JP2004114497A - Cushioning material for pressing - Google Patents

Cushioning material for pressing Download PDF

Info

Publication number
JP2004114497A
JP2004114497A JP2002280863A JP2002280863A JP2004114497A JP 2004114497 A JP2004114497 A JP 2004114497A JP 2002280863 A JP2002280863 A JP 2002280863A JP 2002280863 A JP2002280863 A JP 2002280863A JP 2004114497 A JP2004114497 A JP 2004114497A
Authority
JP
Japan
Prior art keywords
organic
inorganic composite
cushioning material
press
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002280863A
Other languages
Japanese (ja)
Inventor
Satoshi Demura
出村 智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2002280863A priority Critical patent/JP2004114497A/en
Publication of JP2004114497A publication Critical patent/JP2004114497A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cushioning material for pressing which displays an excellent dimensional stability in heating or pressurization at hot pressing. <P>SOLUTION: In a structural member of this cushioning material for pressing, an organic-inorganic composite which is hard to generate deformations such as warpage or expansion to heating or pressurization, and in which fine glass particles are dispersed in a polyamide matrix is contained. Thus, the cushioning material for pressing becomes hard to generate deformations such as warpage or expansion, and displays an excellent dimensional stability. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、熱プレス成形に使用するクッション材に関する。
【0002】
【従来の技術】
従来、プリント配線基板や、建築用化粧合板などの積層板を製造する際の熱プレス工程においては、積層板に加わる温度や圧力を均一にするためにプレス用クッション材が使用されている。この種のプレス用クッション材としては、有機繊維、無機繊維、ゴム、樹脂などの単一材料からなるもの、これらを混合、混抄して形成した複合材料からなるもの、あるいは、これら単一材料、複合材料からなる構成部材を積層した積層体など多くの種類のものがある。こうしたプレス用クッション材には、クッション性や耐熱性、あるいは寸法安定性などの諸特性を満足することが要求され、これら要求に対して、上記したように各種材料や構成部材を組合わせて、使用時に必要とされる特性を有するクッション材が適宜選択されている。
【0003】
例えば、ゴム層を基材として、その表面に耐熱性の繊維からなる層を積層したプレス用クッション材は、構造部材としてゴム層と耐熱性の繊維からなる層を有するため、クッション性や耐熱性に優れる(例えば、特許文献1参照。)。しかし、熱プレス時にゴム層部分が、ゴム層表面と平行な方向に伸びやすく、成型品に要求される寸法精度が得られないという問題があった。
【0004】
また、有機繊維のなかでも耐熱性や耐久性の高い芳香族ポリアミドのみを構成部材として使用したプレス用クッション材は、高い耐熱性を有し、かつ、同種の有機繊維のみから構成されているため構造部材が異なる場合に生じる積層部のたわみや皺などが生じにくい(例えば、特許文献2参照。)。さらに、芳香族ポリアミドと、機械的強度に優れた無機繊維とを混抄して、耐熱性や耐久性を向上させたプレス用クッション材は、他の材料を構成部材として使用したプレス用クッション材よりも耐熱性が高く、また加熱や加圧に対して寸法安定性のよい無機繊維を含んでいるため膨張や反りなどの変形が生じにくい(例えば、特許文献3参照。)。しかし、これら構造部材に有機繊維を含有するプレス用クッション材は、有機繊維自体の寸法変化を抑制することはできないため、高い寸法精度の求められる熱プレス成形においては十分な寸法安定性を有していなかった。
【0005】
【特許文献1】
特開平7−125142号公報
【特許文献2】
特開平8−169074号公報
【特許文献3】
特開昭59−192795号公報
【0006】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、寸法安定性に優れたプレス用クッション材を提供することにある。
【0007】
【課題を解決するための手段】
本発明のプレス用クッション材は、構造部材として、加熱や加圧に対して反りや膨張などの変形を生じにくい、ポリアミドマトリクス中に微小なガラス粒子を分散した有機無機複合体を含有させることにより、熱プレス時の加熱や加圧に対して優れた寸法安定性を示す。
【0008】
すなわち本発明は、ポリアミドマトリクス中にガラス粒子が分散した有機無機複合体を含有する構造部材からなるプレス用クッション材を提供する。
【0009】
【発明の実施の形態】
本発明のプレス用クッション材は、構造部材が、ポリアミドマトリクス中にガラス粒子が分散した有機無機複合体(以下、該有機無機複合体を有機無機複合体(A)と略記する。)を含有する。ここでいう構造部材とは、プレス用クッション材に特定の形状を持たせるための部材を意味し、例えば、ゴムや耐熱性樹脂のシート、あるいは不織布などを指す。
【0010】
本発明に使用する有機無機複合体(A)は、ジカルボン酸の酸ハロゲン化物を水に対して非相溶な有機溶媒に溶解した溶液と、水ガラスとジアミンの水溶液とを混合攪拌する界面重縮合により得られる。
【0011】
ジカルボン酸の酸ハロゲン化物としては、アジピン酸、アゼライン酸、セバシン酸など脂肪族ジカルボン酸の酸ハロゲン化物、およびイソフタル酸、テレフタル酸など芳香族ジカルボン酸の酸ハロゲン化物、あるいはこれら芳香環の1個以上の水素をハロゲン、ニトロ基、アルキル基などで置換した芳香族ジカルボン酸の酸ハロゲン化物などが例として挙げられ、これらは単独または2種以上を組み合わせて用いてもよい。
【0012】
ジアミンとしては、ジカルボン酸の酸ハロゲン化物と反応するものであれば特に制限なく用いることができ、1,2−アミノエタン、1,3−ジアミノプロパン、1,6−ジアミノヘキサンなどの脂肪族ジアミン、m−キシリレンジアミン、p−キシリレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、2,3−ジアミノナフタレンなどの芳香族ジアミン、あるいはこれら芳香環の1個以上の水素をハロゲン、ニトロ基、またはアルキル基などで置換した芳香族ジアミンなどが例として挙げられる。これらは単独または2種以上を組み合わせて用いてもよい。
【0013】
ジカルボン酸の酸ハロゲン化物を溶解する、水に対して非相溶な有機溶媒としては、ジカルボン酸の酸ハロゲン化物やジアミンと反応しないものであればよく、例えばトルエン、キシレン、クロロホルム、シクロヘキサンなどが挙げられる。
【0014】
水に非相溶な有機溶媒溶液中におけるジカルボン酸の酸ハロゲン化物の濃度は0.01〜3mol/lの範囲、水溶液中におけるジアミンの濃度は、0.01〜3mol/lの範囲であることが好ましい。上記濃度の有機溶媒溶液と水溶液を、ジカルボン酸の酸ハロゲン化物とジアミンとがほぼ等モルになる割合で混合撹拌して、界面重縮合させることにより、ポリアミドマトリクスを形成できる。
【0015】
本発明に使用する有機無機複合体(A)に含まれるガラス粒子は、水ガラスの還元反応により得られる。使用する水ガラスとしては、JIS K 1408−1950に記載された水ガラス1号、2号、3号、4号などのMO・nSiOの組成式で表され、Mがアルカリ金属、nの平均値が1.2〜4のものが挙げられる。該水ガラスをジカルボン酸の酸ハロゲン化物とジアミンとの界面重縮合反応場に共存させることで、重縮合反応により生じるハロゲン化水素により水ガラスが還元されてガラス粒子となる。該反応がジカルボン酸の酸ハロゲン化物とジアミンとの界面重縮合反応と並行して進行することにより、ガラスの微粒子がポリアミドマトリクス中に均一に分散し、得られる有機無機複合体(A)は低い線熱膨張係数を有している。
【0016】
ポリアミドマトリクス中に分散させるガラス粒子の平均粒子径は3〜300nmの範囲であることが好ましい。ガラス粒子の平均粒子径が300nmを超えて大きすぎると、ガラス粒子の単位質量あたりの表面積が減少するため有機無機複合体(A)の比表面積が減少し、ポリアミドマトリクスとガラス粒子との接触面積の減少によりガラス粒子の脱落が生じることがある。また、ガラス粒子の平均粒子径が3nmよりも小さすぎると、加熱や加圧に対する寸法安定性が低下する。
【0017】
水溶液中の水ガラスの濃度は、4〜100g/lの濃度範囲であれば、ジカルボン酸の酸ハロゲン化物とジアミンとの重縮合反応、および水ガラスの還元反応が共に良好に進行し、ポリアミドマトリクス中に平均粒子径が3〜300nmのガラス粒子が分散した有機無機複合体が得られる。水ガラスの濃度が、4g/l未満であると有機無機複合体(A)中のガラス粒子が不足する。100g/lを越えて多すぎると水溶液の粘度が高くなり、重縮合反応や還元反応が良好に進行しない。
【0018】
重縮合反応場に共存させる水ガラスは、重縮合反応時に生じるハロゲン化水素を中和して重縮合反応を促進させる作用も有するが、ジアミンや水ガラスが少なく、ハロゲン化水素が重縮合反応の進行を阻害する場合には水酸化ナトリウムなどの酸受容体を添加してもよい。
【0019】
有機無機複合体(A)中のガラス粒子の含有率は水ガラス濃度を調整することで制御できる。本発明の有機無機複合体(A)に含まれるガラス粒子の含有率は有機無機複合体(A)の全質量に対して30〜80質量%の範囲が好ましく、50〜70質量%の範囲であればより好ましい。ガラス粒子の含有率が30質量%未満であると、ガラス粒子が有機無機複合体(A)に与える補強効果が小さくなるため、加熱や加圧に対する寸法安定性が低下する。80質量%を越えて多すぎると、結合成分であるポリアミドが不足する。
【0020】
上記したように、ジカルボン酸の酸ハロゲン化物の水に対して非相溶な有機溶媒溶液と、水ガラスとジアミンの水溶液とを混合攪拌する方法により、ジカルボン酸の酸ハロゲン化物とジアミンとが重縮合してポリアミドを生成するとともに、水ガラス中のアルカリ金属が酸受容体として働き、水ガラスが固体のガラス粒子となり、該ガラス粒子がポリアミドマトリクス中に分散し、有機無機複合体(A)が得られる。
【0021】
該有機無機複合体(A)は、低い線熱膨張係数を有することから、構造部材に該有機無機複合体(A)を含有するプレス用クッション材は寸法安定性が高い。特に構造部材中の有機無機複合体(A)の含有量が、構造部材の全質量に対して70%以上であると、本発明の効果が顕著に表れる。
【0022】
本発明に使用する有機無機複合体(A)の形状としては、幅4〜80μm、長さ100μm以上の繊維形状であることが好ましい。該形状の有機無機複合体(A)は、該形状の有機無機複合体(A)同士、あるいは、他の繊維形状材料との交絡性に優れるため、構造部材中に該形状の有機無機複合体(A)を含有するプレス用クッション材は、熱プレス時に構成材料の欠落が生じにくい。なかでも、長さが100〜1000μmのものは特に交絡性に優れる。
【0023】
ここで、繊維形状とは幅に対して長さの比が大きい、細長い形状のことを意味する。有機無機複合体(A)の長さとは、有機無機複合体(A)の投影輪郭形状の外周上の最大二点間距離をいい、幅とは長さの方向に直角な線が投影輪郭を横切る距離のことをいう。
【0024】
繊維形状の有機無機複合体(A)は、ジカルボン酸の酸ハロゲン化物を水に対して非相溶な有機溶媒に溶解した溶液と、水ガラスとジアミンの水溶液とを混合攪拌して界面重縮合させる際に、該混合物にせん断応力を与えることによって得られる。
【0025】
繊維形状の有機無機複合体(A)の製造方法としては、ジカルボン酸の酸ハロゲン化物の水に対して非相溶な有機溶媒溶液と水ガラスとジアミンの水溶液とを効率よく接触させることができ、生じた反応物にせん断応力を与えられる方法であればよく、連続式の製造方法としては、例えば、反応装置壁面と撹拌翼とにせん断能力を有する突子を持つ連続反応装置内に両溶液を流通させ、重合する固形分に連続的にせん断応力を与える方法が挙げられる。具体的な装置としては大平洋機工株式会社製「ファインフローミルFM−15型」、同社製「スパイラルピンミキサSPM−15型」、あるいは、INDAG Machinenbau Gmb社製「ダイナミックミキサDLM/S215型」などが挙げられる。
【0026】
バッチ式の製造方法としては、例えば、高いせん断力を持つ高速攪拌翼と反応槽の内容物全体を混合し得る攪拌翼とを有する多軸攪拌装置により、攪拌翼のみの攪拌下で予備重合した後、高速攪拌翼を攪拌し重合、せん断する方法が挙げられる。具体的な装置としては井上製作所株式会社製2軸ミキサー「BDM−V−270V」、浅田鉄工株式会社製「コーネルデスパーMHK−10型」、あるいは特殊機化株式会社製「コンビミックスCBS−100」などが挙げられる。また、生成物を手動で解砕できる場合には、強いせん断力を持つ単軸のミキサーも用いることができる。例としてはOsterizer製ブレンダーなどが挙げられる。
【0027】
ジカルボン酸の酸ハロゲン化物と、ジアミンとを重縮合反応させる温度は、例えば−5〜70℃の温度範囲で十分に反応が進行する。
【0028】
上記方法により製造した有機無機複合体(A)は繊維形状を有し、せん断能力を有する撹拌翼の周速を調整することにより、長軸方向の平均長さを30μm〜30cm程度に調整できる。撹拌翼の周速は使用する原料の種類や量、あるいは使用する装置により適宜調整する必要があるが、析出した有機無機複合体(A)を分級すれば、本発明において好適に使用できる、幅が4〜80μm、長さが100μm以上の繊維形状を有する有機無機複合体(A)が得られる。
【0029】
繊維形状の有機無機複合体(A)は、該形状の有機無機複合体(A)同士、あるいは他の繊維材料との交絡性に優れるため、結合剤を使用しなくても公知慣用の抄造方法により抄造して簡便に不織布を得ることができる。不織布を製造する方法としては、例えば、該形状の有機無機複合体(A)を、含水率が80〜90質量%のウェットケーキとし、該ウェットケーキを水浴に分散させた後、分散液を濾材に通じて抄造し、抄造物を熱プレスする方法が挙げられる。該方法により得られた不織布は、プレス用クッション材の構造部材として、あるいは、積層して1〜7mm程度の厚さのプレス用クッション材として好適に使用できる。
【0030】
抄造の際には、ポバールなどの繊維結合剤やアラミド、アクリル、ポリエステルなどの他の繊維を共存させ、混抄しても良い。なかでも、ポリ(p−フェニレンテレフタラミド)や、ポリ(m−フェニレンイソフタラミド)などのアラミド繊維は、繊維形状の有機無機複合体(A)と良好な混抄性を示し、かつ高い強度を有するため、繊維形状の有機無機複合体(A)とアラミド繊維を混抄して得られる不織布を構造部材とするプレス用クッション材は、構成材料の欠落がほとんどなく、優れた強度と寸法安定性を示す。
【0031】
不織布に含まれるアラミド繊維の含有率は、プレス用クッション材の全質量に対して5〜30質量%の範囲であることが好ましい。プレス用クッション材に含まれるアラミド繊維の含有率が5%未満であると強度に及ぼす効果が不十分となり、30質量%を超えると、有機無機複合体(A)の有する優れた寸法安定性の向上効果が十分に得られない。
【0032】
本発明のプレス用クッション材は、熱プレス時の加熱や加圧に対して優れた寸法安定性を示すことから、プリント配線用基板や、建築用化粧合板などの積層板を製造する際の熱プレス工程に好適に使用することができる。
【0033】
【実施例】
以下に実施例を用いて本発明をさらに具体的に説明する。
(実施例1)
キシダ化学株式会社製「ケイ酸ナトリウム(3号)水溶液」(NaO・3.1SiO、水分量60質量%)30gと、1,6−ジアミノヘキサン4.64gとを水に溶解した全量300mlの水溶液を、30℃に保ったOsterizer社製ブレンダー瓶に仕込み、付属の撹拌翼を毎分5000回転で撹拌しながら、アジポイルクロライド7.32gをトルエンに溶解した全量180mlの有機溶媒溶液を一度に加えた。2分間撹拌した後、析出物をろ過し、アセトンおよび水で洗浄して、ポリアミドマトリクス中にガラス粒子が分散した有機無機複合体のウェットケーキ(含水率90質量%)を得た。
【0034】
得られたウェットケーキ130gを1000mlの水に分散させ、該分散液を100μm目開きのろ過器でろ過し、ろ過物を50℃で乾燥して、厚さが40μmの不織布(含水率50質量%)を得た。該不織布を100枚重ね、熱プレス機により140℃、3MPaの条件で加熱、加圧して厚さが2mmのプレス用クッション材を得た。
【0035】
(実施例2)
実施例1において得られた、ポリアミドマトリクス中にガラス粒子が分散した有機無機複合体のウェットケーキ100gと、デュポン社製ポリ(p−フェニレンテレフタラミド)繊維「Kevlar」(繊維長さ3000μm、繊維幅12μm)3gとを1000mlの水に分散させ、該分散液を100μm目開きのろ過器でろ過し、ろ過物を50℃で乾燥して、厚さが40μmの不織布(含水率50質量%)を得た。該不織布を100枚重ね、熱プレス機により140℃、3MPaの条件で加熱、加圧して厚さが2mmのプレス用クッション材を得た。
【0036】
(実施例3)
実施例1におけるキシダ化学株式会社製「ケイ酸ナトリウム(3号)水溶液」(NaO・3.1SiO、水分量60質量%)30gの代わりに、キシダ化学株式会社製「ケイ酸ナトリウム(3号)水溶液」(NaO・3.1SiO、水分量60質量%)11gを使用した以外は実施例1に記載した方法と同様にしてポリアミドマトリクス中にガラス粒子が分散した有機無機複合体のウェットケーキ(含水率90質量%)を得た。
【0037】
得られたウェットケーキ100gと、デュポン社製ポリ(p−フェニレンテレフタラミド)繊維「Kevlar」(繊維長さ3000μm、繊維幅12μm)3gとを1000mlの水に分散させ、該分散液を100μm目開きのろ過器でろ過し、ろ過物を50℃で乾燥して、厚さが20μmの不織布(含水率50質量%)を得た。該不織布を200枚重ね、熱プレス機により140℃、3MPaの条件で加熱、加圧して厚さが2mmのプレス用クッション材を得た。
【0038】
(比較例1)
1,6−ジアミノヘキサン4.64gを水に溶解した全量300mlの水溶液を、30℃に保ったOsterizer社製ブレンダー瓶に仕込み、付属の撹拌翼を毎分5000回転で撹拌しながら、アジポイルクロライド7.32gをトルエンに溶解した全量180mlの有機溶媒溶液を一度に加えた。2分間撹拌した後、析出物をろ過し、アセトンおよび水で洗浄して、ウェットケーキ(含水率90質量%)を得た。
【0039】
得られたウェットケーキ130gを1000mlの水に分散させ、該分散液を100μm目開きのろ過器でろ過し、ろ過物を50℃で乾燥して、厚さが40μmの不織布(含水率50質量%)を得た。該不織布を100枚重ね、熱プレス機により140℃、3MPaの条件で加熱、加圧して厚さが2mmのプレス用クッション材を得た。
【0040】
(比較例2)
ロックウール繊維8gとデュポン社製ポリ(p−フェニレンテレフタラミド)繊維「Kevlar」(繊維長さ3000μm、繊維幅12μm)2gとを1000mlの水に分散させ、該分散液を100μm目開きのろ過器でろ過し、ろ過物を50℃で乾燥して、厚さが40μmの不織布(含水率が50%)を得た。該不織布を100枚重ね、熱プレスにより140℃、3MPaの条件で加熱、加圧して厚さが2mmのプレス用クッション材を得た。
【0041】
上記実施例1〜3、および比較例1〜2で得られたプレス用クッション材について以下の項目の測定を行い、得られた結果を表1に示した。
【0042】
(1)有機無機複合体の形状測定
プレス用クッション材の製造過程で得られた、ポリアミドマトリクス中にガラス粒子が分散した有機無機複合体を乾燥させ、株式会社ニコン製光学顕微鏡「OPTI−POL」を用いて100本の有機無機複合体を200倍の倍率で観察して、有機無機複合体の長さと幅を測定し、その平均値を算出した。
【0043】
(2)ガラス粒子の粒子径測定
プレス用クッション材より厚み50nmの試料を作成し、得られた試料を日本電子株式会社製透過型電子顕微鏡「JEM−200CX」により100000倍の倍率で観察して、100個のガラス粒子の粒子径を測定し、その平均粒子径を算出した。
【0044】
(3)ガラス粒子の含有率の測定
プレス用クッション材の製造過程で得られた、ポリアミドマトリクス中にガラス粒子が分散した有機無機複合体の乾燥物約1gの質量を精秤し、これを空気中、750℃で3時間焼成してポリアミドを完全に焼失させた。焼成後の質量を測定して、これをガラス質量とした。これらの値より、ガラス含有率(質量%)を(式1)により算出した。
ガラス含有率=(ガラス質量/有機無機複合体質量)×100 (式1)
【0045】
(4)線熱膨張係数の測定
セイコー電子工業株式会社製熱機械特性測定機「TMA−SS120C」により、プレス用クッション材を空気中、2℃/分の昇温速度で20℃から250℃まで昇温して線熱膨張係数を測定した。
【0046】
(5)反り量の測定
30cm×30cmのクッション材を熱プレス機により、200℃、40MPaの条件で2時間熱プレス後、30℃、0MPaまで冷却、減圧する操作を50回繰り返し、クッション材の凸面を上向きにして無荷重の状態で水平な定盤上に置き、定盤とクッション材の凸部との隔たりL(cm)を測定し、反り量を(式2)により算出した。
反り量=L/30×100               (式2)
【0047】
(5)構成成分の欠落量の測定法
上記(4)の反り量の測定において欠落した構成成分を秤量し、プレス前の初期質量に対する構成成分の欠落量を質量%で求めた。
【0048】
【表1】

Figure 2004114497
【0049】
表1から明らかなように、本発明のプレス用クッション材は、比較例1に示したガラス粒子を含有しないポリアミドからなるプレス用クッション材や、有機繊維と無機繊維とを混抄して得られたプレス用クッション材に比べて、低い線熱膨張係数を示し、かつ熱プレスを繰り返し行っても反り量が少ないことがわかる。
【0050】
【発明の効果】
本発明のプレス用クッション材は、構造部材中に、低い線熱膨張係数を有する、ポリアミドマトリクスに微細なガラス粒子が分散した有機無機複合体を含むことにより、熱プレス時の加熱や加圧に対して優れた寸法安定性を示し、熱プレスを繰り返し行っても膨張や反りなどの変形が生じない。
【0051】
前記構造部材中に含有される有機無機複合体が、平均幅4〜80μm、平均長さ100μm以上の繊維形状を有するプレス用クッション材は、該形状の有機無機複合体が優れた交絡性を示すため、繰り返し使用しても構成材料の欠落がほとんどない。さらに、該有機無機複合体とアラミド繊維とを混抄することにより、プレス用クッション材の強度が向上する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cushion material used for hot press molding.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a hot pressing process when manufacturing a laminated board such as a printed wiring board or a decorative plywood for construction, a cushioning material for a press is used to make the temperature and pressure applied to the laminated board uniform. Examples of this type of cushioning material for presses include those made of a single material such as organic fiber, inorganic fiber, rubber, and resin, those made of a composite material formed by mixing and blending them, or those made of a single material, There are many types such as a laminate in which constituent members made of a composite material are laminated. Such a cushion material for press is required to satisfy various properties such as cushioning property, heat resistance, or dimensional stability, and in response to these requirements, combining various materials and constituent members as described above, A cushion material having characteristics required at the time of use is appropriately selected.
[0003]
For example, a cushioning material for press in which a layer made of a heat-resistant fiber is laminated on the surface of a rubber layer as a base material has a rubber layer and a layer made of a heat-resistant fiber as a structural member, so that the cushioning property and heat resistance (For example, see Patent Document 1). However, there has been a problem that the rubber layer portion easily stretches in a direction parallel to the rubber layer surface during hot pressing, and the dimensional accuracy required for a molded product cannot be obtained.
[0004]
In addition, among the organic fibers, the cushioning material for press using only the aromatic polyamide having high heat resistance and high durability as a constituent member has high heat resistance, and is composed of only the same kind of organic fibers. Deflection, wrinkles, and the like of the laminated portion that occur when the structural members are different are less likely to occur (for example, see Patent Document 2). Furthermore, the cushioning material for presses, in which aromatic polyamide and inorganic fibers having excellent mechanical strength are mixed to improve heat resistance and durability, is better than the cushioning material for presses using other materials as constituent members. Also has high heat resistance and contains inorganic fibers having good dimensional stability with respect to heating and pressurization, so that deformation such as expansion and warping is unlikely to occur (for example, see Patent Document 3). However, the cushioning material for presses containing organic fibers in these structural members cannot suppress the dimensional change of the organic fibers themselves, and therefore has sufficient dimensional stability in hot press molding that requires high dimensional accuracy. I didn't.
[0005]
[Patent Document 1]
JP-A-7-125142 [Patent Document 2]
Japanese Patent Application Laid-Open No. 8-169,074 [Patent Document 3]
JP-A-59-192975
[Problems to be solved by the invention]
The problem to be solved by the present invention is to provide a cushioning material for a press having excellent dimensional stability.
[0007]
[Means for Solving the Problems]
The cushioning material for presses of the present invention, as a structural member, hardly undergoes deformation such as warpage or expansion due to heating or pressurization, by containing an organic-inorganic composite in which fine glass particles are dispersed in a polyamide matrix. It has excellent dimensional stability against heat and pressure during hot pressing.
[0008]
That is, the present invention provides a cushioning material for press comprising a structural member containing an organic-inorganic composite in which glass particles are dispersed in a polyamide matrix.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
In the cushioning material for presses of the present invention, the structural member contains an organic-inorganic composite in which glass particles are dispersed in a polyamide matrix (hereinafter, the organic-inorganic composite is abbreviated as the organic-inorganic composite (A)). . The structural member here means a member for giving the press cushion material a specific shape, and for example, a sheet of rubber or a heat-resistant resin, or a nonwoven fabric.
[0010]
The organic-inorganic composite (A) used in the present invention is obtained by mixing and stirring a solution in which an acid halide of a dicarboxylic acid is dissolved in an organic solvent incompatible with water, and an aqueous solution of water glass and a diamine. Obtained by condensation.
[0011]
Examples of acid halides of dicarboxylic acids include acid halides of aliphatic dicarboxylic acids such as adipic acid, azelaic acid and sebacic acid, and acid halides of aromatic dicarboxylic acids such as isophthalic acid and terephthalic acid, or one of these aromatic rings. Examples thereof include an acid halide of an aromatic dicarboxylic acid in which the above hydrogen is substituted with a halogen, a nitro group, an alkyl group, or the like, and these may be used alone or in combination of two or more.
[0012]
The diamine can be used without particular limitation as long as it reacts with an acid halide of dicarboxylic acid, and aliphatic diamines such as 1,2-aminoethane, 1,3-diaminopropane, and 1,6-diaminohexane; aromatic diamines such as m-xylylenediamine, p-xylylenediamine, m-phenylenediamine, p-phenylenediamine, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,3-diaminonaphthalene, or these Examples thereof include aromatic diamines in which one or more hydrogen atoms of an aromatic ring are substituted with a halogen, a nitro group, an alkyl group, or the like. These may be used alone or in combination of two or more.
[0013]
As an organic solvent insoluble in water, which dissolves an acid halide of a dicarboxylic acid, any solvent that does not react with an acid halide of a dicarboxylic acid or a diamine may be used.Examples include toluene, xylene, chloroform, and cyclohexane. No.
[0014]
The concentration of the acid halide of the dicarboxylic acid in the water-insoluble organic solvent solution is in the range of 0.01 to 3 mol / l, and the concentration of the diamine in the aqueous solution is in the range of 0.01 to 3 mol / l. Is preferred. The polyamide matrix can be formed by mixing and stirring the organic solvent solution and the aqueous solution having the above concentrations in such a ratio that the acid halide of the dicarboxylic acid and the diamine become almost equimolar, and performing interfacial polycondensation.
[0015]
The glass particles contained in the organic-inorganic composite (A) used in the present invention are obtained by a reduction reaction of water glass. The water glass to be used is represented by a composition formula of M 2 O · nSiO 2 such as water glass No. 1, No. 2, No. 3, No. 4 described in JIS K 1408-1950, wherein M is an alkali metal, n Having an average value of 1.2 to 4. By causing the water glass to coexist in an interfacial polycondensation reaction field between an acid halide of a dicarboxylic acid and a diamine, the water glass is reduced by hydrogen halide generated by the polycondensation reaction to form glass particles. Since the reaction proceeds in parallel with the interfacial polycondensation reaction between the acid halide of dicarboxylic acid and the diamine, the glass fine particles are uniformly dispersed in the polyamide matrix, and the obtained organic-inorganic composite (A) is low. It has a linear thermal expansion coefficient.
[0016]
The average particle size of the glass particles dispersed in the polyamide matrix is preferably in the range of 3 to 300 nm. If the average particle size of the glass particles exceeds 300 nm and is too large, the surface area per unit mass of the glass particles decreases, so that the specific surface area of the organic-inorganic composite (A) decreases, and the contact area between the polyamide matrix and the glass particles In some cases, the glass particles fall off due to the decrease in the particle size. On the other hand, when the average particle diameter of the glass particles is too small, the dimensional stability with respect to heating and pressurization is reduced.
[0017]
If the concentration of the water glass in the aqueous solution is in the range of 4 to 100 g / l, the polycondensation reaction between the acid halide of dicarboxylic acid and the diamine and the reduction reaction of the water glass both proceed well, and the polyamide matrix An organic-inorganic composite in which glass particles having an average particle diameter of 3 to 300 nm are dispersed is obtained. If the concentration of the water glass is less than 4 g / l, the glass particles in the organic-inorganic composite (A) become insufficient. If the amount is more than 100 g / l, the viscosity of the aqueous solution increases, and the polycondensation reaction and the reduction reaction do not proceed well.
[0018]
Water glass coexisting in the polycondensation reaction field also has the effect of neutralizing hydrogen halide generated during the polycondensation reaction and promoting the polycondensation reaction, but there are few diamines and water glass, and hydrogen halide To inhibit the progress, an acid acceptor such as sodium hydroxide may be added.
[0019]
The content of glass particles in the organic-inorganic composite (A) can be controlled by adjusting the concentration of water glass. The content of glass particles contained in the organic-inorganic composite (A) of the present invention is preferably in the range of 30 to 80% by mass, and more preferably in the range of 50 to 70% by mass, based on the total mass of the organic-inorganic composite (A). It is more preferable if there is. When the content of the glass particles is less than 30% by mass, the reinforcing effect of the glass particles on the organic-inorganic composite (A) is reduced, and the dimensional stability with respect to heating and pressure is reduced. If the content is more than 80% by mass, the polyamide as a binding component becomes insufficient.
[0020]
As described above, by mixing and stirring an organic solvent solution insoluble in water of an acid halide of a dicarboxylic acid and a water glass and an aqueous solution of a diamine, the acid halide of the dicarboxylic acid and the diamine are mixed. While condensing to produce polyamide, the alkali metal in the water glass acts as an acid acceptor, the water glass becomes solid glass particles, and the glass particles are dispersed in a polyamide matrix, and the organic-inorganic composite (A) can get.
[0021]
Since the organic-inorganic composite (A) has a low coefficient of linear thermal expansion, a cushioning material for a press containing the organic-inorganic composite (A) in a structural member has high dimensional stability. In particular, when the content of the organic-inorganic composite (A) in the structural member is 70% or more based on the total mass of the structural member, the effect of the present invention is remarkably exhibited.
[0022]
The shape of the organic-inorganic composite (A) used in the present invention is preferably a fiber having a width of 4 to 80 μm and a length of 100 μm or more. Since the organic-inorganic composite (A) having such a shape is excellent in confounding properties between the organic-inorganic composites (A) having the same shape or with another fiber-shaped material, the organic-inorganic composite having such a shape is included in a structural member. The cushioning material for a press containing (A) is less likely to cause a lack of constituent materials during hot pressing. Among them, those having a length of 100 to 1000 μm are particularly excellent in confounding properties.
[0023]
Here, the fiber shape means an elongated shape having a large ratio of length to width. The length of the organic-inorganic composite (A) refers to the maximum distance between two points on the outer periphery of the projected contour shape of the organic-inorganic composite (A), and the width is a line perpendicular to the length direction. Refers to the distance across.
[0024]
The fiber-shaped organic-inorganic composite (A) is obtained by mixing and stirring a solution in which an acid halide of a dicarboxylic acid is dissolved in an organic solvent incompatible with water and an aqueous solution of water glass and a diamine, and then performing interfacial polycondensation. In this case, the mixture is obtained by applying a shear stress to the mixture.
[0025]
As a method for producing the fiber-shaped organic-inorganic composite (A), an organic solvent solution insoluble in water of an acid halide of a dicarboxylic acid, water glass, and an aqueous solution of a diamine can be efficiently contacted. Any method can be used as long as it can apply shear stress to the generated reactant.Examples of the continuous production method include, for example, both solutions in a continuous reactor having a projection having a shearing ability on the reactor wall and stirring blades. To give a continuous shear stress to the solid content to be polymerized. Specific devices include "Fine Flow Mill FM-15" manufactured by Taiheiyo Kiko Co., Ltd., "Spiral Pin Mixer SPM-15" manufactured by Taiheiyo Kiko Co., Ltd. and "Dynamic Mixer DLM / S215" manufactured by INDAG Machinenbau Gmb. Is mentioned.
[0026]
As a batch-type production method, for example, by a multiaxial stirring device having a high-speed stirring blade having a high shear force and a stirring blade capable of mixing the entire contents of the reaction tank, pre-polymerization was performed with stirring only by the stirring blade. Thereafter, a method of stirring, polymerizing, and shearing the high-speed stirring blade may be used. As a specific device, a two-axis mixer “BDM-V-270V” manufactured by Inoue Seisakusho Co., Ltd., “Cornel Despar MHK-10” manufactured by Asada Tekko Co., Ltd., or “Combimix CBS-100” manufactured by Tokushu Kika Co., Ltd. And the like. When the product can be manually disintegrated, a single-shaft mixer having a strong shearing force can also be used. An example is a blender manufactured by Osterizer.
[0027]
The temperature at which the polyhalogenation reaction of the acid halide of the dicarboxylic acid with the diamine proceeds sufficiently in a temperature range of, for example, -5 to 70C.
[0028]
The organic-inorganic composite (A) produced by the above method has a fiber shape, and the average length in the major axis direction can be adjusted to about 30 μm to 30 cm by adjusting the peripheral speed of a stirring blade having a shearing ability. It is necessary to appropriately adjust the peripheral speed of the stirring blade according to the type and amount of the raw material to be used, or the apparatus to be used, but if the precipitated organic-inorganic composite (A) is classified, the width can be suitably used in the present invention. Is 4 to 80 μm, and the organic-inorganic composite (A) having a fiber shape with a length of 100 μm or more is obtained.
[0029]
The organic-inorganic composite (A) in the form of a fiber is excellent in confounding properties between the organic-inorganic composites (A) in the form or with other fiber materials. And a non-woven fabric can be easily obtained. As a method for producing a nonwoven fabric, for example, the organic-inorganic composite (A) having the above shape is converted into a wet cake having a water content of 80 to 90% by mass, and the wet cake is dispersed in a water bath. And hot pressing the paper. The nonwoven fabric obtained by this method can be suitably used as a structural member of a cushion material for press or a laminated cushion material for press having a thickness of about 1 to 7 mm.
[0030]
At the time of papermaking, a fiber binder such as poval or other fibers such as aramid, acrylic and polyester may coexist and be mixed. Above all, aramid fibers such as poly (p-phenylene terephthalamide) and poly (m-phenylene isophthalamide) exhibit good blendability with the fiber-shaped organic-inorganic composite (A) and have high strength. Therefore, the cushioning material for a press having a nonwoven fabric obtained by blending the fiber-shaped organic-inorganic composite (A) and the aramid fiber as a structural member has almost no missing components, and has excellent strength and dimensional stability. Is shown.
[0031]
The content of the aramid fiber contained in the nonwoven fabric is preferably in the range of 5 to 30% by mass based on the total mass of the cushioning material for press. When the content of the aramid fiber in the cushioning material for press is less than 5%, the effect on the strength becomes insufficient, and when it exceeds 30% by mass, the excellent dimensional stability of the organic-inorganic composite (A) has A sufficient improvement effect cannot be obtained.
[0032]
Since the cushioning material for press of the present invention exhibits excellent dimensional stability against heat and pressure during hot pressing, it can be used for manufacturing printed wiring boards and laminated boards such as decorative plywood for construction. It can be suitably used for a pressing step.
[0033]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples.
(Example 1)
Kishida Chemical Co., Ltd. "sodium silicate (No. 3) aqueous solution" (Na 2 O · 3.1SiO 2, water content 60 wt%) and 30g, the total amount that the 1,6-diaminohexane 4.64g dissolved in water A 300 ml aqueous solution was charged into an Osterizer blender bottle maintained at 30 ° C., and a total of 180 ml of an organic solvent solution in which 7.32 g of adipoyl chloride was dissolved in toluene while stirring the attached stirring blade at 5000 rpm. Was added all at once. After stirring for 2 minutes, the precipitate was filtered and washed with acetone and water to obtain a wet cake of an organic-inorganic composite in which glass particles were dispersed in a polyamide matrix (water content: 90% by mass).
[0034]
130 g of the obtained wet cake was dispersed in 1000 ml of water, the dispersion was filtered with a filter having a 100 μm opening, and the filtrate was dried at 50 ° C. to obtain a nonwoven fabric having a thickness of 40 μm (water content: 50% by mass). ) Got. One hundred nonwoven fabrics were stacked and heated and pressed by a hot press machine at 140 ° C. and 3 MPa to obtain a 2 mm thick cushioning material for press.
[0035]
(Example 2)
100 g of an organic-inorganic composite wet cake obtained by dispersing glass particles in a polyamide matrix obtained in Example 1 and a poly (p-phenylene terephthalamide) fiber “Kevlar” manufactured by DuPont (fiber length 3000 μm, fiber 3 g) were dispersed in 1000 ml of water, and the dispersion was filtered with a filter having an opening of 100 μm, and the filtrate was dried at 50 ° C. to obtain a nonwoven fabric having a thickness of 40 μm (water content: 50% by mass). Got. One hundred nonwoven fabrics were stacked and heated and pressed by a hot press machine at 140 ° C. and 3 MPa to obtain a 2 mm thick cushioning material for press.
[0036]
(Example 3)
Instead of 30 g of “aqueous sodium silicate (No. 3) solution” (Na 2 O · 3.1 SiO 2 , water content 60% by mass) manufactured by Kishida Chemical Co., Ltd. in Example 1, “sodium silicate (Kisida Chemical Co., Ltd.) No. 3) An organic-inorganic composite in which glass particles are dispersed in a polyamide matrix in the same manner as described in Example 1, except that 11 g of an aqueous solution (Na 2 O · 3.1 SiO 2 , water content: 60% by mass) is used. A wet cake (water content: 90% by mass) was obtained.
[0037]
100 g of the obtained wet cake and 3 g of poly (p-phenylene terephthalamide) fiber “Kevlar” (fiber length 3000 μm, fiber width 12 μm) manufactured by DuPont were dispersed in 1000 ml of water, and the dispersion was 100 μm-thick. Filtration was performed with an opening filter, and the filtrate was dried at 50 ° C. to obtain a nonwoven fabric having a thickness of 20 μm (water content: 50% by mass). Two hundred nonwoven fabrics were stacked and heated and pressed by a hot press machine at 140 ° C. and 3 MPa to obtain a 2 mm thick cushioning material for press.
[0038]
(Comparative Example 1)
A total of 300 ml of an aqueous solution obtained by dissolving 4.64 g of 1,6-diaminohexane in water was charged into an Osterizer blender bottle kept at 30 ° C., and the adipoil was stirred while the attached stirring blade was stirred at 5,000 rpm. A total of 180 ml of an organic solvent solution in which 7.32 g of chloride was dissolved in toluene was added at a time. After stirring for 2 minutes, the precipitate was filtered and washed with acetone and water to obtain a wet cake (water content: 90% by mass).
[0039]
130 g of the obtained wet cake was dispersed in 1000 ml of water, the dispersion was filtered with a filter having a 100 μm opening, and the filtrate was dried at 50 ° C. to obtain a nonwoven fabric having a thickness of 40 μm (water content: 50% by mass). ) Got. One hundred nonwoven fabrics were stacked and heated and pressed by a hot press machine at 140 ° C. and 3 MPa to obtain a 2 mm thick cushioning material for press.
[0040]
(Comparative Example 2)
8 g of rock wool fiber and 2 g of poly (p-phenylene terephthalamide) fiber “Kevlar” (fiber length 3000 μm, fiber width 12 μm) manufactured by DuPont are dispersed in 1000 ml of water, and the dispersion is filtered through a 100 μm aperture. The filtrate was dried at 50 ° C. to obtain a nonwoven fabric having a thickness of 40 μm (water content: 50%). One hundred nonwoven fabrics were stacked and heated and pressed by a hot press at 140 ° C. and 3 MPa to obtain a 2 mm thick cushioning material for press.
[0041]
The following items were measured for the cushioning materials for presses obtained in Examples 1 to 3 and Comparative Examples 1 and 2, and the obtained results are shown in Table 1.
[0042]
(1) Shape measurement of organic-inorganic composite The organic-inorganic composite in which glass particles are dispersed in a polyamide matrix obtained in the process of manufacturing a cushion material for press is dried, and an optical microscope “OPTI-POL” manufactured by Nikon Corporation is used. Was used to observe 100 organic-inorganic composites at a magnification of 200 times, the length and width of the organic-inorganic composite were measured, and the average value was calculated.
[0043]
(2) Particle Size Measurement of Glass Particles A sample having a thickness of 50 nm was prepared from a cushion material for press, and the obtained sample was observed with a transmission electron microscope “JEM-200CX” manufactured by JEOL Ltd. at a magnification of 100,000 times. , And the particle diameter of 100 glass particles was measured, and the average particle diameter was calculated.
[0044]
(3) Measurement of Content of Glass Particles A mass of about 1 g of a dried product of an organic-inorganic composite in which glass particles are dispersed in a polyamide matrix, obtained in the process of manufacturing a cushion material for press, is precisely weighed, and is weighed with air. The polyamide was calcined at 750 ° C. for 3 hours to completely burn out the polyamide. The mass after firing was measured and this was taken as the glass mass. From these values, the glass content (% by mass) was calculated by (Equation 1).
Glass content = (mass of glass / mass of organic-inorganic composite) × 100 (formula 1)
[0045]
(4) Measurement of linear thermal expansion coefficient Using a thermomechanical property measuring device “TMA-SS120C” manufactured by Seiko Denshi Kogyo Co., Ltd., the cushioning material for press was heated from 20 ° C. to 250 ° C. in air at a rate of 2 ° C./min. The temperature was raised and the coefficient of linear thermal expansion was measured.
[0046]
(5) Measurement of Warpage A 30 cm × 30 cm cushion material was hot-pressed with a hot press machine at 200 ° C. and 40 MPa for 2 hours, and then cooled to 30 ° C. and 0 MPa and depressurized 50 times. It was placed on a horizontal surface plate with no load with the convex surface facing upward, the distance L (cm) between the surface plate and the convex portion of the cushion material was measured, and the amount of warpage was calculated by (Equation 2).
Warpage = L / 30 × 100 (Equation 2)
[0047]
(5) Method of measuring the amount of missing components The components missing in the measurement of the amount of warpage in (4) above were weighed, and the amount of missing components relative to the initial mass before pressing was determined by mass%.
[0048]
[Table 1]
Figure 2004114497
[0049]
As is clear from Table 1, the cushioning material for presses of the present invention was obtained by blending the cushioning material for presses made of the polyamide containing no glass particles shown in Comparative Example 1 and the organic fibers and the inorganic fibers. It can be seen that it has a lower coefficient of linear thermal expansion than the cushioning material for a press, and the amount of warpage is small even after repeated hot pressing.
[0050]
【The invention's effect】
The cushioning material for press of the present invention has a low linear thermal expansion coefficient in a structural member, and contains an organic-inorganic composite in which fine glass particles are dispersed in a polyamide matrix, so that it can be heated or pressed during hot pressing. It exhibits excellent dimensional stability, and does not suffer from deformation such as expansion or warping even after repeated hot pressing.
[0051]
The organic-inorganic composite contained in the structural member has an average width of 4 to 80 μm and an average length of 100 μm or more. The cushioning material for press having a fiber shape has an excellent confounding property. Therefore, even if used repeatedly, there is almost no loss of the constituent material. Further, by mixing the organic-inorganic composite and the aramid fiber, the strength of the cushioning material for press is improved.

Claims (4)

ポリアミドマトリクス中にガラス粒子が分散した有機無機複合体を含有する構造部材からなることを特徴とするプレス用クッション材。A cushion material for press comprising a structural member containing an organic-inorganic composite in which glass particles are dispersed in a polyamide matrix. 前記ガラス粒子の平均粒子径が3〜300nmの範囲にある請求項1に記載のプレス用クッション材。The cushion material for press according to claim 1, wherein the average particle size of the glass particles is in a range of 3 to 300 nm. 前記構造部材中に含有される有機無機複合体が、平均幅4〜80μm、平均長さ100μm以上の繊維形状を有する請求項1に記載のプレス用クッション材。The cushioning material for press according to claim 1, wherein the organic-inorganic composite contained in the structural member has a fiber shape having an average width of 4 to 80 m and an average length of 100 m or more. 前記構造部材が、前記繊維形状を有する有機無機複合体とアラミド繊維とからなる不織布である請求項2に記載の有機無機複合体。The organic-inorganic composite according to claim 2, wherein the structural member is a non-woven fabric composed of the organic-inorganic composite having the fiber shape and aramid fiber.
JP2002280863A 2002-09-26 2002-09-26 Cushioning material for pressing Pending JP2004114497A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002280863A JP2004114497A (en) 2002-09-26 2002-09-26 Cushioning material for pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002280863A JP2004114497A (en) 2002-09-26 2002-09-26 Cushioning material for pressing

Publications (1)

Publication Number Publication Date
JP2004114497A true JP2004114497A (en) 2004-04-15

Family

ID=32275459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002280863A Pending JP2004114497A (en) 2002-09-26 2002-09-26 Cushioning material for pressing

Country Status (1)

Country Link
JP (1) JP2004114497A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173364A (en) * 2007-09-28 2013-09-05 Toray Ind Inc Method and device for manufacturing sheet having fine shape transferred thereon
JP2013231252A (en) * 2012-04-27 2013-11-14 Daio Paper Corp Heat-resistant cushion paper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013173364A (en) * 2007-09-28 2013-09-05 Toray Ind Inc Method and device for manufacturing sheet having fine shape transferred thereon
JP2013231252A (en) * 2012-04-27 2013-11-14 Daio Paper Corp Heat-resistant cushion paper

Similar Documents

Publication Publication Date Title
CN106519654B (en) Halogen-free fire-retarding reinforced polyamide composite material and preparation method
CN100523370C (en) Heat-resistant synthetic fiber sheet
CN101746769B (en) Polyamide sheet silicate compositions
TW446768B (en) Wholly aromatic polyamide fibers, a sheet comprising same and method of producing the sheet
TW201124456A (en) Organic/inorganic hybrid material and fabrication method thereof
JPH03505893A (en) Reinforced resin system for composite material applications
CN107829163A (en) Preparation method of modified polyamide composite fiber
Yu et al. Inorganic Ionic Oligomers Induced Organic‐Inorganic Synergistic Toughening Enabling Mechanical Robust and Recyclable Nanocomposite Hydrogels
JP2004114497A (en) Cushioning material for pressing
Ahmad et al. Thermal and mechanical properties of aramid‐based titania hybrid composites
US6063862A (en) Glass-polyamide composite and process for producing the same
EP0722987A1 (en) Polyamide solution composition and methods for producing fibrids and paper-like sheets using the same
JP2012067425A (en) Para-type wholly aromatic copolyamide fibrid and manufacturing method thereof
JP4224884B2 (en) Composite pulp-like particles, composite paper, and methods for producing them
JP4129656B2 (en) Method for producing a composite of silica and polyamide
CN101263180A (en) Soluble transparent polybenzoxazole precursor, polybenzoxazole and methods for producing those
JP4074916B2 (en) Organic-inorganic composite and method for producing the same
JPH08319420A (en) Polyamide solution composition and production of fibrid and papery sheet made therefrom
JPH0369289B2 (en)
JP3951378B2 (en) Method for producing composite of glass and polyamide
JP4129655B2 (en) Manufacturing method of polyamide filter
JPS6351430A (en) Polyamide and composition thereof
JPS62264916A (en) Manufacture of aromatic polyamide molded product
CN109320718A (en) A kind of high barrier transparent flexible display material and preparation method thereof
JP4406834B2 (en) Method for producing composite of organic polymer and glass and composite