JP4406834B2 - Method for producing composite of organic polymer and glass and composite - Google Patents

Method for producing composite of organic polymer and glass and composite Download PDF

Info

Publication number
JP4406834B2
JP4406834B2 JP2004133351A JP2004133351A JP4406834B2 JP 4406834 B2 JP4406834 B2 JP 4406834B2 JP 2004133351 A JP2004133351 A JP 2004133351A JP 2004133351 A JP2004133351 A JP 2004133351A JP 4406834 B2 JP4406834 B2 JP 4406834B2
Authority
JP
Japan
Prior art keywords
composite
glass
organic
inorganic
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004133351A
Other languages
Japanese (ja)
Other versions
JP2005314529A (en
Inventor
道也 中嶋
智 出村
俊裕 海老根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2004133351A priority Critical patent/JP4406834B2/en
Publication of JP2005314529A publication Critical patent/JP2005314529A/en
Application granted granted Critical
Publication of JP4406834B2 publication Critical patent/JP4406834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、有機ポリマーの中にガラスを有する有機無機複合体の製造方法及び該製造方法により得られる有機無機複合体に関する。 The present invention relates to a method for producing an organic-inorganic composite having glass in an organic polymer, and an organic-inorganic composite obtained by the production method.

有機ポリマーがもつ加工性、柔軟性等の特性と、ガラス等の無機物質が持つ耐熱性、耐摩耗性、表面硬度等の特性を付与することを目的として、無機微粒子を有機ポリマー内に複合化することは広く検討されている。この方法によって複合化の効果を十分に発揮するには、粒径が極力小さい無機微粒子を高い充填率で複合化することが好ましい。無機微粒子の粒径が小さくなると、無機粒子の重量当たりの表面積が大きくなり有機材料と無機材料との界面領域が広くなることで高い補強効果が期待できる(面積効果)。また、無機微粒子の充填率が高くなると、当然複合化の効果が大きくなる(体積効果)。   Compounding inorganic fine particles in organic polymer for the purpose of imparting properties such as processability and flexibility of organic polymer and heat resistance, abrasion resistance and surface hardness of inorganic substances such as glass. To do is widely studied. In order to sufficiently exhibit the effect of the compounding by this method, it is preferable to compound the inorganic fine particles having the smallest possible particle size at a high filling rate. When the particle size of the inorganic fine particles is reduced, the surface area per weight of the inorganic particles is increased, and the interface region between the organic material and the inorganic material is widened, so that a high reinforcing effect can be expected (area effect). In addition, as the filling rate of the inorganic fine particles increases, the compounding effect naturally increases (volume effect).

しかしながら有機無機複合体の有機ポリマー成分として用いられているのは、ポリアミドが大部分であり、他のポリマーを有機成分として用いる例は非常に少ない。ポリウレタンを用いた複合体については先行技術がすくなく、特許文献1や2等が知られる程度である。これらの特許文献による方法はいずれも金属アルコキシドを加水分解重縮合反応させて金属酸化物とする、いわゆるゾル−ゲル法を利用し、有機ポリマーにガラス等を複合化する方法であるが、加水分解、及び重縮合の反応にそれぞれ長時間を要するため製造効率が極めて低い問題点がある。例えば、特許文献1の実施例1では、目的の複合体を得るためには室温で1〜2日間の反応時間を要する。また、特許文献2の実施例中の製造例1では80℃で5時間の反応の後、さらに50℃で1時間の反応が必要とある。   However, most of the polyamides are used as the organic polymer component of the organic-inorganic composite, and there are very few examples of using other polymers as the organic component. There are few prior arts for composites using polyurethane, and only Patent Documents 1 and 2 are known. These methods according to the patent literature are methods in which a metal alkoxide is hydrolyzed and polycondensed to form a metal oxide, using a so-called sol-gel method, and a glass or the like is combined with an organic polymer. In addition, since the polycondensation reaction requires a long time, the production efficiency is extremely low. For example, in Example 1 of Patent Document 1, a reaction time of 1 to 2 days at room temperature is required to obtain the target complex. Moreover, in the manufacture example 1 in the Example of patent document 2, after reaction for 5 hours at 80 degreeC, reaction for 1 hour is further required at 50 degreeC.

加えて、これらのいずれの方法では溶媒に溶解した状態で有機無機複合体が得られるため、固体形状の複合体を得るためには、さらにキャスト等の方法により溶媒を除く必要がある。そのため、表面の被覆等に用いる塗工材料としては適しているが、それ以外の用途として用いるためには大変効率が悪い。また、ゾル−ゲル法で有機無機複合体を得るためにはゾル−ゲル反応を起こし得る金属アルコキシドが必須であるが、金属アルコキシド類は一般的に高価な材料であるため、複合体の高価格化は免れない。また、ポリ尿素を有機ポリマー成分として用いた有機無機複合体は現在まで提供されていない。 In addition, in any of these methods, since an organic-inorganic composite is obtained in a state dissolved in a solvent, it is necessary to further remove the solvent by a method such as casting in order to obtain a solid composite. Therefore, it is suitable as a coating material used for coating the surface, but is very inefficient for use in other applications. In addition, in order to obtain an organic-inorganic composite by the sol-gel method, a metal alkoxide capable of causing a sol-gel reaction is essential, but metal alkoxides are generally expensive materials, so that the price of the composite is high. Conversion is inevitable. Moreover, an organic-inorganic composite using polyurea as an organic polymer component has not been provided so far.

上記の問題を避けるために、いわゆる溶融混練法により有機ポリマーに無機材料を強制的に混合することで複合体を製造する方法が知られている。しかし、無機材料と有機ポリマーとは表面特性、比重、熱不溶性、薬品不溶性の点で本質的に異なるため、無機材料を均一に高い充填率で微分散状態にするのが極めて困難である。加えて、ナノメートルオーダーの無機微粒子は通常高価な上、飛散等の恐れがあり取り扱い性が悪い。   In order to avoid the above problem, a method of manufacturing a composite by forcibly mixing an inorganic material with an organic polymer by a so-called melt-kneading method is known. However, since the inorganic material and the organic polymer are essentially different in terms of surface characteristics, specific gravity, heat insolubility, and chemical insolubility, it is extremely difficult to make the inorganic material in a finely dispersed state with a uniform and high filling rate. In addition, nanometer-order inorganic fine particles are usually expensive and may be scattered, resulting in poor handling.

特開平9−291131JP-A-9-291131 特開2000−63661JP 2000-63661 A

本発明の課題は、ポリウレタンおよびポリ尿素とからなる群から選ばれる少なくとも1種の有機ポリマーとガラスの有機無機複合体を、無機成分であるガラスの原料を高価なアルコキシド類ではなく安価な珪酸アルカリを用い、且つ常圧室温下の短時間の反応で容易に固体形状の複合体を得ることができる製造方法を提供することにある。   An object of the present invention is to provide an organic / inorganic composite of glass and at least one organic polymer selected from the group consisting of polyurethane and polyurea, a glass raw material that is an inorganic component, not an expensive alkoxide, but an inexpensive alkali silicate Another object of the present invention is to provide a production method capable of easily obtaining a solid-state complex by a short-time reaction at normal pressure and room temperature.

すなわちジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物を有機溶媒に溶解した有機溶液(A)と、珪酸アルカリおよびジアミンを水に溶解した水溶液(B)とを接触させる有機無機複合体の製造方法を提供する。 Namely, an organic solution (A) in which one compound selected from the group consisting of a dichloroformate compound and a phosgene compound is dissolved in an organic solvent and an aqueous solution (B) in which an alkali silicate and a diamine are dissolved in water are brought into contact with each other. A method for producing an inorganic composite is provided.

また本発明は、前記製造方法により得られるポリウレタンおよびポリ尿素からなる群から選ばれる少なくとも1種の有機ポリマーと、ガラスとの複合体であって、ガラスの含有率が10〜80質量%であり、ガラスの平均粒径が500nm以下である有機無機複合体を提供する。 Further, the present invention is a composite of at least one organic polymer selected from the group consisting of polyurethane and polyurea obtained by the above production method and glass, wherein the glass content is 10 to 80% by mass. An organic-inorganic composite having an average particle size of glass of 500 nm or less is provided.

本発明の有機無機複合体の製造方法により、ポリウレタン、ポリ尿素からなる群から選ばれる少なくとも1種の有機ポリマーとガラスの有機無機複合体を、無機成分の原料を極めて安価な珪酸ナトリウムを用い、且つ常圧室温下の30分間以下の短い攪拌操作1ステップのみの反応で固体形状を容易に得ることができる。
また、本発明の製造方法で得られる有機無機複合体は、無機成分としてのガラスを10〜80質量%の高い含有率で、且つ平均粒径が500nm以下の微粒子状態で均一に含有することができる。
According to the method for producing an organic-inorganic composite of the present invention, an organic-inorganic composite of glass and at least one organic polymer selected from the group consisting of polyurethane and polyurea, and a very inexpensive sodium silicate as an inorganic component raw material, In addition, a solid form can be easily obtained by a reaction of only one short stirring operation for 30 minutes or less at normal pressure and room temperature.
In addition, the organic-inorganic composite obtained by the production method of the present invention may contain glass as an inorganic component uniformly in a fine particle state with a high content of 10 to 80% by mass and an average particle size of 500 nm or less. it can.

以下、本発明について詳細に説明する。
<有機無機複合体の製造方法>
本発明の有機無機複合体の製造方法は、ジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物を有機溶媒に溶解した有機溶液(A)と、珪酸アルカリおよびジアミンを水に溶解した水溶液(B)とを混合攪拌し、反応させることにより、ポリウレタンおよびポリ尿素から選ばれる少なくとも1種の有機ポリマーとガラスとの複合体を製造するものである。
Hereinafter, the present invention will be described in detail.
<Method for producing organic-inorganic composite>
The organic-inorganic composite manufacturing method of the present invention includes an organic solution (A) in which one compound selected from the group consisting of a dichloroformate compound and a phosgene compound is dissolved in an organic solvent, and an alkali silicate and a diamine in water. The dissolved aqueous solution (B) is mixed and stirred and reacted to produce a composite of at least one organic polymer selected from polyurethane and polyurea and glass.

(複合体合成工程)
複合体合成工程においては、例えば、常温、常圧下で数分〜30分程度の攪拌操作により、有機溶液(A)中のモノマーと水溶液(B)中のジアミンとが迅速に重縮合し、有機ポリマーが収率よく得られる。この際、珪酸アルカリ中のアルカリ金属が、モノマーとジアミンとの重縮合の際に発生するハロゲン化水素の除去剤として作用することで有機ポリマーの生成を促進する。本反応と同時に、珪酸アルカリはガラスへと転化することで有機溶液や水に不溶化し、固体として析出する。さらにこの際、モノマーとジアミンとの重縮合による有機ポリマーの生成と、ガラスの析出とは、どちらか一方のみが生じることはなく平行して起こるため、ナノメートルオーダーのガラスが有機ポリマーに微分散した複合体が得られる。また、本反応により固体化したガラスは原料である珪酸アルカリより、アルカリ金属の大部分が除去されたシリカ(酸化ケイ素)ガラスとして複合体中に存在する。このように本発明で得られる複合体は、単に有機ポリマーとガラス粉末とを混ぜ合わせた混合物とは本質的に異なるものである。また、いわゆるゾル−ゲル法によって得られる、有機材料と無機化合物ゲルとの複合体とも異なるものである。
本発明の製造法によると、ガラスの含有率が10〜80質量%で、ガラスの平均粒径が500nm以下である有機無機複合体を作製することができる。
ガラスの含有率は好ましくは、15〜70質量%、更に好ましくは20〜60質量%である。また、ガラスの平均粒径は好ましくは250nm以下であり、更に好ましくは100nm以下であり、特に好ましくは50nm以下である。
(Composite synthesis process)
In the complex synthesis step, for example, the monomer in the organic solution (A) and the diamine in the aqueous solution (B) are rapidly polycondensed by an agitation operation at room temperature and normal pressure for several minutes to 30 minutes, and organic A polymer is obtained with good yield. Under the present circumstances, the production | generation of an organic polymer is accelerated | stimulated because the alkali metal in an alkali silicate acts as a removal agent of the hydrogen halide generate | occur | produced in the case of the polycondensation of a monomer and diamine. Simultaneously with this reaction, the alkali silicate is insolubilized in an organic solution or water by being converted into glass and precipitated as a solid. Furthermore, at this time, the formation of organic polymer by polycondensation of monomer and diamine and the precipitation of glass do not occur either, but occur in parallel, so nanometer order glass is finely dispersed in organic polymer. The resulting composite is obtained. Moreover, the glass solidified by this reaction exists in the composite as silica (silicon oxide) glass from which most of the alkali metal has been removed from the alkali silicate which is the raw material. Thus, the composite obtained by the present invention is essentially different from a mixture obtained by simply mixing an organic polymer and glass powder. It is also different from a composite of an organic material and an inorganic compound gel obtained by a so-called sol-gel method.
According to the production method of the present invention, an organic-inorganic composite having a glass content of 10 to 80% by mass and an average particle size of glass of 500 nm or less can be produced.
The glass content is preferably 15 to 70% by mass, more preferably 20 to 60% by mass. The average particle size of the glass is preferably 250 nm or less, more preferably 100 nm or less, and particularly preferably 50 nm or less.

有機溶液(A)中のジクロロホーメート化合物としては、例えば、1,2−エタンジオール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,8−オクタンジオール等の脂肪族ジオール類の水酸基を全てホスゲン化処理によりクロロホーメート化したもの;レゾルシン(1,3−ジヒドロキシベンゼン)、ヒドロキノン(1,4−ジヒドロキシベンゼン)、1,6−ジヒドロキシナフタレン、2,2’−ビフェノール、ビスフェノールS、ビスフェノールA、テトラメチルビフェノール等、1個または2個以上の芳香環に水酸基を2個持つ2価フェノール類の水酸基を全てホスゲン化処理によりクロロホーメート化したものが挙げられる。これらは単独で、または2種以上を組み合わせて使用することができる。   Examples of the dichloroformate compound in the organic solution (A) include 1,2-ethanediol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, and 1,8-octanediol. All the hydroxyl groups of aliphatic diols such as chlorogenated by phosgenation treatment; resorcin (1,3-dihydroxybenzene), hydroquinone (1,4-dihydroxybenzene), 1,6-dihydroxynaphthalene, 2, 2'-biphenol, bisphenol S, bisphenol A, tetramethylbiphenol, etc., all of the hydroxyl groups of dihydric phenols having two hydroxyl groups on one or more aromatic rings are chlorogenated by phosgenation treatment Can be mentioned. These can be used alone or in combination of two or more.

有機溶液(A)中のホスゲン系化合物としては、例えばホスゲン、ジホスゲンおよびトリホスゲンを挙げることができる。これらは単独で、または両種を組み合わせて使用することができる。
本発明においては、有機溶液(A)中のモノマーを選択することにより、複合体のマトリクスである有機ポリマーの種類を変えることができる。モノマーとしてジクロロホーメート化合物を用いた場合はポリウレタンを、ホスゲン系化合物を用いた場合にはポリ尿素を、水溶液(B)中のジアミンとの反応によって得ることができる。
Examples of the phosgene compound in the organic solution (A) include phosgene, diphosgene and triphosgene. These may be used alone or in combination of both species.
In the present invention, by selecting a monomer in the organic solution (A), the type of the organic polymer that is the matrix of the complex can be changed. When a dichloroformate compound is used as a monomer, polyurethane can be obtained, and when a phosgene compound is used, polyurea can be obtained by reaction with a diamine in the aqueous solution (B).

有機溶液(A)に用いる有機溶媒としては、上記各種モノマーやジアミンとは反応せず、有機溶液(A)中の各種モノマーを溶解させるものであれば特に制限なく用いることができる。このうち水と非相溶なものとしては、トルエン、キシレン等の芳香族炭化水素類、n−ヘキサン等の脂肪族炭化水素類、クロロホルム、塩化メチレン等のハロゲン化炭化水素類、シクロヘキサン等の脂環式炭化水素類を、水と相溶するものとしては、テトラヒドロフラン等のエーテル類、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸プロピル等の酢酸アルキルなどを代表的な例として挙げることができる。   The organic solvent used in the organic solution (A) can be used without particular limitation as long as it does not react with the various monomers and diamines and dissolves the various monomers in the organic solution (A). Among these, those incompatible with water include aromatic hydrocarbons such as toluene and xylene, aliphatic hydrocarbons such as n-hexane, halogenated hydrocarbons such as chloroform and methylene chloride, and fats such as cyclohexane. Typical examples of the cyclic hydrocarbons that are compatible with water include ethers such as tetrahydrofuran, ketones such as acetone and methyl ethyl ketone, and alkyl acetates such as ethyl acetate and propyl acetate. .

水溶液(B)中のジアミンとしては、有機溶液(A)中の各モノマーと反応し、有機ポリマーを生成するものであれば特に制限なく用いることができる。具体的には、1,2−ジアミノエタン、1,3−ジアミノプロパン、1,4−ジアミノブタン、1,6−ジアミノヘキサン、1,8−ジアミノオクタンなどの脂肪族ジアミン;m−キシリレンジアミン、p−キシリレンジアミン、m−フェニレンジアミン、p−フェニレンジアミン、1,5−ジアミノナフタレン、1,8−ジアミノナフタレン、2,3−ジアミノナフタレンなどの芳香族ジアミン;あるいは芳香環の水素をハロゲン原子、ニトロ基、またはアルキル基などで置換した芳香族ジアミンなどが例として挙げられる。これらは単独で、または2種以上を組み合わせて用いてもよい。   The diamine in the aqueous solution (B) can be used without particular limitation as long as it reacts with each monomer in the organic solution (A) to produce an organic polymer. Specifically, aliphatic diamines such as 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane, 1,8-diaminooctane; m-xylylenediamine , P-xylylenediamine, m-phenylenediamine, p-phenylenediamine, 1,5-diaminonaphthalene, 1,8-diaminonaphthalene, 2,3-diaminonaphthalene, and other aromatic diamines; Examples include aromatic diamines substituted with atoms, nitro groups, alkyl groups, and the like. These may be used alone or in combination of two or more.

有機溶液(A)中のモノマー濃度、および水溶液(B)中のジアミン濃度は、重縮合反応が十分に進行すれば特に制限されないが、各々のモノマー同士を良好に接触させる観点から、0.01〜3モル/Lの濃度範囲、特に0.05〜1モル/Lが好ましい。   The monomer concentration in the organic solution (A) and the diamine concentration in the aqueous solution (B) are not particularly limited as long as the polycondensation reaction proceeds sufficiently, but from the viewpoint of bringing each monomer into good contact, 0.01 A concentration range of ˜3 mol / L, particularly 0.05 to 1 mol / L is preferred.

水溶液(B)中の珪酸アルカリとしては、JIS K 1408に記載された水ガラス1号、2号、3号などのA2O・nSiO2の組成式で表されるもの等が挙げられる。ここで、Aはアルカリ金属、nの平均値は1.8〜4である。また、nの平均値が0.8〜1.1である、メタ珪酸アルカリ等(例えばメタ珪酸ナトリウム1種、2種)も用いることができる。珪酸アルカリに含まれるアルカリ金属化合物が有機溶液(A)中のモノマーと水溶液(B)中のジアミンとが重縮合する際に発生する酸の除去剤として作用することで、水ガラス(珪酸アルカリ)は、モノマーとジアミンとの重縮合を促進すると同時に、極性溶媒に不溶の固体ガラス(シリカ)に転化することで複合体を構成する無機化合物の原料ともなる。 Examples of the alkali silicate in the aqueous solution (B) include those represented by the composition formula of A 2 O · nSiO 2 such as water glass No. 1, No. 2, No. 3, etc. described in JIS K 1408. Here, A is an alkali metal, and the average value of n is 1.8-4. Moreover, an alkali metal silicate etc. (for example, sodium metasilicate 1 type, 2 types) whose average value of n is 0.8-1.1 can also be used. Water glass (alkali silicate) by acting as a remover of the acid generated when the alkali metal compound contained in the alkali silicate is polycondensed between the monomer in the organic solution (A) and the diamine in the aqueous solution (B) Promotes the polycondensation of the monomer and the diamine, and at the same time becomes a raw material for the inorganic compound constituting the composite by being converted to solid glass (silica) insoluble in the polar solvent.

本発明では、有機溶液(A)中のモノマー(ジクロロホーメート化合物、ホスゲン系化合物)と水溶液(B)中のジアミンとの反応は、ジカルボン酸ハロゲン化物とジアミンとの混合によりポリアミドを合成する反応に比べ反応性がやや低い。そのため水に溶解したときに、高いpHを示す珪酸アルカリを水溶液(B)の成分として用いることで、本発明による反応を促進し高収率で複合体を得ることができる。このような材料としては、上記nの平均値が2以下の珪酸アルカリである、水ガラス1号やメタ珪酸アルカリが特に好ましく用いられる。 In the present invention, the reaction of the monomer (dichloroformate compound, phosgene compound) in the organic solution (A) and the diamine in the aqueous solution (B) is a reaction for synthesizing polyamide by mixing a dicarboxylic acid halide and a diamine. Reactivity is slightly lower than. Therefore, by using an alkali silicate having a high pH as a component of the aqueous solution (B) when dissolved in water, the reaction according to the present invention can be promoted and a complex can be obtained in a high yield. As such a material, water glass No. 1 or alkali metasilicate, which is an alkali silicate having an average value of n of 2 or less, is particularly preferably used.

水溶液(B)中の珪酸アルカリの濃度は、有機溶液(A)中のモノマー濃度および水溶液(B)中のジアミン濃度によってある程度は決定されるが、複合体の高収率を維持し、かつ重縮合時の過剰な発熱により生じうる有機溶液(A)中のモノマーと水との副反応を防止する理由より、1〜200g/Lが望ましい。   The concentration of the alkali silicate in the aqueous solution (B) is determined to some extent by the monomer concentration in the organic solution (A) and the diamine concentration in the aqueous solution (B), but maintains a high yield of the complex and is heavy. 1-200 g / L is desirable for the reason of preventing the side reaction of the monomer and water in the organic solution (A) that may be generated due to excessive heat generation during the condensation.

珪酸アルカリは、ポリウレタンやポリ尿素の重縮合反応時に生じるハロゲン化水素を中和して重縮合反応を促進させる作用も有するため、これらの配合量が少なく、生じるハロゲン化水素が重縮合反応の進行を阻害する場合には、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムなどの酸受容体を水溶液(B)に添加してもよく、上記酸受容体の溶液を合成系に後添加してもよい。   Alkali silicate has the effect of accelerating the polycondensation reaction by neutralizing the hydrogen halide produced during the polycondensation reaction of polyurethane or polyurea, so the amount of these compounds is small, and the resulting hydrogen halide proceeds in the polycondensation reaction. In the case of inhibiting the acid acceptor, an acid acceptor such as sodium hydroxide, potassium hydroxide, sodium carbonate or potassium carbonate may be added to the aqueous solution (B), and the acid acceptor solution is added to the synthesis system after the addition. May be.

複合体の製造に用いられる製造装置としては、有機溶液(A)と水溶液(B)とを良好に接触させることができる装置であればとくに限定されず、連続式、バッチ式のいずれの方式でも可能である。しかしながら、重縮合反応には数分〜30分の時間を要するため、十分な反応時間を確保するためバッチ式攪拌装置を用いることが好ましい。バッチ式の装置としては、有機溶液(A)と水溶液(B)との接触を良好に行わせる必要があるので、プロペラ状翼、マックスブレンド翼、ファウドラー翼等を持つような汎用の攪拌装置を用いることができる。   The production apparatus used for production of the composite is not particularly limited as long as it is an apparatus that can satisfactorily contact the organic solution (A) and the aqueous solution (B). Is possible. However, since the polycondensation reaction takes several minutes to 30 minutes, it is preferable to use a batch type stirring device in order to ensure a sufficient reaction time. As a batch-type device, it is necessary to make good contact between the organic solution (A) and the aqueous solution (B). Therefore, a general-purpose stirring device having a propeller blade, a Max blend blade, a Faudler blade, etc. Can be used.

有機溶液(A)中のモノマーと水溶液(B)中のジアミンとの重縮合反応は、例えば−10〜50℃の常温付近の温度範囲で十分に進行する。したがって、有機溶液(A)と水溶液(B)とを接触させる温度は、−10〜50℃の常温付近の温度範囲とされる。この際、加圧、減圧も必要としない。また、重縮合反応は、用いるモノマー種や反応装置にもよるが、通常30分以下で完結する。   The polycondensation reaction between the monomer in the organic solution (A) and the diamine in the aqueous solution (B) proceeds sufficiently in a temperature range of, for example, −10 to 50 ° C. near room temperature. Therefore, the temperature at which the organic solution (A) and the aqueous solution (B) are brought into contact with each other is set to a temperature range of about −10 to 50 ° C. near room temperature. At this time, neither pressurization nor decompression is required. The polycondensation reaction is usually completed in 30 minutes or less, depending on the type of monomer used and the reaction apparatus.

(有機無機複合体の用途)
本発明により得られた有機無機複合体は、高い無機分率を有しているため、各々の複合体が有している有機成分に相当するポリマーに混練、分散させることによりポリマーの補強剤として用いることができる。また、該複合体は有機成分に起因する加工性を有するため加圧成型することができ、各種構造材として用いることもできる。また、該複合体は高い無機分率と有機成分が有する極性基により、極性溶媒を多量(複合体の自重に対して10倍以上)に保持する、極性溶媒吸収体としても用いることができる。また、特に極性溶媒が電解液である場合は、電解液を保持した電池セパレータ、キャパシタのセパレータ、エレクトロクロミック型表示素子のセパレータ等の電気化学ディバイスとしても用いることができる。
(Use of organic-inorganic composite)
Since the organic-inorganic composite obtained by the present invention has a high inorganic fraction, it can be used as a polymer reinforcing agent by kneading and dispersing in a polymer corresponding to the organic component of each composite. Can be used. Further, since the composite has processability due to organic components, it can be pressure-molded and can be used as various structural materials. Further, the composite can also be used as a polar solvent absorber that holds a large amount of polar solvent (10 times or more with respect to the weight of the composite) due to the high inorganic fraction and the polar group of the organic component. In particular, when the polar solvent is an electrolytic solution, it can also be used as an electrochemical device such as a battery separator holding the electrolytic solution, a capacitor separator, or a separator of an electrochromic display element.

特に有機ポリマー成分がポリ尿素である場合には、各種原料として極めて広範囲にて用いられるホスゲンを使用して合成できるため、ホスゲンを使用可能な設備さえ有していれば安価に製造することができる。また、上記用途のうち、特に極性溶媒吸収体や、電解液保持体として用いる場合には、極性基である尿素結合が全複合体重量に対して多量に存在するため、極性溶媒の保持量を特に高くすることができ、好適に用いることができる。   In particular, when the organic polymer component is polyurea, it can be synthesized using phosgene, which is used in a very wide range as various raw materials. . In addition, among the above uses, particularly when used as a polar solvent absorber or an electrolyte solution holder, a large amount of the urea bond, which is a polar group, is present with respect to the total complex weight. It can be made particularly high and can be used suitably.

以下に実施例を用いて本発明を更に具体的に説明する。特に断らない限り、「部」は「質量部」を表す。   Hereinafter, the present invention will be described more specifically with reference to examples. Unless otherwise specified, “part” means “part by mass”.

(実施例1:ガラス/ポリ尿素複合体の合成)
イオン交換水38.5部に1,6−ジアミノヘキサン1.58部、水ガラス1号5.37部を加え、25℃で15分間攪拌し、均質透明な水溶液(B)を得た。室温下でこの水溶液(B)を300mlセパラフラスコ中に仕込み、アンカー翼を用いて毎分300回転で攪拌しながら、トリホスゲン1.34部をトルエン44.4部に溶解させた有機溶液(A)を20秒かけて滴下した。攪拌開始後5分後より白色のポリマー状物が徐々に析出しだした。15分以降は析出ポリマー量に増加は見られなかったため、攪拌開始後25分で合成操作を終了した。この操作で得られた白色生成物が分散した液を、直径90mmのヌッチェを用い目開き4μmのろ紙上で減圧濾過した。ヌッチェ上の生成物をメタノール100部に分散させスターラーで30分間攪拌し減圧濾過することで洗浄処理を行った。引き続き同様な洗浄操作を蒸留水100部を用いて行い減圧濾過することで、純白色のガラス/ポリ尿素複合体のウエットケーキを得た。
(Example 1: Synthesis of glass / polyurea composite)
1.56 parts of 1,6-diaminohexane and 5.37 parts of water glass No. 1 were added to 38.5 parts of ion-exchanged water, and the mixture was stirred at 25 ° C. for 15 minutes to obtain a homogeneous transparent aqueous solution (B). An organic solution (A) in which 1.34 parts of triphosgene was dissolved in 44.4 parts of toluene while the aqueous solution (B) was charged into a 300 ml Separa flask at room temperature and stirred at 300 revolutions per minute using an anchor blade. Was added dropwise over 20 seconds. A white polymer started to gradually precipitate from 5 minutes after the start of stirring. Since no increase was observed in the amount of precipitated polymer after 15 minutes, the synthesis operation was completed 25 minutes after the start of stirring. The liquid in which the white product obtained by this operation was dispersed was filtered under reduced pressure on a filter paper having an opening of 4 μm using a Nutsche having a diameter of 90 mm. The product on Nutsche was dispersed in 100 parts of methanol, stirred for 30 minutes with a stirrer, and filtered under reduced pressure for washing treatment. Subsequently, the same washing operation was performed using 100 parts of distilled water, followed by filtration under reduced pressure to obtain a wet cake of pure white glass / polyurea composite.

(実施例2:ガラス/ポリウレタン複合体の合成)
(ジクロロホーメート化合物の合成)
1.4−ブタンジオール2.583部にトリホスゲン2.835部を加え常温下で30分間攪拌することで、トリホスゲンを完全に溶解させた。さらにトリホスゲンを3.000g加え常温で30分間攪拌することで、粘調な淡黄色の透明液体を得た。該液体を攪拌しつつ0.02MPaで3時間減圧処理することで、残存した過剰のトリホスゲン及び、ジオールがホスゲン系化合物によりクロロホーメート化する際に発生する塩酸を除去した。以上の操作により、1.4ブタンジオールの両末端をクロロホーメート化した、ブタン−ビス−クロルギ酸エステルを得た。
(ガラス/ポリウレタン複合体の合成)
有機溶液(A)として、ブタン−ビス−クロルギ酸エステル2.924部にトルエン44.4部を溶解させたものを用いた以外は、実施例1に記載した方法と同様にして、純白色のガラス/ポリウレタン複合体複合体のウエットケーキを得た。
(Example 2: Synthesis of glass / polyurethane composite)
(Synthesis of dichloroformate compound)
Triphosgene 2.835 parts was added to 2.583 parts of 1.4-butanediol and stirred for 30 minutes at room temperature to completely dissolve the triphosgene. Further, 3.000 g of triphosgene was added and stirred at room temperature for 30 minutes to obtain a viscous light yellow transparent liquid. The liquid was subjected to reduced pressure treatment at 0.02 MPa for 3 hours while stirring to remove the remaining excess triphosgene and hydrochloric acid generated when the diol was chloroformated with the phosgene compound. By the above operation, butane-bis-chloroformate ester in which both ends of 1.4 butanediol were chloroformated was obtained.
(Synthesis of glass / polyurethane composite)
As the organic solution (A), a pure white solution was used in the same manner as in Example 1 except that 2.924 parts of butane-bis-chloroformate was dissolved in 44.4 parts of toluene. A wet cake of a glass / polyurethane composite was obtained.

(比較例1)
(比較例1:溶融混練法により作成したガラス/ポリ尿素複合体)
(ガラスを含まないポリ尿素の合成)
水溶液(B)中の水ガラス1号の替わりに水酸化ナトリウム1.247部を用いた以外は実施例1と同様な方法で合成をおこなうことで、無機成分を一切含まないポリ尿素ウエットケーキを得た。得られたポリ尿素ウエットケーキを120℃で2時間乾燥させ、乾燥ポリ尿素を得た。このようにして得られたポリ尿素10部と平均粒径100nmの酸化ケイ素(シリカ)粉末5.0部とを、ツバコー製小型2軸押し出し機MP2015中で200℃で溶融混練することで、ペレット状の有機無機複合体を得た。混練操作に先立つ原料仕込み操作は、酸化ケイ素の粒径が極めて小さいことによる粉体の飛散が生じやすく極めて困難であった。
<各種複合体の材料特性の評価>
上記操作で得られた複合体について、以下の項目の測定行い、得られた結果を表1に示した。
(Comparative Example 1)
(Comparative Example 1: Glass / polyurea composite prepared by melt kneading method)
(Synthesis of glass-free polyurea)
A polyurea wet cake containing no inorganic components was prepared by synthesizing in the same manner as in Example 1 except that 1.247 parts of sodium hydroxide was used instead of water glass No. 1 in the aqueous solution (B). Obtained. The obtained polyurea wet cake was dried at 120 ° C. for 2 hours to obtain a dried polyurea. 10 parts of polyurea thus obtained and 5.0 parts of silicon oxide (silica) powder having an average particle diameter of 100 nm are melt-kneaded at 200 ° C. in a small twin screw extruder MP2015 made by Tsubako, thereby producing pellets. An organic-inorganic composite was obtained. The raw material charging operation prior to the kneading operation is extremely difficult because the powder is likely to be scattered due to the extremely small particle size of silicon oxide.
<Evaluation of material properties of various composites>
The composite obtained by the above operation was measured for the following items, and the results obtained are shown in Table 1.

(1)無機化合物含有率(灰分)の測定法:
各材料に含まれる無機化合物の含有率の測定法は以下の通りである。
各材料を120℃で2時間空気中で絶乾させることで、乾燥複合体を得た。これを精秤(複合体質量)したのち、空気中、600℃で3時間焼成し、有機ポリマー成分を完全に焼失させ、焼成後の質量を測定し灰分質量(=ガラス質量)とした。下式によりガラス含有率を算出した。
ガラス含有率(質量%)=(灰分質量/複合体質量)×100
実施例1,2で得られた複合体では焼成により有機ポリマーを除去しても、焼成前の形状を維持したのに対し、比較例1で得られた複合体では、原型を留めていなかった。
(1) Measuring method of inorganic compound content (ash content):
The measuring method of the content rate of the inorganic compound contained in each material is as follows.
Each material was completely dried in air at 120 ° C. for 2 hours to obtain a dry composite. This was precisely weighed (composite mass) and then calcined in air at 600 ° C. for 3 hours to completely burn off the organic polymer component, and the mass after firing was measured to obtain the ash mass (= glass mass). The glass content was calculated from the following formula.
Glass content (mass%) = (mass ash / composite mass) × 100
In the composites obtained in Examples 1 and 2, even when the organic polymer was removed by firing, the shape before firing was maintained, whereas in the composite obtained in Comparative Example 1, the prototype was not retained. .

(2)複合体中の無機化合物の粒径測定および分散状態の観察:
複合体を170℃、20MPa/cm2 の条件で2時間熱プレスを行い、厚さ約1mmの複合体からなる薄片を得た。これをマイクロトームを用いて厚さ75nmの超薄切片とした。得られた切片を日本電子社製透過型電子顕微鏡「JEM−200CX」にて100000倍の倍率で観察した。実施例1および2ではガラスは暗色の像として、明るい有機ポリマーに微分散しているのが観察された。一方、比較例1では、ガラスは大部分の粒子が凝集体を作り、1μm以上の粗大粒子としてポリマー中に存在していることが観察された。図1は、ガラス/ポリ尿素複合体の透過型電子顕微鏡写真であり、図2は、ガラス/ポリウレタン複合体の透過型電子顕微鏡写真である。
(2) Measurement of particle size of inorganic compound in composite and observation of dispersion state:
The composite was hot-pressed for 2 hours under conditions of 170 ° C. and 20 MPa / cm 2 to obtain a flake made of the composite having a thickness of about 1 mm. This was made into an ultrathin section having a thickness of 75 nm using a microtome. The obtained section was observed with a transmission electron microscope “JEM-200CX” manufactured by JEOL Ltd. at a magnification of 100,000. In Examples 1 and 2, it was observed that the glass was finely dispersed in a bright organic polymer as a dark image. On the other hand, in Comparative Example 1, it was observed that most particles formed aggregates in the glass and existed in the polymer as coarse particles of 1 μm or more. FIG. 1 is a transmission electron micrograph of a glass / polyurea composite, and FIG. 2 is a transmission electron micrograph of the glass / polyurethane composite.

続いて、100個のガラス粒子の粒径を測定し、その平均値を無機化合物平均粒径とした。本観察においては、実施例1および2の複合体では100nm以下の粒径の無機化合物(シリカ)が網目状、すなわち3次元的にネットワークを形成し有機ポリマー中に微分散しているのが観察された。   Subsequently, the particle size of 100 glass particles was measured, and the average value was defined as the average particle size of the inorganic compound. In this observation, it is observed that in the composites of Examples 1 and 2, the inorganic compound (silica) having a particle size of 100 nm or less is network-like, that is, a three-dimensional network is formed and finely dispersed in the organic polymer. It was done.

Figure 0004406834

表1で示された通り、比較例1では平均粒径100nmの酸化ケイ素粉末を使用したにもかかわらず、混練の工程でガラス成分の凝集が生じ、ナノメートルオーダーの複合を行うことができなかった。一方、実施例1及び実施例2に示されたとおり、本発明によってナノメートルオーダーであるガラス微粒子を、50wt%以上の高い含有率で有する有機無機複合体を得ることができた。また本発明では、以上の特徴を持つ有機無機複合体を、常温常圧下で30分以下の短時間の操作で得ることができた。
Figure 0004406834

As shown in Table 1, in Comparative Example 1, although silicon oxide powder having an average particle diameter of 100 nm was used, aggregation of glass components occurred in the kneading process, and nanometer order composite could not be performed. It was. On the other hand, as shown in Example 1 and Example 2, according to the present invention, an organic-inorganic composite having glass fine particles of nanometer order at a high content of 50 wt% or more could be obtained. Further, in the present invention, an organic-inorganic composite having the above characteristics could be obtained by a short time operation of 30 minutes or less under normal temperature and pressure.

ガラス/ポリ尿素複合体の透過型電子顕微鏡写真である。2 is a transmission electron micrograph of a glass / polyurea composite. ガラス/ポリウレタン複合体の透過型電子顕微鏡写真であるIt is a transmission electron micrograph of a glass / polyurethane composite.

Claims (2)

ジクロロホーメート化合物およびホスゲン系化合物からなる群から選ばれる1種の化合物を有機溶媒に溶解した有機溶液(A)と、珪酸アルカリおよびジアミンを水に溶解した水溶液(B)とを混合攪拌し、反応させることにより得られる、ポリウレタンおよびポリ尿素からなる群から選ばれる少なくとも1種の有機ポリマーと、ガラスとの複合体であって、ガラスの含有率が10〜80質量%であり、ガラスの平均粒径が500nm以下であることを特徴とする有機無機複合体。 An organic solution (A) obtained by dissolving one compound selected from the group consisting of a dichloroformate compound and a phosgene compound in an organic solvent and an aqueous solution (B) obtained by dissolving alkali silicate and diamine in water are mixed and stirred, A composite of at least one organic polymer selected from the group consisting of polyurethane and polyurea obtained by reacting with glass, wherein the glass content is 10 to 80% by mass, and the average of the glass An organic-inorganic composite having a particle size of 500 nm or less. 前記ガラスの平均粒径が100nm以下である請求項記載の有機無機複合体。 The organic-inorganic composite according to claim 1, wherein the average particle size of the glass is 100nm or less.
JP2004133351A 2004-04-28 2004-04-28 Method for producing composite of organic polymer and glass and composite Expired - Fee Related JP4406834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004133351A JP4406834B2 (en) 2004-04-28 2004-04-28 Method for producing composite of organic polymer and glass and composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004133351A JP4406834B2 (en) 2004-04-28 2004-04-28 Method for producing composite of organic polymer and glass and composite

Publications (2)

Publication Number Publication Date
JP2005314529A JP2005314529A (en) 2005-11-10
JP4406834B2 true JP4406834B2 (en) 2010-02-03

Family

ID=35442291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004133351A Expired - Fee Related JP4406834B2 (en) 2004-04-28 2004-04-28 Method for producing composite of organic polymer and glass and composite

Country Status (1)

Country Link
JP (1) JP4406834B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109135259A (en) * 2018-08-27 2019-01-04 张玉锦 A kind of battery diaphragm masterbatch and preparation method thereof based on modified resin
CN114773833B (en) * 2022-03-31 2023-05-23 长安大学 Polyurethaneurea-rubber composite grouting material for inhibiting/breaking ice on grooved pavement and preparation method thereof

Also Published As

Publication number Publication date
JP2005314529A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
CN106661273B (en) Surface-modified composite silica particles and polyimide film comprising same
JP5780003B2 (en) COMPOSITION COMPOSITION AND TRANSPARENT COMPOSITION OF INORGANIC OXIDE PARTICLES AND SILICONE RESIN
CN102036773A (en) Metallic nanoparticles stabilised with derivatisied polyethylenimines or polyvinylamines
JP5393107B2 (en) Silicone resin composition
CN106854367A (en) Rubber composition and its product of solidification
Morselli et al. Poly (methyl methacrylate)-TiO2 nanocomposite obtained by non-hydrolytic sol–gel synthesis
Ambilkar et al. In situ zirconia: A superior reinforcing filler for high-performance nitrile rubber composites
JP4406834B2 (en) Method for producing composite of organic polymer and glass and composite
JP2010037458A (en) Resin composition containing fine metal oxide particle
JP2003277507A (en) Manufacturing method of polysilane copolymer
JP4074916B2 (en) Organic-inorganic composite and method for producing the same
JP2004161961A (en) Resin composition for light diffusing plate and light diffusing plate having light transparency
JP3588860B2 (en) Composite of thermosetting resin and metal oxide and method for producing the same
JP4715194B2 (en) Method for producing organic-inorganic composite
JP2006037004A (en) Organic and inorganic composite material and method for producing the same
Shin et al. Transparent regenerated cellulose bionanocomposite film reinforced by exfoliated montmorillonite with polyhedral oligomeric silsesquioxane bearing amino groups
JP2000160210A (en) Production of particulate
TWI334429B (en) Organic-inorganic complex material and production method thereof
JP2008038037A (en) Method for producing porous polyamide powder
CN101602855A (en) The preparation of the synthetics that the You polyoxadiazole polymers constitutes
JP2005154684A (en) Process for producing composite of organic polymer and metal compound, and composite
JP2005200605A (en) Method for producing composite of organic polymer and metal compound, and composite
JPH09216938A (en) Phenol-resin-cured epoxy resin and its production
JP2008179711A (en) Method for producing organic-inorganic composite material and organic-inorganic composite material
JP2009227771A (en) Method for producing organic-inorganic composite

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050909

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091028

R150 Certificate of patent or registration of utility model

Ref document number: 4406834

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees