JP2004119568A - Ceramic circuit board - Google Patents

Ceramic circuit board Download PDF

Info

Publication number
JP2004119568A
JP2004119568A JP2002278860A JP2002278860A JP2004119568A JP 2004119568 A JP2004119568 A JP 2004119568A JP 2002278860 A JP2002278860 A JP 2002278860A JP 2002278860 A JP2002278860 A JP 2002278860A JP 2004119568 A JP2004119568 A JP 2004119568A
Authority
JP
Japan
Prior art keywords
circuit board
ceramic
metal circuit
semiconductor element
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002278860A
Other languages
Japanese (ja)
Inventor
Masaya Ochi
越智 雅也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002278860A priority Critical patent/JP2004119568A/en
Publication of JP2004119568A publication Critical patent/JP2004119568A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3201Structure
    • H01L2224/32012Structure relative to the bonding area, e.g. bond pad
    • H01L2224/32013Structure relative to the bonding area, e.g. bond pad the layer connector being larger than the bonding area, e.g. bond pad
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic circuit board which can be strongly bonded with a semiconductor device, makes suitable the temperature of the semiconductor device at all the time and is capable of normally and stably operating the semiconductor device for a long time. <P>SOLUTION: In the ceramic circuit board, a metal circuit board 2 is bonded on an upper surface of a ceramic wafer 1, and a semiconductor device 5 is packaged on an upper surface of the metal circuit board 2 via solder 4. On the upper surface of the metal circuit board 2, a frame-like groove 6 is formed to position an outer peripheral edge of the semiconductor device 5 between its inner periphery and its outer periphery. As a result, the semiconductor device and the metal circuit board are bonded via the solder in a three-dimensional manner, such that the semiconductor device is surely/strongly bonded on the ceramic circuit board. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック基板に金属回路板を接合して成り、この金属回路板の上面に半田を介して半導体素子が搭載されるるセラミック回路基板に関する。
【0002】
【従来の技術】
近年、パワーモジュール用基板やスイッチングモジュール用基板等の回路基板として、セラミック基板上に活性金属ろう材を介して銅等から成る金属回路板を接合して成るセラミック回路基板が用いられている。
【0003】
このようなセラミック回路基板は、具体的には以下の方法によって製作される。
まず、銀−銅合金にチタン・ジルコニウム・ハフニウムおよびこれらの水素化物の少なくとも1種を添加した活性金属粉末に有機溶剤・溶媒を添加混合して成る活性金属ろう材ペーストを準備する。
【0004】
次に、例えばセラミック基板が酸化アルミニウム質焼結体から成る場合、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・可塑剤・溶剤等を添加混合して泥漿状と成すとともにこれを従来周知のドクターブレード法やカレンダーロール法等のテープ成形技術を採用して複数のセラミックグリーンシートを得た後、これらを所定寸法に形成し、次にセラミックグリーンシートを必要に応じて上下に積層するとともに還元雰囲気中にて約1600℃の温度で焼成し、セラミックグリーンシートを焼結一体化させてセラミック基板を形成する。
【0005】
次に、セラミック基板に活性金属ろう材ペーストを所定のパターンに印刷するとともに乾燥し、しかる後、活性金属ろう材ペースト上に銅等から成る金属回路板を載置する。
【0006】
そして最後に、セラミック基板と金属回路板との間に配されている活性金属ろう材ペーストを非酸化性雰囲気中にて約900℃の温度に加熱して溶融させ、このろう材でセラミック基板と金属回路板とを接合することによって製作される。
【0007】
このようにして製作されたセラミック回路基板は、これにIGBT(Insulated Gate Bipolar Transistor)やMOS−FET(Metal Oxide Semiconductor−Field Effect Transistor)等の半導体素子が半田等の接着材を介して実装されることにより回路部品となる。
【0008】
【特許文献1】
特開平7−38013号公報
【0009】
【発明が解決しようとする課題】
しかしながら、この従来のセラミック回路基板においては、半導体素子を半田を介して実装する際に、半田が大きく融け広がって半田厚みが50μm未満の薄いものとなり、金属回路板と半導体素子とを強固に接合することが困難になり、その結果、半導体素子のON−OFのスイッチング動作による熱が作用した場合に金属回路板と半導体素子との間の熱膨張係数の相違により熱応力が発生し、この応力を半田が吸収しきれずに半田にクラックが発生してしまうという問題点を有していた。
【0010】
これに対して、半田の厚みを250μm程度と厚くした場合、上記問題点は解決できるものの、半田は熱伝達率が低いために、半導体素子の放熱を金属回路板に効率よく伝達できないために、半導体素子が熱破壊したり熱劣化してしまうという問題点を有していた。
【0011】
本発明は上記従来技術の問題点に鑑み案出されたものであり、その目的は、セラミック回路基板と半導体素子とを強固に接合させることができるとともに、半導体素子を常に適温とし半導体素子を長期間にわたり正常、かつ安定に作動させることができるセラミック回路基板を提供することにある。
【0012】
【課題を解決するための手段】
本発明のセラミック回路基板は、セラミック基板の上面に金属回路板が接合されて成り、この金属回路板の上面に半田を介して半導体素子が搭載されるセラミック回路基板において、前記金属回路板は、その上面に前記半導体素子の外周縁が内周と外周との間に位置する枠状の溝が形成されていることを特徴とするものである。
【0013】
本発明のセラミック回路基板によれば、金属回路板は、その上面に半導体素子の外周縁が内周と外周との間に位置する枠状の溝が形成されていることから、半導体素子を金属回路板に半田を介して接続した際、半田が金属回路板の表面に大きく融け広がって厚みが50μm未満の薄いものとなったとしても、枠状の溝に半田の溜りが形成され、半導体素子の外周部側面と金属回路板の表面との間に半田が介在して両者を接合し、その結果、半導体素子と金属回路板との半田を介しての接合が三次元的となって、半導体素子をセラミック回路基板に確実・強固に接合させることができる。また、半導体素子と金属回路板との間に介在する半田の厚みを50μm程度と薄いものとすることができるので、セラミック回路基板に搭載された半導体素子が作動時に発生する熱は、金属回路板に効率良く伝達されることになり、その結果、半導体素子を常に適温として、長期間にわたり正常、かつ安定に作動させることが可能となる。
【0014】
【発明の実施の形態】
次に、本発明のセラミック回路基板を添付の図面に基づいて詳細に説明する。
図1は、本発明のセラミック回路基板の実施の形態の一例を示す断面図であり、この図において、1はセラミック基板、2は金属回路板、3はろう材、4は半田、5は半導体素子であり、6は枠状の溝部である。
【0015】
セラミック基板1は、その大きさが20〜200mm程度、厚みが0.2〜1.0mm程度の略四角形状であり、その表面に銅等の金属から成る金属回路板2がろう材3を介して接合される。
【0016】
セラミック基板1は、金属回路板2を支持する支持部材として機能し、酸化アルミニウム(Al)質焼結体・ムライト(3Al・2SiO)質焼結体・炭化珪素(SiC)質焼結体・窒化アルミニウム(AlN)質焼結体・窒化珪素(Si)質焼結体等の電気絶縁材料で形成されている。
【0017】
セラミック基板1は、例えば酸化アルミニウム質焼結体で形成されている場合、酸化アルミニウム・酸化珪素・酸化マグネシウム・酸化カルシウム等の原料粉末に適当な有機バインダ・可塑剤・溶剤を添加混合して泥漿状となすとともに、その泥漿物を用いて従来周知のドクターブレード法やカレンダーロール法を採用することによってセラミックグリーンシート(セラミック生シート)を得、しかる後、このセラミックグリーンシートに適当な打ち抜き加工を施すとともに、これを必要に応じて複数枚積層し、約1600℃の高温で焼成することによって製作される。
【0018】
セラミック基板1はその厚みを0.2〜1.0mmとすることが、セラミック回路基板の小型化・薄型化の要求を満足するため、金属回路板2を接合したときのセラミック基板1の割れ抑制のため、および搭載される半導体素子5から発生する100℃以上の熱の伝達性を向上させるためといった点で好ましい。セラミック基板1の厚みが0.2mm未満では、セラミック基板1に金属回路板2を接合したときに発生する熱応力により、セラミック基板1に割れやクラック等が発生しやすくなる傾向がある。他方、1.0mmを超えると、セラミック回路基板の薄型化への対応が困難となるとともに、搭載される半導体素子5から発生する100℃以上の熱を金属回路板2を介して良好に放熱することが困難となる傾向がある。
【0019】
金属回路板2は、鉄・アルミニウム・銅あるいは銅合金等の金属から成り、好ましくは良導電性である銅あるいは銅合金を用いることが好ましい。
そして、このような金属回路板2のセラミック基板1への接合は次に述べる方法により行なわれる。
【0020】
まず、銀−銅合金粉末等から成る銀ろう粉末や、アルミニウム−シリコン合金粉末等から成るアルミニウムろう粉末に、チタン・ジルコニウム・ハフニウム等の活性金属やその水素化物の少なくとも1種から成る活性金属粉末を2〜5重量%添加した活性金属ろう材に適当な有機溶剤・溶媒を添加混合して得た活性金属ろう材ペーストを、セラミック基板1の表面に従来周知のスクリーン印刷技術を用いて金属回路板2に対応した所定パターンに印刷する。
【0021】
その後、金属回路板2をこの活性金属ろう材ペーストのパターン上に載置し、これを真空中、または中性雰囲気中もしくは還元雰囲気中で、所定温度(約900℃)で加熱処理し、活性金属ろう材を溶融させてセラミック基板1の表面に金属回路板2を接合させる。これにより、セラミック基板1の表面に金属回路板2が活性金属ろう材3を介して接合されることとなる。
【0022】
このような金属回路板2は、金属回路板2が例えば無酸素銅から成る場合は、無酸素銅のインゴット(塊)に圧延加工法や打ち抜き加工法等の従来周知の金属加工法を施すことによって、例えば、厚さが0.5mmで、所望の回路配線パターン形状に製作される。
【0023】
金属回路板2の厚みは、セラミック回路基板の小型化・薄型化の要求を満足するため、20〜50Aといった大電流信号を伝達するための電気抵抗の仕様を満足するため、さらにはセラミック基板1と接合したときのセラミック基板1の割れ防止のためといった観点からは0.1〜1.0mmが好ましい。金属回路板2の厚さが0.1mm未満では、電気抵抗が大きくなるため20〜50Aといった大電流信号が良好に流れにくくなる傾向がある。他方、1.0mmを超えると、薄型化への対応が困難となるとともに、セラミック基板1と金属回路板2とを接合したときに発生する熱応力により、セラミック基板1に割れ等が発生しやすくなる傾向がある。
【0024】
なお、金属回路板2を無酸素銅から成るものとした場合には、無酸素銅はろう付けの際に活性金属ろう材3が無酸素銅中に存在する酸素により酸化されることなく濡れ性が良好となるため、セラミック基板1へ強固に接合できる。従って、セラミック基板1と金属回路板2との接合を活性金属ろう材3を介して行なう場合には、金属回路板2の材料としては無酸素銅を用いることが好ましい。
【0025】
このようなセラミック回路基板の金属回路板2の上面には、半田を介して半導体素子5が搭載される。
半導体素子5の金属回路板2への接合は次に述べる方法により行なわれる。まず、従来周知の鉛−錫から成る半田ペーストを、金属回路板2の上面の半導体素子5の搭載部に従来周知のスクリーン印刷技術を用いて半導体素子5の形状に対応した所定パターンに印刷する。次に、半田上に半導体素子5を載置するとともに、約300℃の温度で半田を加熱・溶融することにより、半導体素子5が金属回路板2の上面に接合される。
【0026】
そして、本発明のセラミック回路基板おいては、金属回路板2は、その上面に半導体素子5の外周縁が内周と外周との間に位置する枠状の溝6が形成されている。また、このことが重要である。
【0027】
本発明のセラミック回路基板によれば、金属回路板2は、その上面に半導体素子5の外周縁が内周と外周との間に位置する枠状の溝6が形成されていることから、半導体素子5を金属回路板2に半田4を介して接続した際、半田4が金属回路板2の表面に大きく融け広がって厚みが50μm未満の薄いものとなったとしても、枠状の溝6に半田4の溜りが形成され、半導体素子5の外周部側面と金属回路板2の表面との間に半田4が介在して両者を接合し、その結果、半導体素子5と金属回路板2との半田4を介しての接合が三次元的となって、半導体素子5をセラミック回路基板に確実・強固に接合させることができる。また、半導体素子5と金属回路板2との間に介在する半田の厚みを50μm程度と薄いものとすることができるので、セラミック回路基板に搭載された半導体素子5が作動時に発生する熱は、セラミック回路基板に効率良く伝達されることになり、その結果、半導体素子5を常に適温として、長期間にわたり正常、かつ安定に作動させることが可能となる。
【0028】
なお、枠状の溝6の断面形状は、正方形や長方形等の四角形状や、V字型等の三角形、半円形、U字型等の略半円形であり、溝の幅は0.5〜0.8mm、深さは50〜200μmが好ましい。
【0029】
枠状の溝6の幅が0.5mm未満であると、溝6へ半田4が良好に溜りにくく周辺に広がってしまう傾向があり、0.8mmを超えると半導体素子5の外周部の側面に半田が適正な高さに形成できなくなる傾向がある。また、深さが50μm未満であると、溝6へ半田4が良好に溜りにくく周辺に広がってしまう傾向があり、200μmを超えると、溝6への半田量が多くなり半導体素子5外周部の放熱性が低下する傾向がある。従って、枠状の溝6の幅は0.5〜0.8mm、深さは50〜200μmが好ましい。
【0030】
また、枠状の溝6の外周は、半導体素子5の外周縁より0.2mm以上外側に位置することが好ましく、枠状の溝6の外周が半導体素子5の外周縁より0.2mm未満外側に位置する場合には、半田4が半導体素子5の外周部側面に良好に接合できなくなる傾向がある。
【0031】
なお、このような枠状の溝6は、金属回路板2の表面をエッチングにより加工することにより、あるいは先端の断面形状が四角形状やV字形状・U字形状を有するブレードを用いて、例えばダイシング加工することにより形成される。
【0032】
かくして本発明のセラミック回路基板によれば、セラミック基板と金属回路板との間に配されている活性金属ろう材ペーストを非酸化性雰囲気中にて約900℃の温度に加熱して溶融させ、セラミック基板に金属回路板を接合することによって製作され、さらにこれに半導体素子等の電子部品を半田等の接着材を介して実装されることにより回路部品となる。
【0033】
なお、本発明は上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。
【0034】
【発明の効果】
本発明のセラミック回路基板によれば、金属回路板は、その上面に半導体素子の外周縁が内周と外周との間に位置する枠状の溝が形成されていることから、半導体素子を金属回路板に半田を介して接続した際、半田が金属回路板の表面に大きく融け広がって厚みが50μm未満の薄いものとなったとしても、枠状の溝に半田の溜りが形成され、半導体素子の外周部側面と金属回路板の表面との間に半田が介在して両者を接合し、その結果、半導体素子と金属回路板との半田を介しての接合が三次元的となって、半導体素子をセラミック回路基板に確実・強固に接合させることができる。また、半導体素子と金属回路板との間に介在する半田の厚みを50μmと薄いものとすることができるので、セラミック回路基板に搭載された半導体素子が作動時に発生する熱は、金属回路板に効率良く伝達されることになり、その結果、半導体素子を常に適温として、長期間にわたり正常、かつ安定に作動させることが可能となる。
【図面の簡単な説明】
【図1】本発明のセラミック回路基板の実施の形態の一例を示す断面図である。
【符号の説明】
1・・・・・セラミック基板
2・・・・・金属回路板
3・・・・・ろう材
4・・・・・半田
5・・・・・半導体素子
6・・・・・枠状の溝
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic circuit board formed by bonding a metal circuit board to a ceramic substrate and mounting a semiconductor element on the upper surface of the metal circuit board via solder.
[0002]
[Prior art]
In recent years, as a circuit board such as a power module board or a switching module board, a ceramic circuit board formed by bonding a metal circuit board made of copper or the like to a ceramic substrate via an active metal brazing material has been used.
[0003]
Such a ceramic circuit board is specifically manufactured by the following method.
First, an active metal brazing material paste is prepared by adding an organic solvent and a solvent to an active metal powder obtained by adding at least one of titanium, zirconium, hafnium and a hydride thereof to a silver-copper alloy.
[0004]
Next, for example, when the ceramic substrate is made of an aluminum oxide sintered body, an appropriate organic binder, a plasticizer, a solvent, etc. are added to raw material powders such as aluminum oxide, silicon oxide, magnesium oxide, calcium oxide, etc. After obtaining a plurality of ceramic green sheets by employing a tape forming technique such as a doctor blade method or a calender roll method, which are well known in the art, forming these into predetermined dimensions, and then requiring the ceramic green sheets The ceramic green sheets are stacked one upon another and fired at a temperature of about 1600 ° C. in a reducing atmosphere, and the ceramic green sheets are sintered and integrated to form a ceramic substrate.
[0005]
Next, the active metal brazing material paste is printed in a predetermined pattern on the ceramic substrate and dried, and then a metal circuit board made of copper or the like is placed on the active metal brazing material paste.
[0006]
Finally, the active metal brazing material paste disposed between the ceramic substrate and the metal circuit board is heated and melted at a temperature of about 900 ° C. in a non-oxidizing atmosphere. It is manufactured by joining a metal circuit board.
[0007]
In the ceramic circuit board manufactured in this manner, a semiconductor element such as an IGBT (Insulated Gate Bipolar Transistor) or a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor) is mounted on the ceramic circuit board via an adhesive such as solder. Thus, it becomes a circuit component.
[0008]
[Patent Document 1]
JP-A-7-38013
[Problems to be solved by the invention]
However, in this conventional ceramic circuit board, when a semiconductor element is mounted via solder, the solder is largely melted and spread, and the thickness of the solder is less than 50 μm, and the metal circuit board and the semiconductor element are firmly joined. As a result, when heat is generated by the ON-OF switching operation of the semiconductor element, a thermal stress is generated due to a difference in thermal expansion coefficient between the metal circuit board and the semiconductor element. However, there is a problem that solder cannot be completely absorbed and cracks are generated in the solder.
[0010]
On the other hand, when the thickness of the solder is increased to about 250 μm, although the above problem can be solved, since the heat transfer coefficient is low, the heat radiation of the semiconductor element cannot be efficiently transmitted to the metal circuit board. There has been a problem that the semiconductor element is thermally broken or thermally degraded.
[0011]
The present invention has been devised in view of the above-mentioned problems of the prior art, and an object of the present invention is to make it possible to firmly join a ceramic circuit board and a semiconductor element and to keep the semiconductor element at an appropriate temperature at all times to extend the length of the semiconductor element. An object of the present invention is to provide a ceramic circuit board that can be normally and stably operated over a period.
[0012]
[Means for Solving the Problems]
The ceramic circuit board of the present invention is formed by joining a metal circuit board to an upper surface of a ceramic substrate, and in the ceramic circuit board on which a semiconductor element is mounted via solder on the upper surface of the metal circuit board, the metal circuit board includes: The semiconductor device is characterized in that a frame-shaped groove is formed on an upper surface of the semiconductor device so that an outer edge of the semiconductor element is located between an inner periphery and an outer periphery.
[0013]
According to the ceramic circuit board of the present invention, since the metal circuit board has a frame-shaped groove in which the outer peripheral edge of the semiconductor element is located between the inner circumference and the outer circumference on the upper surface thereof, the semiconductor element is made of metal. When connected to a circuit board via solder, even if the solder is largely melted and spread on the surface of the metal circuit board and becomes thin with a thickness of less than 50 μm, a solder pool is formed in the frame-shaped groove, and the semiconductor element is formed. Solder is interposed between the outer peripheral side surface of the metal circuit board and the surface of the metal circuit board to join them. As a result, the bonding between the semiconductor element and the metal circuit board via the solder becomes three-dimensional, The element can be securely and firmly joined to the ceramic circuit board. Further, since the thickness of the solder interposed between the semiconductor element and the metal circuit board can be made as thin as about 50 μm, the heat generated when the semiconductor element mounted on the ceramic circuit board operates is reduced by the metal circuit board. As a result, the semiconductor element can be normally and stably operated for a long period of time with the semiconductor element always kept at an appropriate temperature.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the ceramic circuit board of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic circuit board according to the present invention. In this figure, 1 is a ceramic board, 2 is a metal circuit board, 3 is a brazing material, 4 is solder, and 5 is a semiconductor. An element 6 is a frame-shaped groove.
[0015]
The ceramic substrate 1 has a substantially square shape with a size of about 20 to 200 mm and a thickness of about 0.2 to 1.0 mm, and a metal circuit board 2 made of a metal such as copper is provided on the surface thereof with a brazing material 3 interposed therebetween. Joined.
[0016]
Ceramic substrate 1 functions as a support member for supporting the metal circuit plate 2, aluminum oxide (Al 2 O 3) sintered material, mullite (3Al 2 O 3 · 2SiO 2 ) sintered material, silicon carbide (SiC ) Sintered body, aluminum nitride (AlN) based sintered body, silicon nitride (Si 3 N 4 ) based sintered body and the like.
[0017]
When the ceramic substrate 1 is formed of, for example, an aluminum oxide-based sintered body, an appropriate organic binder, a plasticizer, and a solvent are added to raw material powder such as aluminum oxide, silicon oxide, magnesium oxide, and calcium oxide, and the mixture is mixed. A ceramic green sheet (ceramic green sheet) is obtained by using a doctor blade method or a calender roll method using the sludge, and then the ceramic green sheet is appropriately punched. It is manufactured by stacking a plurality of these as needed and firing at a high temperature of about 1600 ° C.
[0018]
The ceramic substrate 1 having a thickness of 0.2 to 1.0 mm satisfies the requirements for miniaturization and thinning of the ceramic circuit board. Therefore, the crack of the ceramic substrate 1 when the metal circuit board 2 is joined is suppressed. This is preferable from the viewpoint of improving the conductivity of heat of 100 ° C. or more generated from the semiconductor element 5 to be mounted. When the thickness of the ceramic substrate 1 is less than 0.2 mm, cracks, cracks, and the like tend to be easily generated in the ceramic substrate 1 due to thermal stress generated when the metal circuit board 2 is joined to the ceramic substrate 1. On the other hand, when the thickness exceeds 1.0 mm, it is difficult to cope with the reduction in thickness of the ceramic circuit board, and heat of 100 ° C. or more generated from the semiconductor element 5 mounted is radiated well through the metal circuit board 2. Tends to be difficult.
[0019]
The metal circuit board 2 is made of a metal such as iron, aluminum, copper, or a copper alloy, and is preferably made of copper or a copper alloy having good conductivity.
The bonding of the metal circuit board 2 to the ceramic substrate 1 is performed by the following method.
[0020]
First, an active metal powder comprising at least one of an active metal such as titanium, zirconium and hafnium and a hydride thereof is added to a silver brazing powder composed of a silver-copper alloy powder or the like, or an aluminum brazing powder composed of an aluminum-silicon alloy powder or the like. An active metal brazing material paste obtained by adding an appropriate organic solvent and a solvent to an active metal brazing material containing 2 to 5% by weight of a metal substrate is coated on the surface of the ceramic substrate 1 by a conventionally well-known screen printing technique. Printing is performed in a predetermined pattern corresponding to the plate 2.
[0021]
Thereafter, the metal circuit board 2 is placed on the pattern of the active metal brazing material paste, and this is heat-treated at a predetermined temperature (about 900 ° C.) in a vacuum or in a neutral atmosphere or a reducing atmosphere. The metal circuit board 2 is joined to the surface of the ceramic substrate 1 by melting the metal brazing material. As a result, the metal circuit board 2 is joined to the surface of the ceramic substrate 1 via the active metal brazing material 3.
[0022]
In the case where the metal circuit board 2 is made of, for example, oxygen-free copper, such a metal circuit board 2 is formed by applying a conventionally known metal processing method such as a rolling method or a punching method to an oxygen-free copper ingot. Thus, for example, it is manufactured in a desired circuit wiring pattern shape with a thickness of 0.5 mm.
[0023]
The thickness of the metal circuit board 2 satisfies the requirements for miniaturization and thinning of the ceramic circuit board, the electrical resistance for transmitting a large current signal such as 20 to 50 A, and the ceramic board 1. The thickness is preferably 0.1 to 1.0 mm from the viewpoint of preventing cracking of the ceramic substrate 1 when joined to the substrate. If the thickness of the metal circuit board 2 is less than 0.1 mm, the electric resistance is increased, so that a large current signal of 20 to 50 A tends to be difficult to flow favorably. On the other hand, if the thickness exceeds 1.0 mm, it is difficult to cope with the reduction in thickness, and cracks and the like are likely to occur in the ceramic substrate 1 due to thermal stress generated when the ceramic substrate 1 and the metal circuit board 2 are joined. Tend to be.
[0024]
When the metal circuit board 2 is made of oxygen-free copper, the oxygen-free copper is wetted without being oxidized by the oxygen present in the oxygen-free copper during the brazing. Is improved, so that the ceramic substrate 1 can be firmly joined. Therefore, when joining the ceramic substrate 1 and the metal circuit board 2 via the active metal brazing material 3, it is preferable to use oxygen-free copper as the material of the metal circuit board 2.
[0025]
The semiconductor element 5 is mounted on the upper surface of the metal circuit board 2 of such a ceramic circuit board via solder.
The bonding of the semiconductor element 5 to the metal circuit board 2 is performed by the following method. First, a conventionally well-known solder paste made of lead-tin is printed on a mounting portion of the semiconductor element 5 on the upper surface of the metal circuit board 2 in a predetermined pattern corresponding to the shape of the semiconductor element 5 using a conventionally well-known screen printing technique. . Next, the semiconductor element 5 is mounted on the solder, and the semiconductor element 5 is bonded to the upper surface of the metal circuit board 2 by heating and melting the solder at a temperature of about 300 ° C.
[0026]
In the ceramic circuit board of the present invention, the metal circuit board 2 has a frame-shaped groove 6 on the upper surface of which the outer periphery of the semiconductor element 5 is located between the inner periphery and the outer periphery. This is also important.
[0027]
According to the ceramic circuit board of the present invention, since the metal circuit board 2 has the frame-shaped groove 6 in which the outer periphery of the semiconductor element 5 is located between the inner periphery and the outer periphery, the semiconductor circuit 5 is formed on the upper surface thereof. When the element 5 is connected to the metal circuit board 2 via the solder 4, even if the solder 4 is largely melted and spread on the surface of the metal circuit board 2 and becomes thin with a thickness of less than 50 μm, A pool of the solder 4 is formed, and the solder 4 is interposed between the outer peripheral side surface of the semiconductor element 5 and the surface of the metal circuit board 2 to join them. As a result, the semiconductor element 5 and the metal circuit board 2 The bonding via the solder 4 becomes three-dimensional, so that the semiconductor element 5 can be securely and firmly bonded to the ceramic circuit board. Further, since the thickness of the solder interposed between the semiconductor element 5 and the metal circuit board 2 can be reduced to about 50 μm, the heat generated when the semiconductor element 5 mounted on the ceramic circuit board operates is As a result, the semiconductor element 5 is always transmitted to the ceramic circuit board at an appropriate temperature, and can be normally and stably operated for a long period of time.
[0028]
The cross-sectional shape of the frame-shaped groove 6 is a square shape such as a square or a rectangle, a triangle such as a V-shape, a semi-circle, or a substantially semi-circle such as a U-shape. 0.8 mm and a depth of 50 to 200 μm are preferable.
[0029]
When the width of the frame-shaped groove 6 is less than 0.5 mm, the solder 4 tends to hardly accumulate in the groove 6 and tends to spread to the periphery. There is a tendency that solder cannot be formed at an appropriate height. On the other hand, if the depth is less than 50 μm, the solder 4 tends to hardly accumulate in the groove 6 and spread to the periphery. If the depth exceeds 200 μm, the amount of solder in the groove 6 increases and the outer peripheral portion of the semiconductor element 5 The heat dissipation tends to decrease. Therefore, the width of the frame-shaped groove 6 is preferably 0.5 to 0.8 mm, and the depth is preferably 50 to 200 μm.
[0030]
Further, the outer periphery of the frame-shaped groove 6 is preferably located at least 0.2 mm outside the outer periphery of the semiconductor element 5, and the outer periphery of the frame-shaped groove 6 is less than 0.2 mm outside the outer periphery of the semiconductor element 5. In such a case, there is a tendency that the solder 4 cannot be satisfactorily joined to the outer peripheral side surface of the semiconductor element 5.
[0031]
Note that such a frame-shaped groove 6 is formed by processing the surface of the metal circuit board 2 by etching, or by using a blade having a rectangular or V-shaped or U-shaped cross-section at the tip end, for example. It is formed by dicing.
[0032]
Thus, according to the ceramic circuit board of the present invention, the active metal brazing material paste disposed between the ceramic substrate and the metal circuit board is heated to about 900 ° C. in a non-oxidizing atmosphere and melted, It is manufactured by bonding a metal circuit board to a ceramic substrate, and electronic components such as semiconductor elements are mounted on the ceramic substrate via an adhesive such as solder to form circuit components.
[0033]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the present invention.
[0034]
【The invention's effect】
According to the ceramic circuit board of the present invention, since the metal circuit board has a frame-shaped groove in which the outer peripheral edge of the semiconductor element is located between the inner circumference and the outer circumference on the upper surface thereof, the semiconductor element is made of metal. When connected to a circuit board via solder, even if the solder is largely melted and spread on the surface of the metal circuit board and becomes thin with a thickness of less than 50 μm, a solder pool is formed in the frame-shaped groove, and the semiconductor element is formed. Solder is interposed between the outer peripheral side surface of the metal circuit board and the surface of the metal circuit board to join them. As a result, the bonding between the semiconductor element and the metal circuit board via the solder becomes three-dimensional, The element can be securely and firmly joined to the ceramic circuit board. Further, since the thickness of the solder interposed between the semiconductor element and the metal circuit board can be made as thin as 50 μm, the heat generated when the semiconductor element mounted on the ceramic circuit board operates is transferred to the metal circuit board. As a result, the semiconductor device can be operated normally and stably over a long period of time with the semiconductor element always kept at an appropriate temperature.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic circuit board of the present invention.
[Explanation of symbols]
1 Ceramic substrate 2 Metal circuit board 3 Brazing material 4 Solder 5 Semiconductor element 6 Frame groove

Claims (1)

セラミック基板の上面に金属回路板が接合されて成り、該金属回路板の上面に半田を介して半導体素子が搭載されるセラミック回路基板において、前記金属回路板は、その上面に前記半導体素子の外周縁が内周と外周との間に位置する枠状の溝が形成されていることを特徴とするセラミック回路基板。A metal circuit board is formed by bonding a metal circuit board to an upper surface of a ceramic substrate, and a semiconductor element is mounted on the upper surface of the metal circuit board via solder. A ceramic circuit board, wherein a frame-shaped groove whose peripheral edge is located between an inner periphery and an outer periphery is formed.
JP2002278860A 2002-09-25 2002-09-25 Ceramic circuit board Pending JP2004119568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278860A JP2004119568A (en) 2002-09-25 2002-09-25 Ceramic circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278860A JP2004119568A (en) 2002-09-25 2002-09-25 Ceramic circuit board

Publications (1)

Publication Number Publication Date
JP2004119568A true JP2004119568A (en) 2004-04-15

Family

ID=32274030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278860A Pending JP2004119568A (en) 2002-09-25 2002-09-25 Ceramic circuit board

Country Status (1)

Country Link
JP (1) JP2004119568A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026547A1 (en) * 2005-08-29 2007-03-08 Hitachi Metals, Ltd. Circuit board and semiconductor module using this, production method for circuit board
JP2008311296A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Substrate for power module
JP2008311295A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Method of manufacturing substrate for power module
JP2009094135A (en) * 2007-10-04 2009-04-30 Fuji Electric Device Technology Co Ltd Semiconductor device, its manufacturing process, and metal mask for applying solder paste
US8466548B2 (en) * 2011-05-31 2013-06-18 Infineon Technologies Ag Semiconductor device including excess solder
JP2014011423A (en) * 2012-07-03 2014-01-20 Nippon Steel & Sumikin Electronics Devices Inc Substrate for power module and method for manufacturing the same
JP2014060211A (en) * 2012-09-14 2014-04-03 Omron Corp Substrate structure, semiconductor chip mounting method and solid state relay
WO2014203435A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Illumination lamp, straight tube illumination lamp and illumination device
JP2017054877A (en) * 2015-09-08 2017-03-16 株式会社村田製作所 Semiconductor module
JP2017054878A (en) * 2015-09-08 2017-03-16 株式会社村田製作所 Semiconductor module
US10079212B2 (en) 2015-11-27 2018-09-18 Fuji Electric Co., Ltd. Semiconductor device having solder groove
WO2018220819A1 (en) * 2017-06-02 2018-12-06 三菱電機株式会社 Semiconductor element bonding board, semiconductor device, and power conversion device
US20230154811A1 (en) * 2021-11-18 2023-05-18 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007026547A1 (en) * 2005-08-29 2007-03-08 Hitachi Metals, Ltd. Circuit board and semiconductor module using this, production method for circuit board
US8563869B2 (en) 2005-08-29 2013-10-22 Hitachi Metals, Ltd. Circuit board and semiconductor module using this, production method for circuit board
JP5326278B2 (en) * 2005-08-29 2013-10-30 日立金属株式会社 Circuit board, semiconductor module using the same, and circuit board manufacturing method
JP2008311296A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Substrate for power module
JP2008311295A (en) * 2007-06-12 2008-12-25 Mitsubishi Materials Corp Method of manufacturing substrate for power module
JP2009094135A (en) * 2007-10-04 2009-04-30 Fuji Electric Device Technology Co Ltd Semiconductor device, its manufacturing process, and metal mask for applying solder paste
US8466548B2 (en) * 2011-05-31 2013-06-18 Infineon Technologies Ag Semiconductor device including excess solder
JP2014011423A (en) * 2012-07-03 2014-01-20 Nippon Steel & Sumikin Electronics Devices Inc Substrate for power module and method for manufacturing the same
JP2014060211A (en) * 2012-09-14 2014-04-03 Omron Corp Substrate structure, semiconductor chip mounting method and solid state relay
JP5956685B2 (en) * 2013-06-19 2016-07-27 三菱電機株式会社 Lighting lamp, straight tube lighting lamp and lighting fixture
WO2014203435A1 (en) * 2013-06-19 2014-12-24 三菱電機株式会社 Illumination lamp, straight tube illumination lamp and illumination device
JP2017054877A (en) * 2015-09-08 2017-03-16 株式会社村田製作所 Semiconductor module
JP2017054878A (en) * 2015-09-08 2017-03-16 株式会社村田製作所 Semiconductor module
US10079212B2 (en) 2015-11-27 2018-09-18 Fuji Electric Co., Ltd. Semiconductor device having solder groove
WO2018220819A1 (en) * 2017-06-02 2018-12-06 三菱電機株式会社 Semiconductor element bonding board, semiconductor device, and power conversion device
JPWO2018220819A1 (en) * 2017-06-02 2019-11-07 三菱電機株式会社 Semiconductor element bonding substrate, semiconductor device, and power conversion device
CN110709969A (en) * 2017-06-02 2020-01-17 三菱电机株式会社 Substrate for bonding semiconductor element, semiconductor device, and power conversion device
US11488924B2 (en) 2017-06-02 2022-11-01 Mitsubishi Electric Corporation Semiconductor element bonding substrate, semiconductor device, and power conversion device
CN110709969B (en) * 2017-06-02 2024-06-04 三菱电机株式会社 Substrate for bonding semiconductor element, semiconductor device, and power conversion device
US20230154811A1 (en) * 2021-11-18 2023-05-18 Mitsubishi Electric Corporation Semiconductor device and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
JP2004119568A (en) Ceramic circuit board
JP2004022973A (en) Ceramic circuit board and semiconductor module
JP2007230791A (en) Ceramic circuit board and method of manufacturing the same
JP2003197824A (en) Ceramic circuit board
JP3934966B2 (en) Ceramic circuit board
JP2004087927A (en) Ceramic substrate
JP2003133662A (en) Ceramic circuit board
JP3793562B2 (en) Ceramic circuit board
JP3794454B2 (en) Nitride ceramic substrate
JP3588315B2 (en) Semiconductor element module
JP2005072456A (en) Electric element module
JP4493158B2 (en) Ceramic circuit board
JP3939979B2 (en) Nitride ceramic copper circuit board and power module
JP3971554B2 (en) Ceramic circuit board and semiconductor module using the same
JP2002232090A (en) Ceramic circuit board
JP2013012687A (en) Ceramic circuit board and electronic device using the same
JP3529055B2 (en) Insulating heat sink
JP2016032032A (en) Circuit board and electronic device
JP2005101415A (en) Ceramic circuit board and method for manufacturing the same
JP2002009403A (en) Ceramic circuit board and semiconductor element module
JP2003198077A (en) Ceramic circuit board
JP2000049425A (en) Ceramics circuit board, its manufacture and power module using the same
JP2001177194A (en) Ceramic circuit board
JP2002289989A (en) Ceramic circuit board
JP5777456B2 (en) Ceramic circuit board and electronic device