JP2004115722A - Conductive molded product - Google Patents

Conductive molded product Download PDF

Info

Publication number
JP2004115722A
JP2004115722A JP2002283833A JP2002283833A JP2004115722A JP 2004115722 A JP2004115722 A JP 2004115722A JP 2002283833 A JP2002283833 A JP 2002283833A JP 2002283833 A JP2002283833 A JP 2002283833A JP 2004115722 A JP2004115722 A JP 2004115722A
Authority
JP
Japan
Prior art keywords
conductive
metal
melting point
molded article
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283833A
Other languages
Japanese (ja)
Inventor
Takashi Imai
今井 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Plastics Inc filed Critical Mitsubishi Plastics Inc
Priority to JP2002283833A priority Critical patent/JP2004115722A/en
Publication of JP2004115722A publication Critical patent/JP2004115722A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive molded product having extremely high stabilized conductivity and excellent in moldability and mechanical strength. <P>SOLUTION: The conductive molded product is obtained by mixing (a) a thermoplastic resin or a thermoplastic elastomer or a mixture thereof used as a substrate with (b) a low-melting point metal having ≤300°C melting point, (c) metal powder and (d) a conductive fiber. In the molded product, the thermoplastic resin (a) or the thermoplastic elastomer (a) is contained in an amount of 20-80 vol.% based on the molded product and a ratio of the metal powder (c) in these metal components (b) and (c) is 10-30 vol.% and a ratio of the conductive fiber (d) in these metal component (b) and (c) and the conductive fiber (d) is 5-30 vol.%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、極めて高度の導電性、及び優れた成形性や機械的強度を有する導電性成形体及びその成形体に関するものであり、導電性隔壁、導電性部材、帯電防止材、電磁波シールド材、電極、コネクター、センサー、発熱体などの幅広い分野への適用が可能である導電性樹脂の組成物及びその成形体に関する。
【0002】
【従来の技術】
従来、合成樹脂に導電性フィラーを分散、混合したことで得られる組成物からなる導電性成形体が知られている。導電性フィラーとして、金属系、カーボン系などが使用されているが、極めて高度の導電性を付与するには導電性フィラーの添加量を大幅に増加せざるを得なくなり、その結果、成形性や機械的強度が低下するため添加量は制限され、得られる成形体の導電性も体積固有抵抗値で10−1Ω・cmが限界であった。
また、近年、体積固有抵抗値が10−2Ω・cm以下である、より高い導電性を付与された導電性樹脂成形体として、熱可塑性樹脂や熱硬化性樹脂を基質とし、これに低融点金属、及び金属粉末を混合してなる導電性樹脂組成物が知られつつある(例えば特許文献1参照)。
【0003】
しかしながら、例えば、これを厚みが10mm以下であるシートとして成形したものである場合、シートの屈曲や撓みが繰り返されると、シートが有する導電性がすぐに低下してしまい、シートが持つべき性能として、シートの屈曲や撓みの繰り返しに対し高い導電性を保持し続けることが要求される用途に対しては、実際上、使用することができなかった。
このようなことから、極めて高い導電性を有するとともに、導電性樹脂成形体が、繰り返し屈曲や撓みなどの変形を受けた場合に、変形を受けた箇所において高い導電性を保持することができる導電性樹脂成形体が求められていた。
【0004】
【特許文献1】
特開平9−241420号
【0005】
【発明が解決しようとする課題】
そこで、本発明は、上記従来の欠点を除去し、極めて高い安定した導電性を有するとともに、成形性及び機械的強度も優れた導電性成形体を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者は上記課題を解決すべく鋭意検討した結果、本発明を完成するに至った。
即ち本発明の要旨は、
(a)熱可塑性樹脂又は熱可塑性エラストマー及びこれらの混合物を基質とし、これに(b)融点が300℃以下の低融点金属、(c)金属粉末、及び(d)導電性繊維を混合してなる導電性成形体であって、(a)熱可塑性樹脂又は熱可塑性エラストマーが成形体の20〜80容量%、(b)及び(c)を合わせた金属成分中の(c)金属粉末の割合が10〜30容量%、(b)と(c)及び(d)を合わせた金属と導電性繊維の成分中の(d)導電性繊維が5〜30容量%の範囲であることを特徴とする導電性成形体にある。
【0007】
本発明の好ましい実施態様としては、下記が挙げられる。
(b)成分の低融点金属が、Pb/Sn、Pb/Sn/Bi、Pb/Sn/Ag、Pb/Ag、Sn/Ag、Sn/Bi、Sn/Cu、Sn/Zn系から選ばれた低融点合金からなること、
(c)成分の金属粉末がCu、Ni、Al、Cr及びこれらの合金粉末から選ばれ、その平均粒径が1〜50μmの範囲であること、
(d)成分の導電性繊維が、表面に銀、銅、ニッケル、アルミニウム、クロム若しくはこれらから選ばれてなる合金の層を有する有機若しくは無機の繊維であること、
【0008】
また、上記導電性成形体の厚みが10μm以上、10mm以下のシート状であることを含んでいる。
【0009】
【発明の実施の形態】
以下、本発明を詳しく説明する。
本発明の導電性成形体は、その材料が(a)熱可塑性樹脂又は熱可塑性エラストマー及びこれらの混合物、(b)融点が300℃以下の低融点金属、(c)金属粉末、(d)導電性繊維の混合物(以下、「混合材」という)からなることに特徴がある。すなわち、熱可塑性樹脂又は熱可塑性エラストマー及びこれらの混合物を基質とし、成形体に導電性を付与するために必要な低融点及び金属粉末、及び成形体が屈曲や撓みなどの変形を受けた場合であっても変形を受けた箇所において高い導電性を保持することを主な目的として添加する導電性繊維を特定の組合せとすることにより、極めて安定した高い導電性と他の特性をバランス良く付与できることを見出したものである。混合材においては(a)熱可塑性樹脂等の樹脂成分を成形体の20〜80容量%、好ましくは40〜60容量%の範囲で含有することが好ましい。樹脂成分が80容量%を超えると導電性が発現し難い傾向にあり、20容量%未満では、流動して成形性に劣り易い。
【0010】
混合材に用いられる(a)熱可塑性樹脂としては、ポリオレフィン系樹脂やABS樹脂、ポリエステル樹脂、ポリカーボネート樹脂など種々の材料が使用でき、熱可塑性エラストマーとしては、オレフィン系、スチレン系、塩ビ系、ウレタン系、エステル系、アミド系など種々のタイプのものが使用可能である。熱可塑性樹脂と熱可塑性エラストマーは混合して使用しても良く、例えば、熱可塑性樹脂としてPPを使用した場合、熱可塑性エラストマーはポリオレフィン系エラストマーを用いるのが好適である。
【0011】
(b)の融点が300℃以下の低融点金属には各種のものが使用できる。融点の測定方法は示差走査熱量測定法(DSC)により測定すればよく、融点が300℃を越える金属では成形性が劣るという問題がある。具体的にはPb/Sn、Pb/Sn/Bi、Pb/Sn/Ag、Pb/Ag、Sn/Ag、Sn/Bi、Sn/Cu、Sn/Zn系から選ばれたはんだ合金が好適に使用できる。
【0012】
(c)の金属粉末は前記低融点金属の分散助剤として作用するものであり、Cu、Ni、Al、Cr及びそれらの合金粉末が好適に使用でき、その平均粒径が1〜50μmの範囲のものが好ましい。平均粒径は試料を透過型電子顕微鏡により撮影し、写真から求めた数平均粒子径である。平均粒径が1μm未満では混合の際のハンドリングが困難であり、また50μmを越えるものでは分散性が低下し易い傾向がある。また、(b)低融点金属と(c)金属粉末を合わせた金属成分中の(c)金属粉末の割合を10〜30容量%、好ましくは15〜25容量%の範囲とすることが好ましい。10容量%未満では、分散状態が悪くなり、また30容量%を超えると流動性が低下するとともに脆化しやすく、さらに導電性も低下する傾向が見られる。
【0013】
(d)の導電性繊維は前記のように、導電性樹脂成形体が、繰り返し屈曲や撓みなどの変形を受けた場合に、変形を受けた箇所において高い導電性を保持することを主な目的として添加するものであるが、その表面が低融点金属で濡れ易い性質を有する銅、アルミニウム、ニッケル等の金属層を有する有機繊維若しくは無機繊維等を使用することが好ましい。また、導電性繊維は、直径が8〜100μm程度であり長さが6mm程度のものが良く、100〜20,000本収束したものを用いると良い。(d)の導電性繊維の配合量は、(b)低融点金属と(c)金属粉末及び(d)導電性繊維を合わせた金属と導電性繊維の合計量に対して5〜30容量%の範囲であることが望ましい。5%未満であると、成形品中における、(b)低融点金属と(c)金属粉末との固溶によって形成される3次元網目構造を補強する効果がなく、成形体が繰り返し屈曲や撓みなどの変形を受けるとすぐに導電性が低下してしまう。また30容量%を超えると、前記3次元網目構造に対する補強効果は高くなるが、成形体に高い導電性を付与することを目的として添加している(b)低融点金属及び(c)金属粉末を合わせた金属成分の容量が少なくなるので、結果として、このような成形体は低い導電性しか得られないことになる。
【0014】
本発明の導電性樹脂成形品の製造方法は、上記混合材の各成分を用い、混合したものを所定の温度でラボプラストミルやニーダー、二軸押出機等の混練機により混練して得た組成物又はその後に得た組成物を造粒したものを使用して成形する方法が好ましい。混練においては(b)低融点金属が半溶融状態となる温度が好ましく、マトリックスとなる熱可塑性樹脂等の樹脂成分の溶融温度に応じて適切な金属組成を選択し、低融点金属と分散助剤となる銅粉、ニッケル粉末等の添加比率を適宜選択する必要がある。また、導電性繊維の添加量についても低融点金属及び分散助剤となる銅粉、ニッケル粉末等の添加比率に応じて適宜選択することとする。以上の方法で得られた組成物又はその後に得た組成物を造粒したものは、使用目的に対応する形状の金型を用いることで、射出成形法、トランスファー成形法、プレス成形法等の通常の成形法により賦形し成形品とすることができる。また、Tダイ押出成形機等を用いた押出成形法によるシート化も可能である。
【0015】
以上述べたように、本発明の導電性樹脂成形品は、熱可塑性樹脂と熱可塑性エラストマーのブレンド物に低融点金属が含有されていることから、極めて高い導電性を有する一方で、熱可塑性エラストマーの有する柔軟性のため、脆弱になることはなく、さらに、表面が低融点金属で濡れ易い性質を有する銅、アルミニウム、ニッケル等の金属層を有する有機繊維若しくは無機繊維等が含有されていることから、繰り返し行われる屈曲や撓みなどに対し高い導電性を維持することが可能であり、また、成形性及び機械的強度にも優れており、導電性隔壁、導電性部材、電磁波シールド材、帯電防止材、電極、コネクター、センサー、発熱体等の幅広い分野への適用が可能である。
【0016】
【実施例】
以下、実施例について説明するが、本発明はこれに限定されるものではない。フッ素樹脂として住友スリーエム(株)製 THV220Gを用い、低融点金属として鉛フリーハンダ(Sn−4Cu−2Ni 融点 固相線225℃−液相線480℃)、金属粉末として平均粒径10μmの銅粉、導電性繊維として東邦テナックス(株)製 ベスファイトMCチョップドファイバー(MC−HTA−C6−US)を用いた。あらかじめ各原料粉末を物理混合し(樹脂45容量%、低融点金属35容量%、金属粉末15容量%、導電性繊維5容量%)、混練機(東洋精機、ラボプラストミル20C200)を用いて溶融混練後、得られた混練物を熱ラミネーター機により圧延することで、厚さ100μmのシート状の導電性樹脂成形体を作製した。
【0017】
混練条件は以下の通りである。

Figure 2004115722
尚、熱ラミネーター機による混練物の圧延は、離型PETフィルムで混練物を挟む状態にて行った。
熱ラミネーターによる圧延化条件は下記の通りである。
ラミネート速度  :  1m/min
ラミネート温度  :  215℃
【0018】
上記にて作製した導電性樹脂シートの体積抵抗率を、三菱化学社製「低抵抗率計ロレスターHP MCP−T410」を用いて測定したところ(以下、体積抵抗率の測定にあたっては、本機を使用)、3.5×10−3Ω・cmであった。
【0019】
続いて、該導電樹脂シートに対し、繰り返し周期的な撓み変形を与えた際に、撓み変形回数に対して、変形を受けた箇所の体積抵抗率がどのような挙動で上昇するのかを測定した。
繰り返し、周期的な撓み変形を与える機器としては、図1に示すような、シート面を水平にして、該シートの左右両端をそれぞれチャックにて挟み固定することができ、互いのチャック部の距離が、30〜80mmの範囲で同一直線上となるように、周期的に変化する構造をもつ試験器(以下「繰り返し撓み試験器」という)を作製しこれを用いることとした。
又、試験片は、前記導電性樹脂シートであり、サイズが幅50mm、長さ110mm、厚み100μmであるものを使用した。
繰り返し撓み試験器への試験片のセットは、シート長さ方向に対しその両端からそれぞれ10mmの位置に、それぞれ、繰り返し撓み試験器のチャックを挟み固定することで行った。
又、試験時においては、チャックの移動1周期を繰返し撓み回数1回とカウントし、所定繰返し撓み回数ごとに、導電性シートの変形箇所の体積抵抗率を測定した。
本繰返し撓み試験の結果を表1に示す。
【0020】
(比較例)
フッ素樹脂として住友スリーエム(株)製 THV220Gを用い、低融点金属として鉛フリーハンダ(Sn−4Cu−2Ni 融点 固相線225℃−液相線480℃)、金属粉末として平均粒径10μmの銅粉を用いた。あらかじめ各原料粉末を物理混合し(樹脂50容量%、低融点金属35容量%、金属粉末15容量%)、混練機(東洋精機、ラボプラストミル20C200)を用いて溶融混練後、得られた混練物を熱ラミネーター機により圧延することで、厚さ100μmのシート状の導電性樹脂成形体を作製した。
【0021】
混練条件、圧延条件は、前記実施例と同様な条件であり、続いて、該導電樹脂シートに対し、繰り返し周期的な撓み変形を与えた際に、撓み変形回数に対して、変形を受けた箇所の体積抵抗率がどのような挙動で上昇するのかを測定した。また、繰り返し撓み試験についても前記実施例と同様な条件にて行った。
本繰返し撓み試験の結果を表1に示す。
【0022】
【表1】
Figure 2004115722
【0023】
表1に示したように、本発明の(a)熱可塑性樹脂又は熱可塑性エラストマー及びこれらの混合物を基質とし、これに(b)融点が300℃以下の低融点金属、(c)金属粉末、及び(d)導電性繊維を混合してなる導電性成形体及びその成形体によれば、極めて高い導電性を有するとともに、繰り返し行われる屈曲や撓みなどに対し高い導電性を維持することが可能であり、成形性及び機械的強度も優れた導電性樹脂成形体が得られることが分かる。
【0024】
【発明の効果】
本発明によれば、極めて高い導電性を有するとともに、繰り返し行われる屈曲や撓みなどに対し高い導電性を維持することが可能であり、成形性及び機械的強度も優れた導電性樹脂成形体が得られる。
【図面の簡単な説明】
【図1】繰り返し撓み試験器と導電性樹脂シートの仕組図
【符号の説明】
1:導電性シート
2:チャック
3:摺動ロッド
4:摺動ロッド受け治具
5:電動式回転体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive molded article having extremely high conductivity, and excellent moldability and mechanical strength and a molded article thereof, and includes a conductive partition wall, a conductive member, an antistatic material, an electromagnetic wave shielding material, The present invention relates to a conductive resin composition applicable to a wide range of fields such as electrodes, connectors, sensors, and heating elements, and a molded article thereof.
[0002]
[Prior art]
BACKGROUND ART Conventionally, conductive molded articles made of a composition obtained by dispersing and mixing a conductive filler in a synthetic resin are known. Metal-based, carbon-based, etc. are used as the conductive filler, but in order to impart extremely high conductivity, the amount of the conductive filler to be added must be greatly increased. Since the mechanical strength is reduced, the addition amount is limited, and the conductivity of the obtained molded body is limited to 10 −1 Ω · cm in volume resistivity.
Further, in recent years, as a conductive resin molded body having a higher specific conductivity and a volume resistivity of 10 −2 Ω · cm or less, a thermoplastic resin or a thermosetting resin is used as a substrate, and a low melting point A conductive resin composition obtained by mixing a metal and a metal powder has been known (for example, see Patent Document 1).
[0003]
However, for example, when this is molded as a sheet having a thickness of 10 mm or less, if the sheet is repeatedly bent or bent, the conductivity of the sheet immediately decreases, and the performance that the sheet should have In practice, it cannot be used for applications that require high electrical conductivity to be maintained against repeated bending and bending of the sheet.
For this reason, the conductive resin having extremely high conductivity and capable of maintaining high conductivity at the deformed portion when the conductive resin molded body is repeatedly deformed such as bending or bending. There has been a demand for a functional resin molded article.
[0004]
[Patent Document 1]
JP-A-9-241420
[Problems to be solved by the invention]
Therefore, an object of the present invention is to eliminate the above-mentioned conventional drawbacks and to provide a conductive molded body having extremely high stable conductivity and excellent moldability and mechanical strength.
[0006]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, completed the present invention.
That is, the gist of the present invention is:
(A) A thermoplastic resin or a thermoplastic elastomer or a mixture thereof is used as a substrate, and (b) a low melting point metal having a melting point of 300 ° C. or less, (c) a metal powder, and (d) a conductive fiber are mixed. (A) 20 to 80% by volume of the thermoplastic resin or thermoplastic elastomer, and (c) the ratio of the metal powder in the metal component obtained by combining (b) and (c). Is 10 to 30% by volume, and (d) the conductive fiber in the component of the metal and the conductive fiber in the combination of (b), (c) and (d) is in the range of 5 to 30% by volume. The conductive molded article to be formed.
[0007]
Preferred embodiments of the present invention include the following.
The low melting point metal of the component (b) is selected from Pb / Sn, Pb / Sn / Bi, Pb / Sn / Ag, Pb / Ag, Sn / Ag, Sn / Bi, Sn / Cu, and Sn / Zn. Made of a low melting point alloy,
(C) the metal powder of the component is selected from Cu, Ni, Al, Cr and their alloy powders, and the average particle size is in the range of 1 to 50 μm;
(D) the conductive fiber of the component is an organic or inorganic fiber having a layer of silver, copper, nickel, aluminum, chromium or an alloy selected from the above on its surface;
[0008]
It also includes that the conductive molded body is in the form of a sheet having a thickness of 10 μm or more and 10 mm or less.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The conductive molded article of the present invention comprises (a) a thermoplastic resin or a thermoplastic elastomer and a mixture thereof, (b) a low melting point metal having a melting point of 300 ° C. or less, (c) a metal powder, and (d) a conductive powder. It is characterized by comprising a mixture of conductive fibers (hereinafter, referred to as “mixture”). That is, a thermoplastic resin or a thermoplastic elastomer and a mixture thereof as a substrate, a low melting point and metal powder necessary for imparting conductivity to the molded body, and when the molded body is subjected to deformation such as bending or bending. Even when there is a deformation, it is possible to provide extremely stable high conductivity and other properties in a well-balanced manner by using a specific combination of conductive fibers that are added mainly for maintaining high conductivity in the deformed portions. Is found. The mixed material preferably contains (a) a resin component such as a thermoplastic resin in the range of 20 to 80% by volume, preferably 40 to 60% by volume of the molded body. When the content of the resin component exceeds 80% by volume, conductivity tends to be hardly exhibited. When the content is less than 20% by volume, the resin component flows and the moldability tends to be poor.
[0010]
Various materials such as polyolefin resin, ABS resin, polyester resin, and polycarbonate resin can be used as the thermoplastic resin (a) used for the mixed material. As the thermoplastic elastomer, olefin, styrene, PVC, and urethane can be used. Various types, such as a system, an ester, and an amide, can be used. The thermoplastic resin and the thermoplastic elastomer may be used as a mixture. For example, when PP is used as the thermoplastic resin, it is preferable to use a polyolefin-based elastomer as the thermoplastic elastomer.
[0011]
Various metals can be used as the low-melting metal (b) having a melting point of 300 ° C. or lower. The melting point may be measured by differential scanning calorimetry (DSC), and there is a problem that a metal having a melting point exceeding 300 ° C. has poor moldability. Specifically, a solder alloy selected from Pb / Sn, Pb / Sn / Bi, Pb / Sn / Ag, Pb / Ag, Sn / Ag, Sn / Bi, Sn / Cu, and Sn / Zn is preferably used. it can.
[0012]
The metal powder (c) acts as a dispersing aid for the low-melting-point metal, and Cu, Ni, Al, Cr and alloy powders thereof can be suitably used, and the average particle diameter is in the range of 1 to 50 μm. Are preferred. The average particle diameter is a number average particle diameter obtained by photographing a sample with a transmission electron microscope and obtaining the photograph. If the average particle size is less than 1 μm, handling during mixing is difficult, and if it exceeds 50 μm, the dispersibility tends to be reduced. Further, it is preferable that the ratio of the metal powder (c) in the metal component obtained by combining the metal powder (b) and the metal powder (c) is in the range of 10 to 30% by volume, preferably 15 to 25% by volume. If it is less than 10% by volume, the dispersion state is poor, and if it exceeds 30% by volume, the fluidity tends to be reduced, the embrittlement is liable to occur, and the conductivity tends to be reduced.
[0013]
As described above, the main purpose of the conductive fiber (d) is to maintain high conductivity at the deformed portion when the conductive resin molded body is repeatedly deformed such as bending or bending. However, it is preferable to use an organic fiber or an inorganic fiber having a metal layer of copper, aluminum, nickel or the like whose surface is easily wetted with a low melting point metal. Further, the conductive fibers preferably have a diameter of about 8 to 100 μm and a length of about 6 mm, and it is preferable to use those having 100 to 20,000 convergence. The amount of the conductive fiber of (d) is 5 to 30% by volume based on the total amount of (b) the low melting point metal and (c) the metal powder and (d) the metal combined with the conductive fiber and the conductive fiber. Is desirably within the range. If it is less than 5%, the molded article has no effect of reinforcing the three-dimensional network structure formed by the solid solution of (b) the low melting point metal and (c) the metal powder, and the molded article is repeatedly bent or bent. As a result, the conductivity immediately decreases. When the content exceeds 30% by volume, the reinforcing effect on the three-dimensional network structure is increased, but (b) a low melting point metal and (c) a metal powder added for the purpose of imparting high conductivity to the molded body. As a result, the volume of the metal component is reduced, and consequently, such a molded body has only low conductivity.
[0014]
The method for producing a conductive resin molded article of the present invention was obtained by kneading a mixture using a kneading machine such as a Labo Plastomill, a kneader, or a twin-screw extruder at a predetermined temperature using each component of the above-mentioned mixed material. A method of molding using the composition or a granulated version of the composition obtained thereafter is preferred. In kneading, (b) a temperature at which the low-melting metal is in a semi-molten state is preferable, and an appropriate metal composition is selected according to the melting temperature of a resin component such as a thermoplastic resin to be a matrix. It is necessary to appropriately select the addition ratio of the copper powder, the nickel powder, etc. Also, the amount of the conductive fiber to be added is appropriately selected according to the addition ratio of the low-melting-point metal and the copper powder, nickel powder and the like serving as the dispersing aid. By granulating the composition obtained by the above method or the composition obtained thereafter, by using a mold having a shape corresponding to the purpose of use, injection molding, transfer molding, press molding, etc. It can be shaped into a molded product by a usual molding method. It is also possible to form a sheet by an extrusion molding method using a T-die extrusion molding machine or the like.
[0015]
As described above, the conductive resin molded article of the present invention has extremely high conductivity because the blend of the thermoplastic resin and the thermoplastic elastomer contains a low melting point metal, while the thermoplastic elastomer Because of its flexibility, it does not become brittle, and further contains organic fibers or inorganic fibers having a metal layer of copper, aluminum, nickel, etc., whose surface is easily wettable with a low melting point metal. Therefore, it is possible to maintain high conductivity against repeated bending and bending, etc.It is also excellent in moldability and mechanical strength, and it is possible to use conductive partition walls, conductive members, electromagnetic wave shielding materials, It can be applied to a wide range of fields such as prevention materials, electrodes, connectors, sensors, and heating elements.
[0016]
【Example】
Hereinafter, although an Example is described, the present invention is not limited to this. THV220G manufactured by Sumitomo 3M Ltd. as a fluororesin, lead-free solder (Sn-4Cu-2Ni melting point, solidus 225 ° C-liquidus 480 ° C) as low melting point metal, copper powder with an average particle diameter of 10 μm as metal powder Vesfite MC chopped fiber (MC-HTA-C6-US) manufactured by Toho Tenax Co., Ltd. was used as the conductive fiber. Each raw material powder is physically mixed in advance (resin 45% by volume, low melting point metal 35% by volume, metal powder 15% by volume, conductive fiber 5% by volume) and melted using a kneader (Toyo Seiki, Labo Plastomill 20C200). After kneading, the obtained kneaded material was rolled by a hot laminator machine to produce a sheet-shaped conductive resin molded article having a thickness of 100 μm.
[0017]
The kneading conditions are as follows.
Figure 2004115722
In addition, the rolling of the kneaded material by the heat laminator machine was performed in a state where the kneaded material was sandwiched between the release PET films.
The rolling conditions by the heat laminator are as follows.
Laminating speed: 1m / min
Laminating temperature: 215 ° C
[0018]
The volume resistivity of the conductive resin sheet prepared above was measured using “Low resistivity meter Loresta HP MCP-T410” manufactured by Mitsubishi Chemical Corporation. Used) was 3.5 × 10 −3 Ω · cm.
[0019]
Subsequently, when the conductive resin sheet was repeatedly subjected to periodic bending deformation, the behavior of the volume resistivity of the deformed portion was measured with respect to the number of bending deformations. .
As a device that repeatedly and cyclically deforms, as shown in FIG. 1, a sheet surface can be horizontal, and both right and left ends of the sheet can be sandwiched and fixed by chucks. However, a tester having a structure that changes periodically so as to be on the same straight line in the range of 30 to 80 mm (hereinafter referred to as a “repetitive bending tester”) was prepared and used.
The test piece was the conductive resin sheet having a size of 50 mm in width, 110 mm in length, and 100 μm in thickness.
The test pieces were set in the repetitive bending tester by sandwiching and fixing the chucks of the repetitive bending tester at positions 10 mm from both ends in the sheet length direction.
In the test, one cycle of the chuck movement was counted as one repeated bending, and the volume resistivity of the deformed portion of the conductive sheet was measured at each predetermined repeated bending.
Table 1 shows the results of the repeated bending test.
[0020]
(Comparative example)
THV220G manufactured by Sumitomo 3M Ltd. as a fluororesin, lead-free solder (Sn-4Cu-2Ni melting point, solidus 225 ° C-liquidus 480 ° C) as low melting point metal, copper powder with an average particle diameter of 10 μm as metal powder Was used. The raw material powders are physically mixed in advance (resin 50% by volume, low melting point metal 35% by volume, metal powder 15% by volume), melt-kneaded using a kneading machine (Toyo Seiki, Labo Plastomill 20C200), and then the obtained kneading is performed. The material was rolled by a heat laminator machine to produce a 100 μm thick sheet-like conductive resin molded body.
[0021]
The kneading conditions and the rolling conditions are the same as those in the above-described example. Subsequently, when the conductive resin sheet was repeatedly subjected to periodic bending deformation, the conductive resin sheet was deformed with respect to the number of bending deformations. The behavior of the volume resistivity at the location was measured. In addition, a repeated bending test was performed under the same conditions as those in the above example.
Table 1 shows the results of the repeated bending test.
[0022]
[Table 1]
Figure 2004115722
[0023]
As shown in Table 1, (a) a thermoplastic resin or a thermoplastic elastomer of the present invention and a mixture thereof were used as a substrate, and (b) a low-melting metal having a melting point of 300 ° C. or less, (c) a metal powder, And (d) a conductive molded article obtained by mixing conductive fibers and the molded article have extremely high conductivity and can maintain high conductivity against repeated bending and bending. It can be seen that a conductive resin molded article excellent in moldability and mechanical strength can be obtained.
[0024]
【The invention's effect】
According to the present invention, while having extremely high conductivity, it is possible to maintain high conductivity against repeated bending and bending, etc., and a conductive resin molded article excellent in moldability and mechanical strength is provided. can get.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a repeated bending tester and a conductive resin sheet.
1: conductive sheet 2: chuck 3: sliding rod 4: sliding rod receiving jig 5: electric rotating body

Claims (5)

(a)熱可塑性樹脂又は熱可塑性エラストマー及びこれらの混合物を基質とし、これに(b)融点が300℃以下の低融点金属、(c)金属粉末、及び(d)導電性繊維を混合してなる導電性成形体であって、(a)熱可塑性樹脂又は熱可塑性エラストマーが成形体の20〜80容量%、(b)及び(c)を合わせた金属成分中の(c)金属粉末の割合が10〜30容量%、(b)と(c)及び(d)を合わせた金属と導電性繊維の成分中の(d)導電性繊維が5〜30容量%の範囲であることを特徴とする導電性成形体。(A) A thermoplastic resin or a thermoplastic elastomer or a mixture thereof is used as a substrate, and (b) a low-melting metal having a melting point of 300 ° C. or less, (c) a metal powder, and (d) a conductive fiber are mixed. (A) a thermoplastic resin or a thermoplastic elastomer comprising 20 to 80% by volume of the molded article; and (c) a ratio of the metal powder in a metal component obtained by combining (b) and (c). Is 10 to 30% by volume, and (d) the conductive fiber in the component of the metal and the conductive fiber in the combination of (b), (c) and (d) is in the range of 5 to 30% by volume. Conductive molded article to be formed. (b)成分の低融点金属が、Pb/Sn、Pb/Sn/Bi、Pb/Sn/Ag、Pb/Ag、Sn/Ag、Sn/Bi、Sn/Cu、Sn/Zn系から選ばれた低融点合金からなることを特徴とする請求項1記載の導電性成形体。The low melting point metal of the component (b) is selected from Pb / Sn, Pb / Sn / Bi, Pb / Sn / Ag, Pb / Ag, Sn / Ag, Sn / Bi, Sn / Cu, and Sn / Zn. The conductive molded body according to claim 1, wherein the conductive molded body is made of a low melting point alloy. (c)成分の金属粉末がCu、Ni、Al、Cr及びこれらの合金粉末から選ばれ、その平均粒径が1〜50μmの範囲であることを特徴とする請求項1又は2記載の導電性成形体。The conductive powder according to claim 1 or 2, wherein the metal powder of the component (c) is selected from Cu, Ni, Al, Cr and alloy powders thereof, and has an average particle diameter in the range of 1 to 50 µm. Molded body. (d)成分の導電性繊維が、表面に銀、銅、ニッケル、アルミニウム、クロム若しくはこれらから選ばれてなる合金の層を有する有機若しくは無機の繊維であることを特徴とする請求項1乃至3のいずれか1項記載の導電性成形体。4. The conductive fiber of component (d) is an organic or inorganic fiber having on its surface a layer of silver, copper, nickel, aluminum, chromium or an alloy selected from these. The conductive molded article according to any one of the above. 厚みが10μm以上、10mm以下のシート状成形体であることを特徴とする請求項1乃至4のいずれか1項記載の導電性樹脂成形体。The conductive resin molded article according to any one of claims 1 to 4, wherein the molded article is a sheet-shaped molded article having a thickness of 10 µm or more and 10 mm or less.
JP2002283833A 2002-09-27 2002-09-27 Conductive molded product Pending JP2004115722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283833A JP2004115722A (en) 2002-09-27 2002-09-27 Conductive molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283833A JP2004115722A (en) 2002-09-27 2002-09-27 Conductive molded product

Publications (1)

Publication Number Publication Date
JP2004115722A true JP2004115722A (en) 2004-04-15

Family

ID=32277585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283833A Pending JP2004115722A (en) 2002-09-27 2002-09-27 Conductive molded product

Country Status (1)

Country Link
JP (1) JP2004115722A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262246A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Resin composition for electromagnetic wave shielding and its molded product
WO2013085246A1 (en) * 2011-12-09 2013-06-13 제일모직 주식회사 Composite, and molded product thereof
KR101297156B1 (en) 2008-12-10 2013-08-21 제일모직주식회사 High performance emi/rfi shielding polymer composite

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007262246A (en) * 2006-03-28 2007-10-11 Matsushita Electric Works Ltd Resin composition for electromagnetic wave shielding and its molded product
KR101297156B1 (en) 2008-12-10 2013-08-21 제일모직주식회사 High performance emi/rfi shielding polymer composite
WO2013085246A1 (en) * 2011-12-09 2013-06-13 제일모직 주식회사 Composite, and molded product thereof
CN103975023A (en) * 2011-12-09 2014-08-06 第一毛织株式会社 Composite and molded product thereof

Similar Documents

Publication Publication Date Title
JP5205947B2 (en) Resin carbon composite material
JP2017095694A (en) Three phase immiscible polymer-metal blends for high conductivity composites
CN101407637A (en) Fiber reinforced composite material and preparation thereof
KR20120095530A (en) Polymer/conductive filler composite with high electrical conductivity and the preparation method thereof
JP2008266428A (en) Heat-resistant film and its manufacturing method
JP2002075052A (en) Conductive resin composition and sheet
JPH03289004A (en) Conductive resin composite
JP3985074B2 (en) Conductive resin composition and molded product thereof
JP2004115722A (en) Conductive molded product
JP2003028986A (en) Radiation shield material
JP2002212443A (en) Conductive resin composition and conductive molding
JP2002008685A (en) Separator for fuel battery cell
JP3449501B2 (en) Method of manufacturing conductive resin plate
JPH0139453B2 (en)
JPH10237313A (en) Resin composition containing conductive fiber
JP3264789B2 (en) Conductive resin composition
JP3305526B2 (en) Conductive resin composition
JP2018069693A (en) Method for producing conductive polymer composite material by rolling process and method for molding the same
JP2020055889A (en) Resin compound and molding molded with resin compound
JP3298759B2 (en) Conductive resin composition
JP2001019807A (en) Conductive resin molding
JPS6072936A (en) Electroconductive plastic composition
JPH039956A (en) Highly conductive resin composition
JP2523098B2 (en) Conductive resin composition and molded article thereof
JP3308748B2 (en) Conductive resin composition