JP2004135562A - Method for culturing large-sized seaweed of laminariales and device therefor, and method for culturing abalone, sea urchin or turban shell and device therefor - Google Patents

Method for culturing large-sized seaweed of laminariales and device therefor, and method for culturing abalone, sea urchin or turban shell and device therefor Download PDF

Info

Publication number
JP2004135562A
JP2004135562A JP2002302531A JP2002302531A JP2004135562A JP 2004135562 A JP2004135562 A JP 2004135562A JP 2002302531 A JP2002302531 A JP 2002302531A JP 2002302531 A JP2002302531 A JP 2002302531A JP 2004135562 A JP2004135562 A JP 2004135562A
Authority
JP
Japan
Prior art keywords
kelp
abalone
culture tank
sea urchin
sea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002302531A
Other languages
Japanese (ja)
Other versions
JP4262963B2 (en
Inventor
Ko Matsumura
松村 航
Daisuke Fujita
藤田 大介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Marino Forum 21
Original Assignee
Toyama Prefecture
Marino Forum 21
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture, Marino Forum 21 filed Critical Toyama Prefecture
Priority to JP2002302531A priority Critical patent/JP4262963B2/en
Publication of JP2004135562A publication Critical patent/JP2004135562A/en
Application granted granted Critical
Publication of JP4262963B2 publication Critical patent/JP4262963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Landscapes

  • Feed For Specific Animals (AREA)
  • Cultivation Of Seaweed (AREA)
  • Farming Of Fish And Shellfish (AREA)
  • Fodder In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for culturing laminaria and a device therefor each enabling effectively supplying as feed throughout the year laminaria which is staple food to abalone, sea urchin or turban shell, and to provide a method for culturing abalone, sea urchin or turban shell and a device therefor each enabling stably catching good-quality abalone, sea urchin or turban shell. <P>SOLUTION: The method for culturing abalone, sea urchin or turban shell comprises cutting upper parts of foliated parts of laminaria cultured by the method for culturing laminaria to use the parts as feed for abalone, sea urchin or turban shell, repeatedly cutting the upper parts of the foliated parts which regrow using intercalary growth of the cut laminaria to supply feed and culturing abalone, sea urchin or turban shell in a culture tank in which deep sea water circulates. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、コンブの培養方法とその培養装置及びアワビ、ウニ又はサザエの養殖方法とその養殖装置に関する。
【0002】
【従来の技術】
アワビは最も高価な水産物の一つで、市場価格においてもキロ当たり数千〜一万円で取引される。国内のアワビ漁獲量は低迷しており、資源の回復を目指した漁場造成や種苗放流が各地で盛んに行われてきたが、密漁、害敵生物による捕食生息環境(藻場)の減少・悪化などの問題があり、期待した効果は得られていない。食材としてのアワビを確保する手段としては、北日本を中心に行われているような海中養殖または陸上養殖への期待が大きい。しかし、富山県の場合、沿岸が急深地形となっているため,海中養殖の適地は限られ、夏の高水温がしばしば問題となる。また、陸上養殖を行うにしても、清浄かつ適水温の海水や大量の餌の確保が必要である。
アワビの養殖では餌の確保が重要な課題の一つで、何らかの形で自給を考えない限り、配合飼料、天然飼料ともに、大量に購入し、低温で保管しなければならず、経費が嵩むだけでなく、保存期間が長くなると変性の問題も生じる。これまでの方法で、アワビ成貝の主食である大型褐藻類のコンブ培養を行うには、大型の水槽からはみ出して空中に露出した部分が枯死しやすいことが指摘されていた。
一方、昨今、富山県では、表層海水と比べて水温が低く、清浄性に優れ、栄養塩が豊富に含まれる海洋深層水が取水されており,これを利用した水温の調節、あるいはコンブや付着珪藻などの冷水性餌料藻類の培養が進められている。
前記海洋深層水は、海洋表層水に比べて低水温で温度が安定しており、コンブの生長に適した栄養塩を多く含んでいることから、冷水性のコンブの再生長を促進する。また、深層水で餌料藻類を育てながらアワビを飼育した報告は国内でもいくつかあるが、その多くは放流用稚貝(殻長40mm以下)の育成で、食用サイズまでの養殖を目指した事例としては、付着珪藻を餌料として一口アワビ(殻長60mm)まで育てた例があるにすぎない。
【0003】
【発明が解決しようとする課題】
本発明は前記事情に基づいてなされたものであり、アワビ、ウニ又はサザエが主食とするコンブを年間を通して無駄なく且つ効率的に餌料として供給可能なコンブの培養方法とその装置及び良質なアワビ、ウニ又はサザエの収穫を安定して行うことが可能なアワビ、ウニ又はサザエの養殖方法とその装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために成された本発明のうち請求項1記載のコンブの培養方法は、コンブの幼体が植え付けられている糸を巻き付けた基板を、海洋深層水が流通する培養槽内に沈め、前記基板上でコンブを生長させ、且つ再生長可能な範囲内で切断し、コンブの介在生長を利用して前記切断を反復して行うことによって、切断コンブを培養することを特徴とするコンブの培養方法である。
【0005】
また、前記糸に植え付けられている幼体は、請求項2記載のように、海洋深層水が流通する培養槽の中に糸を沈め、前記培養槽の水面下に成熟したコンブを切断した葉状部片を吊るし、前記葉状部片から放出されるコンブの胞子を前記糸に付着させることによって当該糸上に発芽させたコンブの幼体であっても良い。
【0006】
ここで、糸はコンブの胞子が付着し、幼体が定着するものであれば材質を特に限定しないが、例えば、綿糸などがあげられる。また、海洋深層水の水温はコンブの生育が可能な範囲内であれば特に限定はしないが、例えば5℃〜10℃の水温が望ましい範囲として挙げられる。
【0007】
更に、本発明のうち請求項3記載の発明は、前記請求項1又は2に記載のコンブの培養方法によって培養されたコンブの葉状部の上部を切り取って、アワビ、ウニ又はサザエの餌料とし、切断したコンブの介在生長を利用して再生長した前記葉状部の上部を反復して切断することにより餌料を供給し、海洋深層水が流通する養殖槽の中でアワビ、ウニ又はサザエを養殖することを特徴とするアワビ、ウニ又はサザエの養殖方法である。ここで、海洋深層水の水温は、アワビ、ウニ又はサザエが生育できる温度の範囲内であれば特に限定しないが、15℃〜20℃の水温が望ましい範囲として挙げられる。
【0008】
そして、請求項1記載の方法を実施するための請求項4記載に係る発明のコンブの培養装置は、海洋深層水を取り入れる流入管と、海洋深層水を流出する流出管とを備えている培養槽内を、海洋深層水が流通するようになっており、前記培養槽内には、基盤上で生育すると共に再生長可能な範囲内で切断し且つ生長したコンブを反復して切断可能であるコンブを備えていることを特徴とする。
【0009】
また、コンブの培養方法としては請求項5記載のように、前記培養槽を複数段又は/及び複数列としても良い。ここで、複数段とは、例えば、上段、中段、下段というように階段状の段差を設け、各段にそれぞれ培養槽を配置している状態をいい、これによって、海洋深層水が高い段に置いた培養槽から低い段の培養槽へ自動的に流れるようになっている。また、複数列とは、前記同じ高さの各段に複数個の培養槽をそれぞれ備えている状態をいう。
【0010】
更に、コンブの培養装置としては請求項6記載のように、前記培養槽の中のいずれかに、成熟誘導用の葉状部片を吊り下げても良い。
【0011】
また、前記請求項3記載の方法を実施するための請求項7記載に係る発明によるアワビ、ウニ又はサザエの養殖装置は、請求項4、5、又は6記載のコンブの培養装置に併設して、培養槽で生長したコンブを切断して得た葉状部を餌料として繰り返し供給することによってアワビ、ウニ又はサザエを養殖する養殖槽を備えていることを特徴とする。請求項5の多数段にする場合には、養殖槽を培養槽に対して、下位段側に配置しても良いし、また養殖槽を培養槽に対して、上位段側に配置しても良い。
【0012】
また、アワビ、ウニ又はサザエの前記養殖装置としては、請求項8記載のように、前記養殖槽は、海洋深層水を取り入れるための導入管と、海洋深層水を排水するための排水管と、を備えており、前記培養槽の海洋深層水を流出する前記流出管と、前記養殖槽の海洋深層水を取り入れるための前記導入管と、が連結され、前記培養槽と前記養殖槽間で、前記海洋深層水が流通するように構成しても良い。
【0013】
【発明の実施の形態】
以下、本発明による海洋深層水を使用したコンブの培養方法とその培養装置、並びに、コンブを主食とするアワビの養殖方法とその養殖装置の実施の形態を図面に基づき説明する。
【0014】
実験材料のコンブはマコンブで、富山県水産試験場で培養したものである。種糸はプラスチック製の正方形基盤(40cm×40cm)数基に5〜6本ずつ縛って加温深層水(サクラマス熱交換用:約17℃〜18℃の地下水と熱交換による加温、約11℃)が流通する屋外1t培養槽に沈め、一部は、深層水原水(11℃)が流通する屋内1t培養槽に垂下し、低光量(約6μEm−2−1)で保存培養した。
【0015】
成熟誘導は、図2に示すように、生長試験時に切断して得た葉状部片7(長さ15cm〜30cm)を、加温深層水が流通する培養槽4の水面付近(水面下10cm〜20cm)に糸12で吊るし、定期的に子嚢斑が形成されているかどうかを確認した。なお、成熟誘導の試験は隔月に実施した。
【0016】
切り取った葉片の成熟誘導は、時期(季節)を問わず、深層水を流通させた培養槽4で容易に行うことができた。葉状部片7は、加温深層水では各月とも2週間の培養で子嚢斑を形成し始めた。子嚢斑は葉状部片の中帯部(中央の厚みのある部位)だけに形成され、別に行った藻体部位別の試験では、藻体の上部から得た葉片ほど早く子嚢斑を形成する傾向が認められた。また、加温深層水と原水では、加温深層水で培養した方が原水の場合に比べて子嚢斑が形成されるまでの期間が1〜2週間程度短かった。
【0017】
又、9月に成熟誘導によって得た遊走子を用い、実際にコンブの種糸作りを行ってみたところ、培養4週間後の子嚢斑を形成した葉片から多数の遊走子が放出された。また、これを海水ごとクレモナ糸に適量散布して付着させ、インキュベーター(10℃)で培養した結果、約1ヶ月後には糸上に約1mmの正常なコンブの幼体(11)を認めることができた。
【0018】
切断したコンブの生長試験は、上記環境により2001年3月に葉長50cm〜60cm、葉幅5cmに達した屋外培養藻体を用い、毎月一回、葉状部の基部から15cmの位置で切断して先端部を除き、加温深層水が流通する培養槽4(0.5t〜1t)で培養を続けることによって行った。正方形基盤1基あたりの生育本数は100〜150個体であった。生長量は、基盤上のコンブのうち標識をつけた30個体について、コンブ類の生長測定でよく用いられる穿孔法(Yokohama et al。1987)により調べた。本研究では、葉状部の基部から一定部位(10cm)に孔14を設け、切断3週間後に次の孔14までの距離Aを測った(図1参照)。また、切断時に穴を空けた部位の葉幅も毎月測定した。
【0019】
その結果、コンブの再生長は2001年3月〜2002年1月までの毎月、全ての藻体で認められた(図3参照、図4参照)。各月の切断後3週間に再生長して伸びた部分の長さを測定し、実験を行ったが、実験を開始した3月には平均23.5cm伸び、最大葉長65cmに達した藻体も認められた。介在生長による藻体の伸びは冬(天然の衰退期)に向かって徐々に減少する傾向が見られ、9月には平均8.8cm、10〜12月には平均4.1cm〜6.0cmの伸びに留まったが、葉幅(図4参照)は毎月の切断にもかかわらず9月まで増加傾向を示し、9月には平均11.2cmとなった。10月から1月にかけて葉幅の増加は停滞したが、12月には葉状部にいわゆる「突き出し」(多年生のコンブが越年後に伸長生長を開始し、根元側の幅の広い新葉部が細い旧葉部を押し上げる現象)が認められ、日照時間が長くなるとともに、1月には若干ではあるが生長量の増加が認められた。
【0020】
なお、8月と1月に切断したコンブが1ヶ月間に伸長した部分の湿重量について、1藻体当たりの生長量は8月に平均約21g、1月に約15gであり、150個体を付着させた1基盤上で得られる葉片の概算重量はそれぞれ約3kg、2kgと計算された。
このほか、一部の藻体の切断を7月に止めて培養し続けたところ、5ヶ月後(12月)、最も伸長したもので全長230cm、葉幅17.2cmにまで生長した。
【0021】
併せて、前記成長試験によって得られたマコンブの給餌によるエゾアワビの飼育試験を行った。当該試験に用いたアワビは殻長41mmのエゾアワビNordotis discus hannai(山形県栽培振興協会産)で、2001年2月に2基の屋内養殖槽(0.5t)に20個体ずつ収容し、チタンヒーター等の加温装置で15℃と18℃に設定した深層水止水で飼育を行った。アワビには再生長実験で得たコンブ葉片を与え、最初の1ヶ月間に摂餌量(日量)を調べ、その後は残餌が出ない程度に週2回給餌した。
【0022】
アワビ20個体が一日に食べるコンブ葉片の量を調べた結果、水温15℃では約5g、18℃では約15gであった(図7参照)。これに基づき、1個体当たりの日間摂餌量を計算したところ、それぞれ0.25g、0.75gとなった。この量を目安にしてコンブを与え、3ヶ月間飼育したアワビの殻長(5月)は、15℃では平均45.4mm、最大51mm、18℃では平均46.5mm、最大52mmとなり、いずれも3ヶ月間に最大で約11mm伸びた。これ以降、気温の上昇で水温が設定値を超えたり曝気に支障が生じた場合に、一部のアワビが死亡したが、飼育8ヶ月後(10月)には殻長63mm、1年後(2月)には67mmに達した。
【0023】
今回は、以上の研究結果に基づき、コンブを安定供給しながらアワビを陸上養殖するために、コンブを主食とするアワビの養殖装置の一例として、図6に示すような、海洋深層水と切断コンブの介在生長を活用したアワビ養殖装置を案出した。
この実施形態例として示すアワビ、ウニ又はアワビのの培養装置は、図2に示す様な葉状部片7を吊るしてある成熟誘導用の培養槽4を2基1列2段と、コンブの培養槽4を8基4列2段と、各培養槽4内には約150個体のコンブを付着させた正方形基盤(40cm×40cm)を10個沈め、前記各培養槽4には水温5℃〜10℃に加温した海洋深層水1を流通させるための流入管2と、流出管3と、が具備されている。尚、5列2段になっている相互の培養槽4は連結管15によって連結されており、海洋深層水1が流入し、排出するようになっている。
【0024】
また、海洋深層水1を各培養槽4及び各養殖槽8に、自動的に、スムーズに流れ込む様にするために、前記各培養槽4及び各養殖槽8を設置する高さには、列ごとに階段状の段差が設けてある。この段差によって、上段から流し込まれた海洋深層水1が下位の各培養槽4と各養殖槽8に自動的に流入し、流出される様になっている。例えば、本実施形態例においては、3段から成る段差が設けられており、図6の右側に示されている成熟誘導用の培養槽4を1基含めた培養槽5基を上段とし、上段の図示左側にある成熟誘導用の培養槽4を1基含めた培養槽5基を中段とし、更に養殖槽2基を下段とすると、上段から中段、中段から下段へと、海洋深層水1が自動的に流通するようになっている(図6参照)。
ここで、本実施形態例では、養殖槽8を下段としているが、養殖槽8を上段に配置し、各培養槽4を養殖槽8の下位の段に配置しても良い。
【0025】
また、前記培養装置に併設して、アワビの幼体13と、前記培養槽4からの海洋深層水1を取り入れるための導入管9と、前記海洋深層水を排出するための排出管10と、を具備した養殖槽8を2基2列1段に配列してある。各培養槽4と各養殖槽8との間では、前記培養槽4の流出管3と前記養殖槽8の導入管9は連結し、水温を15℃〜20℃に加温した海洋深層水のコンブ培養排水を活用すると共に、各養殖槽8内には別の配管16により新たな海洋深層水が流入し、アワビ等の養殖を行っている。加温は、主に、ボイラーによる方が効率的である。
【0026】
このアワビ養殖装置の例では、海洋深層水のコンブ培養排水を、水温を15℃〜20℃に加温してアワビを養殖するもので、陸上にて養殖槽内に深層水を流通させることによって全てを賄うことができる。切断コンブは、毎月の切断後も葉が生長をし、これを「床屋」のように定期的に収穫することにより、アワビの餌料としてほぼ周年利用できる。
【0027】
まず、水温を5℃〜10℃に調節したコンブ培養槽8基を4列2段に配列し、1培養槽に約150個体のコンブを付着させた正方形基盤(40cm×40cm)を10個入れる。1ヶ月間の培養で切断コンブが再生長した葉状部片を毎週2基分の培養槽分採取し、アワビに与える。8基の4列2段の培養槽を用い、採取する培養槽を毎週ずらしていけば、4週間(約1ヶ月)周期で切断コンブを利用できる。毎月得られるコンブ葉片は1藻体につき平均15g〜21g、1基盤上から2kg〜3kg 、2基分の培養槽で約40kg〜60kg となり、これを毎週アワビに給餌することになる。一方、殻長約40mmのアワビ1個体あたりの月間マコンブ摂餌量(水温15℃と18℃の平均)は約15gであるので、1基盤上のコンブ葉片を与えることにより約150個体〜200個体のアワビが飼育可能である。
【0028】
この多段式培養システムが機能すれば、12000本(=150本/基盤×10基盤/培養槽×8培養槽)のコンブ切断により、計算上12,000個体〜16,000個体のアワビ(殻長40mm)を育てることができ、常にコンブの種苗を確保しておくことも可能となる。実際には、アワビの成長に伴う摂餌量の増大、コンブ再生長の停滞期を考慮して収容数を調整する必要がある。また、コンブ種苗については、成熟誘導のための予備培養槽やコンブ種糸を保存するための低温培養槽を用意しておくことが望ましい。なお、1年間培養した切断コンブは、平均海水温の高い海域でも、海水温の低い時期に海中培養を行えば、2年目コンブとして養殖できる可能性もある。
【0029】
【発明の効果】
本発明によれば、海洋深層水が流通する培養槽内で、コンブの介在生長力を利用することによって、コンブの葉状部片を反復して切断可能であるので、アワビ、ウニ又はサザエの主食となる前記葉状部片を年間を通じて無駄なく且つ効率的に餌料として供給できる。
また本発明によれば、培養槽内で一定の長さに達したコンブの上部が順次に切断されて行くので、培養槽内のコンブは無用に長く伸びて光りを遮り他のコンブの生長に支障をきたすことがないことは勿論、空気中に露出して枯死することもない。
【0030】
更に本発明によれば、底の浅い培養槽であっても葉状部片の切断の反復によって高密度にコンブの培養ができ、特に培養槽を複数段又は/及び複数列に配置すれば、より一層アワビ、ウニ又はサザエの餌料としての切断葉状部片を過不足なく且つ継続的に供給できるので、多量のアワビ、ウニ又はサザエの養殖が可能となって、アワビ、ウニ又はサザエを安定且つ確実に収穫できるものである。
【図面の簡単な説明】
【図1】本発明によるコンブの模式図である。
【図2】本発明によるコンブの培養装置の一例を示す模式図である。
【図3】本発明による切断したコンブの葉状部の再生長の長さを月ごとに表した棒グラフ図である。
【図4】本発明による切断したコンブの葉状部の再生長の葉幅を月ごとに表した棒グラフ図である。
【図5】本発明によるアワビ20個体当たりが1日に摂餌するコンブ葉片の摂餌量を2日間おきに表した折れ線グラフ図である。
【図6】
本発明によるアワビ養殖装置の一例を表した模式図である。
【符号の説明】
1 海洋深層水
2 流入管
3 流出管
4 培養槽
5 基板
6 コンブ
7 葉状部片
8 養殖槽
9 導入管
10 排水管
11 コンブの幼体
12 糸
13 アワビの幼体
14 孔
15 連結管
16 配管
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for cultivating kelp and a culturing apparatus therefor, and a method for culturing abalone, sea urchin or turtle and a culturing apparatus therefor.
[0002]
[Prior art]
Abalone is one of the most expensive seafood and trades for thousands to 10,000 yen per kilogram at market prices. Abalone catches in Japan are stagnant, and fishing grounds and seeds are being scattered around the country in an effort to restore resources. Poaching and predatory habitats (seaweed beds) by enemy organisms are decreasing or worsening. However, the expected effects have not been obtained. As a means of securing abalone as food, there is great expectation for underwater aquaculture or onshore aquaculture, as is practiced mainly in northern Japan. However, in the case of Toyama Prefecture, the coastal area has a steep terrain, so suitable places for underwater aquaculture are limited, and high water temperatures in summer often pose a problem. In addition, even if land farming is performed, it is necessary to secure clean and appropriate seawater and a large amount of food.
In abalone cultivation, securing food is one of the important issues. Unless some form of self-sufficiency is considered, both formula feed and natural feed must be purchased in large quantities and stored at low temperatures, which increases costs. In addition, if the storage period is long, a problem of denaturation occurs. It has been pointed out that, in the conventional method, in order to carry out kelp culture of large brown algae, which is a staple food of abalone shellfish, a portion protruding from a large aquarium and exposed to the air tends to die.
On the other hand, in recent years, in Toyama Prefecture, deep ocean water, which has a lower water temperature than the surface seawater, is excellent in cleanliness, and contains abundant nutrients, is taken. Cultivation of cold-water feed algae such as diatoms is in progress.
The deep ocean water has a lower temperature and a more stable temperature than the surface ocean water, and contains a large amount of nutrients suitable for the growth of kelp, thereby promoting the regeneration of cold kelp. In addition, there are some reports in Japan that abalones were raised while growing feed algae in deep water, but most of them were used to raise larvae for shelling (shell lengths of 40 mm or less), aiming at aquaculture up to the edible size. There is only an example of growing a single abalone (shell length 60 mm) using attached diatoms as a feed.
[0003]
[Problems to be solved by the invention]
The present invention has been made based on the above circumstances, abalone, sea urchins or sea bream kelp as a staple food throughout the year without waste and efficiently feed as a bamboo cultivation method and its apparatus and good quality abalone, It is an object of the present invention to provide an abalone, sea urchin or turtle cultivation method and apparatus capable of stably harvesting sea urchin or turtle.
[0004]
[Means for Solving the Problems]
The method for cultivating a kelp according to claim 1 of the present invention, which has been made to solve the above-mentioned problem, comprises placing a substrate on which a thread on which a young body of a kelp is planted is wound into a cultivation tank through which deep-sea water flows. Cultivating the cut kelp by submerging, growing the kelp on the substrate, and cutting the kelp within a reproducible range, and repeatedly performing the slicing using intervening growth of the kelp. This is a method for cultivating kelp.
[0005]
The larvae planted on the thread are immersed in a culture tank through which deep ocean water flows, and cut into a mature kelp below the surface of the culture tank. It may be a juvenile kelp germinated on the thread by hanging a piece and attaching the spores of the kelp released from the leaf-like piece to the thread.
[0006]
Here, the material of the yarn is not particularly limited as long as the spores of the kelp are attached and the young body is fixed, and examples thereof include a cotton yarn. The water temperature of the deep sea water is not particularly limited as long as it is within a range in which kelp can grow, and for example, a water temperature of 5 ° C to 10 ° C is mentioned as a desirable range.
[0007]
Further, the invention according to claim 3 of the present invention cuts off the upper part of the leaf-like portion of the kelp cultured by the method for cultivating the kelp according to claim 1 or 2, and uses it as a food for abalone, sea urchin or turtle, Feed is supplied by repeatedly cutting the upper part of the leaf-shaped part regenerated using the intervened growth of the cut kelp, and abalone, sea urchin or turtle is cultivated in a culture tank in which deep ocean water flows. A method for cultivating abalone, sea urchin or turtle. Here, the water temperature of the deep sea water is not particularly limited as long as it is within a temperature range at which abalone, sea urchin or turtle can grow, but a water temperature of 15 ° C to 20 ° C is mentioned as a desirable range.
[0008]
The cultivation apparatus for kelp of the invention according to claim 4 for carrying out the method according to claim 1 has a culture pipe including an inflow pipe for taking in deep sea water, and an outflow pipe for flowing out deep sea water. In the tank, deep ocean water is circulated, and in the culture tank, it grows on a basement and can be cut within a renewable range and the grown kelp can be repeatedly cut. It is characterized by having a kelp.
[0009]
Further, as a method for cultivating a kelp, the culturing tank may have a plurality of stages and / or a plurality of rows. Here, a plurality of stages refers to, for example, a state in which a step-like step is provided such as an upper stage, a middle stage, and a lower stage, and a culture tank is arranged in each stage. It automatically flows from the placed culture tank to the lower culture tank. In addition, a plurality of rows refers to a state in which a plurality of culture tanks are provided at each of the same heights.
[0010]
Furthermore, as a kelp culture device, a leaf-shaped piece for inducing maturity may be suspended in any of the culture tanks.
[0011]
Further, an abalone, sea urchin or turtle cultivation apparatus according to the invention according to claim 7 for carrying out the method according to claim 3 is provided in conjunction with the kelp culture apparatus according to claim 4, 5, or 6. And a cultivation tank for culturing abalone, sea urchin or turtle by repeatedly supplying a leaf-like portion obtained by cutting the kelp grown in the culture tank as a feed. In the case of the multi-stage of claim 5, the culture tank may be arranged on the lower stage side with respect to the culture tank, or the culture tank may be arranged on the upper stage side with respect to the culture tank. good.
[0012]
In addition, as the abalone, sea urchin or turtle cultivation device, as described in claim 8, the culturing tank, an introduction pipe for taking in deep sea water, a drain pipe for draining deep sea water, Comprising, the outflow pipe for flowing out the deep sea water of the culture tank, and the introduction pipe for taking in the deep sea water of the culture tank, are connected, between the culture tank and the culture tank, You may comprise so that the said deep sea water may distribute | circulate.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a method for cultivating a kelp using deep sea water and a culturing apparatus thereof, a method for cultivating abalone using kelp as a staple food, and an apparatus for culturing the abalone according to the present invention will be described with reference to the drawings.
[0014]
The kelp of the experimental material was Macomb, which was cultured at the Toyama Prefectural Fisheries Experimental Station. Seed yarns were tied to several plastic square bases (40 cm x 40 cm) in groups of 5 to 6 each and heated deep water (for cherry salmon heat exchange: heating by heat exchange with ground water at about 17 to 18 ° C, about 11) C) was immersed in an outdoor 1-ton culture tank through which deep water (11 ° C.) flows, and a part of the suspension was stored and cultured at low light intensity (about 6 μEm −2 s −1 ).
[0015]
As shown in FIG. 2, the maturation induction is performed by cutting the leaf-shaped pieces 7 (length 15 cm to 30 cm) obtained by cutting at the time of the growth test in the vicinity of the water surface of the culture tank 4 through which the heated deep water flows (below the water surface 10 cm to 10 cm). (20 cm) with a thread 12, and it was periodically checked whether or not ascitic plaques were formed. The test for induction of maturation was conducted every other month.
[0016]
The maturation induction of the cut leaf pieces could be easily performed in the culture tank 4 through which deep water was circulated, regardless of the time (season). The leaflet 7 began to form ascoplaques in the heated deep water in each month for two weeks of culture. Ascolar plaques are formed only in the middle zone of the leaf-like pieces (the thick part in the center), and in a separate test for algal sites, ascitic plaques formed earlier from the top of algal bodies Tendency was observed. In addition, in the heated deep water and the raw water, the period until the formation of the ascus plaque was shorter by about 1 to 2 weeks when cultured in the heated deep water than in the case of the raw water.
[0017]
In addition, when zoospores obtained by induction of maturation in September were used to actually produce seeds of kelp, a large number of zoospores were released from the leaf pieces on which the ascus plaques were formed after 4 weeks of culture. Also, this was sprinkled with a suitable amount of seawater on Cremona thread and allowed to adhere, and cultured in an incubator (10 ° C.). As a result, a normal kelp juvenile (11) having a diameter of about 1 mm was found on the thread after about one month. Was.
[0018]
The growth test of the cut kelp was performed by using an outdoor cultured alga body that reached a leaf length of 50 cm to 60 cm and a leaf width of 5 cm in March 2001 under the above environment, and was cut once a month at a position of 15 cm from the base of the leaf. The culture was performed by continuing the culture in the culture tank 4 (0.5 t to 1 t) through which the heated deep water flows except the tip. The number of trees growing per square substrate was 100 to 150 individuals. The amount of growth was examined by using a perforation method (Yokohama et al., 1987), which is often used for measuring the growth of kelp, for 30 labeled kelps on the substrate. In this study, a hole 14 was provided at a fixed position (10 cm) from the base of the leaf-shaped portion, and three weeks after cutting, the distance A to the next hole 14 was measured (see FIG. 1). In addition, the leaf width at the site of the hole at the time of cutting was measured every month.
[0019]
As a result, the regeneration length of the kelp was observed in all the algal bodies every month from March 2001 to January 2002 (see FIGS. 3 and 4). Three weeks after cutting each month, the length of the portion that grew by regeneration was measured, and an experiment was performed. In March, when the experiment started, the algae that grew 23.5 cm on average and reached a maximum leaf length of 65 cm in March The body was also recognized. Algal growth due to intermediary growth tends to gradually decrease toward winter (natural decline), with an average of 8.8 cm in September and 4.1 cm to 6.0 cm in October to December. However, the leaf width (see FIG. 4) showed a tendency to increase until September despite the cutting every month, and reached an average of 11.2 cm in September. From October to January, the increase in leaf width stagnated, but in December, the so-called “protrusion” in the foliate part (a perennial kelp began to grow after passing over the year, The phenomenon of pushing up the thin old leaves) was observed, and the sunshine duration was prolonged, and the growth amount was slightly increased in January.
[0020]
In addition, regarding the wet weight of the portion where the kelp cut in August and January has grown in one month, the growth amount per alga is about 21 g in August on average and about 15 g in January, and 150 individuals The approximate weight of the leaf pieces obtained on one adhered substrate was calculated to be approximately 3 kg and 2 kg, respectively.
In addition, when the cutting of some algal bodies was stopped in July and cultivation was continued, five months later (December), the most elongated one grew to a total length of 230 cm and a leaf width of 17.2 cm.
[0021]
At the same time, a feeding test of Ezo abalone was conducted by feeding on the kelp obtained by the growth test. The abalone used in the test was a 41 mm shell-length abalone Nordodis discus hannai (produced by Yamagata Prefectural Cultivation Promotion Association), and in February 2001, 20 individuals were housed in two indoor culture tanks (0.5 t) and a titanium heater was used. The animals were bred in a deep water stoppage set at 15 ° C. and 18 ° C. using a heating device such as the above. Abalone was fed with the leaf fraction of the kelp obtained in the regeneration length experiment, and the amount of food (daily amount) was examined during the first month, and thereafter fed twice a week so that no residual food was produced.
[0022]
As a result of examining the amount of kelp leaf pieces consumed by 20 abalones a day, it was about 5 g at a water temperature of 15 ° C. and about 15 g at a water temperature of 18 ° C. (see FIG. 7). Based on this, the daily food consumption per individual was calculated to be 0.25 g and 0.75 g, respectively. The abalone shell length (May) bred for 3 months given this amount as a standard was 45.4 mm at 15 ° C, 51 mm at maximum, 46.5 mm at 18 ° C, and 52 mm at 18 ° C. It grew up to about 11 mm in three months. After this, if the temperature rises and the water temperature exceeds the set value or aeration occurs, some abalone died, but after 8 months (October), the shell length was 63 mm and after 1 year ( In February) it reached 67 mm.
[0023]
This time, based on the above research results, in order to cultivate abalone on land while providing a stable supply of kelp, as an example of an abalone cultivation device that consumes kelp as a staple food, deep sea water and cut kelp as shown in Fig. 6 A new abalone cultivation device that utilizes the intermediary growth of the abalone.
The abalone, sea urchin or abalone cultivation apparatus shown as an example of this embodiment has two culture tanks 4 for inducing maturity in which leaf-like pieces 7 are suspended as shown in FIG. Eight tanks, four rows and two rows, 10 square bases (40 cm × 40 cm) each having about 150 individual kelp adhered in each culture tank 4, and each culture tank 4 has a water temperature of 5 ° C. An inflow pipe 2 for flowing deep ocean water 1 heated to 10 ° C. and an outflow pipe 3 are provided. The culture tanks 4 in five rows and two stages are connected by a connection pipe 15 so that the deep ocean water 1 flows in and out.
[0024]
In order to automatically and smoothly flow the deep sea water 1 into the respective culture tanks 4 and the respective culture tanks 8, the height at which the respective culture tanks 4 and the respective culture tanks 8 are installed has Each is provided with a step-like step. Due to this step, the deep sea water 1 poured from the upper stage automatically flows into and out of each lower culture tank 4 and each culture tank 8. For example, in the present embodiment, three steps are provided, and five culture vessels including one culture vessel 4 for inducing maturity shown on the right side of FIG. When five culture tanks including one culture tank 4 for maturation induction on the left side of the figure are set as a middle tier, and two culture tanks are set as a lower tier, deep sea water 1 flows from the upper tier to the middle tier and from the middle tier to the lower tier. It is distributed automatically (see FIG. 6).
Here, in the present embodiment, the cultivation tank 8 is the lower tier, but the cultivation tub 8 may be disposed in the upper tier, and each of the culture tubs 4 may be disposed in the lower tier of the cultivation tub 8.
[0025]
Further, a juvenile abalone 13, an introduction pipe 9 for taking in the deep sea water 1 from the culture tank 4, and a discharge pipe 10 for discharging the deep sea water are provided in the culture apparatus. The equipped culture tanks 8 are arranged in two rows and two rows. Between each culture tank 4 and each culture tank 8, the outflow pipe 3 of the culture tank 4 and the introduction pipe 9 of the culture tank 8 are connected, and the deep sea water heated to a water temperature of 15 ° C. to 20 ° C. In addition to utilizing the kelp culture wastewater, new deep seawater flows into each cultivation tank 8 through another pipe 16 to cultivate abalone and the like. Heating is mainly efficient with a boiler.
[0026]
In the example of this abalone cultivation apparatus, the kelp culture wastewater of deep sea water is heated to a temperature of 15 ° C. to 20 ° C. to cultivate abalone, and by circulating the deep water in the cultivation tank on land. I can cover everything. The cut kelp can be used almost a year as an abalone feed by growing the leaves even after cutting every month and harvesting it regularly like a barber.
[0027]
First, eight kelp cultivation tanks whose water temperature is adjusted to 5 ° C. to 10 ° C. are arranged in four rows and two tiers, and ten square bases (40 cm × 40 cm) to which about 150 kelp are attached are placed in one cultivation tank. . The leaf-shaped pieces in which the cut kelp regenerated in the culture for one month are collected every week in two culture tanks and fed to abalone. If eight culture tanks with four rows and two stages are used and the culture tanks to be collected are shifted every week, the cut kelp can be used in a cycle of four weeks (about one month). The kelp leaf pieces obtained every month are 15 g to 21 g on average per algal body, 2 kg to 3 kg from one base, and about 40 kg to 60 kg in two culture tanks, which are fed to abalone every week. On the other hand, the monthly amount of feed of mam kelp per abalone having a shell length of about 40 mm (average of water temperature of 15 ° C. and 18 ° C.) is about 15 g. Abalone can be bred.
[0028]
If this multi-stage culture system functions, abalone (shell length of 12,000 to 16,000 individuals) can be calculated by cutting 12,000 (= 150 / base × 10 base / culture tank × 8 culture tank) kelp. 40 mm), and it is also possible to always secure the seedlings of the kelp. In practice, it is necessary to adjust the number of animals in consideration of the increase in food consumption accompanying the growth of abalone and the stagnation period of the kelp regeneration length. In addition, it is desirable to prepare a pre-culture tank for inducing maturity and a low-temperature culture tank for storing the kelp seed yarn for the seedlings of the kelp. The cut kelp cultured for one year may be cultivated as a second-year kelp in the sea area where the average seawater temperature is high, if it is cultivated in the sea at a time when the seawater temperature is low.
[0029]
【The invention's effect】
According to the present invention, in the culture tank in which deep seawater flows, by utilizing the intervening growth force of the kelp, the leaf-shaped pieces of the kelp can be repeatedly cut, so that the staple food of the abalone, sea urchin or turtle Can be efficiently and efficiently supplied as feed throughout the year.
Further, according to the present invention, the upper portion of the kelp that has reached a certain length in the culture tank is sequentially cut, so that the kelp in the cultivation tank extends unnecessarily long to block the light and grow the other kelp. Of course, there is no hindrance, and it does not die due to exposure to the air.
[0030]
Furthermore, according to the present invention, even in a culture tank having a shallow bottom, kelp can be cultured at a high density by repeating the cutting of the leaf-shaped pieces. In particular, if the culture vessels are arranged in a plurality of stages and / or in a plurality of rows, Since the cut leaf-like pieces as feed for the abalone, sea urchin or sea turtle can be supplied without excess, shortage, and continuous, a large amount of abalone, sea urchin or sea turtle can be cultivated, and the abalone, sea urchin or sea turtle can be stably and reliably produced. Can be harvested.
[Brief description of the drawings]
FIG. 1 is a schematic view of a kelp according to the present invention.
FIG. 2 is a schematic view showing an example of a kelp culture apparatus according to the present invention.
FIG. 3 is a bar graph showing the length of the regenerated length of the leaf portion of the cut kelp according to the present invention for each month.
FIG. 4 is a bar graph showing, for each month, the leaf width of the regenerated length of the leaf portion of the cut kelp according to the present invention.
FIG. 5 is a line graph showing the amount of feed of the leaf fraction of the kelp per 20 abalones according to the present invention per day every two days.
FIG. 6
It is a schematic diagram showing an example of the abalone culture device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Deep sea water 2 Inflow pipe 3 Outflow pipe 4 Culture tank 5 Substrate 6 Konbu 7 Leaf piece 8 Culture tank 9 Introduction pipe 10 Drainage pipe 11 Kombu juvenile 12 Thread 13 Abalone juvenile 14 Hole 15 Connecting pipe 16 Piping

Claims (8)

コンブの幼体が植え付けられている糸を巻き付けた基盤を、海洋深層水が流通する培養槽内に沈め、前記基板上でコンブを生長させ且つ再生長可能な範囲内で切断し、コンブの介在生長を利用して前記切断を反復して行うことによって、切断コンブを培養することを特徴とするコンブの培養方法。The substrate wound with the thread on which the juveniles of the kelp are planted is submerged in a culture tank through which deep sea water flows, and the kelp is grown on the substrate and cut within a range that allows regeneration of the kelp, and the intercalated growth of the kelp is performed. A method for cultivating a kelp, wherein the kelp is cultivated by repeatedly performing the above-mentioned slicing by using the method. 前記糸に植え付けられている幼体は、切断した葉状部片を前記培養槽の水面下に吊るし、成熟を誘発させ、前記葉状部片から放出したコンブの胞子を前記糸に付着させることによって当該糸上に発芽させたコンブの幼体であることを特徴とする請求項1記載のコンブの培養方法。The juveniles planted on the thread are obtained by suspending the cut leaf-shaped pieces under the surface of the culture tank, inducing maturation, and attaching the spores of the kelp released from the leaf-shaped pieces to the threads. 2. The method for cultivating a kelp according to claim 1, wherein the kelp is a larva of a kelp sprouted thereon. 前記請求項1又は2に記載のコンブの培養方法によって培養されたコンブの葉状部の上部を切り取って、アワビ、ウニ又はサザエの餌料とし、切断したコンブの介在生長を利用して再生長した前記葉状部の上部を反復して切断することにより餌料を供給し、海洋深層水が流通する養殖槽の中でアワビ、ウニ又はサザエを養殖することを特徴とするアワビ、ウニ又はサザエの養殖方法。An upper part of a leaf-like portion of the kelp cultured by the kelp cultivation method according to claim 1 or 2, which is cut off, used as a food for abalone, sea urchin or turtle, and regenerated using the intervened growth of the cut kelp. A method for cultivating abalone, sea urchin or sea turtle, comprising feeding a feed by repeatedly cutting the upper part of the leaf-shaped part and culturing abalone, sea urchin or sea turtle in a cultivation tank in which deep sea water flows. 海洋深層水(1)を取り入れる流入管(2)と、海洋深層水(1)を流出する流出管(3)とを備えている培養槽(4)内を、海洋深層水(1)が流通するようになっており、前記培養槽(4)内には、基盤(5)上で生育すると共に再生長可能な範囲内で切断し且つ生長したコンブを反復して切断可能であるコンブ(6)を備えていることを特徴とするコンブの培養装置。The deep ocean water (1) flows through a culture tank (4) having an inflow pipe (2) for taking in the deep ocean water (1) and an outflow pipe (3) for flowing out the deep ocean water (1). In the culture tank (4), the kelp (6) which grows on the substrate (5) and is cut within a range capable of regeneration and is capable of repeatedly cutting the grown kelp is provided. A kelp cultivation apparatus comprising: 前記培養槽(4)が複数段又は/及び複数列となっていることを特徴とする請求項4記載のコンブの培養装置。The cultivation apparatus for kelp according to claim 4, wherein the culture tank (4) has a plurality of stages and / or a plurality of rows. 前記培養槽(4)の中のいずれかには、成熟誘導用の葉状部片(7)を吊り下げてあることを特徴とする請求項5記載のコンブの培養装置。The apparatus for cultivating a kelp according to claim 5, wherein a leaf-shaped piece (7) for inducing maturity is suspended in any of the culture tanks (4). 請求項4、5、又は6記載のコンブの培養装置に併設して、培養槽(4)で生長したコンブを切断して得た葉状部を餌料として繰り返し供給することによってアワビ、ウニ又はサザエを養殖する養殖槽(8)を備えていることを特徴とするアワビ、ウニ又はサザエの養殖装置。An abalone, sea urchin, or a turtle by repeatedly supplying, as a feed, a leaf portion obtained by cutting the kelp grown in the cultivation tank (4), in addition to the kelp cultivation apparatus according to claim 4, 5, or 6. An abalone, sea urchin or turtle cultivation apparatus, comprising a culture tank (8) for culturing. 前記養殖槽(8)は、海洋深層水(1)を取り入れるための導入管(9)と、海洋深層水(1)を排水するための排水管(10)と、を備えており、前記培養槽(4)の海洋深層水(1)を流出する前記流出管(3)と、前記養殖槽(8)の海洋深層水(1)を取り入れるための前記導入管(9)と、が連結され、前記培養槽(4)と前記養殖槽(8)間で、前記海洋深層水(1)が流通していることを特徴とする請求項7記載のアワビ、ウニ又はサザエの養殖装置。The aquaculture tank (8) includes an inlet pipe (9) for taking in deep sea water (1), and a drain pipe (10) for draining deep sea water (1). The outflow pipe (3) for discharging the deep ocean water (1) of the tank (4) and the introduction pipe (9) for taking in the deep ocean water (1) of the culture tank (8) are connected. The abalone, sea urchin or turtle cultivation apparatus according to claim 7, wherein the deep sea water (1) circulates between the culture tank (4) and the culture tank (8).
JP2002302531A 2002-10-17 2002-10-17 Comb culture method Expired - Fee Related JP4262963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302531A JP4262963B2 (en) 2002-10-17 2002-10-17 Comb culture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302531A JP4262963B2 (en) 2002-10-17 2002-10-17 Comb culture method

Publications (2)

Publication Number Publication Date
JP2004135562A true JP2004135562A (en) 2004-05-13
JP4262963B2 JP4262963B2 (en) 2009-05-13

Family

ID=32450572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302531A Expired - Fee Related JP4262963B2 (en) 2002-10-17 2002-10-17 Comb culture method

Country Status (1)

Country Link
JP (1) JP4262963B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504417A (en) * 2002-11-01 2006-02-09 中国科学院海洋研究所 Ezo abalone production method characterized by its orange shell color
JP2007037481A (en) * 2005-08-04 2007-02-15 Shizuoka Prefecture Method for rearing, culturing or cultivating crustacean and crustacean reared, cultured or cultivated by the same method
KR100789389B1 (en) * 2006-12-21 2007-12-28 주식회사 씨에버 Method of Producing Shellfish Using Concentrated Mineral-form Water in the Deep Sea
KR100869033B1 (en) * 2007-07-04 2008-11-18 서희동 A cultured method of the fish which used deep and surface seawater
JP2010233551A (en) * 2009-03-31 2010-10-21 Shizuoka Prefecture Method for culturing microalga
JP2011251286A (en) * 2005-03-03 2011-12-15 National Institute Of Advanced Industrial Science & Technology Water treated by reducing concentration of nutrient salt in salt water and method for producing the same
JP2012023971A (en) * 2010-07-20 2012-02-09 Kochi Univ Method for identifying abalone
JP2016015947A (en) * 2014-07-10 2016-02-01 株式会社ヒューマンウェブ Oyster husbandry method
CN111657194A (en) * 2020-04-28 2020-09-15 长沙青龙农业开发有限责任公司 Ecological breeding method for high-yield and high-quality river snails
CN113508767A (en) * 2021-04-29 2021-10-19 上海海洋大学 Method for repairing seaweed field by culturing shellfish-algae complex
CN114631503A (en) * 2022-02-25 2022-06-17 海南金雨海洋产业发展有限公司 Artificial seedling culture method for Babylonia
CN117546803A (en) * 2023-12-26 2024-02-13 生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心 Indoor culture system and method for limnoperna lacustris

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006504417A (en) * 2002-11-01 2006-02-09 中国科学院海洋研究所 Ezo abalone production method characterized by its orange shell color
JP2011251286A (en) * 2005-03-03 2011-12-15 National Institute Of Advanced Industrial Science & Technology Water treated by reducing concentration of nutrient salt in salt water and method for producing the same
US7404377B2 (en) 2005-08-04 2008-07-29 Shizuoka Prefecture Method of rearing, cultivating or stocking crustacea and crustacea reared, cultivated or stocked by the method
JP2007037481A (en) * 2005-08-04 2007-02-15 Shizuoka Prefecture Method for rearing, culturing or cultivating crustacean and crustacean reared, cultured or cultivated by the same method
KR100789389B1 (en) * 2006-12-21 2007-12-28 주식회사 씨에버 Method of Producing Shellfish Using Concentrated Mineral-form Water in the Deep Sea
KR100869033B1 (en) * 2007-07-04 2008-11-18 서희동 A cultured method of the fish which used deep and surface seawater
JP2010233551A (en) * 2009-03-31 2010-10-21 Shizuoka Prefecture Method for culturing microalga
JP2012023971A (en) * 2010-07-20 2012-02-09 Kochi Univ Method for identifying abalone
JP2016015947A (en) * 2014-07-10 2016-02-01 株式会社ヒューマンウェブ Oyster husbandry method
CN111657194A (en) * 2020-04-28 2020-09-15 长沙青龙农业开发有限责任公司 Ecological breeding method for high-yield and high-quality river snails
CN113508767A (en) * 2021-04-29 2021-10-19 上海海洋大学 Method for repairing seaweed field by culturing shellfish-algae complex
CN114631503A (en) * 2022-02-25 2022-06-17 海南金雨海洋产业发展有限公司 Artificial seedling culture method for Babylonia
CN117546803A (en) * 2023-12-26 2024-02-13 生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心 Indoor culture system and method for limnoperna lacustris
CN117546803B (en) * 2023-12-26 2024-05-14 生态环境部长江流域生态环境监督管理局生态环境监测与科学研究中心 Indoor culture system and method for limnoperna lacustris

Also Published As

Publication number Publication date
JP4262963B2 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
CN104969886B (en) A kind of fish and vegetable symbiotic breeding method
CN104430079B (en) Vegetable, Oryza sativa L., flower planting support, with net cage set, the apparatus and method combined
CN108967085B (en) Rice field-south america white shrimp dystopy ecological breeding system
CN103931534B (en) A kind of method that large squama Barb pond net box efficiently cultivates
CN103918615B (en) A kind of method of the red clam worm of indoor circulating water three-dimensional culture
CN102106326B (en) Method for three-dimensional and artificial seedlings cultivation of perinereis aibuhitensis
CN103385190A (en) Symbiotic cultivation method of odontobutis obscura, snails and river crabs
CN103461240B (en) Freshwater shrimp, hydrilla verticillata continuous cropping ecological cultivation method
CN102150633A (en) Cultivation method for summer fingerling of pelteobagrus
CN104026070B (en) A kind of Trionyx sinensis (Wiegmann) environmentally-friendly pond culture method
CN110235826A (en) A kind of thick breeding method of red claw crayfish seed brooder mark
CN113647349A (en) Rice and shrimp comprehensive planting and breeding method based on non-furrow rice field transformation
CN103858745B (en) Tawny daylily algae artificial seedling rearing technology
CN111387110A (en) Alternate culture method for crayfishes and freshwater shrimps according to seasonal annual cycle
JP4262963B2 (en) Comb culture method
CN110973026A (en) Method for breeding crayfish seedlings in advance
CN112136733A (en) Industrialized three-dimensional ecological breeding method for stichopus japonicus and urechis unicinctus
CN101147473A (en) Stichopus japonicus step-by-step hybrid breeding method
CN111011274B (en) Industrial breeding method of urechis unicinctus
CN104521654B (en) A kind of method that pond eutrophication is administered by rice cultivation
JP2006320292A (en) Method for culturing laver
CN102948382A (en) Method for controlling saprolegniasis of odontobutis obscura germ cells in incubation period
KR101475414B1 (en) For high productivity of marine products, one stop combined aquatic farm systems and methods of the their facilities form utilizing farm land constructed with embankment
CN106577403A (en) Method for ecologically breeding pelteobagrus fulvidraco
CN102106285A (en) Kishinouyea pond three-harvest raising technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150220

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees