JP2004093252A - 欠陥検査装置および欠陥検査方法 - Google Patents

欠陥検査装置および欠陥検査方法 Download PDF

Info

Publication number
JP2004093252A
JP2004093252A JP2002252799A JP2002252799A JP2004093252A JP 2004093252 A JP2004093252 A JP 2004093252A JP 2002252799 A JP2002252799 A JP 2002252799A JP 2002252799 A JP2002252799 A JP 2002252799A JP 2004093252 A JP2004093252 A JP 2004093252A
Authority
JP
Japan
Prior art keywords
defect
optical system
detected
image signal
illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002252799A
Other languages
English (en)
Other versions
JP4387089B2 (ja
Inventor
Hidetoshi Nishiyama
西山 英利
Minoru Noguchi
野口 稔
Rei Hamamatsu
浜松 玲
Yoshimasa Oshima
大島 良正
Yukio Uto
宇都 幸雄
Takahiro Jingu
神宮 孝広
Shuichi Chikamatsu
近松 秀一
Hiroyuki Yamashita
山下 裕之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP2002252799A priority Critical patent/JP4387089B2/ja
Publication of JP2004093252A publication Critical patent/JP2004093252A/ja
Application granted granted Critical
Publication of JP4387089B2 publication Critical patent/JP4387089B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

【課題】半導体デバイス等の基板上に回路パターンを形成するデバイス製造工程において、製造工程中に発生する微小な異物やパターン欠陥を、高速で高精度に検査できる装置および方法を提供すること。
【解決手段】被検査対象物に応じて、被検査対象物に照射する照明の角度を最適化し、前記被検査対象物からの反射散乱光を検出する検出光学系の倍率を最適化した光学系から得られた信号に対し、複数の検出画素サイズで異物または欠陥を検出し、特徴量に基いて異物または欠陥をカテゴリに分類する。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップや液晶製品を製造する際の薄膜基板、半導体基板やフォトマスク等に存在する異物や回路パターンに生じる欠陥を検出し、前記検出された異物または欠陥を分析して対策を施すデバイス製造工程における異物または欠陥の発生状況を検査する装置およびその方法に関する。
【0002】
【従来の技術】
半導体製造工程では、半導体基板(ウェハ)上に異物が存在すると配線の絶縁不良や短絡などの不良原因になる。さらに半導体素子の微細化に伴い、より微細な異物がキャパシタの絶縁不良やゲート酸化膜などの破壊の原因にもなる。これらの異物は、搬送装置の可動部から発生するものや、人体から発生するもの、プロセスガスにより処理装置内で反応生成されたもの、薬品や材料に混入していたものなど種々の原因により種々の状態で混入される。
【0003】
同様に液晶表示素子の製造工程でも、パターン上に異物が混入したり、何らかの欠陥が生じると、表示素子として使えないものになってしまう。プリント基板の製造工程でも状況は同じであって、異物の混入はパターンの短絡、不良接続の原因となる。
【0004】
従来のこの種の半導体基板上の異物を検出する技術の1つとして、特開昭62−89336号公報(従来技術1)に記載されているように、半導体基板上にレーザを照射して半導体基板上に異物が付着している場合に発生する異物からの散乱光を検出し、直前に検査した同一品種半導体基板の検査結果と比較することにより、パターンによる虚報を無くし、高感度かつ高信頼度な異物及び欠陥検査を可能にするものが開示されている。また、特開昭63−135848号公報(従来技術2)に開示されているように、半導体基板上にレーザを照射して半導体基板上に異物が付着している場合に発生する異物からの散乱光を検出し、この検出した異物をレーザフォトルミネッセンスあるいは2次X線分析(XMR)などの分析技術で分析するものが知られている。
また、上記異物を検査する技術として、ウェハにコヒーレント光を照射してウェハ上の繰り返しパターンから射出する光を空間フィルタで除去し、繰り返し性を持たない異物や欠陥を強調して検出する方法が開示されている。また、ウェハ上に形成された回路パターンに対して該回路パターンの主要な直線群に対して45度傾けた方向から照射して主要な直線群からの0次回折光を対物レンズの開口内に入射させないようにした異物検査装置が、特開平1−117024号公報(従来技術3)において知られている。この従来技術3においては、主要な直線群ではない他の直線群を空間フィルタで遮光することについても記載されている。また、異物等の欠陥検査装置およびその方法に関する従来技術としては、特開平1−250847号公報(従来技術4)、特開平6−258239号公報(従来技術5)、特開平6−324003号公報(従来技術6)、特開平8−210989号公報(従来技術7)、特開平8−271437号公報(従来技術8)、特開2000−105203号公報(従来技術9)が知られている。特に、従来技術9には、検出光学系を切り替えて検出画素サイズを変えることが記載されている。また、異物のサイズ測定技術としては、特開2001−60607(従来技術10)、特開2001−264264(従来技術11)が開示されている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術1〜9では、繰り返しパターンや非繰り返しパターンが混在する基板上の微細な異物または欠陥を、高感度で、かつ高速に検出することは容易にできなかった。すなわち、上記従来技術1〜9では、例えば、メモリのセル部等の繰り返し部分以外の部分では、検出感度(最小検出異物寸法)が低いという課題があった。また、上記従来技術1〜9では、パターン密度が高い領域における0.1μmレベルの微小異物または欠陥の検出感度が低いという課題があった。また、上記従来技術1〜9では、配線間を短絡する異物または欠陥の検出感度や薄膜状の異物の検出感度が低いという課題があった。また、上記従来技術10〜11では、異物または欠陥の計測精度が低いという課題があった。
【0006】
本発明の第1の目的は、上記課題を解決すべく、繰り返しパターンと非繰り返しパターンとが混在する被検査対象基板に対して、0.1μmレベルの微小な異物または欠陥を高速で、しかも高精度に検査できるようにした欠陥検査装置およびその方法を提供することにある。
【0007】
また、本発明の第2の目的は、パターン密度が高い領域においても、高感度に異物または欠陥を検査できるようにした欠陥検査装置およびその方法を提供することにある。
【0008】
また、本発明の第3の目的は、配線間を短絡する異物または欠陥や薄膜状の異物を高感度に検査できるようにした欠陥検査装置およびその方法を提供することにある。
【0009】
また、本発明の第4の目的は、被検査対象基板上に存在する異物または欠陥を分類して表示できるようにした欠陥検査装置およびその方法を提供することにある。
【0010】
また、本発明の第5の目的は、被検査対象基板上に存在する異物または欠陥のサイズを測定できるようにした欠陥検査装置およびその方法を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は、照明光源から出射された照明光束を被検査対象基板の表面に対して互いに異なる傾斜角度で切り替えて照射できるように構成した照明光学系と、前記被検査対象基板からの反射散乱光を集光する対物レンズと該対物レンズで集光された反射散乱光を互いに異なった結像倍率で結像させることのできる可変倍率結像光学系と該可変倍率結像光学系で結像された反射散乱光を受光して画像信号に変換する光検出器とを有する可変倍率検出光学系と、該可変倍率検出光学系の光検出器から得られる画像信号をデジタル画像信号に変換し、該変換されたデジタル画像信号に基づいて、欠陥を検出する信号処理系とを備えたことを特徴とする欠陥検査装置である。
【0012】
また、本発明は、前記欠陥検査装置の可変倍率検出光学系において、前記可変倍率結像光学系は、被検査対象基板と光検出器との相対距離を一定にして結像倍率を可変に構成することを特徴とする。また、本発明は、前記欠陥検査装置の可変倍率検出光学系において、前記可変倍率結像光学系は、フーリエ変換像の大きさを一定にして結像倍率を可変に構成することを特徴とする。
【0013】
また、本発明は、前記欠陥検査装置の信号処理系において、前記デジタル画像信号を近傍画素でマージし、該マージされた画像信号を基づいて、欠陥を検出することを特徴とする。また、本発明は、前記欠陥検査装置の信号処理系において、前記検出された欠陥をカテゴリ別に分類する分類手段を備えることを特徴とする。また、本発明は、前記欠陥検査装置の信号処理系において、前記検出された欠陥のサイズを測定するサイズ測定手段を備えることを特徴とする。
【0014】
また、本発明は、照明光源から出射された照明光束を被検査対象基板の表面に対して高傾斜角度と低傾斜角度とで切り替えて照射できるように構成した照明光学系と、前記被検査対象基板からの反射散乱光を集光する対物レンズと該対物レンズで集光された反射散乱光を結像させる結像光学系と該結像光学系で結像された反射散乱光を受光して信号に変換する光検出器とを有する検出光学系と、前記照明光学系で高傾斜角度で照明した際および前記照明光学系で低傾斜角度で照明した際前記検出光学系の光検出器から得られる画像信号をデジタル画像信号に変換するA/D変換部と該A/D変換部で変換されたデジタル画像信号に基づいて欠陥を検出する欠陥検出処理部と前記欠陥検出処理部から検出される欠陥についての特徴量を算出する特徴量算出部と前記高傾斜角度で照明した際前記欠陥検出処理部から検出される欠陥と低傾斜角度で照明した際前記欠陥検出処理部から検出される欠陥とが同一視される欠陥についての特徴量を前記特徴量算出部から取得し、該取得された欠陥の特徴量に基いて欠陥のカテゴリを分類する統合処理部とを有する信号処理系とを備えたことを特徴とする欠陥検査装置である。
【0015】
また、本発明は、前記欠陥検査装置の統合処理部において、前記欠陥についての特徴量が、検出光量と平面的な面積とで構成することを特徴とする。
【0016】
また、本発明は、照明光源から出射された照明光束を照明光学系により被検査対象基板の表面に対して第1の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して第1の画像信号に変換し、該変換された第1の画像信号をA/D変換器により第1のデジタル画像信号に変換し、該変換された第1のデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についての特徴量を前記第1のデジタル画像信号に基いて算出する第1の工程と、照明光源から出射された照明光束を照明光学系により前記被検査対象基板の表面に対して前記第1の傾斜角度と異なる第2の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して第2の画像信号に変換し、該変換された第2の画像信号をA/D変換器により第2のデジタル画像信号に変換し、該変換された第2のデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についての特徴量を前記第2のデジタル画像信号に基いて算出する第2の工程と、前記第1の工程で検出される欠陥と前記第2の工程で検出される欠陥とが同一視される欠陥についての第1の工程で算出された特徴量と前記第2の工程で算出された特徴量とに基いて欠陥のカテゴリを分類する分類工程とを有することを特徴とする欠陥検査方法である。
【0017】
また、本発明は、照明光源から出射された照明光束を照明光学系により被検査対象基板の表面に対して所望の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して画像信号に変換し、該変換された画像信号をA/D変換器によりデジタル画像信号に変換し、該変換されたデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についてのデジタル画像信号について複数種類のマージ処理を施し、該施された複数のマージ処理の結果に基いて欠陥を分類することを特徴とする欠陥検査方法である。
【0018】
また、本発明は、照明光源から出射された照明光束を照明光学系により被検査対象基板の表面に対して所望の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して画像信号に変換し、該変換された画像信号をA/D変換器によりデジタル画像信号に変換し、該変換されたデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についての前記デジタル画像信号から算出される検出光量に基いて欠陥を分類することを特徴とする欠陥検査方法である。
【0019】
以上説明したように、前記構成によれば、繰り返しパターンと非繰り返しパターンとが混在する被検査対象基板に対して、微小な異物または欠陥を高速で、しかも高精度に検査できる。また、前記構成によれば、パターン密度が高い領域においても、高感度に異物または欠陥を検査できる。また、前記構成によれば、配線間を短絡する異物または欠陥や薄膜状の異物を高感度に検査できる。また、前記構成によれば、被検査対象基板上に存在する異物または欠陥のサイズを測定できる。また、前記構成によれば、被検査対象基板上に存在する異物または欠陥を分類して表示できる。
【0020】
【発明の実施の形態】
以下、本発明に係る実施の形態について図面を用いて説明する。
【0021】
本発明に係る欠陥検査装置は、様々な品種や様々な製造工程におけるウェハ等の被検査基板上における異物やパターン欠陥やマイクロスクラッチ等の様々な欠陥を、更に微細なものと大きなものとを高感度で、かつ高速で検査できるようにするものである。そのためには、本発明に係る欠陥検査装置として、図1に示す如く、照明光学系10によって照明するスリット状ビーム201の照射角度αを被検査対象に応じて変えることができるようにすると共に、検出画素サイズを検出欠陥の大きさに合わせるように検出光学系20の倍率を可変にすることにある。
【0022】
更に、本発明に係る欠陥検査装置は、例えば、低角度照明によって欠陥から検出して得られた散乱光量と高角度照明によって欠陥から検出して得られた散乱光量と欠陥の広がりを示す検出画素数との関係から様々な欠陥を分類することができるようにしたものである。
【0023】
次に、本発明に係る欠陥検査装置の実施の形態について具体的に説明する。なお、以下の実施の形態では、半導体ウェハ上の小/大異物やパターン欠陥やマイクロスクラッチ等の欠陥を検査する場合について説明するが、半導体ウェハに限らず、薄膜基板やフォトマスク、TFT、PDP等にも適用可能である。
【0024】
ところで、本発明に係る欠陥検査装置は、図1に示すように、様々な品種や様々な製造工程から得られるウェハ等の被検査対象基板1を載置、移動させるxyzステージ31、32、33、34とコントローラ35から構成される搬送系30と、レーザ光源11から射出された光を、凹レンズ12と凸レンズ13と円錐球面レンズ14、ミラー15を介して、斜め方向から被検査対象基板1上に照明する照明光学系10と、対物レンズ21、空間フィルタ22、結像レンズ23、ND(Neutral Density)フィルタ(波長帯域によらず光量を調整する)24、偏光板等の光学フィルタ25、TDIイメージセンサ等の光検出器26から構成され、照明光学系10で照明された領域からの反射回折光(あるいは散乱光)を検出する倍率可変検出光学系20と、光検出器26で検出された画像信号に基いて異物を検出する信号処理系40と、検査条件などを設定し、上記照明光学系10、倍率可変検出光学系20、搬送系30および信号処理系40の全体を制御する全体制御部50とによって構成される。全体制御部50には、入出力手段51(キーボードやネットワークも含む)、表示手段52、記憶部53が設けられている。
【0025】
なお、この異物検査装置には、ウェハ1の表面の像を光検出器26の受光面に結像させるように自動焦点制御系(図示せず)を備えている。
【0026】
〔照明光学系10〕
照明光学系10としては、特開2000−105203号公報に記載されているように、レーザ光源11から射出された光を、凹レンズ12および凸レンズ13より構成されるビーム拡大光学系、円錐曲面レンズ14、ミラー15を介して、図2に示す如く、スリット状ビーム201を平面的に1つ以上の方向(図2においては3方向820、821、822)から、試料設置台34上に設置されたウェハ(被検査対象基板)1に照射するように構成される。このとき、スリット状ビーム201の長手方向がチップの配列方向に向くように照明するよう構成される。なお、照明光として、スリット状ビーム201にするのは、異物の検査を高速に行うためである。すなわち、図2に示すように、xステージ31の走査方向およびyステージ32の走査方向に向けてチップ202を配列したウェハ1上に照明されるスリット状ビーム201は、yステージ32の走査方向yに狭く、その垂直方向x(xステージ31の走査方向)に広いスリット状のビームで照明する。そして、このスリット状ビーム201は、y方向に光源の像が結像するように、x方向に平行光になるように照明される。
【0027】
ところで、スリット状ビーム201の長手方向をウェハ1に対してチップの配列方向に向けたのは、光検出器26の画素方向203とyステージ32の走行方向とを平行に保つことにより、画像信号のチップ間比較を容易に行うと共に、異物の位置座標の算出も容易に行うことができ、その結果、異物の検査を高速に行うためである。
【0028】
特に、方向821または822からのスリット状ビーム201の照明を、ウェハ1に対してチップ202の配列方向に向け、かつyステージ32の走査方向yに対して直角になるように形成するためには、円錐曲面レンズ14が必要となる。この円錐曲面レンズ14は、シリンドリカルレンズの長手方向の位置で焦点距離が異なり、直線的に焦点距離を変えたレンズである。この構成により、図3に示すように斜めから照明(角度α,方向φの傾きを両立)しても、y方向に絞り込み、x方向にコリメートされたスリット状ビーム201で照明することができる。
これにより、x方向に平行光を有し、かつφ=45度付近の照明を実現することができる。特に、スリット状ビーム201をx方向に平行光にすることによって、主要な直線群がx方向およびy方向を向いた回路パターンからの回折光パターンが得られ、空間フィルタ22によって遮光することができることになる。
【0029】
ところで、円錐曲面レンズ14の製造方法については、特開2000−105203号公報に記載されているので、説明を省略する。
【0030】
次に、全体制御部50からの指令に基づいて、ステージ上に載置される被検査対象基板1に応じて照明光学系10の照明角度αおよび照明方向φを変える実施例について説明する。即ち、照明角度αに関して言えば、被検査対象に発生している異物のタイプによって照明角度αを決めれば良い。例えば、ウェハ表面の異物を主に検出したい場合は、ウェハ面に平行な角度に近い角度が良く、ウェハ表面に対し1度乃至は5度程度上方、つまり、αが1度乃至は5度程度になるように照明するのが良い。照明角度αをウェハ面に平行な角度にすることにより、ウェハ最表面の異物のSN比が向上する。また、パターン欠陥を主に検出したい場合や高さの低い異物を検出したい場合は、高い角度から照明するのが望ましい。ただし、角度を高くすると下地の回路パターンからの反射回折光量が多くなりSN比が低下するので、照明角度αとしては、45度乃至は55度程度にするのが良い。また、前述のウェハ表面の異物やパターン欠陥を満遍なく検出するためには、前述した角度の中間の角度が良く、照明角度αを20度程度に設定するのが良い。さらに、検査対象の工程と検出したい異物の種類に対応関係がある場合、例えば、配線工程で主に検出したい異物、欠陥が高さの低い異物であることが分かっている場合は、「配線工程では高い角度から照明する」と決めても良い。
【0031】
更に、照明方向φに関して言えば、ウェハがLine&Spaceの場合、例えば、配線工程でエッチングされた後の場合は、回路パターンの配線方向に平行な方向からの照明を選択するのが望ましい。つまり、照明光の平行方向と配線パターンの方向を合わせることにより、配線間の異物を検出しやすくなる。また、ウェハの回路パターンが配線パターンではなく、コンタクトホールやキャパシタ等の場合は、特定の方向性がないため、チップに対し45度付近の方向から照明するのが望ましい。
【0032】
なお、レーザ光源11としては、異物を高感度に検査でき、また、メンテナンスコストが安いことを考慮すると、高出力のYAGレーザの第2高調波SHG、波長532nmを用いるのが良いが、必ずしも532nmである必要はなく、紫外光レーザや遠紫外光レーザや真空紫外光レーザ、Arレーザや窒素レーザ、He−Cdレーザやエキシマレーザ、半導体レーザ等の光源であっても良い。各レーザを用いた場合の利点としては、レーザ波長を短くすれば検出像の解像度が上がるため、高感度な検査が可能となる。なお、波長を0.34μm程度にした場合には対物レンズ21のNAを0.4程度、波長を0.17μm程度にした場合には対物レンズ21のNAを0.2程度にするのが回折光を多く対物レンズ21に入射させて検出感度を向上させることができる。また、半導体レーザ等の安価で高出力のレーザを用いると、装置を安価に製作することができる。
【0033】
更に、照明光学系10について具体的に説明する。まず、照明角度αを変える方法としては、ミラー15の角度を変えることにより実現することができる。図1は、ミラー15により照明位置701にレーザ照明を照射している。照明角度αを変更する場合、ミラー15とは角度の違うミラー702をミラー15と入れ替え、さらに、照明位置701にレーザ光を照射するためにミラー702をz方向に動かせば良い。この時、凸レンズ13から照明位置701までの距離が変わるため、凸レンズ13を焦点距離の違う凸レンズに変える必要がある。なお、本実施例では、角度の違うミラーを用いる例を説明したが、ミラーを回転させる構成でも良い。
【0034】
次に、照明方向φを変更する方法について説明する。図2は1つのレーザ光源11を用いて3つの照明光学系10を構成した場合の平面図である。レーザ光源11から出射したレーザビームをハーフミラー等の分岐光学要素801で2つの光路に分岐し、一方はミラー802で反射させて、ミラー804で下方に向けて凹レンズ12に入射させることによって照明方向820からの照明ビームを得ることができ、他方はハーフミラー等の分岐光学要素805へと進行する。分岐光学要素805で分岐された一方は、ミラー806で反射させてミラー807で下方に向けて凹レンズ12に入射させることによって照明方向821からの照明ビームを得ることができ、他方はミラー808で下方に向けて凹レンズ12に入射させることによって照明方向822からの照明ビームを得ることができる。ここで、照明方向820からのみ照明する場合には、分岐光学要素801からミラー要素809に切り換えることによって実現することができる。また、照明方向821および照明方向822の2方向から照明する場合には、光路から分岐光学要素801を退出させるか、または素通りの光学要素に切り換えることによって実現することができる。また、照明方向821および照明方向822からの照明のうち、例えば照明方向822からのみ照明する場合は、分岐光学要素805からミラー要素810に切り換えることによって実現することができ、また、照明方向821からのみ照明する場合は、分岐光学要素805を光路から退出させれば良い。
【0035】
〔検出光学系20〕
倍率可変検出光学系20について説明する。倍率可変検出光学20は、ウェハ等の被検査対象基板1から反射回折された光を、対物レンズ21、空間フィルタ22、結像レンズ(可変倍率結像光学系)23、NDフィルタ24、光学フィルタ25を通して、TDIイメージセンサ等の光検出器26で検出するように構成される。
【0036】
空間フィルタ22は、ウェハ1上の繰り返しパターンからの反射回折光によるフーリエ変換像を遮光するものであり、対物レンズ21の空間周波数領域、すなわちフーリエ変換の結像位置(射出瞳に相当する)に置かれる。なお、空間フィルタ22としては、フーリエ変換像を撮像して白黒逆転させて遮光部を広げた画像を透明なシートにプリントアウトして製作することが可能となる。
【0037】
次に、全体制御部50からの指令に基づいて、倍率可変検出光学系20で倍率を変える方法ついて説明する。まず、倍率の変更を結像レンズ(可変倍率結像光学系)23で行う方法について説明する。図1及び図4において、結像レンズ(可変倍率結像光学系)23は、可動レンズ1201、1202、固定レンズ1203、移動機構1204で構成される。
【0038】
図4(a)は低倍率時の可動レンズ1201、1202の概略位置を示しており、図1および図4(b)は高倍率時の可動レンズ1201、1202の概略位置を示している。この倍率可変検出光学系20の特徴は、倍率変更時に対物レンズ21の位置を変えないため、空間フィルタ22の位置は変化しないことと、固定レンズ1203の位置を変えないため、結像のために光検出器26の位置を変えなくて良いことである。つまり、倍率を変えても被検査対象基板1と光検出器26との相対位置を変える必要がないため、倍率変更時の駆動機構は、移動機構1204だけで良く、簡単な構成で倍率を変えることができ、さらに、フーリエ変換面の大きさも変わらないので、空間フィルタ22を変更しなくて良いという利点がある。
【0039】
また、倍率可変検出光学系20の倍率を変える利点は、検査対象に合わせて高速高感度な検査ができることである。つまり、回路パターンが高い密度で製造されている被検査対象物または領域は、倍率を高くすることにより高い分解能の画像信号が得られるので、高感度に検査を行うことができる。また、回路パターンが低い密度で製造されている被検査対象物または領域は、倍率を下げることにより、高感度のまま高速に検査できる。
【0040】
倍率変更時の動作としては、移動機構1204を用いて、可動レンズ1201、1202をz方向に動かす方法を用いる。この時、倍率可変検出光学系20の倍率Mは、対物レンズ21の焦点距離1205をf、結像レンズ23の焦点距離1206をfとすると(1)式で算出できる。
【0041】
M=f/f                      (1)
従って、倍率可変検出光学系20を倍率Mにするためには、fは固定値であるから、fが(f/M)になる位置に動かせば良い。
【0042】
次に、移動機構1204の詳細を図5で説明する。図5は可動レンズ1201を移動させる機構の実施例を示している。図5(a)は可動レンズ1201を任意の場所に移動させる実施例であり、図5(b)は可動レンズ1201を特定の場所に位置決めする実施例である。また、図5(a)は可動レンズ1201のレンズ保持部4101、ボールネジ4102、モータ4103で構成されている。
【0043】
動作としては、まず、全体制御部50は、ステージ上に載置される被検査対象基板1に応じて検査に用いる倍率を決定する。ここで、倍率の決定方針としては、前述したように回路パターンが高い密度で存在するウェハを高感度に検査する場合は高い倍率を選択し、回路パターンが低い密度で存在するウェハを検査する場合や、高速に検査する場合は低い倍率を選択すれば良い。次に、倍率が決まると可動レンズ1201の設定位置が決まるので、モータ4103を用いてボールネジ4102を回転させ、レンズ保持部1401と可動レンズ1201を移動させる。この時、精度良く位置決めするためには、モータ4103のバックラッシュを考慮して、一方向に移動させると良い。
【0044】
また、設定する倍率が数種類に固定されている場合には、可動レンズ1201を特定の場所に位置決めすれば良いので、図5(b)の構成を用いても良い。図5(b)は図5(a)の構成に位置決めセンサ4104、4105、4106、4107を追加した構成である。位置決めセンサ4105はz方向上方のリミットセンサ、位置決めセンサ4107はz方向下方のリミットセンサである。また、位置決めセンサ4106を可動レンズ1201の設定位置に取りつけてある。
【0045】
動作としては、図5(a)と同様にモータ4103でボールネジ4102を回転させ、可動レンズ1201を動かし、位置決めセンサ4104と位置決めセンサ4106が対応する場所でモータ4103を止めれば良い。ここで、位置決めセンサとしては、光センサでも良いし、磁気を用いたセンサでも良い。また、ここで説明した機構は可動レンズ1202にも適用可能である。
【0046】
また、倍率可変検出光学系20の別の実施例は、図6(a)に示すように、レンズユニット3301をレンズユニット3305や3306と交換することにより、倍率可変検出光学系20の倍率を変えるものである。レンズユニット3305、3306は、レンズユニット3301と同じ外形で、リレーレンズ3302、3303の位置を変えることにより、レンズユニット3301と違う倍率で構成される。つまり、倍率可変検出光学系20の倍率を変える場合、まずレンズユニット3301を取り外し、代わりにレンズユニット3305またはレンズユニット3306を設置する。本実施例を用いた場合の利点は、それぞれのレンズユニットで調整ができ、さらに、1つのレンズユニットで1種類の倍率に関して調整を行えば良いので、レンズユニットの調整工数が低減できることである。ただし、複数のレンズユニットを設置する必要があるので、設置空間に余裕のある場合に用いると良い。
【0047】
また、倍率可変検出光学系20の更なる別の実施例は、図6(b)に示すように、レンズユニット4401の対物レンズの倍率を変えることによって、倍率可変検出光学系20の倍率を変えるものである。ここで、対物レンズ4403は、対物レンズ21の倍率とは違う倍率のレンズである。また、結像レンズ4404は対物レンズ4403に対応して設計されたレンズである。ところで、倍率可変検出光学系20の倍率を変える場合は、まずレンズユニット4401を取り外し、代わりにレンズユニット4402を設置すれば良い。本実施例を用いた場合の利点は、対物レンズの検出N.A.を変えることになるので、倍率を高くすると解像度も向上し、高感度な検査が可能となることである。
【0048】
次に、NDフィルタ24は、光検出器26で検出される光量を調整するためのものである。このNDフィルタ24は、照明光学系部10で照射光量を調整できる場合は、必ずしも必要ではないが、NDフィルタ24を用いることにより、検出光量の調整幅を大きくすることができ、様々な被検査対象に最適になるように光量を調整できる。例えば、レーザ光源11で1Wから100Wまで出力を調整でき、また、NDフィルタとして、100%透過フィルタ、1%透過フィルタを用意しておけば、10mWから100Wまでの光量調整ができ、幅広い光量調整ができる。
【0049】
次に、光学フィルタ25は、例えば偏光素子である。偏光素子は、照明光学系部10で偏光照明した際、回路パターンのエッジから生じる反射回折光による偏光成分を遮光し、異物から生じる反射回折光による偏光成分の一部分を透過するもので、本発明においては必ずしも必要としない。
【0050】
次に、光検出器26は、結像レンズ25によって集光された反射回折光を受光し、光電変換するためのイメージセンサであり、例えば、TVカメラやCCDリニアセンサやTDIセンサやアンチブルーミングTDIセンサやフォトマルである。
【0051】
ここで、光検出器26の選択方法しては、安価な検査装置にする場合にはTVカメラやCCDリニアセンサが良く、高感度に微弱な光を検出する場合は、例えば、0.1μm程度以下の極微小な異物を検出する場合は、TDI(Time Delay Integration)機能を持ったセンサやフォトマルが良い。また、光検出器26で受光する光のダイナミックレンジが大きい場合、つまり、センサが飽和するような光が入射する場合は、アンチブルーミング機能を付随したセンサが良い。
【0052】
また、フォトマルを用いる場合、図7に示すように、フォトマルを一次元方向にならべたセンサを用いても良い。この場合、高感度な一次元センサとして用いることができるので、高感度な検査が可能となる。この時の構成としては、図7(a)に示すように、フォトマル5001の結像レンズ23側にマイクロレンズ5002を取り付け、結像レンズ23で集光される反射回折光を検出する構成にすれば良い。ここで、マイクロレンズ5002は、フォトマル面と同等の範囲の光をフォトマル5001に集光する機能を持つ。また、図7(b)のように、マイクロレンズ5002の下流に設置した治具5003を介して光ファイバ5004を取りつけ、さらに光ファイバ5004の出力端にフォトマル5001を取り付ける構成にしても良い。この場合、光ファイバの直径はフォトマルの直径よりも小さいため、図7(a)よりもセンサピッチを小さくできるため、分解能の高いセンサにすることができる。
【0053】
次に、搬送系30について説明する。ステージ31、32は試料設置台34をxy平面に移動させるためのステージであり、照明光学系10の照明エリアに被検査対象基板1全面を移動させることができる機能を持つ。また、ステージ33はzステージであり、倍率可変検出光学系20の光軸方向(z方向)に試料設置台34を移動させることができる機能を持つ。また、試料設置台34は、ウェハ1を保持するとともに、被検査対象基板1を平面方向に回転させる機能を持つ。また、ステージコントローラ35はステージ31、32、33、試料設置台34を制御する機能を持つ。
【0054】
〔信号処理系40〕
次に、信号処理系40の内容について図8を用いて説明する。信号処理系40は、A/D変換器1301、A/D変換された検出画像信号f(i,j)を記憶するデータ記憶部1302、上記検出画像信号に基いて閾値算出処理をする閾値算出処理部1303、上記データ記憶部1302から得られる検出画像信号410と閾値算出処理部1303から得られる閾値画像信号(Th(H),Th(Hm),Th(Lm),Th(L))420とを基に画素マージ毎に異物検出処理を行う異物検出処理部1304a〜1304n、例えば、低角度照明によって欠陥から検出して得られた散乱光量、高角度照明によって欠陥から検出して得られた散乱光量、及び欠陥の広がりを示す検出画素数等の特徴量を算出する特徴量算出回路1310、該特徴量算出回路1310から得られる各マージ毎の特徴量を基に、半導体ウェハ上の小/大異物やパターン欠陥やマイクロスクラッチ等の欠陥を分類する各種欠陥に分類する統合処理部1309、および結果表示部1311から構成される。異物検出処理部1304a〜1304nの各々は、例えば1×1、3×3、5×5、…n×nのマージオペレータの各々に対応させて、画素マージ回路部1305a〜1305n、1306a〜1306n、異物検出処理回路1307a〜1307n、および検査領域処理部1308a〜1308nを備えて構成される。
【0055】
特に、本発明においては、異物検出処理部1304a〜1304n、特徴量算出回路1310、および統合処理部1309を特徴とする。
【0056】
次に動作を説明する。まず光検出器26で得られた信号をA/D変換器1301でデジタル化する。この検出画像信号f(i,j)410をデータ記憶部1302に保存すると共に、閾値算出処理部1303に送る。閾値算出処理部1303で異物検出のための閾値画像Th(i,j)420を算出し、各種マージオペレータ毎に、画素マージ回路1305、1306で処理された信号を基に、異物検出処理回路1307で異物を検出する。検出された異物信号や閾値画像を検査領域処理部1308により、検出場所による処理を施す。同時に、各種マージオペレータ毎に設けられた異物検出処理部1304a〜1304nの、画素マージ回路1305a〜1305n、1306a〜1306n、異物検出処理回路1307a〜1307n、検査領域処理部1308a〜1308nから得られた信号を基に、特徴量算出回路1309で特徴量(例えば、高角度照明により得られた散乱光量、低角度照明により得られた散乱光量、欠陥の検出画素数等)を算出し、前記異物信号と前記特徴量を統合処理部1309で統合し、結果表示部1311に検査結果を表示する。
【0057】
以下に詳細を述べる。まず、A/D変換器1301は光検出器26で得られたアナログ信号をデジタル信号に変換する機能を有する回路であるが、変換ビット数は8ビットから12ビット程度が望ましい。これは、ビット数が少ないと信号処理の分解能が低くなるため、微小な光を検出するのが難しくなる一方、ビット数が多いとA/D変換器が高価となり、装置価格が高くなるというデメリットがあるからである。次に、データ記憶部1302は、A/D変換されたデジタル信号を記憶しておくための回路である。次に、閾値算出処理部1303について図9を用いて説明する。
【0058】
図9は、特開2000−105203号公報に記載されている閾値算出処理部1303の一実施例を示した図である。閾値算出処理部1303は、参照画像信号g(i,j)を作る遅延回路部1401、検出画像信号f(i,j)と参照画像信号g(i,j)との差分信号ΔS(i,j)を算出する差分回路部1402、最大最小値除去部1403、差分信号の二乗値を算出する二乗値算出部1404、該二乗値の和を算出する二乗値の和の算出部1405、差分信号の和を算出する信号の和の算出部1406、入力信号数のカウント部1407、標準偏差を算出する標準偏差算出部1408、平均値を算出する平均値算出部1409、カウント部1407でカウントした入力信号数を基に係数(n)を算出する係数算出部1410、閾値(Th(H),Th(L))の画像Th(i,j)420を算出する閾値算出部1411、データ記憶部1412で構成されている。
【0059】
次に動作を説明する。A/D変換器1301で得られた検出画像信号f(i,j)は、遅延回路部(遅延メモリ部)1401と差分回路部1402に入力され、差分回路部1402で差分信号ΔS(i,j)にする。(i,j)は、チップ比較の場合、チップ内の画素座標とする。ここで、遅延回路部1401は、ウェハ等の被検査対象基板上の回路パターンの繰返しピッチ分だけ信号を遅延させて参照画像信号g(i,j)を作る回路である。例えば、半導体ウェハでは、ウェハ上に同じ構造を持つチップが同一プロセスで複数個製造されている。従って、本発明の異物検査装置でウェハを検査すると、チップ毎に回路パターンが繰り返されるため、チップ毎に同様の回路パターン信号が得られる。この場合、遅延回路部1401はウェハ上の1チップ分の信号を遅延させる回路であれば良い。ただし、必ずしも1チップ分である必要はなく、検査対象に応じて、複数チップ単位で繰返しが存在するウェハに対しては、複数チップ分を遅延させれば良いし、DRAM製品等でチップ内に繰返しパターンが存在する場合は、その繰返し分だけ遅延させるようにしても良い。これらの信号遅延量は、CPU等の命令により変更できるようにしておく。
【0060】
次に、差分回路部1402で処理された差分信号ΔS(i,j)は、データ記憶部1412に格納され、最大最小値除去部1403を介して、差分信号ΔSの二乗値(ΔS)を算出する二乗値算出部1404、二乗値算出部1404から得られる差分信号の二乗値の和(ΣΔS)を算出する二乗値の和の算出部1405、差分信号ΔSの和(ΣΔS)を算出する和の算出部1406、入力信号数nのカウント部1407でそれぞれの値を算出する。ここで、最大最小値除去部1403は、複数個の入力データから最大値と最小値を求め、入力データ群から最大値と最小値を除く機能を持つ。また、二乗値とは入力データを二乗した値(ΔS)で有り、また、信号和とは入力データの和(ΣΔS)を算出した値である。
【0061】
以上の処理で算出した値を用いて、標準偏差値算出部1408で入力データの標準偏差値(σ(ΔS)=√(ΣΔS/n−ΣΔS/n))を算出し、平均値算出部1409で入力データの平均値(μ(ΔS)=ΣΔS/n)を算出する。さらに、係数算出部1410では、入力データ数nに対応した閾値を設定するための係数(倍率)kを算出する。
【0062】
以上説明した値を用いて閾値算出部1411で閾値(Th(H),Th(L))の画像Th(i,j)420を算出する。閾値(Th(H),Th(L))は、平均値算出部1409の算出値をμ(ΔS)、標準偏差値算出部1408の算出値をσ(ΔS)、係数算出部1410の算出値又は設定値をk、検証用の係数をm(mは1より小さいものとする。)とすると、次の(2)式を用いて算出される。
Th(H)=μ+k×σ 若しくは Th(L)=μ−k×σ または
Th(Hm)=m×(μ+k×σ) 若しくは Th(Lm)=m×(μ−k×σ)                             (2)
このように、閾値算出部1411で算出された閾値画像{検出閾値(Th(H),Th(L))、検証閾値(Th(Hm),Th(Lm))}をデータ記憶部1412に記憶させ、データ記憶部1412から閾値画像データとして出力してもよい。また、検査領域処理部1308a〜1308nから設定された領域毎に閾値画像データを変更してもよい。要するに、データ記憶部1412には、閾値マップを作成して記憶することが可能である。また、ある領域において検出感度を低くするには、その領域における閾値を高めれば良い。
【0063】
次に、信号の画素マージ回路部1305、1306について図10を用いて説明する。画素マージ回路部1305a〜1305n、1306a〜1306nは、各々異なるマージオペレータ1504で構成される。マージオペレータ1504は、データ記憶部1302から得られる検出画像信号f(i,j)410と、および閾値算出処理部1303から得られる検出閾値画像Th(H)、検出閾値画像Th(L)、検証閾値画像Th(Hm)、および検証閾値画像Th(Lm)からなる差分閾値画像信号420との各々をn×n画素の範囲で結合する機能であり、例えば、n×n画素の平均値を出力する回路である。ここで、画素マージ回路部1305a、1306aは例えば1×1画素をマージするマージオペレータで構成され、画素マージ回路部1305b、1306bは例えば3×3画素をマージするマージオペレータで構成され、画素マージ回路部1305c、1306cは例えば5×5画素をマージするマージオペレータで構成され、…画素マージ回路部1305n、1306nは例えばn×n画素をマージするマージオペレータで構成される。1×1画素をマージするマージオペレータは、入力信号410、420をそのまま出力する。
【0064】
閾値画像信号については、上記の如く、4つの画像信号(Th(H),Th(Hm),Th(Lm),Th(L))からなるため、各画素マージ回路部1306a〜1306nにおいて4つのマージオペレータOpが必要となる。従って、各画素マージ回路部1305a〜1305nからは、検出画像信号が各種マージオペレータ1504でマージ処理してマージ処理検出画像信号431a〜431nとして出力されることになる。他方、各画素マージ回路部1306a〜1306nからは、4つの閾値画像信号(Th(H),Th(Hm),Th(Lm),Th(L))が各種マージオペレータOp1〜Opnでマージ処理してマージ処理閾値画像信号441a(441a1〜441a4)〜441n(441n1〜441n4)として出力されることになる。なお、各画素マージ回路部1306a〜1306n内のマージオペレータは同じものである。
【0065】
ここで、画素をマージする効果を説明する。本発明の異物検査装置では、必ずしも微小異物だけではなく、数μmの範囲に広がった大きな薄膜状の異物も見逃すことなく検出する必要がある。しかし、薄膜状異物からの検出画像信号は、必ずしも大きくならないために、1画素単位の検出画像信号ではSN比が低く、見逃しが生じることがある。そこで、1画素平均の検出画像信号レベルをSとし、平均のばらつきをσ/nとすると、薄膜状異物の大きさに相当するn×n画素の単位で切出して畳み込み演算をすることによって、検出画像信号レベルはn×Sとなり、ばらつき(N)はn×σとなる。従って、SN比はn×S/σとなる。他方、薄膜状異物について1画素単位で検出しようとすると、検出画像信号レベルはSとなり、ばらつきはσとなるため、SN比は、S/σとなる。従って、薄膜状異物の大きさに相当するn×n画素の単位で切出して畳み込み演算をすることによって、SN比をn倍向上させることができる。
【0066】
1画素単位程度の微小異物については、1画素単位で検出される検出画像信号レベルはSとなり、ばらつきはσとなるので、SN比はS/σとなる。仮に、1画素単位程度の微小異物についてn×n画素の単位で切出して畳み込み演算をすると、検出画像信号レベルはS/nとなり、ばらつきはn×σとなるため、SN比はS/n/σとなる。従って、1画素単位程度の微小異物については、画素単位の信号そのままの方が、SN比として向上が図れる。
【0067】
なお、本実施例では、マージの範囲を正方形(n×n画素)にした例で説明したが、マージの範囲を長方形(n×m画素)にしても良い。この場合、方向性のある異物の検出や、光検出器26での検出画素が長方形であるが、信号処理は正方形画素で処理したい場合に有効である。
【0068】
また、本実施例で説明したマージオペレータの機能は、n×n画素の平均値を出力する実施例で説明したが、n×n画素の最大値や最小値、または中央値を出力しても良い。中央値を用いた場合は、安定した信号が得られる。さらに、出力値としてn×n画素の平均値に特定の値を乗算または除算した値としても良い。
【0069】
次に、図11は異物検出処理回路1306の一実施例を示した図である。図11においては、1×1画素をマージする画素マージ回路部1305aおよび画素マージ回路部1306a並びにn×n画素をマージする画素マージ回路部1305nおよび画素マージ回路部1306nについて示す。
【0070】
そして、異物検出処理回路1307a〜1307nは、各マージオペレータに対応させて、マージ処理差分信号471a〜471nとマージ処理閾値信号441a〜441nとの大小を比較する比較回路1601a〜1601nと、異物の検出場所を特定する検出場所判定処理部1602a〜1602nとで構成される。比較回路1601a〜1601nには、画素マージ回路1305a〜1305nから得られる画素マージされた検出画像信号について、図9に示すのと同様に、繰り返される例えばチップ分遅延させる遅延メモリ451a〜451nと、上記画素マージされた検出画像信号431a〜431nと上記遅延メモリ451a〜451nによって遅延された画素マージされた参照画像信号との差分信号を形成する差分処理回路461a〜461nとが設けられている。従って、比較回路1601a〜1601nは、各画素マージ回路部1306a〜1306nの画素マージ回路M1〜M4から得られるマージ処理閾値画像Th(H)(i,j)、Th(Hm)(i,j)、Th(Lm)(i,j)、Th(L)(i,j)とを比較する回路であり、例えば、マージ処理差分検出信号471a〜471nがマージ処理閾値画像Th(i,j)よりも大きければ異物として判定する機能を持つ。本実施例では、閾値を4種類用意し、マージオペレータ毎に、マージ処理閾値画像1603、1604、1605、1606に対し、比較回路1601a〜1601nで異物の判定処理を行う。
【0071】
次に、検出場所判定処理部1602a〜1602nについて、図12及び図13を用いて説明する。検出場所判定処理は、信号処理によって検出された異物または欠陥が存在するチップの特定を行う処理である。本処理の考え方は、異物または欠陥を検出するための検出閾値(Th(H),Th(L))と、該検出閾値よりも値の小さい閾値である検証閾値(Th(Hm),Th(Lm))で検出した結果を用いて、異物または欠陥が検出されたチップを特定する。
【0072】
処理の方法を説明する。図12(a)はチップ1701、1702、1703のうち、中央のチップ1702に異物1704が存在する場合の信号を示している。信号1706は異物1704からの信号を示しており、凸形又は凹形の信号となる。これに対し、信号1705と信号1707は異物が存在しない部分、つまり、正常パターンからの信号である。
【0073】
図12(b)は、チップ単位で差分処理した信号を示している。差分信号1708、1709はチップ1701、1702、1703で得られた信号の差分信号を表している。差分信号1708はチップ1702の信号1706「B」とチップ1701の信号1705「A」との差分信号(B−A)であり、差分信号1709はチップ1703の信号1707「C」とチップ1702の信号1706「B」との差分信号(C−B)である。さらに、検出閾値Th(H)、検証閾値Th(Hm)は凸形の差分信号を検出するための閾値であり、検出閾値Th(L)、検証閾値Th(Lm)は凹形の差分信号を検出するための閾値である。
【0074】
図12(b)において、差分信号1708(B−A)が正の場合、その値が閾値Th(H)またはTh(Hm)よりも大きい場合に異物または欠陥として検出し、また、差分信号1709(C−B)が負の場合、その値が閾値Th(L)またはTh(Lm)よりも小さい場合(差分値、閾値共に負の値のために符号付の値が小さい場合である。絶対値としては閾値よりも差分値の方が大きい)に異物または欠陥として検出するものとする。異物1704がチップ1702に存在する場合、差分信号1708(B−A),1709(C−B)の両方または、どちらか一方の信号を異物として検出するので、差分信号1708、1709のどちらを検出してもチップ1702に信号Bとして異物があると判定しなければいけない。
【0075】
そこで、異物または欠陥信号1706が凸形(信号量が正常部よりも大きい)の場合、図12(c)に示す真理値表から次に示す(3)式が成り立つため、(3)式が「真」の場合には、チップ1702に信号Bとして異物または欠陥が存在すると考えれば良い。なお、図12(c)および(3)式において、チップ1701の信号を「A」、チップ1702の信号を「B」、チップ1703の信号を「C」としている。
【0076】
{(検証閾値Th(Hm)<(B−A)の差分信号)AND((C−B)の差分信号<検証閾値Th(Lm))}AND{(検出閾値Th(H)<(B−A)の差分信号)OR((C−B)の差分信号<検出閾値Th(L))}  (3)
また、異物または欠陥信号1706が凹形(信号量が正常部よりも小さい)の場合には、図12(b)に示す信号波形と反転して信号1708が負信号となり、信号1709は正信号となる。従って、次に示す(4)式が「真」の場合には、チップ1702に信号Bとして異物または欠陥が存在すると考えれば良い。
{(検証閾値Th(Lm)<(B−A)の差分信号)AND((C−B)の差分信号<検証閾値Th(Hm))}AND{(検出閾値Th(L)<(B−A)の差分信号)OR((C−B)の差分信号<検出閾値Th(H))}  (4)
次に、異物が存在するチップの隣にチップが存在しない場合、つまり、ウェハの最外周チップで異物を検出した場合の検出場所判定処理について説明する。即ち、検出場所判定処理部1602a〜1602nは、全体制御部(図示せず)から得られる最外周チップへいったときの制御信号を基に上記隣接チップ同士の比較処理{(B−A),(C−B)}から、次に説明する飛び越えた隣のチップ同士の比較処理{(B−A),(C−A)}に切り替える。ここで、隣のチップとは、チップ比較する方向のチップであり、チップ比較時の差分処理を行う方向により、図13と図14とを用いて説明する。
【0077】
まず、図13(a)はチップ1901、1902、1903のうち、チップ1901に異物1904が存在する場合の信号を示している。信号1905は異物1904からの信号を示しており、凸形の信号となる。これに対し、信号1906と信号1907は異物が存在しない部分、つまり、正常パターンからの信号である。また、図13(b)に示す差分信号1908、1909はチップ1901、1902、1903で得られた信号の差分信号を表している。差分信号1908は、信号1906「B」と信号1905「A」との差分信号(B−A)である。また、差分信号1909は、信号1907「C」と信号1905「A」との差分信号(C−A)である。
【0078】
この場合、異物1904がチップ1901に存在するのは図13(c)で示す表の場合である。従って、(5)式が「真」の場合には、チップ1901に信号Aとして異物1904が存在すると考えれば良い。なお、図13(c)および(5)式において、チップ1901の信号を「A」、チップ1902の信号を「B」、チップ1903の信号を「C」としている。
【0079】
{((B−A)の差分信号<検証閾値Th(Lm))AND((C−A)の差分信号<検証閾値Th(Lm))}AND{((B−A)の差分信号<検出閾値Th(L))OR((C−A)の差分信号<検出閾値Th(L))}  (5)
同様に、図13(a)においてチップ1901に凹形の欠陥(信号量が正常部よりも小さい異物または欠陥)が存在する場合は、(6)式を適用すれば良い。
{(検証閾値Th(Hm)<(B−A)の差分信号)AND(検証閾値Th(Hm)<(C−A)の差分信号)}AND{(検出閾値Th(H)<(B−A)の差分信号)OR(検出閾値Th(H)<(C−A)の差分信号)}  (6)
さらに、図14(a)はチップ2001、2002、2003のうち、チップ2003に異物2004が存在し、かつ、チップ2003の右側のチップがない場合を示している。信号2007は異物2004からの信号を示しており、凸形の信号である。これに対し、信号2005と信号2006は異物が存在しない部分、つまり、正常パターンからの信号である。また、図14(b)に示す差分信号2008、2009はチップ2001、2002、2003で得られた信号の差分信号を表している。差分信号2008は、信号2007と信号2005との差分信号(C−A)であり、差分信号2009は信号2007と信号2006との差分信号(C−B)である。
【0080】
この場合、異物2004がチップ2003に存在するのは図14(c)で示す表の場合である。従って、(7)式が「真」の場合には、チップ2003に信号Cとして異物2004が存在すると考えれば良い。なお、図14(c)および(7)式において、チップ2001の信号を「A」、チップ2002の信号を「B」、チップ2003の信号を「C」としている。
【0081】
{(検証閾値Th(Hm)<(C−A)の差分信号)AND(検証閾値Th(Hm)<(C−B)の差分信号)}AND{(検出閾値Th(H)<(C−A)の差分信号)OR(検出閾値Th(H)<(C−B)の差分信号)}  (7)
同様に、図14(a)においてチップ2003に凹形の欠陥(信号量が正常部よりも小さい異物または欠陥)が存在する場合は、(8)式を適用すれば良い。
{((C−A)の差分信号<検証閾値Th(Lm))AND((C−B)の差分信号<検証閾値Th(Lm))}AND{((C−A)の差分信号<検出閾値Th(L))OR((C−B)の差分信号<検出閾値Th(L))}  (8)
以上説明したように、検出場所判定処理部1602a〜1602nは、各種マージオペレータに対応させて異物又は欠陥の存在するチップを特定してその位置座標(i,j)を算出できることになる。
【0082】
次に、検査領域処理部1308a〜1308nについて説明する。検査領域処理部1308a〜1308nは、異物検出処理回路1307a〜1307nからチップを特定して得られる異物又は欠陥検出信号に対して、検査する必要がない領域(チップ内の領域も含む)のデータを除去する場合や、検出感度を領域(チップ内の領域も含む)毎に変える場合、また、逆に検査したい領域を選択する場合に用いる。検査領域処理部1308a〜1308nは、例えば、被検査対象基板1上の領域のうち、検出感度が低くても良い場合には、閾値算出処理部1303の閾値算出部1411から得られる該当領域の閾値を高く設定しても良いし、異物検出処理回路1307a〜1307nから出力される異物のデータから異物の座標を基にして検査したい領域の異物のデータのみを残す方法でも良い。
【0083】
ここで、検出感度が低くても良い領域というのは、例えば、被検査対象基板1において回路パターンの密度が低い領域である。検出感度を低くする利点は、検出個数を効率良く減らすことである。つまり、高感度な検査装置では、数万個の異物を検出する場合がある。この時、本当に重要なのは回路パターンが存在する領域の異物であり、この重要な異物を対策することがデバイス製造の歩留り向上への近道である。しかしながら、被検査対象基板1上の全領域を同一感度で検査した場合、重要な異物と重要でない異物が混じるために、重要な異物を容易に抽出することができない。そこで、検査領域処理部1308a〜1308nは、チップ内のCAD情報または閾値マップ情報に基いて、回路パターンが存在しないような、歩留りにあまり影響しない領域の検出感度を低くすることにより、効率良く重要異物を抽出することができる。ただし、異物の抽出方法は、検出感度を変更する方法だけでなく、後述する異物の分類により、重要異物を抽出しても良いし、異物サイズを基に重要異物を抽出しても良い。
【0084】
閾値を変える領域について図15で説明する。図15(a)はウェハ1の中心2101から等距離の領域2102、2103、2104、2105毎に閾値設定を変える場合を示している。これは、ウェハ1の中心2101から等距離の領域でのプロセス状態が近い場合に用いる。例えば、酸化膜のような粘性のある膜をウェハ1に塗布する場合、中心2101を回転中心としてウェハ1を回転させて膜を広げていく。この時、ウェハ1の回転中心から等距離の場所に塗布される膜厚はほぼ同じになるので、膜厚の変化による異物の誤検出を低減するためには、中心2101からの距離に連動させた閾値が有効となる。
【0085】
また、図15(b)はウェハ1に製造されているチップ2106毎に閾値設定を変える場合を示している。これは、半導体デバイス製造時に、テスト用チップを作りこんだウェハや、チップ単位で検出感度を変えたいときに有効である。例えば、ウェハ1にテスト用チップを作りこむ場合、そのチップは製品にはならないため検査の必要性は低いが、テスト用チップは回路パターンが製品チップと違うために、チップ比較時には正常な回路パターンが誤検出され、結果的に異物が大量発生した場合との区別がつかなくなる。そこで、テスト用チップの検出感度を低くしたり、検査からテスト用チップを除く場合にチップ単位で閾値設定を変える。
【0086】
さらに、図15(c)はチップ内の特定領域2107で閾値設定を変える場合を示している。これは、チップ内に検査不要な領域が存在する場合、例えば、ダイシングエリア等のように歩留りにあまり関与しない領域で検出した異物情報を除く場合や、チップ内の領域毎に検出感度を変えて、上述したような重要異物を抽出したい場合に用いると良い。
領域の設定方法の一実施例を図16に示す。図16は、検査領域処理部1308a〜1308nにおけるウェハ中心から一定距離の領域の閾値を設定する画面を示す図である。図16(a)は検査対象ウェハのレイアウト2201と領域設定ボタン2202、感度設定ボタン2203から構成されている。
【0087】
まず、閾値を設定する領域を選択するために、領域設定ボタン2202が押されると図16(b)のような別画面を出す。この画面には、ウェハ中心からの設定距離を入力するための入力場所2204を設けておき、ウェハ中心からの半径等を入力する。例えば、ウェハ半径の1/2の値を入力した例を図16(c)に示す。図16(c)は、入力場所2204に設定された設定領域2205を明示した例である。ここで、明示の方法は、ウェハのレイアウト2201と設定領域2205の区別ができれば良く、設定領域2205の模様や色を変えて表示すれば良い。
【0088】
次に、設定領域2205の感度を設定するために、感度設定ボタン2203が押されると図16(d)のような別画面を出す。この画面には、感度選択ボタン2206、2207、2208を用意しておく。ここで、感度選択ボタン2206は高感度に検査するモードを選択する場合のボタンであり、感度選択ボタン2207は中感度の検査を、感度選択ボタン2208は低感度で検査を行う場合のボタンである。なお、図16(d)は、高感度に検査するモードが選択されている例を示している。設定領域2205の感度を変えるためには、感度選択ボタン2206、2207、2208の何れかを選択すれば良い。
【0089】
以上の手順で設定された内容は、検査領域処理部1308または全体制御部50において、検査条件ファイルとして保存される。全体制御部50の場合、検査条件ファイルを記憶部53に保存してもよい。そして、検査条件ファイルとして保存された設定領域毎の感度は、閾値算出処理部1303の閾値算出部1411にフィードバックされてデータ記憶部1412に閾値マップとして記憶される。その結果、異物検出処理回路1307a〜1307nにおいて、検査時には、設定領域2205は図16(d)で設定された検出感度で検査を行い、それ以外の領域は、通常感度で検査を行う。ここで、感度変更方法としては、信号処理系40に設定する閾値を変えれば良い。例えば、高感度検査モードでは通常設定される閾値を設定し、中感度検査モードでは高感度検査モード時に設定した閾値の2倍の値を中間度検査モードの閾値として設定し、低感度検査モードでは高感度検査モード時に設定した閾値の4倍の値を低感度検査モードの閾値として設定すれば良い。
なお、以上述べた方法では、各設定を別画面で行う実施例で説明したが、必ずしも別画面である必要は無く、同一画面で設定できるようにしても良い。
【0090】
次に、統合処理部1309およびその検査結果表示部1311について説明する。統合処理部1309では、画素マージ回路1305、1306で並列処理された異物検出結果を統合したり、特徴量算出回路1310で算出した特徴量と異物検出結果を統合し、結果表示部1311に結果を送る機能を有する。この検査結果統合処理は、処理内容を変更し易くするためにPC等で行うのが望ましい。
【0091】
まず、特徴量算出回路1310について説明する。この特徴量とは、検出された異物や欠陥の特徴を表す値であり、特徴量算出回路1310は、前記特徴量を算出する処理回路である。特徴量としては、例えば、高角度照明及び低角度照明によって得られた異物又は欠陥からの反射回折光量(散乱光量)(Dh,Dl)、検出画素数、異物検出領域の形状や慣性主軸の方向、ウェハ上の異物の検出場所、下地の回路パターン種類、異物検出時の閾値等がある。
【0092】
以上述べた信号処理を経て異物を検出した後、検査結果表示部1311での実施例について説明する。図17はウェハ上の異物の位置情報を示す検査マップ2301と検査情報2302で構成されており、検査情報2302は、検査日とウェハの品種名、工程名、ウェハIDと検出個数を表示した実施例である。これにより、ウェハ上での異物の発生状況が一目でわかる。
【0093】
なお、検出結果を出力する手段としては、CRT等のディスプレイに表示しても良いし、ハードコピーとして印刷しても良い。また、検査結果を保存する方法としては、ハードディスク、磁気記録媒体、光磁気記録媒体、光記録媒体、LSIメモリ、LSIメモリカード等に記録すれば良い。
【0094】
次に、統合処理部1309でのDFCの実施例について説明する。
即ち、統合処理部1309は、各種画素マージされた異物検出信号が入力されているので、図18に示すように、異物を、「大異物」、「微小異物」、「高さの低い異物」として分類することが可能となる。図18は、分類基準と分類結果の関係を示した表である。図18は1×1画素でマージ処理された検出結果と5×5画素でマージ処理された検出結果を用いた例である。即ち、異物検出処理回路1307a、1307cからは、信号処理回路により1×1画素での検査結果と5×5画素での検査結果が得られる。これらの結果を用いて、図18に従って分類を行う。つまり、ある異物が1×1画素でも5×5画素でも検出した場合は「大異物」として分類する。また、1×1画素では検出したが、5×5画素では検出しなかった場合は「微小異物」、さらに1×1画素では検出しなかったが、5×5画素では検出した場合は「高さの低い異物」として分類する。
【0095】
図19は、上記分類結果を含んだ検査結果の表示の実施例を示す。上記検査結果の表示は、検出場所判定処理部1602a、1602cから得られる異物の位置情報2501、統合処理部1309から得られる分類結果のカテゴリ情報2502およびカテゴリ毎の異物数2503で構成される。本実施例は、異物の位置情報2501で異物の位置を示すと共に、表示記号により分類カテゴリも併せて表示した例である。また、各記号の分類カテゴリの内容は、分類結果カテゴリ情報2502に示している。また、カテゴリ毎の異物数2503は各カテゴリに分類された個数を表している。このようにカテゴリ毎に表示を変えることによって、各異物の分布が一目でわかるという利点がある。
【0096】
次に、本発明に係る異物のサイズ測定方法の実施例について説明する。本方法は、異物サイズと光検出器26で検出される光量には比例関係があることを利用した方法である。つまり、特に異物が小さい場合、Mieの散乱理論に従い、検出光量Dは異物サイズGの6乗に比例するという関係がある。従って、特徴量算出回路1310は、検出光量D、異物サイズG、および比例係数εを基に、次に示す(9)式で異物サイズを測定し、統合処理部1309に提供することができる。
【0097】
G=ε×D(1/6)                    (9)
なお、比例係数εは、予め、サイズが既知の異物からの検出光量から求めておいて入力しておけば良い。
【0098】
次に、検出光量Dの算出方法の一実施例を図20を用いて説明する。図20(a)は、異物検出処理回路1307で検出される微小異物についてのデータ記憶部1302から得られる微小異物のデジタル画像信号(光検出器26の信号をA/D変換した画像信号)を基に作成した微小異物部の画像である。微小異物部2601が微小異物の信号を示している。図20(b)は、図20(a)の微小異物部2601とその近傍画素のA/D変換値(画素毎の濃淡値)を示している。本例は、8bitでA/D変換した例であり、異物信号部2602が微小異物からの検出信号を示している。ここで、異物信号部2602の中央部の「255」はアナログ信号が飽和していることを示しており、異物信号部2602以外の「0」の部分は微小異物以外からの信号を示している。微小異物の検出光量Dの算出方法としては、図20(b)に示す異物信号部2602の各画素値の和を計算する。例えば、図20(b)の例では、微小異物2601の検出光量Dは、各画素値の和である「805」となる。
【0099】
次に、検出光量Dの算出方法の他の実施例について説明する。本実施例の考え方は、図20(b)における異物信号部2602の飽和部をガウス分布近似で補正し、検出光量の算出精度を向上することにある。補正方法について、図21を用いて説明する。図21はガウス分布を3次元的に表現した図である。図21は、y=yで信号が飽和した場合を示しており、以下で説明する方法は、図21におけるy=yより下の部分、つまり、Vの部分の検出光量が得られた場合に、ガウス分布全体の検出光量を算出する方法である。まず、図21のガウス分布全体の体積をV、y=yより上の部分の体積をV、y=yより下の部分の体積をVとする。また、図21のガウス分布のx軸で断面形状が次の(10)式で得られるものとする。
y=exp(−x/2/σ)                (10)
この時、Vはy軸周りに積分することにより、次の(11)式で表される。
=2×π×σ                      (11)
さらに、Vは、次の(12)式で表される。
=2×π×σ(y×log(y)+1−y)     (12)
なお、上記の式における「log」は自然対数を計算することを示している。
ここで、体積比V/VをCCと書きなおすと、CCは次の(13)式で計算できるので、上記(11)式および(12)式から、次の(14)式で算出される。
CC=V/(V−V)                   (13)
CC=1/(y×(1−log(y)))           (14)
ここで、飽和部の信号幅をSWとすると、次の(15)式であるので、CCは次の(16)式で表すことができる。
=exp(−SW/2/σ)               (15)
CC=exp(SW/2/σ)/(1+SW/2/σ)   (16)
従って、図20(b)に示すように得られた検出光量がVであった場合、ガウス分布全体の体積Vは、次の(17)式で算出でき、Vを補正後の検出光量Dとするれば良い。なお、飽和部の信号幅SWを算出する必要がある。
=V×exp(SW/2/σ)/(1+SW/2/σ)(17)
以上、検出光量Dの算出方法について説明したが、倍率可変検出光学系20の視野が広い場合、視野内のレンズ歪みにより誤差が生じる場合がある。この場合は、視野内のレンズ歪みに応じた補正を加えても良い。
【0100】
図22は、上記測定された微小異物サイズを含んだ検査結果の表示の実施例を示す。上記検査結果の表示は、検出場所判定処理部1602から得られる異物の位置情報2701と、統合処理部1309から得られる異物サイズのヒストグラム2702から構成される。本実施例では、異物の位置情報2701には異物位置と共に、表示記号の大きさを変えて異物の大まかなサイズを示した例である。また、ヒストグラム2702では、検出した異物の大きさを棒グラフで表した例である。このようにヒストグラム表示することにより、ウェハ上に発生した異物のサイズ分布を即座に知ることができるという利点がある。
【0101】
なお、本実施例では、検出光量として異物信号部2602の信号和の値を用いたが、必ずしも信号和である必要はなく、異物信号部2602の最大値でも良い。利点としては、最大値を用いた場合は電気回路規模を小さくできることであり、信号和を用いた場合は信号のサンプリング誤差を低減でき、安定した結果が得られることである。
なお、図15〜図17、図19、図22に示す画面は、全体制御部50に設けられた表示手段52に表示させてもよい。
【0102】
次に、統合処理部1309で行う異物又は欠陥の分類の他の実施例を図23及び図24を用いて説明する。図23は、統合処理部1309が検査を2回行った結果を基に異物を分類するシーケンスを示している。
【0103】
まず、第1の検査条件にてウェハ1を検査する(S221)。第1の検査で、異物検出処理回路1307から得られた異物の座標データと、特徴量算出回路1310から得られた各異物の特徴量を記憶装置(図示せず)に保存する(S222)。次に、第1の検査条件とは違う第2の検査条件にてウェハ1を検査し(S223)、第2の検査で、異物検出処理回路1307から得られた異物の座標データと、特徴量算出回路1310から得られた各異物の特徴量を記憶装置(図示せず)に保存する(S224)。この時、第2の検査条件としては、たとえば、第1の検査条件がウェハ表面に近い角度から照明光を照射した場合(低角度照明の場合)は、第2の検査条件としては、ウェハ面の法線に近い角度から照明光を照射する条件(高角度照明条件)を選択すると良い。
【0104】
次に、前記得られた第1の検査結果の座標データと、前記得られた第2の検査結果の座標データを比較し(S225)、座標が近い異物を同一物と見なし、それぞれの特徴量から分類を行う(S226)。ここで、座標データが近いことを判断する方法の一実施例としては、第1の検査結果から得られる座標データをxおよびy、第2の検査結果から得られる座標データをxおよびy、比較半径をrとすると、次の(18)式に当てはまるデータを同一物と判断すれば良い。
(x−x+(y−y<r            (18)
ここでrは0または、装置に付随する誤差分を考慮した値にすれば良い。測定方法としては、例えば、数点の異物の座標データで(18)式の左辺の値を計算し、その平均値と標準偏差値から、(19)式で算出した値をrに設定すれば良い。
=平均値+3×標準偏差                   (19)
さらに、同一物と見なした異物情報から異物を分類する方法を図24を用いて説明する。図24は横軸に前記第1の検査(低角度照明)で得られた特徴量である散乱光量(Dl)を設定し、縦軸には前記第2の検査(高角度照明)で得られた特徴量である散乱光量(Dh)を設定したグラフである。図24において、点3501は前記同一物と見なした異物の各特徴量に応じてプロットした点である。本実施例では、1点が1個の異物を示している。また、分類線3502は検査において検出した異物を分類するための分類曲線である。図24は分類線3502によって、2つの領域、つまり、領域3503と領域3504に分割した例である。分類方法としては、図24において、前記検出された異物が領域3503にプロットされる場合は「大異物」として分類し、領域3504にプロットされる場合は、「小異物」として分類する。
【0105】
ここで、分類線3502は、事前に決めておく必要がある。事前に決める方法としては、予め大異物か小異物か分かっている検出物を図24のグラフに数点プロットして、前記検出物を正しく分けられるように分類線3502を設定すれば良い。または、異物から得られる特徴量をシミュレーションで計算し、その結果から分類線3502を設定しても良い。
なお、本実施例では、2回検査を行う例を説明したが、特徴量の種類(例えば検出画素数:欠陥の面積Qに相当する)を増やした方が分類性能の向上が図れる場合は、3回以上検査を行って異物の特徴量(検出画素数)を取得しても良い。
【0106】
次に、検査結果統合処理部1309で行う異物又は欠陥の分類の更に他の実施例を図25を用いて説明する。図25は1回検査を行い、3種類の光学条件で算出した特徴量を用いて分類する実施例のシーケンスを示している。
【0107】
まず、第1の光学条件でウェハ1に対して検査を行い(S241)、異物検出処理回路1307から得られた異物の座標データと、特徴量算出回路1310から得られた各異物の特徴量も保存しておく(S242)。次に、本発明の異物検査装置の光学条件を変える。これは、例えば、照明光学系の照射角度や照明方向である。また、検出光学系の倍率を変えても良く、光学フィルタを変えても良い。以上のような変更を加えた条件を第2の光学条件とする。
【0108】
光学条件を第2の光学条件に変更した後、前記保存しておいた異物の座標の位置に搬送系30でウェハ1を動かし、第2の光学条件で、光検出器26で検出してA/D変換して得られる検出画像信号を基に特徴量算出回路1310において異物の特徴量を算出する(S243)。さらに、第3の光学条件で特徴量を算出する場合も同様に行う(S244)。この時、第1の光学条件、第2の光学条件、第3の光学条件はそれぞれ違う条件であることが望ましい。
【0109】
分類方法の考え方を図26で説明する。図26は3種類の特徴量を3軸に設定した特徴量空間である。3軸の内容としては、例えば、特徴量1が第1の光学条件(例えば高角度照明)で取得した欠陥からの特徴量(例えば散乱光量(Dh))であり、特徴量2が第2の光学条件(例えば低角度照明)で取得した欠陥からの特徴量(例えば散乱光量(Dl))、また、特徴量3が第3の光学条件(例えば第1の光学条件である高角度照明および第2の光学条件である低角度照明)で取得した欠陥からの特徴量(例えば検出画素数:欠陥の平面的な面積Q)である。この特徴量空間において、(分類カテゴリ数−1)個の分類境界を設定する。図26は、3種類の特徴量から3種類の分類を行う例であるので、分類境界は2個以上あれば良い。
【0110】
特に、3種類の特徴量として、高角度照明による欠陥からの散乱光量(検出光量)(Dh)、低角度照明による欠陥からの散乱光量(検出光量)(Dl)、上記高角度照明時における欠陥の検出画素数および上記低角度照明時における欠陥の検出画素数とすることによって、少なくとも、3つのカテゴリ(異物欠陥、キズ欠陥、回路パターン欠陥)に分類することが可能となる。しかも、特徴量として、欠陥の検出画素数(欠陥の平面的な面積Q)をとっているので、図24に示すように、異物欠陥のカテゴリを大異物と小異物とに分類することも可能となる。
【0111】
また、3つの特徴量として、高結像倍率における欠陥からの散乱光量、低結像倍率における欠陥からの散乱光量、欠陥の検出画素数とすることによって、少なくとも大異物欠陥のカテゴリと小異物欠陥のカテゴリとに容易に分類することが可能となる。
【0112】
さて、図26は、分類境界4501、4502を設定した例である。分類方法としては、まず、上述の3つの特徴量を図26の特徴量空間にプロットする(図25に示すS245)。そして、分類境界4501,4502によって分けられた領域に属する異物を、それぞれカテゴリ(例えば異物欠陥)a、カテゴリ(例えばキズ欠陥)b、カテゴリ(例えば回路パターン欠陥)cとして分類する(図25に示すS246)。図26では、30個程度の欠陥を、カテゴリa、カテゴリb、カテゴリcに分類し、それぞれのカテゴリに分類された欠陥の表示記号を変えた例である。つまり、カテゴリaに分類されたもの(例えば異物欠陥)は「○」、カテゴリbに分類されたもの(例えばキズ欠陥)は「▲」、カテゴリcに分類されたもの(例えば回路パターン欠陥)は「×」で表示している。
【0113】
次に、分類境界の設定方法について図27で説明する。図27は3種類の特徴量をそれぞれ1軸に設定した2次元特徴量空間である。特徴量空間4601は特徴量1と特徴量2の関係から分類するためのグラフであり、特徴量空間4602、4603はそれぞれ、特徴量1と特徴量3、特徴量2と特徴量3の関係から分類するためのグラフである。
【0114】
分類境界の設定方法としては、まず、分類カテゴリが既知である異物の特徴量を特徴量空間4601,4602,4603にプロットする。ここで、特徴量空間にプロットするときは、カテゴリ毎に表示記号等を変えて、カテゴリの違いを表現する。例えば、図27では、カテゴリaは「○」、カテゴリbは「▲」、カテゴリcは「×」で表示した例である。
【0115】
次に、各特徴量空間4601、4602、4603において、カテゴリを分けることができる部分に分類境界4604、4605,4606を設定する。ここで、複数のカテゴリが重なっている場合は、分類境界を設定する必要はない。例えば、特徴量空間4601において、カテゴリaは他のカテゴリb,cから離れた位置に分布しているため、カテゴリaと他のカテゴリb,cとを分類するために分類境界4604を設定するが、カテゴリbとカテゴリcとは分布が重なっているので、必ずしも分類境界を設定する必要はない。異物の分類時には、この特徴量空間4601を用いて、カテゴリaか他のカテゴリかを分類する。同様に、特徴量空間4602,4603においても分類境界4605,4606を設定し、異物の分類時に前記分類境界を用いる。
【0116】
以上、分類境界の設定方法について説明した。本例では、分類境界として、2個の領域に分ける場合で説明したが、3個以上のカテゴリの分布が明確に分かれている場合は、複数の領域に分けるために分類境界を複数個設定しても良い。また、分類境界は直線で設定しても良いし、曲線で設定しても良い。また、分類領域の設定は、ユーザが手動で設定しても良いし、自動で算出して設定しても良い。手動で設定する場合は、ユーザが任意に決めることができる利点があり、自動で設定する場合は、人による設定誤差が低減できる。ここで、自動で設定する方法としては、例えば、1個の特徴量空間において、各カテゴリ分布の重心を算出し、重心間を結んだ直線の垂直二等分線を分類境界にすれば良い。また、各特徴量空間に各カテゴリの分離率を一緒に表示しても良い。
【0117】
分離率を表示した例を図28に示す。図28において、表示4701が分離率の表示である。ここで、分離率とは、例えば、分離境界によって分離された領域内に同一カテゴリの異物がどの程度含まれているかを表示すれば良い。分離率を表示することの利点は、ユーザが分離性能を容易に把握できることである。
なお、本実施例では、3種類の光学条件で算出した特徴量を用いた場合について説明したが、必ずしも3種類に限定する必要はなく、複数種類の光学条件で特徴量を算出する場合や1種類の光学条件で複数の特徴量を取得できる場合に用いることができる。
【0118】
次に、全体制御部50が例えば表示手段52に表示する信号処理系40から得られる検査結果の表示に関する別の実施例について説明する。
図29は、検出した異物または欠陥の位置情報3801と、異物または欠陥の検出個数3802、検出した異物または欠陥サイズのヒストグラム3803で構成されている。なお、本実施例では欠陥としてキズを検出した場合を示している。
【0119】
詳細には、位置情報3801はウェハ上での異物またはキズの位置を示している。なお、本実施例では異物を○で、キズを▲で表示した例を示している。また、検出個数3802は異物またはキズの検出個数である。さらに、グラフ3803は異物またはキズの検出個数とサイズのヒストグラムである。本発明の欠陥検査装置での検出物をこのように表示することにより、異物または欠陥の分布が一目でわかる。
【0120】
図30は、検出物(異物又は欠陥)の検出位置を示した検査マップ3901、検出物のサイズのヒストグラム3902、異物のレビュー像3903で構成されている。本実施例では、検査マップ3901とヒストグラム3902については、検出した検出物の全数または一部を表示した例である。また、レビュー像3903は検出物のサイズ毎にサンプリングし、その検出物のレビュー像を表示する例であり、本実施例では0.1μm以上1μm未満の異物のレビュー像を6個、1μm以上の異物のレビュー像を6個表示した場合を示している。
【0121】
ここで、レビュー像3903は検出器26が検出する異物からの反射回折光で得られる像でも良いし、後述する白色光源を用いた光学顕微鏡または白色光源を用いたレビュー装置による像でも良い。レーザ光による像を表示する場合、画像を検査中に記憶装置53、1302等に残しておけば、検査直後に表示ができ、検出物の確認を迅速に行うことができる利点がある。また、光学顕微鏡による像を表示する場合は、前記サンプリングされた検出物の座標を基に、検査後に観察画像を取れば良く、レーザ光による像に比べて鮮明な像が得られる。特に、1μm未満の異物または欠陥を観察する場合は、光源に紫外線を用いた、解像度の高い顕微鏡が望ましい。
【0122】
また、前記レビュー像3903で表示した検出物の位置を検査マップ3901上に併せて表示しても良く、レビュー像3903には検出物の検出番号を併せて表示しても良い。また、本形態では、表示するレビュー像が6個ずつの場合で説明したが、6個に限定する必要は無く、検出した異物または欠陥を全数表示しても良いし、検出個数に対し、一定割合の個数分だけ表示しても良い。
【0123】
図31は、検出物を異物とキズとに分類して表示し、分類の正解率も併せて表示した例である。図31は、分類された各カテゴリの検出個数4001、検出物の検出位置を示した検査マップ4002、検出物の確認画面4003で構成されており、検出物の確認画面4003は、さらに、本発明の欠陥検査装置で異物に分類された検出物の確認画面部4004とキズに分類された検出物の確認画面部4005、分類正解率表示部4006から構成されている。確認画面部4004と4005は、さらに、検出物の観察画面4007と分類正解判定部4008から構成されている。
【0124】
本実施例では検出物を2つのカテゴリに分類した例であり、検査マップ4002において、記号「1」を異物、記号「2」をキズとして表示している。
【0125】
次に、分類正解率の算出方法を説明する。まず、本発明の欠陥検査装置で検査した後、観察画面部4004、4005にそれぞれ検出物4007が表示される。この時、観察画面部4004と4005のどちらに表示するかは、本発明の欠陥検査装置で分類した結果に基づいて表示する。次に、本発明の欠陥検査装置のユーザは、それぞれの観察画面4007に付随している分類正解判定部4008にユーザが判断したカテゴリを入力する。本例では、入力方法として、ユーザが判断したカテゴリのチェックボックスにチェックする場合を示しており、異物の確認画面部4004では、5/6が異物(カテゴリ「1」)としてチェックされ、1/6がキズ(カテゴリ「2」)としてチェックされている例である。また、キズの確認画面部4005では、全てキズ(カテゴリ「2」)として判断されている例である。
【0126】
以上のチェックが為されたあと、分類正解率表示部4006に正解率が表示される。この値は、例えば、本発明の欠陥検査装置での分類結果とユーザの分類結果とが一致した率を表示する。この後、本発明の欠陥検査装置での分類結果とユーザの分類結果とが一致しなかった検出物については、該検出物の特徴量を用いて、分類精度を向上させるために、分類条件を更新しても良い。
【0127】
〔全体制御部50〕
次に、全体制御部50などにおいて実行される検査条件(検査レシピ)設定等について図32〜図34を用いて説明する。図32は、検査条件(検査レシピ)を設定するためのフローを示す図である。まず、全体制御部50において検査実行前に行われる検査条件(検査レシピ)の設定は、被検査対象に合わせるチップレイアウト設定(S211)と、被検査対象の回転合わせ(S212)と、検査領域設定(S213)と、光学条件設定(S214)と、光学フィルタ設定(S215)と、検出光量設定(S216)と、信号処理条件設定(S217)とで構成される。なお、S218は、実際の検査の実行である。
【0128】
次に、全体制御部50が実行する各設定について説明する。まず、チップレイアウト設定(S211)は、全体制御部50において、CAD情報等により、信号処理系40などに対してチップサイズやウェハ上のチップの有無を設定することである。このチップサイズは、比較処理を行う距離であるため設定が必要である。次に、回転合わせ設定(S212)は、全体制御部50が搬送系30に対して制御する、ステージに載置されたウェハ1上のチップの並び方向と光検出器26の画素方向とを平行にする、つまり、回転ずれをほぼ「0」にするためにウェハ1を回転させるための設定である。この回転合わせを行うことにより、ウェハ1上の繰返しパターンが一軸方向に並ぶため、チップ比較信号処理を容易に行うことができる。次に、検査領域設定(S213)は、全体制御部50が信号処理系20に対して制御する、ウェハ上の検査を行う場所の設定や、検査領域における検出感度の設定を行うことである。この検査領域設定(S213)を行うことにより、ウェハ上の各領域を最適な感度で検査することができる。設定方法は図15の説明で述べた通りである。
【0129】
次に、光学条件設定(S214)は、全体制御部50が照明光学系10や倍率可変検出光学系20に対して制御する、ウェハに照射する照明光の方向や角度を選択したり、倍率可変検出光学系20の倍率を選択することである。選択方法としては、例えば、図33に示すような光学条件設定ウィンドウで設定すれば良い。該光学条件設定画面は、照明光学系の照明方向条件3001と照明光学系の照明角度条件3002と検出光学系条件3003で構成されている。図33では、照明方向条件3001として2種類、照明角度条件3002として3種類、さらに、検出光学系条件3003は2種類の選択を行えるようにした例である。本異物検査装置のユーザは、条件3001、3002、3003の内容を見て、適切な条件を選択すればよい。例えば、被検査対象1が金属膜デポジション工程のウェハで、表面の異物を高感度に検査したいならば、照明方向条件3001の条件の「デポ工程」を選択し、さらに、照明角度条件3002の条件の「表面異物」を選択し、検出光学系条件3003の条件を「高感度検査」を選択すれば良く、これらの選択を行った例が図33である。
【0130】
次に、光学フィルタ設定(S215)は、全体制御部50が検出光学系20等に対して制御する、図1に示す空間フィルタ22や偏光素子等の光学フィルタ25を設定することである。この空間フィルタ22は、ウェハに製作された繰返しパターンからの反射回折光を遮光するためのフィルタであるので、繰返しパターンが存在するウェハに対しては設定した方が良いが、繰返しパターンが無いウェハに対しては設定する必要はない。また、偏光素子25は配線パターンのエッジが直角に近い状況でエッチングされている場合に用いると効果的である。
【0131】
次に、検出光量設定(S216)は、全体制御部50が照明光学系10又は倍率可変検出光学系20に対して制御する、光検出器26に入射する光量を調整する工程である。ウェハに製作された回路パターンからの反射散乱光は、そのパターン形状により散乱される成分が変わる。具体的には、ウェハ表面が平らな場合は、散乱光はあまり発生せず、ほとんどが正反射光となる。それに対し、ウェハ表面の凸凹が大きい場合は、散乱光が多く発生する。従って、回路パターンからの反射散乱光はウェハ表面の状態、つまり、デバイス製造工程によって変わるわけである。しかしながら、光検出器26のダイナミックレンジが存在するため、このダイナミックレンジに合わせた光量を入射するように調整するのが望ましい。例えば、ウェハの回路パターンからの反射散乱光量が光検出器26のダイナミックレンジの1/10程度になるように調整するのが望ましい。ここで、光検出器26へ入射する光量の調整方法としては、レーザ光源11の出力光量を調整しても良いし、NDフィルタ24で調整しても良い。
【0132】
次に、信号処理条件設定(S217)は、全体制御部50が信号処理系40に対して制御する、異物の検出条件の設定を行うことである。
以上の設定が終了した後、検査工程(S218)で検査を行えば、ユーザが所望の条件で検査を行うことができる。
ただし、本実施例で説明した内容を設定する方法としては、例えば、被検査対象の設計情報から人手で入力しても良いし、本発明の異物検査装置に付属の入力アシスト機能を用いて入力しても良く、また、上位システムからネットワークを介して情報を取得しても良い。
【0133】
さらに、上述した設定のうち、検査領域設定(S213)、光学条件設定(S214)、光学フィルタ設定(S215)、検出光量設定(S216)、信号処理条件設定(S217)は必ずしも被検査対象によっては変更する必要はなく、被検査対象に依らず一定値でも良い。一定値にした場合、検査条件を設定する時間を短縮することができるが、高感度にするためには、各条件をチューニングするのが望ましい。また、検査領域設定(S213)は必ずしも光学条件設定(S214)の前に行う必要はなく、検査工程(S218)の前までに設定すれば良い。
【0134】
以上説明した内容を設定する画面の例を図34に示す。図34は、条件設定シーケンス4301、各設定内容の詳細条件4302、設定内容表示変更ボタン4303、ヘルプボタン4304で構成されている。
次に詳細について説明する。まず、条件設定シーケンス4301は、本発明の異物検査装置における検査条件の設定の流れを示している。ユーザは条件設定シーケンス4301の「チップレイアウト設定」から順に条件を設定すれば良い。
【0135】
条件設定シーケンス4301の特徴は、条件設定の流れを矢印4305で示すことにより、ユーザが設定順序を間違えることなく、最短の順序で設定できるようにしていることである。また、別の特徴として、必ず設定すべき項目と必ずしも設定する必要の無い項目、つまり、既定値で良い項目に分けていることである。表示を分けることにより、最小限の設定項目が分かり、ユーザがすぐ検査結果が必要な場合は、設定必須項目のみ設定して検査すれば良く、また、検出感度をチューニングしたい場合は、設定必須ではない項目について条件を設定すれば良いため、ユーザの要望に応じて条件設定の度合いを変えることができる。例えば、ボタン4306は枠を3重で示すことにより、必ず設定すべき項目であることを示し、また、ボタン4307は枠を1重で示すことにより、設定の必要性が低い項目であることを示した実施例である。さらに、別の特徴として、ユーザが現在どの項目を設定しているかを明示することである。例えば、ボタン4308はボタンに影をつけることによって、ボタン4306、4307と区別している。このように、現在の場所を明示することによって、残りの設定項目数が一目で分かる利点がある。
なお、本実施例では図32で説明したシーケンスに、オプション条件設定4309を追加した例である。このオプション条件設定4309の内容は、例えば、異物のサイズ測定機能の条件設定や異物や欠陥の分類条件の設定である。
【0136】
次に、詳細条件4302は各条件項目の詳細を設定する画面である。項目の入力または選択方法としては、入力ボックス4310のようにキーボードで入力する場所を設けても良いし、入力アイコン4311のようにアイコンで入力項目を選択する方式にしても良い。なお、入力アイコン4311は3種類の入力項目に対し、それぞれアイコンで示し、該当アイコンを押すと別ウィンドウが出てきて、詳細の条件設定を行う例である。さらに、入力チェックボックス4312のように、必要な項目を選択する方法でも良い。
【0137】
また、設定内容表示変更ボタン4303は表示項目の変更またはカスタマイズを行うボタンである。例えば、ユーザがいつも設定したい項目や、設定内容数を増やしたい項目があった時に、この設定内容表示変更ボタン4303を使って変更できるようにする事により、ユーザは使いやすい画面することができ、検査条件をすばやく設定することができる。さらに、ヘルプボタン4304はユーザが設定方法や設定内容がわからなくなった場合に、ユーザを助ける情報を出力するボタンである。手法としては、各設定項目の内容を音声案内したり、操作方法をMPEG等の動画で見せても良い。また、ネットワークや電話回線を通じて、オンラインで本発明の異物検査装置を製造したメーカの設計者と話ができるようにしても良い。
【0138】
〔顕微鏡を付けた実施の形態〕
本発明に係る欠陥検査装置に関する別の実施の形態を図35を用いて説明する。本実施の形態において、図1に示す構成と相違する点は、観察用顕微鏡60を並設した点にある。この観察用顕微鏡60は、ステージ31、32を動かすことにより、観察用顕微鏡60の検出光学系の位置に、ウェハ1上の検出した異物(虚報も含む)を移動させ、この画像を観察するものである。
【0139】
観察用顕微鏡60を並設したことの利点は、レビュー装置にウェハを移動させなくても、検出した異物を即座に観察できることである。検査装置での検出物を即座に観察することによって、すばやく異物の発生原因を特定することができる。観察用顕微鏡50としては、光源が可視光(例えば白色光)の顕微鏡でも良いし、紫外光を光源とした顕微鏡でも良い。特に、0.1μmレベルの微小な異物を観察するためには、高解像度の顕微鏡、例えば、紫外光を用いた顕微鏡が望ましい。また、可視光の顕微鏡を用いると異物の色情報が得られ、異物の認識を容易に行えるという利点がある
〔本発明の欠陥検査装置をシステムに接続した場合の実施の形態〕
本発明に係る欠陥検査装置を半導体デバイス製造ラインにつないだシステムについて図36を用いて説明する。本システムは、半導体デバイス製造プロセス3101と検査プロセス3102、異物検査装置群3103、データベース3104、プロセス状態を管理するための測定装置群3105で構成されている。ここで、検査装置群3103は、例えば、本発明に係る欠陥検査装置である。また、測定装置群3105は、例えば、電気テストによりチップの良/不良を判定する装置や成分分析を行う装置やデバイスに塗布された膜の膜厚を測定する装置、デバイス上に形成された配線の幅を計測する装置や回路パターン間の導電性を測定する装置や異物や欠陥の観察装置である。さらに、データベース3104には、検査装置群3103での検査結果や測定装置群3104での測定結果やデバイス製造プロセスの情報、過去の不良事例等が保存されている。
【0140】
次に、動作を説明する。まず、半導体デバイスは、デバイス製造プロセス3101に沿って、各製造プロセスを経て製造されていく。デバイス製造プロセス3101の途中に設定した検査プロセス3102にて異物又は欠陥の検査を行い、検査結果が異常であった場合は、検査結果をデータベース3104の情報と突き合わせ、異常の対策方法をデバイス製造プロセス3101にフィードバックする。ここで用いる検査結果とは、本発明の欠陥検査装置の検査結果で表示した内容や、本欠陥検査装置で得られるデータである。
【0141】
【発明の効果】
本発明によれば、LSIパターン等の基板上の回路パターンからの回折光を低減でき、繰り返しパターンと非繰り返しパターンとが混在する被検査対象基板に対して、0.1μmレベルの微小な異物または欠陥や、配線間を短絡する異物または欠陥や薄膜状の異物を高速で、しかも高精度に検査をすることができる効果を奏する。
【0142】
また、本発明によれば、検出した異物または欠陥の分類やサイズを測定することができる効果も奏する。
【図面の簡単な説明】
【図1】本発明に係る欠陥検査装置の一実施の形態を示す概略構成図である。
【図2】図1に示す照明光学系を示す平面図である。
【図3】照明光学系に用いられている円錐曲面レンズの機能を説明するための図である。
【図4】図1に示す倍率可変光学系の可変動作説明図である。
【図5】倍率可変光学系においてレンズを移動させる機構を示す概略図である。
【図6】倍率可変光学系の他の実施例を示す構成図である。
【図7】光検出器の別の実施例を説明する図である。
【図8】図1に示す信号処理系を示す構成図である。
【図9】閾値算出処理部を示す構成図である。
【図10】画素マージ回路を示す構成図である。
【図11】異物検出処理部を示す構成図である。
【図12】検出場所特定処理の説明図である。
【図13】検出場所特定処理の説明図である。
【図14】検出場所特定処理の説明図である。
【図15】検査領域の設定種類を説明するための図である。
【図16】検査領域の設定方法を説明するための図である。
【図17】検査結果の表示例を示す図である。
【図18】異物または欠陥の分類方法を説明するための図である。
【図19】異物または欠陥の分類した場合の検査結果の表示例を示す図である。
【図20】異物または欠陥のサイズ測定方法を説明するための図である。
【図21】異物または欠陥からの散乱光量を算出する方法に関する別の実施例を説明するための図である。
【図22】異物または欠陥のサイズを測定した場合の検査結果の表示例を示す図である。
【図23】異物または欠陥の分類に関する別の実施例のシーケンスを示す図である。
【図24】異物または欠陥の分類に用いる分類グラフを示す図である。
【図25】異物または欠陥の分類に関する更なる別の実施例のシーケンスを示す図である。
【図26】異物または欠陥の複数種類の特徴量から分類する方法を説明するための図である。
【図27】分類の境界を設定する方法を説明するための図である。
【図28】分類率を表示する場合の表示例を示す図である。
【図29】異物または欠陥の分類結果とサイズ測定結果を併記した表示の例を示す図である。
【図30】異物または欠陥のサイズ測定結果と異物または欠陥の観察画像を併記した表示の例を示す図である。
【図31】検査結果に異物または欠陥の分類正解率を併記した表示の例を示す図である。
【図32】本発明に係る欠陥検査装置において検査条件設定シーケンスを示す図である。
【図33】光学条件設定画面を説明するための図である。
【図34】異物または欠陥の分類に関する別の実施例の分類グラフを説明するための図である。
【図35】観察用顕微鏡を付けた実施の形態の概略構成図である。
【図36】本発明に係る欠陥検査装置を製造ラインに接続したシステムの実施の形態を示す図である。
【符号の説明】
1…ウェハ(被検査対象基板)、10…照明光学系、11…レーザ光源、12…凹レンズ、13…凸レンズ、14…円錐曲面レンズ、15…ミラー、20…倍率可変検出光学系、21…対物レンズ、22…空間フィルタ、23…結像レンズ、24…NDフィルタ、25…光学フィルタ、26…光検出器、30…搬送系、31…xステージ、32…yステージ、33…zステージ、34…試料設置台、35…ステージコントローラ、40…信号処理系、50…全体制御部、60…観察用顕微鏡、201…スリット状ビーム、202…チップ、203…画素方向、701…照明位置、702…ミラー、801…分岐光学要素、802、804…ミラー、805…分岐光学要素、806、807、808…ミラー、809、810…ミラー要素、1201、1202…可動レンズ、1203…固定レンズ、1204…移動機構、1301…A/D変換器、1302…データ記憶部、1303…閾値算出処理部、1305、1306…画素マージ回路、1307…異物検出処理回路、1308…検査領域処理部、1309…統合処理部、1310…特徴量算出回路(特徴量算出部)、1311…結果表示部、1401…遅延回路部、1402…差分回路部、1408…標準偏差算出値部、1409…平均値算出部、1410…係数算出部、1411…閾値算出部、1412…データ記憶部、1601…比較回路、1602…検出場所判定処理部、1708、1709…差分信号、1908、1909…差分信号、2008、2009…差分信号、2202…領域設定ボタン、2203…感度設定ボタン、2205…設定領域、2502…分類結果のカテゴリ情報、2503…カテゴリ毎の異物数。

Claims (21)

  1. 照明光源から出射された照明光束を被検査対象基板の表面に対して互いに異なる傾斜角度で切り替えて照射できるように構成した照明光学系と、
    前記被検査対象基板からの反射散乱光を集光する対物レンズと該対物レンズで集光された反射散乱光を互いに異なった結像倍率で結像させることのできる可変倍率結像光学系と該可変倍率結像光学系で結像された反射散乱光を受光して画像信号に変換する光検出器とを有する可変倍率検出光学系と、
    該可変倍率検出光学系の光検出器から得られる画像信号をデジタル画像信号に変換し、該変換されたデジタル画像信号に基づいて、欠陥を検出する信号処理系とを備えたことを特徴とする欠陥検査装置。
  2. 前記照明光学系において、前記被検査対象基板に対して平面的に互いに異なる方向から照射できるように構成することを特徴とする請求項1記載の欠陥検査装置。
  3. 前記照明光学系において、前記照明光束が、前記被検査対象基板上の照明状態として、長手方向にはほぼ平行光からなるスリット状ビームにして、長手方向が走査ステージの走行方向に対してほぼ直角になることを特徴とする請求項1または2記載の欠陥検査装置。
  4. 前記照明光学系において、前記照明光源がレーザ光源であることを特徴とする請求項1記載の欠陥検査装置。
  5. 前記可変倍率検出光学系において、被検査対象基板上に存在する回路パターンの少なくとも繰り返しを遮光する空間フィルタを有することを特徴とする請求項1記載の欠陥検査装置。
  6. 前記可変倍率検出光学系において、前記可変倍率結像光学系は、被検査対象基板と光検出器との相対距離を一定にして結像倍率を可変に構成することを特徴とする請求項1記載の欠陥検査装置。
  7. 前記可変倍率検出光学系において、前記可変倍率結像光学系は、フーリエ変換像の大きさを一定にして結像倍率を可変に構成することを特徴とする請求項1記載の欠陥検査装置。
  8. 前記可変倍率検出光学系において、前記光検出器をTDIイメージセンサで構成することを特徴とする請求項1乃至7記載の欠陥検査装置。
  9. 前記信号処理系において、前記デジタル画像信号を近傍画素でマージし、該マージされた画像信号を基づいて、欠陥を検出することを特徴とする請求項1記載の欠陥検査装置。
  10. 前記信号処理系において、前記検出された欠陥をカテゴリ別に分類する分類手段を備えることを特徴とする請求項1または9記載の欠陥検査装置。
  11. 前記分類手段において、前記検出された欠陥の2種類以上の特徴量を用いることを特徴とする請求項10記載の欠陥検査装置。
  12. 前記信号処理系において、前記検出された欠陥のサイズを測定するサイズ測定手段を備えることを特徴とする請求項1または9記載の欠陥検査装置。
  13. 前記サイズ測定手段において、前記検出された欠陥について算出される検出光量に基いて欠陥のサイズを測定するように構成したことを特徴とする請求項12記載の欠陥検査装置。
  14. 前記サイズ測定手段において、前記算出される検出光量にガウス分布補正を加えることを特徴とする請求項13記載の欠陥検査装置。
  15. 請求項1記載の欠陥検査装置において、更に前記被検査対象物上の光学像を観察する光学顕微鏡を備えたことを特徴とする欠陥検査装置。
  16. 照明光源から出射された照明光束を被検査対象基板の表面に対して高傾斜角度と低傾斜角度とで切り替えて照射できるように構成した照明光学系と、
    前記被検査対象基板からの反射散乱光を集光する対物レンズと該対物レンズで集光された反射散乱光を結像させる結像光学系と該結像光学系で結像された反射散乱光を受光して信号に変換する光検出器とを有する検出光学系と、
    前記照明光学系で高傾斜角度で照明した際および前記照明光学系で低傾斜角度で照明した際前記検出光学系の光検出器から得られる画像信号をデジタル画像信号に変換するA/D変換部と該A/D変換部で変換されたデジタル画像信号に基づいて欠陥を検出する欠陥検出処理部と前記欠陥検出処理部から検出される欠陥についての特徴量を算出する特徴量算出部と前記高傾斜角度で照明した際前記欠陥検出処理部から検出される欠陥と低傾斜角度で照明した際前記欠陥検出処理部から検出される欠陥とが同一視される欠陥についての特徴量を前記特徴量算出部から取得し、該取得された欠陥の特徴量に基いて欠陥のカテゴリを分類する統合処理部とを有する信号処理系とを備えたことを特徴とする欠陥検査装置。
  17. 前記統合処理部において、前記欠陥についての特徴量が、検出光量と平面的な面積とで構成することを特徴とする請求項16記載の欠陥検査装置。
  18. 照明光源から出射された照明光束を照明光学系により被検査対象基板の表面に対して第1の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して第1の画像信号に変換し、該変換された第1の画像信号をA/D変換器により第1のデジタル画像信号に変換し、該変換された第1のデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についての特徴量を前記第1のデジタル画像信号に基いて算出する第1の工程と、
    照明光源から出射された照明光束を照明光学系により前記被検査対象基板の表面に対して前記第1の傾斜角度と異なる第2の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して第2の画像信号に変換し、該変換された第2の画像信号をA/D変換器により第2のデジタル画像信号に変換し、該変換された第2のデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についての特徴量を前記第2のデジタル画像信号に基いて算出する第2の工程と、
    前記第1の工程で検出される欠陥と前記第2の工程で検出される欠陥とが同一視される欠陥についての第1の工程で算出された特徴量と前記第2の工程で算出された特徴量とに基いて欠陥のカテゴリを分類する分類工程とを有することを特徴とする欠陥検査方法。
  19. 照明光源から出射された照明光束を照明光学系により被検査対象基板の表面に対して所望の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して画像信号に変換し、該変換された画像信号をA/D変換器によりデジタル画像信号に変換し、該変換されたデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についてのデジタル画像信号について複数種類のマージ処理を施し、該施された複数のマージ処理の結果に基いて欠陥を分類することを特徴とする欠陥検査方法。
  20. 照明光源から出射された照明光束を照明光学系により被検査対象基板の表面に対して所望の傾斜角度で照射し、該照射された被検査対象基板からの反射散乱光を対物レンズで集光して結像光学系で結像させ、該結像された反射散乱光を光検出器で受光して画像信号に変換し、該変換された画像信号をA/D変換器によりデジタル画像信号に変換し、該変換されたデジタル画像信号に基づいて欠陥を検出し、該検出された欠陥についての前記デジタル画像信号から算出される検出光量に基いて欠陥を分類することを特徴とする欠陥検査方法。
  21. 請求項20または21記載の欠陥検査方法において、前記被検査対象基板の表面に形成された回路パターンの密度に応じて、前記結像光学系の結像倍率を変えることを特徴とする欠陥検査方法。
JP2002252799A 2002-08-30 2002-08-30 欠陥検査装置および欠陥検査方法 Expired - Fee Related JP4387089B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252799A JP4387089B2 (ja) 2002-08-30 2002-08-30 欠陥検査装置および欠陥検査方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252799A JP4387089B2 (ja) 2002-08-30 2002-08-30 欠陥検査装置および欠陥検査方法

Publications (2)

Publication Number Publication Date
JP2004093252A true JP2004093252A (ja) 2004-03-25
JP4387089B2 JP4387089B2 (ja) 2009-12-16

Family

ID=32058983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252799A Expired - Fee Related JP4387089B2 (ja) 2002-08-30 2002-08-30 欠陥検査装置および欠陥検査方法

Country Status (1)

Country Link
JP (1) JP4387089B2 (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005283190A (ja) * 2004-03-29 2005-10-13 Hitachi High-Technologies Corp 異物検査方法及びその装置
JP2006071416A (ja) * 2004-09-01 2006-03-16 Anritsu Corp 印刷はんだ検査装置
JP2006214820A (ja) * 2005-02-02 2006-08-17 Yamaha Motor Co Ltd 基板検査装置および基板検査方法
JP2006250739A (ja) * 2005-03-11 2006-09-21 Hitachi High-Technologies Corp 異物欠陥検査方法及びその装置
JP2008501105A (ja) * 2004-05-29 2008-01-17 イスラ サーフィス ヴィズィオーン ゲーエムベーハー 傷の検出装置及びその方法
US7333192B2 (en) 2006-01-23 2008-02-19 Hitachi High-Technologies Corporation Apparatus and method for inspecting defects
JP2008261790A (ja) * 2007-04-13 2008-10-30 Hitachi High-Technologies Corp 欠陥検査装置
JP2008268141A (ja) * 2007-04-25 2008-11-06 Hitachi High-Technologies Corp 欠陥検査装置およびその方法
JP2011012971A (ja) * 2009-06-30 2011-01-20 Toray Eng Co Ltd 外観検査方法およびその方法を用いて検査する外観検査装置
US7940385B2 (en) 2007-07-23 2011-05-10 Hitachi High-Technologies Corporation Defect inspection apparatus and its method
JP2011109142A (ja) * 2011-02-28 2011-06-02 Hitachi High-Technologies Corp 表示装置、及び検査装置
JP2012208128A (ja) * 2012-07-10 2012-10-25 Hitachi High-Technologies Corp 検査装置
JP2013077127A (ja) * 2011-09-30 2013-04-25 Dainippon Screen Mfg Co Ltd 画像分類装置および画像分類方法
US8902417B2 (en) 2010-12-27 2014-12-02 Hitachi High-Technologies Corporation Inspection apparatus
CN109075092A (zh) * 2016-03-23 2018-12-21 信越半导体株式会社 检测设备和检测方法
CN110763696A (zh) * 2018-07-27 2020-02-07 三星电子株式会社 用于晶圆图像生成的方法和***
CN111725086A (zh) * 2019-03-22 2020-09-29 捷进科技有限公司 半导体制造装置以及半导体器件的制造方法
WO2023095188A1 (ja) * 2021-11-24 2023-06-01 Jswアクティナシステム株式会社 レーザ照射装置、レーザ照射方法、及び半導体デバイスの製造方法
CN116228754A (zh) * 2023-05-08 2023-06-06 山东锋士信息技术有限公司 一种基于深度学习和全局差异性信息的表面缺陷检测方法
CN117392131A (zh) * 2023-12-12 2024-01-12 宁波昱辰汽车零部件有限公司 一种压铸件内壁缺陷检测方法及***

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261133A (ja) * 1984-06-08 1985-12-24 Hitachi Ltd 検査装置
JPH03144568A (ja) * 1989-10-31 1991-06-19 Fujitsu Ltd レチクル検査装置
JPH04106460A (ja) * 1990-08-28 1992-04-08 Toshiba Corp 欠陥検出方法
JPH0682380A (ja) * 1992-09-03 1994-03-22 Nikon Corp 欠陥検査装置
JPH06194320A (ja) * 1992-12-25 1994-07-15 Hitachi Ltd 半導体製造ラインにおける鏡面基板の検査方法およびその装置並びに半導体製造方法
JPH0915134A (ja) * 1995-06-29 1997-01-17 Matsushita Electron Corp パーティクルの検査方法および検査装置
JPH10173019A (ja) * 1996-12-13 1998-06-26 Hitachi Ltd 半導体の検査方法
JPH11237344A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 欠陥検査方法およびその装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2000162141A (ja) * 1998-11-27 2000-06-16 Hitachi Ltd 欠陥検査装置および方法
JP2001255278A (ja) * 2000-03-08 2001-09-21 Hitachi Ltd 表面検査装置およびその方法
JP2001264264A (ja) * 2000-03-14 2001-09-26 Hitachi Ltd 異物または欠陥検査装置、および、異物または欠陥検査方法
JP2002195953A (ja) * 2000-12-26 2002-07-10 Nippon Steel Corp 疵判別ロジック作成用データの収集及び精製方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60261133A (ja) * 1984-06-08 1985-12-24 Hitachi Ltd 検査装置
JPH03144568A (ja) * 1989-10-31 1991-06-19 Fujitsu Ltd レチクル検査装置
JPH04106460A (ja) * 1990-08-28 1992-04-08 Toshiba Corp 欠陥検出方法
JPH0682380A (ja) * 1992-09-03 1994-03-22 Nikon Corp 欠陥検査装置
JPH06194320A (ja) * 1992-12-25 1994-07-15 Hitachi Ltd 半導体製造ラインにおける鏡面基板の検査方法およびその装置並びに半導体製造方法
JPH0915134A (ja) * 1995-06-29 1997-01-17 Matsushita Electron Corp パーティクルの検査方法および検査装置
JPH10173019A (ja) * 1996-12-13 1998-06-26 Hitachi Ltd 半導体の検査方法
JPH11237344A (ja) * 1998-02-19 1999-08-31 Hitachi Ltd 欠陥検査方法およびその装置
JP2000105203A (ja) * 1998-07-28 2000-04-11 Hitachi Ltd 欠陥検査装置およびその方法
JP2000162141A (ja) * 1998-11-27 2000-06-16 Hitachi Ltd 欠陥検査装置および方法
JP2001255278A (ja) * 2000-03-08 2001-09-21 Hitachi Ltd 表面検査装置およびその方法
JP2001264264A (ja) * 2000-03-14 2001-09-26 Hitachi Ltd 異物または欠陥検査装置、および、異物または欠陥検査方法
JP2002195953A (ja) * 2000-12-26 2002-07-10 Nippon Steel Corp 疵判別ロジック作成用データの収集及び精製方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7952700B2 (en) 2004-03-29 2011-05-31 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
JP2005283190A (ja) * 2004-03-29 2005-10-13 Hitachi High-Technologies Corp 異物検査方法及びその装置
US8289507B2 (en) 2004-03-29 2012-10-16 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
US7817261B2 (en) 2004-03-29 2010-10-19 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
JP2008501105A (ja) * 2004-05-29 2008-01-17 イスラ サーフィス ヴィズィオーン ゲーエムベーハー 傷の検出装置及びその方法
JP4918032B2 (ja) * 2004-05-29 2012-04-18 イスラ サーフィス ヴィズィオーン ゲーエムベーハー 傷の検出装置及びその方法
JP2006071416A (ja) * 2004-09-01 2006-03-16 Anritsu Corp 印刷はんだ検査装置
JP2006214820A (ja) * 2005-02-02 2006-08-17 Yamaha Motor Co Ltd 基板検査装置および基板検査方法
JP2006250739A (ja) * 2005-03-11 2006-09-21 Hitachi High-Technologies Corp 異物欠陥検査方法及びその装置
JP4713185B2 (ja) * 2005-03-11 2011-06-29 株式会社日立ハイテクノロジーズ 異物欠陥検査方法及びその装置
US7333192B2 (en) 2006-01-23 2008-02-19 Hitachi High-Technologies Corporation Apparatus and method for inspecting defects
JP2008261790A (ja) * 2007-04-13 2008-10-30 Hitachi High-Technologies Corp 欠陥検査装置
US8319960B2 (en) 2007-04-13 2012-11-27 Hitachi High-Technologies Corporation Defect inspection system
US8804109B2 (en) 2007-04-13 2014-08-12 Hitachi High-Technologies Corporation Defect inspection system
JP2008268141A (ja) * 2007-04-25 2008-11-06 Hitachi High-Technologies Corp 欠陥検査装置およびその方法
US7940385B2 (en) 2007-07-23 2011-05-10 Hitachi High-Technologies Corporation Defect inspection apparatus and its method
US8355123B2 (en) 2007-07-23 2013-01-15 Hitachi High-Technologies Corporation Defect inspection apparatus and its method
JP2011012971A (ja) * 2009-06-30 2011-01-20 Toray Eng Co Ltd 外観検査方法およびその方法を用いて検査する外観検査装置
US8902417B2 (en) 2010-12-27 2014-12-02 Hitachi High-Technologies Corporation Inspection apparatus
JP2011109142A (ja) * 2011-02-28 2011-06-02 Hitachi High-Technologies Corp 表示装置、及び検査装置
JP2013077127A (ja) * 2011-09-30 2013-04-25 Dainippon Screen Mfg Co Ltd 画像分類装置および画像分類方法
JP2012208128A (ja) * 2012-07-10 2012-10-25 Hitachi High-Technologies Corp 検査装置
CN109075092A (zh) * 2016-03-23 2018-12-21 信越半导体株式会社 检测设备和检测方法
CN109075092B (zh) * 2016-03-23 2023-03-28 信越半导体株式会社 检测设备和检测方法
CN110763696A (zh) * 2018-07-27 2020-02-07 三星电子株式会社 用于晶圆图像生成的方法和***
CN111725086A (zh) * 2019-03-22 2020-09-29 捷进科技有限公司 半导体制造装置以及半导体器件的制造方法
CN111725086B (zh) * 2019-03-22 2024-03-12 捷进科技有限公司 半导体制造装置以及半导体器件的制造方法
WO2023095188A1 (ja) * 2021-11-24 2023-06-01 Jswアクティナシステム株式会社 レーザ照射装置、レーザ照射方法、及び半導体デバイスの製造方法
CN116228754A (zh) * 2023-05-08 2023-06-06 山东锋士信息技术有限公司 一种基于深度学习和全局差异性信息的表面缺陷检测方法
CN116228754B (zh) * 2023-05-08 2023-08-25 山东锋士信息技术有限公司 一种基于深度学习和全局差异性信息的表面缺陷检测方法
CN117392131A (zh) * 2023-12-12 2024-01-12 宁波昱辰汽车零部件有限公司 一种压铸件内壁缺陷检测方法及***
CN117392131B (zh) * 2023-12-12 2024-02-06 宁波昱辰汽车零部件有限公司 一种压铸件内壁缺陷检测方法及***

Also Published As

Publication number Publication date
JP4387089B2 (ja) 2009-12-16

Similar Documents

Publication Publication Date Title
JP4996856B2 (ja) 欠陥検査装置およびその方法
JP4183492B2 (ja) 欠陥検査装置および欠陥検査方法
JP4387089B2 (ja) 欠陥検査装置および欠陥検査方法
US7672799B2 (en) Defect inspection apparatus and defect inspection method
JP3566589B2 (ja) 欠陥検査装置およびその方法
US8559000B2 (en) Method of inspecting a semiconductor device and an apparatus thereof
JP4230838B2 (ja) 欠陥検査装置における検査レシピ設定方法および欠陥検査方法
EP0374694B1 (en) Defect detection system and method for pattern to be inspected
US6178257B1 (en) Substrate inspection method and apparatus
US7859656B2 (en) Defect inspection method and system
JP2005283190A (ja) 異物検査方法及びその装置
US20060233434A1 (en) Method and apparatus for inspection
JP3904581B2 (ja) 欠陥検査装置およびその方法
JP2001159616A (ja) パターン検査方法及びパターン検査装置
JP2008058111A5 (ja)
KR20010021381A (ko) 결함 검사 방법 및 그 장치
JPH0926396A (ja) 異物等の欠陥検査方法及びその装置
KR100374762B1 (ko) 결함 검사 장치 및 그 방법
JP3981696B2 (ja) 欠陥検査装置およびその方法
JP3904565B2 (ja) 欠陥検査装置およびその方法
JP3362033B2 (ja) 異物検査装置
JPH0580496A (ja) 異物検査装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080707

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees