制御してもよい。
【0029】
次に、電子容量制御弁5が吐出側冷媒流路の断面積を可変できる比例制御弁とその比例制御弁の前後の差圧を一定に制御する定差圧弁とで構成されていて、可変容量コンプレッサ1が冷媒の吐出流量を一定にするよう制御する流量制御式とした場合、電子膨張弁3としては、電子容量制御弁5の制御と競合しないようにするために、入口と出口の差圧を一定にするよう制御する差圧一定制御式のものが使用される。
【0030】
この差圧一定制御式の電子膨張弁3において、オイル循環モードにするには、過熱度制御装置6は、電子膨張弁3を入口と出口の差圧が減る側に設定する。これにより、電子膨張弁3は、冷媒流量が増える側に制御されることになるので、冷媒流量が急増し、エバポレータ4からは、湿った状態の冷媒が可変容量コンプレッサ1に送り出され、このとき、エバポレータ4に溜まっていた潤滑オイルも一緒に流出される。これは、過熱度制御装置6がエバポレータ4の出口の冷媒を負の過熱度を有するように制御したことと同じことである。
【0031】
また、可変容量コンプレッサ1が流量制御式で、電子膨張弁3が差圧一定制御式の場合、過熱度制御装置6は、図1に破線で示したように、オイル循環モードのときに、電子容量制御弁5を構成している比例制御弁を吐出流量が増える側に設定してもよい。これにより、可変容量コンプレッサ1に吸引される冷媒流量が急増するため、可変容量コンプレッサ1は、エバポレータ4から湿った冷媒を吸引するとともに、エバポレータ4に溜まっていた潤滑オイルを吸い出すことができる。
【0032】
さらに、可変容量コンプレッサ1が流量制御式で、電子膨張弁3が差圧一定制御式の場合、過熱度制御装置6は、電子膨張弁3および電子容量制御弁5を同時に制御してもよい。すなわち、過熱度制御装置6は、電子膨張弁3を入口と出口の差圧が減る側に設定すると同時に、電子容量制御弁5の比例制御弁を吐出流量が増える側に設定するようにしてもよい。
【0033】
次に、電子容量制御弁5が吐出側冷媒流路に設けられて一定の断面積を有する固定オリフィスの前後の差圧を一定に制御する定差圧弁で構成されていて、可変容量コンプレッサ1が冷媒の吐出流量を一定にするよう制御する流量制御式とした場合、電子膨張弁3としては、電子容量制御弁5の制御と競合しないようにするために、入口と出口の差圧を一定にするよう制御する差圧一定制御式のものが使用される。
【0034】
この差圧一定制御式の電子膨張弁3において、オイル循環モードにするには、過熱度制御装置6は、電子膨張弁3を入口と出口の差圧が減る側に設定する。これにより、電子膨張弁3は、冷媒流量が増える側に制御されることになるので、冷媒流量が急増し、エバポレータ4からは、湿った状態の冷媒が可変容量コンプレッサ1に送り出され、このとき、エバポレータ4に溜まっていた潤滑オイルも一緒に流出される。これは、過熱度制御装置6がエバポレータ4の出口の冷媒を負の過熱度を有するように制御したことと同じことである。
【0035】
また、可変容量コンプレッサ1が流量制御式で、電子膨張弁3が差圧一定制御式の場合、過熱度制御装置6は、図1に破線で示したように、オイル循環モードのときに、電子容量制御弁5を構成している定差圧弁を固定オリフィスの前後の差圧が減る側に設定してもよい。これにより、可変容量コンプレッサ1に吸引される冷媒流量が急増するため、可変容量コンプレッサ1は、エバポレータ4から湿った冷媒を吸引するとともに、エバポレータ4に溜まっていた潤滑オイルを吸い出すことができる。
【0036】
さらに、可変容量コンプレッサ1が流量制御式で、電子膨張弁3が差圧一定制御式の場合、過熱度制御装置6は、電子膨張弁3および電子容量制御弁5を同時に制御してもよい。すなわち、過熱度制御装置6は、電子膨張弁3を入口と出口の差圧が減る側に設定すると同時に、電子容量制御弁5の定差圧弁を固定オリフィスの前後の差圧が減る側に設定するようにしてもよい。
【0037】
次に、過熱度制御装置6が、図1に破線で示したように、可変容量コンプレッサ1の電子容量制御弁5を制御する別の制御方法について説明する。
まず、可変容量コンプレッサ1が差圧一定制御式で、電子膨張弁3が定流量制御式の場合、過熱度制御装置6は、オイル循環モードのときに、電子容量制御弁5を一時的に差圧が増える側に設定した後、減る側に設定する。
【0038】
可変容量コンプレッサ1において、吐出圧力と吸入圧力との差圧が大きくなるよう設定されるということは、冷媒流量が減る側に制御されるので、冷凍能力が下がり、吸入側の蒸発圧力が上がることになる。その後、吐出圧力と吸入圧力との差圧を小さく設定することで、冷媒流量が増える側に制御され、冷凍能力が上がり、吸入側の蒸発圧力が下がることになる。これにより、エバポレータ4の冷媒は急激に沸騰することになり、可変容量コンプレッサ1は、エバポレータ4に溜まっていた潤滑オイルとともに冷媒を吸入することができる。
【0039】
このとき、膨張弁は、定流量制御式の電子膨張弁3に代えて、エバポレータ4の出口における冷媒が常に所定の過熱度SHを有するように制御されるノーマルチャージの温度式膨張弁を用いてもよい。この場合、ノーマルチャージの温度式膨張弁は、可変容量コンプレッサ1が吐出圧力と吸入圧力との差圧を増える側に設定したときには吸入側の蒸発圧力が上がることで自動的に閉弁方向に作用し、可変容量コンプレッサ1が吐出圧力と吸入圧力との差圧を減る側に設定したときには吸入側の蒸発圧力が下がることで自動的に開弁方向に作用するため、オイル循環モードの動作を妨げることはない。
【0040】
次に、可変容量コンプレッサ1が断面積を可変できる比例制御弁の前後の差圧を定差圧弁で一定に制御して冷媒の吐出流量を一定に制御するようにした流量制御式で、電子膨張弁3が差圧一定制御式の場合、過熱度制御装置6は、オイル循環モードのときに、電子容量制御弁5を構成している比例制御弁を吐出流量が減る側に設定した後、増える側に設定する。可変容量コンプレッサ1が吐出流量を減る側に設定することで、冷凍能力が下がり、吸入側の蒸発圧力が上がることになる。その後、吐出流量が増える側に設定されることで、冷凍能力が上がり、吸入側の蒸発圧力が下がることになる。蒸発圧力が大きく低下することにより、エバポレータ4内の冷媒は一気に沸騰するため、エバポレータ4に溜まっていた潤滑オイルとともに可変容量コンプレッサ1に戻すことができる。
【0041】
また、可変容量コンプレッサ1が吐出側冷媒流路に設けた固定オリフィスの前後の差圧を定差圧弁で一定に制御して冷媒の吐出流量を一定に制御するようにした流量制御式で、電子膨張弁3が差圧一定制御式の場合、過熱度制御装置6は、オイル循環モードのときに、電子容量制御弁5を構成している定差圧弁を固定オリフィスの前後の差圧が増える側に設定した後、減る側に設定する。可変容量コンプレッサ1が固定オリフィスの前後の差圧を増える側に設定することで、吐出流量が減る側に設定されるため冷凍能力が下がり、吸入側の蒸発圧力が上がることになる。その後、固定オリフィスの前後の差圧を減る側に設定することで、吐出流量が増える側に設定されるため冷凍能力が急激に上がって、吸入側の蒸発圧力が急激に下がることになる。蒸発圧力が大きく低下することにより、エバポレータ4内の冷媒は一気に沸騰するため、エバポレータ4に溜まっていた潤滑オイルとともに可変容量コンプレッサ1に戻すことができる。
【0042】
このように、流量制御の可変容量コンプレッサ1を一旦、吐出流量が減る側に設定してから増える側に設定するよう制御する場合においても、膨張弁は、差圧一定制御式の電子膨張弁3に代えて、ノーマルチャージの温度式膨張弁を用いることができる。
【0043】
【発明の効果】
以上説明したように、本発明では、エバポレータの出口における冷媒を、通常運転時は、常に過熱状態になるよう制御し、周期的に所定期間だけ、過熱度を強制的になくす側に、すなわち負の過熱度を有するように制御する構成にした。これにより、通常運転時には、冷凍サイクルは成績係数の良い状態で運転することができるため、可変容量コンプレッサを駆動するエンジンは省燃費運転ができ、一時的に、負の過熱度を有するように制御することで、エバポレータに溜まっている潤滑オイルを可変容量コンプレッサ側に流出させるため、潤滑オイル枯渇による可変容量コンプレッサの焼き付きを防止することができる。
【図面の簡単な説明】
【図1】本発明を適用した冷凍サイクルの構成を示すシステム図である。
【図2】冷凍サイクルにおける冷媒の状態を示すモリエル線図である。
【図3】温度式膨張弁の特性を示す図である。
【符号の説明】
1 可変容量コンプレッサ
2 コンデンサ
3 電子膨張弁
4 エバポレータ
5 電子容量制御弁
6 過熱度制御装置

Claims (18)

  1. 電子容量制御弁を有する可変容量コンプレッサと膨張弁とを用いた冷凍サイクルの運転方法において、
    通常運転時では、エバポレータの出口における冷媒が常に過熱度を有するように制御し、
    周期的に所定期間、前記可変容量コンプレッサの前記電子容量制御弁および前記膨張弁の少なくとも一方により前記エバポレータの出口における冷媒の過熱度を強制的になくす側に制御するオイル循環モードで運転する、
    ようにしたことを特徴とする冷凍サイクルの運転方法。
  2. 前記オイル循環モードの周期を、冷房負荷に応じて変化させるようにしたことを特徴とする請求項1記載の冷凍サイクルの運転方法。
  3. 前記可変容量コンプレッサは前記電子容量制御弁が吐出圧力と吸入圧力との差圧が一定になるよう制御する差圧一定制御式、前記膨張弁は冷媒流量が一定になるように制御する定流量制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子膨張弁を流量が増える側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  4. 前記可変容量コンプレッサは前記電子容量制御弁が吐出圧力と吸入圧力との差圧が一定になるよう制御する差圧一定制御式、前記膨張弁は冷媒流量が一定になるように制御する定流量制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子容量制御弁を前記差圧が減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  5. 前記可変容量コンプレッサは前記電子容量制御弁が吐出圧力と吸入圧力との差圧が一定になるよう制御する差圧一定制御式、前記膨張弁は冷媒流量が一定になるように制御する定流量制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子膨張弁を流量が増える側に設定すると同時に前記電子容量制御弁を前記差圧が減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  6. 前記可変容量コンプレッサは前記電子容量制御弁が吐出圧力と吸入圧力との差圧が一定になるよう制御する差圧一定制御式、前記膨張弁は冷媒流量が一定になるように制御する定流量制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子容量制御弁を前記差圧が増える側に設定した後、減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  7. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路の断面積を可変できる比例制御弁と前記比例制御弁の前後の差圧を一定に制御する定差圧弁とで構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子膨張弁を前記差圧が減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  8. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路の断面積を可変できる比例制御弁と前記比例制御弁の前後の差圧を一定に制御する定差圧弁とで構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記比例制御弁を吐出流量が増える側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  9. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路の断面積を可変できる比例制御弁と前記比例制御弁の前後の差圧を一定に制御する定差圧弁とで構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子膨張弁を前記差圧が減る側に設定すると同時に前記比例制御弁を吐出流量が増える側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  10. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路の断面積を可変できる比例制御弁と前記比例制御弁の前後の差圧を一定に制御する定差圧弁とで構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記比例制御弁を吐出流量が減る側に設定した後、増える側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  11. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路に設けられて一定の断面積を有する固定オリフィスの前後の第1の差圧を一定に制御する定差圧弁で構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の第2の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子膨張弁を前記第2の差圧が減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  12. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路に設けられて一定の断面積を有する固定オリフィスの前後の第1の差圧を一定に制御する定差圧弁で構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の第2の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子容量制御弁の前記定差圧弁を前記第1の差圧が減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  13. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路に設けられて一定の断面積を有する固定オリフィスの前後の第1の差圧を一定に制御する定差圧弁で構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の第2の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子膨張弁を前記第2の差圧が減る側に設定すると同時に前記電子容量制御弁の前記定差圧弁を前記第1の差圧が減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  14. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路に設けられて一定の断面積を有する固定オリフィスの前後の第1の差圧を一定に制御する定差圧弁で構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はその前後の第2の差圧が一定になるよう制御する差圧一定制御式の電子膨張弁であって、前記オイル循環モードにあるときには、前記電子容量制御弁の前記定差圧弁を前記第1の差圧が増える側に設定した後、減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  15. 前記可変容量コンプレッサは前記電子容量制御弁が吐出圧力と吸入圧力との差圧が一定になるよう制御する差圧一定制御式、前記膨張弁はノーマルチャージの温度式膨張弁であって、前記オイル循環モードにあるときには、前記電子容量制御弁を前記差圧が増える側に設定した後、減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  16. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路の断面積を可変できる比例制御弁と前記比例制御弁の前後の差圧を一定に制御する定差圧弁とで構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はノーマルチャージの温度式膨張弁であって、前記オイル循環モードにあるときには、前記比例制御弁を吐出流量が減る側に設定した後、増える側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  17. 前記可変容量コンプレッサは前記電子容量制御弁が吐出側冷媒流路に設けられて一定の断面積を有する固定オリフィスの前後の差圧を一定に制御する定差圧弁で構成されて冷媒の吐出流量を一定にするよう制御する流量制御式、前記膨張弁はノーマルチャージの温度式膨張弁であって、前記オイル循環モードにあるときには、前記定差圧弁を前記差圧が増える側に設定した後、減る側に設定することを特徴とする請求項1記載の冷凍サイクルの運転方法。
  18. 電子容量制御弁を有する可変容量コンプレッサと電子膨張弁とを用いた冷凍サイクルにおいて、
    エバポレータの出口における冷媒が常に過熱度を有するように制御しながら、周期的に所定期間、前記エバポレータの出口における冷媒の過熱度を強制的になくす側に変移させるよう前記可変容量コンプレッサの前記電子容量制御弁および前記電子膨張弁の少なくとも一方を制御する過熱度制御装置を備えていることを特徴とする冷凍サイクル。
JP2003181204A 2002-08-26 2003-06-25 冷凍サイクルの運転方法 Pending JP2004144462A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003181204A JP2004144462A (ja) 2002-08-26 2003-06-25 冷凍サイクルの運転方法
EP03018862A EP1394484A3 (en) 2002-08-26 2003-08-19 Method for operating a refrigerating cycle and a refrigerating cycle
US10/604,847 US6997001B2 (en) 2002-08-26 2003-08-21 Method of operating a refrigeration cycle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002245291 2002-08-26
JP2003181204A JP2004144462A (ja) 2002-08-26 2003-06-25 冷凍サイクルの運転方法

Publications (1)

Publication Number Publication Date
JP2004144462A true JP2004144462A (ja) 2004-05-20

Family

ID=31497671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181204A Pending JP2004144462A (ja) 2002-08-26 2003-06-25 冷凍サイクルの運転方法

Country Status (3)

Country Link
US (1) US6997001B2 (ja)
EP (1) EP1394484A3 (ja)
JP (1) JP2004144462A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329050A (ja) * 2005-05-25 2006-12-07 Calsonic Kansei Corp 可変容量コンプレッサのトルク算出装置
JP2008215806A (ja) * 2007-03-02 2008-09-18 Stiebel Eltron Gmbh & Co Kg 冷房装置の制御方法および冷房装置
JP2013076554A (ja) * 2011-09-12 2013-04-25 Osaka Gas Co Ltd ヒートポンプ
CN103868290A (zh) * 2014-02-26 2014-06-18 大连冰山嘉德自动化有限公司 基于制冷能效比和过热度控制电子膨胀阀的方法
US10414244B2 (en) 2015-07-08 2019-09-17 Denso Corporation Refrigeration system, and in-vehicle refrigeration system

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4457792B2 (ja) * 2004-07-20 2010-04-28 株式会社デンソー 冷凍サイクル装置
US8096141B2 (en) * 2005-01-25 2012-01-17 Trane International Inc. Superheat control by pressure ratio
DE102005019146A1 (de) * 2005-04-25 2006-10-26 Emerson Electric Gmbh & Co. Ohg Verfahren zum Betreiben einer Kältemaschine
JP4596426B2 (ja) * 2005-09-21 2010-12-08 日立アプライアンス株式会社 熱源装置
EP1990221B1 (en) * 2007-05-10 2009-07-15 C.R.F. Società Consortile Per Azioni Air-conditioning system for a motor vehicle, and motor vehicle equipped with the system
US7895003B2 (en) 2007-10-05 2011-02-22 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US8459053B2 (en) * 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
CN106461279B (zh) * 2014-05-12 2019-01-18 松下知识产权经营株式会社 制冷循环装置
US10823474B2 (en) 2016-05-24 2020-11-03 Carrier Corporation Perturbation of expansion valve in vapor compression system
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697431A (en) * 1984-08-08 1987-10-06 Alsenz Richard H Refrigeration system having periodic flush cycles
JP2518358B2 (ja) * 1988-09-07 1996-07-24 ダイキン工業株式会社 空気調和装置の油回収装置
JPH08226716A (ja) * 1995-02-17 1996-09-03 Sanyo Electric Co Ltd 冷凍装置
JPH0999733A (ja) * 1995-10-06 1997-04-15 Denso Corp 冷凍サイクル装置および車両用空調装置
JPH115439A (ja) * 1997-06-17 1999-01-12 Denso Corp 車両用空気調和装置
JP3596345B2 (ja) * 1999-03-30 2004-12-02 株式会社デンソー 冷凍サイクル装置および車両用空調装置
JP3991556B2 (ja) * 1999-10-04 2007-10-17 株式会社豊田自動織機 容量可変型圧縮機の制御弁
JP2001133053A (ja) 1999-11-01 2001-05-18 Toyota Autom Loom Works Ltd 空調装置
JP3963619B2 (ja) 1999-11-05 2007-08-22 株式会社テージーケー 冷凍サイクルの圧縮容量制御装置
JP3840354B2 (ja) 1999-12-01 2006-11-01 株式会社テージーケー 電気制御膨張弁
JP3906432B2 (ja) * 1999-12-27 2007-04-18 株式会社豊田自動織機 空調装置
JP2001191789A (ja) * 2000-01-14 2001-07-17 Toyota Autom Loom Works Ltd 容量可変型圧縮機および空調装置
JP2002221153A (ja) * 2001-01-23 2002-08-09 Toyota Industries Corp 容量可変型圧縮機の制御弁
DE60218659T2 (de) 2001-06-06 2007-06-21 Tgk Co. Ltd., Hachioji Verdichter mit variabler fördermenge

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329050A (ja) * 2005-05-25 2006-12-07 Calsonic Kansei Corp 可変容量コンプレッサのトルク算出装置
JP2008215806A (ja) * 2007-03-02 2008-09-18 Stiebel Eltron Gmbh & Co Kg 冷房装置の制御方法および冷房装置
JP2013076554A (ja) * 2011-09-12 2013-04-25 Osaka Gas Co Ltd ヒートポンプ
CN103868290A (zh) * 2014-02-26 2014-06-18 大连冰山嘉德自动化有限公司 基于制冷能效比和过热度控制电子膨胀阀的方法
CN103868290B (zh) * 2014-02-26 2016-05-18 大连冰山嘉德自动化有限公司 基于制冷能效比和过热度控制电子膨胀阀的方法
US10414244B2 (en) 2015-07-08 2019-09-17 Denso Corporation Refrigeration system, and in-vehicle refrigeration system

Also Published As

Publication number Publication date
EP1394484A3 (en) 2004-06-16
EP1394484A2 (en) 2004-03-03
US20040107716A1 (en) 2004-06-10
US6997001B2 (en) 2006-02-14

Similar Documents

Publication Publication Date Title
JP2004144462A (ja) 冷凍サイクルの運転方法
US8991201B2 (en) Ejector cycle system
KR100360006B1 (ko) 초 임계 증기 압축 장치
EP1275913A2 (en) Multiform gas heat pump type air conditioning system
US8141381B2 (en) Vapor compression refrigerating cycle, control method thereof, and refrigerating apparatus to which the cycle and the control method are applied
US20100191381A1 (en) Air-Conditioning System, In Particular For A Motor Vehicle
JP2019124452A (ja) 圧縮機始動操作の管理方法、および輸送用冷却システム
JP5412193B2 (ja) ターボ冷凍機
JP2008286158A (ja) 圧縮機のトルク推定装置
JP2005098597A (ja) 冷凍サイクル
JP3610402B2 (ja) 熱ポンプ装置
JPH10324147A (ja) 空気調和装置
JP4063023B2 (ja) 蒸気圧縮式冷凍機
JP4261881B2 (ja) 冷凍サイクルの制御方法
JP2005098691A (ja) エアコンディショナおよびエアコンディショナを運転するための方法
JP4075557B2 (ja) 圧縮装置及び車両用空調装置
CN111033146A (zh) 膨胀阀控制传感器和使用它的制冷***
JPS62247184A (ja) 容量可変斜板式コンプレツサ
JPH09126567A (ja) 空調装置
JP2002219932A (ja) 車両用冷凍サイクル装置
JPH11223183A (ja) 可変容量型圧縮機の動作制御方法及び動作制御装置
JP2009002649A (ja) エジェクタ式冷凍サイクル
KR0153407B1 (ko) 냉동장치
JP3356601B2 (ja) 非共沸冷媒使用のヒートポンプ装置
CN115654759A (zh) 换热***及其控制方法和装置、可读存储介质和制冷设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217