JP2004091984A - Fiber having heat-generating property and minus ion-generating property - Google Patents

Fiber having heat-generating property and minus ion-generating property Download PDF

Info

Publication number
JP2004091984A
JP2004091984A JP2002255890A JP2002255890A JP2004091984A JP 2004091984 A JP2004091984 A JP 2004091984A JP 2002255890 A JP2002255890 A JP 2002255890A JP 2002255890 A JP2002255890 A JP 2002255890A JP 2004091984 A JP2004091984 A JP 2004091984A
Authority
JP
Japan
Prior art keywords
fiber
acrylic
core
conductive
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002255890A
Other languages
Japanese (ja)
Other versions
JP2004091984A5 (en
Inventor
Yukio Kasabo
笠坊 行生
Hideaki Kobayashi
小林 秀章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2002255890A priority Critical patent/JP2004091984A/en
Publication of JP2004091984A publication Critical patent/JP2004091984A/en
Publication of JP2004091984A5 publication Critical patent/JP2004091984A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Knitting Of Fabric (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber having a heat-generating performance by light irradiation and a minus ion-generating performance or a moist heat-generating performance and capable of keeping these characteristics over a long period. <P>SOLUTION: Acrylic fiber union yarn is constituted by mixing a core-sheath type acrylic conjugate electroconductive fiber containing an electroconductive component in the core part with other fiber. As a result, the heat-generating property and the minus ion-generating property of the fiber can be enhanced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、衣料品、特にスポーツ用衣料品及び秋冬用衣料品、その他寝具、カーテン、車両等の内装材用等としてマイナスイオン発生性等を有する繊維及びその製品に関する。
【0002】
【従来の技術】
吸湿性、吸水性、速乾性、保温性等、繊維に要求される性質、性能は多岐にわたるが、近時マイナスイオンの発生、発熱性等の特性を有する繊維の開発が求められてきている。
例えば、マイナスイオンを発生する繊維としてはアクリル繊維を後加工する方法、レーヨンを練り込むことが考えられるが、アクリル繊維は、マイナスイオンを発生する素材を練り込んでも中和してしまいマイナスイオンを発生するのは困難である。特開2000−336573号公報には、アクリル繊維に遠赤外線を放射する液状のミネラル成分を樹脂バインダーによって固定したものが使用時の摩擦によってマイナスイオンを発生し、使用者の自立神経を調整する作用を有するとされる繊維が開示されている。しかしながら、一般に繊維に特殊な性質を付与するために樹脂をバインダーとして付着したものは、洗濯、使用時の摩擦等により剥離してしまうという問題がある。
【0003】
一方、繊維を形成している重合体の組成を変え、又は紡糸条件を規制する等によって、吸湿、吸水性繊維とすることが知られているが、それらの性質付与はまだ十分といえない。特公平7−59762号公報には動物繊維を除く吸放湿吸水発熱性繊維を中地又は裏地等の素材とする人体から発生する気相及び液相の汗や、衣服外から侵入する気相及び液相の水分を吸収することにより発熱保温作用があるとされるスポーツ用等に向けた衣料品が開示されている。しかし、その素材は、アクリル酸系吸放湿吸水発熱性繊維(東洋紡績(株)製開発番号N−38)とあるのみで詳細は不明である。
【0004】
【発明が解決しようとする課題】
本発明は、光照射による発熱性能、マイナスイオン発生能あるいは湿熱発熱性能を有し、しかも、これらの特性が長期にわたり維持される繊維及びその製品を提供しようとするにある。
【0005】
【課題を解決するための手段】
本発明者らは、上記特性を有する繊維の開発を進めた結果、導電性成分を芯部に含有する芯鞘型アクリル系複合導電性繊維と他の繊維とを混紡してなるアクリル系繊維混紡糸は、湿熱発熱性のほかに光照射による発熱性能及びマイナスイオン発生能をも有し、しかも、この特性が芯鞘型アクリル系複合導電性繊維を含む混紡糸構造に基づくことから長期にわたり持続することを見出した。
すなわち本発明は、導電性成分を芯部に含有する芯鞘型アクリル系複合導電性繊維と他の繊維とを混紡してなる発熱性及びマイナスイオン発生性を有することを特徴とするアクリル系繊維混紡糸にある。
さらに本発明は、導電性成分を芯部に含有する芯鞘型アクリル系複合導電性繊維と、セルロースアセテート及び/又はセルロースとアクリロニトリル系重合体とからなる海島型複合繊維重量が混紡された繊維であって、温度20℃で、湿度を40%RHから90%RHに変化させたときの温度上昇が2〜5℃である上記アクリル系繊維混紡糸にある。
また本発明は、上記のアクリル系繊維混紡糸を用いた繊維製品にある。
【0006】
【発明の実施の態様】
一般に導電性繊維としては、カーボンブラックを含有する繊維、金属微粒子を含有する繊維などが知られているが、繊維自体の色、繊維製造すなわち紡糸性などの観点から、衣料用繊維に使用するには問題がある。
そこで本発明は、導電性物質を芯部に含有する芯鞘型アクリル系複合繊維、例えば特許第3227528号公報に記載されているような複合繊維が好ましく用いられる。該繊維は芯鞘共にアクリロニトリル系共重合体かなる複合繊維であって、繊維断面における芯鞘の面積比が芯部/鞘部=5/95〜60/40で、芯部に導電率が10−3S/cm以上の導電性物質を15〜70体積%含有し、芯部の断面積が7μm2 以上、鞘部の厚みが少なくとも一部において3μm以下で、かつ、芯部の繊維表面の露出量が繊維表面の5%以下である導電性繊維である。
【0007】
この導電性繊維に用いられる導電率が10−3S/cm以上の導電性物質としては平均粒子径3μm以下で白度の高い金属の酸化物、たとえば、酸化錫、酸化亜鉛、酸化インジュウム、又は、これらの酸化物で表面を被覆した酸化チタンが好ましく用いられる。
【0008】
導電性繊維に用いられるアクリロニトリル系重合体を構成する単量体としては、通常のアクリル系繊維を構成する単量体であれば特に限定されるものではないが、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸、マレイン酸、酢酸ビニル、塩化ビニルなどである。又アクリル系重合体にp−スルフォフェニルメタリルエーテル、メタリルスルフォン酸、アリルスルフォン酸、2−アクリルアミド−2−メチルプロパンスルフォン酸及びこれらのアルカリ塩を共重合成分に加えたものは染色性が改良され好ましい。
【0009】
本発明の導電性繊維を形成するアクリル系重合体は、通常用いられる有機溶剤、たとえば、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキサイド、エチレンカーボネート、アセトン等、無機溶剤、たとえば、硝酸、塩化亜鉛、ロダン塩(何れも水溶液)等が用いられる。
【0010】
本発明の導電性繊維を形成するための紡糸原液濃度は、芯部を形成するアクリル系重合体濃度5〜25%、鞘部を形成するアクリル系重合体濃度20〜40%の範囲が用いられ、芯部を形成するアクリル系重合体原液には導電性物質をアクリル系重合体との体積比が15/85〜70/30になるように添加する。
紡糸は、乾式法、乾湿式法が好ましい。芯部の導電性物質の含有率が多い繊維を得ようとする場合は、孔径の大きな口金を用いて高ドラフト紡糸することが好ましい。紡糸後の未延伸糸は、70℃以上の熱水中で2〜7倍に延伸すると同時に脱溶媒し、次いで乾燥、緩和熱処理し5〜50%収縮させる。
【0011】
本発明は、このような導電性繊維を繊維混紡糸中に1〜15質量%含有させることによって該混紡糸から得られた繊維製品が、着衣中、スポ−ツ中、就寝中着衣者の動き、又は外の動き等によって繊維が摩擦されてマイナスイオンが発生することを見出だしたものである。導電性繊維に混紡する繊維は天然繊維、合成繊維のいずれでもよい。天然繊維では、羊毛、鵝毛、絹等の動物性繊維、合成繊維としてはアクリル繊維、ポリエステル繊維、ナイロン6繊維、ナイロン66繊維等、またビスコースレーヨン、アセテート、キュプラ繊維等の再生繊維、半合成繊維及びこれら繊維の相互の混繊、混紡繊維が用いられる。導電性繊維のこれら繊維に対する混紡率は1〜15質量%である。導電性繊維の混紡率が1質量%以下ではこの効果は発生しない、また、15質量%を超えても効果の増大は期待できない。1〜15質量%の範囲であるとマイナスイオンは200個/cm3 以上に達し、使用者の動き、接触により使用者の周囲又は車両等の室内の雰囲気を爽快にする。本発明のマイナスイオン発生繊維は、用いる導電性繊維が複合繊維を構成する芯部に含有される導電性物質に起因するので、マイナスイオンを発生する物質を繊維表面にバインダー等により付着させたものより長期にわたりマイナスイオンを発生する。
【0012】
本発明において上記導電性繊維の混紡率5〜15質量%の混紡糸は、マイナスイオンを発生するほかに光照射下で発熱性を発揮する。この混紡糸からなる繊維製品、例えば靴下に、20℃湿度40%RH下に光りを一定時間照射し、照射前と照射後の温度を測定すると図1に示す結果が得られた。図1において曲線1は前記導電性繊維の混紡率10%のアクリル繊維製靴下を、曲線2は導電性繊維を混紡してない通常のアクリル繊維製靴下(対照品)の発熱性を比較したものである。これによれば導電性繊維を混紡した製品は対照品より、照射開始後150sec近辺から900sec照射の間5〜7℃上昇していることが明らかである。照射中止後は両製品とも900sec後には照射前の温度に戻る。この事実は光照射環境下で通常繊維製品より保温性に優れる効果があることを示し、夜間使用の仕事着、外衣などに好ましく、また暖房費用の節約につながるものである。
【0013】
更に、前記導電性繊維10〜60質量%と、セルロースアセテート及び/又はセルロースとアクリロニトリル系重合体とからなる海島型複合繊維90〜40重量質量%を混紡した繊維は雰囲気を温度20℃、湿度40%RHから温度20℃、湿度90%RHに変化させたとき繊維自体の温度が2〜5℃上昇する性質を有する。この混紡繊維は、吸湿することによって吸着熱により発熱する性質を有する。
【0014】
セルロースアセテート及び/又はセルロースとアクリロニトリル系重合体とからなる海島型複合繊維としては、本願出願人がすでに特許出願している(特願2002−070368号)繊維であって、この繊維は、繊維中に海成分が粒状に存在する、いわゆるサラミ構造の断面を有する複合繊維とは異なり、繊維内で、断面で島成分を形成しているセルロースアセテート及び/又はセルロースが繊維内で繊維軸方向に連通した構造を有し、繊維外周面に微細な凹部を繊維軸方向に有するもので、かつ、繊維内部に空孔を有しているものである。
【0015】
この繊維を製造するにはセルロースアセテートとアクリロニトリル系重合体を、両者を溶解する溶媒に溶解し、紡糸原液を調製する。溶媒としては、前記段落番号0009に記載した導電性繊維の製造のところで記載したものが用いられる。紡糸原液は、セルロースアセテート、アクリロニトリル系重合体を共に溶剤に溶解しても、別々に溶解した後混合してもよい。紡糸方法は、繊維にしたとき断面観察でセルロースアセテートが島成分、アクリロニトリル系重合体が海成分を形成するように、そして繊維外週面に凹部を形成するために、溶媒中の繊維形成成分の凝固速度を制御し易いなどの観点から、凝固浴中に吐出する湿式紡糸法を採用するのが好ましい。
紡糸は、通常の紡糸口金を用い、紡糸後3〜7倍に延伸し、熱水中で脱溶媒した後、乾燥、熱緩和処理する。
【0016】
使用するセルロースアセテートとしてはセルロースジアセテート、セルローストリアセテートが用いられ、これらは、繊維形成後アルカリ処理して部分的に鹸化したセルロースジアセテート、セルローストリアセテートであってもよく、又はアセチル基の全部をアルカリ鹸化したセルロースとしてもよい。この繊維は成分中にアセテートを含むため、吸湿、保湿性に優れると共に消臭機能を有する。特にアルカリ鹸化によってアセテートが全面的に鹸化されセルロース化したものは、吸湿性に優れるほか、吸湿発熱性が向上していることが分かった。
【0017】
図2は、後記する実施例2で得た海島型セルロースジアセテートとアクリロニトリル系重合体との複合繊維を、通常のアクリル繊維に表1に示す割合で混紡した繊維の吸着熱による発熱性を示すもので、海島型複合繊維は表1記載の対繊維濃度で苛性ソーダで鹸化処理したものを50質量%又は30質量%と、通常のアクリル繊維50質量%又は70質量%との混紡製品の吸湿発熱性を示したグラフである。これによれば温度20℃、湿度40%RHから温度20℃、湿度90%RHに加湿した後の時間経過とともに各製品とも対照品(通常のアクリル繊維製品)に比べ2〜3.5℃発熱していることが理解される。
【0018】
【表1】

Figure 2004091984
表1において、「AN」はアクリロニトリル系重合体、「%」は質量%を示す。NaOH処理は、NaOHを繊維重量に対し10%を0.7%水溶液とし80℃で60分処理した場合、及び同様に20%用い1.4%水溶液とし80℃で60分処理したものを示す。「なし」は無処理を示す。
【0019】
このテストは試料7gを絶乾した後、試料の中心に熱電対温度センサーを取りつけ、輪ゴムで固定しておき、高温高湿器を用いて20℃、湿度40%RHの環境下に2時間置いた後、直ちに20℃、湿度90%RHの環境に変化させたときの試料の温度変化を1分毎に30分間測定したときの値である。
【0020】
また、上記導電性繊維にセルロースアセテート及び/又はセルロースとアクリロニトリル系重合体とからなる海島型複合繊維を混紡した繊維はマイナスイオン発生効果がある。海島型複合繊維の導電性繊維に対する混紡率は、特に問わないが好ましくは導電性繊維1〜15質量%と、セルロースアセテート及び/又はセルロースとアクリロニトリル系重合体とからなる海島型複合繊維10〜60質量%の範囲であり、残部は当該両繊維以外の他の繊維89〜25質量%である。他の繊維を混紡しない場合は、導電性繊維1〜15質量%上記海島型複合繊維85〜99質量%である。
【0021】
【実施例】
次に、本発明の実施例を挙げてさらに説明する。
[実施例1](導電性繊維の製造)
アクリロニトリル93.5部、アクリル酸メチル6.0部、メタリルスルフォン酸ソーダ0.5部からなるアクリロニトリル共重合体(分子量16万)を重合体濃度を30%になるようにジメチルホルムアミドに溶解し紡糸原液Aを調製した。粒子径0.2〜0.3μm、導電率0.4S/cmの粒状導電性酸化チタン(石原産業(株)製、商品名:ET−500W)90質量部を上記紡糸原液Aと同様のアクリロニトリル共重合体からなる紡糸原液100部に分散し、紡糸原液Bを調製した。
【0022】
かくして得られた紡糸原液A,Bをそれぞれ130℃に加熱した後、紡糸原液Bを芯部に、紡糸原液Aを鞘部になるように孔数400、孔径0.2mmφの芯鞘紡糸口金を用い230℃の不活性ガス中に吐出した。得られた未延伸糸を引き続き100℃の熱水中で3.75倍に延伸し、更に95℃の熱水で洗浄した。
得られた繊維束を無緊張状態下に相対湿度40%、温度150℃で乾燥、緩和処理し20%収縮した。
この繊維は繊度3dtex、芯鞘比率:75/25,芯部中の導電材の含有率43体積%、鞘部の最低厚み1.8μm,芯部の断面積30μm2 、表面抵抗率3.0×106 Ω、導電率2.1×10−4S/cm、繊維断面の長さ方向の幅/繊維断面の最短幅:4.4、断面:亜鈴型で紡糸工程中毛羽発生は認められなかった。
【0023】
上記データの測定法は次ぎのとおりである。
表面抵抗率:繊維束より単繊維を取出し、これに正確に1cm離して銀ペースト(藤倉化成(株)製、商品名ドータイト)により金属端子に接続し、20℃相対湿度40%RHにおいて、この端子間に1000Vの直流電圧を印加し、端子間の抵抗値Rs(Ω)を超絶縁計(東亜電波(株)製SM−8210)により測定し、これより表面低効率σ(Ω)を次式によって求めた。
σ=3.7×10−3×Rs×(d/ρ)1/2 
ただし、dは繊度、ρは繊維の比重を表す。
【0024】
導電率:上記表面抵抗率の測定において端子間に1000Vの直流電圧を印加するまでは同様にし、端子間の抵抗値Rv(Ω)を超絶縁計(東亜電波(株)製SM−8210)により測定し、これから導電率ζ(S/cm)を次式により求めた。
ζ=1/(1.11×10−6×Rv×(d/ρ))
ただし、dは繊度、ρは繊維の比重を表す。
鞘部の最低厚さ、芯鞘比率、芯部の断面積は、繊維の断面の顕微鏡写真により計測し、平均値として求めた。
【0025】
[実施例2](セルロースアセテートとアクリロニトリル系重合体とからなる海島型複合繊維の製造)
平均酢化度55.2%のセルロースジアセテート(A)と水系懸濁重合法により得た0.5%ジメチルホルムアミド測定の還元粘度1.98のアクリロニトリル93重量部、酢酸ビニル7重量部よりなるアクリロニトリル系重合体(B)の固形分比率を30/70の割合として、ジメチルアセトアミドに固形分濃度が22%になるように混合溶解し、紡糸原液を調製した。この紡糸原液を35℃、56%ジメチルアセトアミド水溶液からなる紡糸浴に円形紡糸孔を有する口金から吐出して湿式紡糸し、次いで沸水中で溶剤を洗浄しながら6倍に延伸し、さらに乾燥、緩和処理を施し、単繊維繊度2.2dtexの海島型複合繊維を得た。
【0026】
得られた繊維の紡糸性は良好であった。この複合繊維の断面を観察したところ、セルロースジアセテート(A)成分が島成分を形成し、海成分はアクリロニトリル系重合体(B)からなっており、繊維断面の最長径と最短径の比率は1.4、繊維断面外周部に発現している幅0.3μm以上3μm以下で、かつ、深さ3μm以下の凹部の数5で、A/Bの固形分比率10/90,吸湿率Aa4.2%,吸湿率Ab2.8%,ΔA1.4%であった。
【0027】
上記断面観察、海島構造の確認は、繊維束を2液型ウレタン樹脂に埋包し、安全カミソリで2mm長さに切断した後、切断面をプラズマリアクター(ヤマト科学(株)製、FR−302)にてプラズマ・エッチング処理し、処理面を常法により金属蒸着した後、走査型電子顕微鏡(日本電子(株)製、JMS−T20にて観察した。
また、繊維断面の最長径と最短径の比率、繊維断面外周部における凹部の数は、繊維束をパラフィン樹脂に埋包し、ミクロトームで5μmの薄層に切断した後、切断面を透過型光学顕微鏡(ニコン社製、生物顕微鏡E−800)にて観察し行ったものである。
吸湿率は、試料約5gを、温度40℃、湿度90%RH下に24時間放置した後採取し、質量及び絶乾質量を測り、次式により吸湿率Aa(%)を算出した。同様に温度20℃、湿度65%RH下にするほかは同じである吸湿率Ab(%)も次式によった。
吸湿率(Aa又はAb)=(採取時の質量−絶乾質量)/絶乾質量×100
【0028】
[実施例3](実施例2の繊維のアルカリ処理の例)
実施例2で得た海島型複合繊維をNaOH3%及び12%(何れも対繊維質量)を水溶液とし60℃で30分アルカリ処理した。対繊維質量3%使用のNaOH処理したものは吸湿率Aa4.8%,吸湿率Ab3.2%、対繊維重量12質量%のNaOHを使用した物は、吸湿率Aa8.1%,吸湿率Ab6.8%,であった。
また、実施例2で得た海島型複合繊維を濃度14%のNaOH(対繊維質量)を用い80℃、30分処理したものは、複合繊維中のセルロースアセテートがアルカリ処理によりセルロースとなり吸湿率Aa13.0%,吸湿率Ab11.6%,の値を示した。
【0029】
[実施例4]
実施例1で得た導電繊維を51mmにカットし、これを通常のアクリル繊維綿に対し10%混紡した。
この混紡糸からの発熱性発現性を測定するため、靴下を編み出し、これに光を照射した場合の発熱性発現効果確認テストを行った。
試験方法は、岩崎電気(株)製レフランプ、〈スポット〉PRS100V500Wを用い,試料との距離50cmで靴下かかと部に表面から照射し、試料裏面から熱電対で測温、照射時間15分、放冷時間15分、周囲温湿度20℃湿度40%RHで行った。その結果を次表に示す。
【0030】
条件1  靴下の「かかと部分」に熱電対を挟んで測定。
【表2】
Figure 2004091984
表中「AN」繊維はアクリロニトリル系重合体よりなる通常のアクリル繊維を表す。
【0031】
条件2:試料台の上で熱電対に、切り開いた靴下の「かかと部分」を載せて測定した。
【表3】
Figure 2004091984
【0032】
[実施例5]
実施例1で得た導電性繊維を51mmにカットし、表4に示す通常のアクリル繊維との混紡糸からなるスムース編物についてマイナスイオン発性効果を確認した。その結果を表4に示す。
マイナスイオンの測定は、スムース編物を測定装置として神戸イオン商会製のイオンテスターKST−900を用い、200回/分摩擦し遠赤外線応用研究会の測定法に基づいて測定した。
【0033】
【表4】
Figure 2004091984
【0034】
【発明の効果】
本発明によれば、導電性繊維を各種の混紡比率で混紡することにより得られる繊維製品は、光照射による発熱性に富み、及び、使用中の摩擦によりマイナスイオンを発生し、使用者の周囲、環境を爽快にするなどの作用、効果を奏し、かつ、これらの効果は導電性繊維を形成している芯鞘複合繊維の芯成分中の導電性物質に基づくので長期にわたり持続し、スポーツ用衣料、秋冬用衣料、寝具、車両、カーテン等の資材用に好適である。
又、特に導電性繊維に、アセテートとアクリロニトリルとの海島型複合繊維を混紡した繊維は、吸湿性に富み、吸水性と湿熱発熱性に優れ、各種用途に適する。
【図面の簡単な説明】
【図1】導電性繊維に光を照射したときの温度上昇及び光照射を中止したときの温度変化を示すグラフである。
【図2】表1に示した吸湿発熱性を示すグラフである。
【符号の説明】
1:導電性繊維とアクリル繊維との混紡糸のカーブである。
2:アクリル繊維糸のカーブである。
図2のNo.1〜6は表1の資料番号に対応している。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a garment, particularly a sports garment, a fall / winter garment, bedding, a curtain, a fiber having a negative ion generating property and the like for interior materials such as vehicles, and a product thereof.
[0002]
[Prior art]
Although the properties and performances required of the fibers, such as moisture absorption, water absorption, quick drying, and heat retention, are various, development of fibers having characteristics such as generation of negative ions and heat generation has recently been required.
For example, as a fiber that generates negative ions, a method of post-processing an acrylic fiber or kneading rayon can be considered, but the acrylic fiber is neutralized even if a material that generates negative ions is kneaded and neutralizes the negative ions. It is difficult to occur. Japanese Patent Application Laid-Open No. 2000-336573 discloses that an acrylic fiber in which a liquid mineral component that emits far infrared rays is fixed by a resin binder generates negative ions due to friction at the time of use, thereby adjusting the self-sustained nerve of the user. Are disclosed. However, in general, there is a problem that fibers to which a resin is attached as a binder in order to impart special properties to the fibers are peeled off due to friction during washing and use.
[0003]
On the other hand, it is known that fibers are formed into moisture-absorbing and water-absorbing fibers by changing the composition of the polymer forming the fibers or regulating the spinning conditions, but these properties have not been sufficiently imparted yet. Japanese Patent Publication No. 7-59762 discloses a vapor phase and a liquid phase sweat generated from a human body using moisture absorbing / desorbing water-absorbing and heat-generating fibers other than animal fibers as a material for a lining or a lining, and a gas phase entering from outside clothes. In addition, there is disclosed a garment for sports or the like, which has a heat-retaining effect by absorbing water in a liquid phase. However, the material is an acrylic acid-based moisture absorbing / releasing moisture-absorbing heat-generating fiber (Toyobo Co., Ltd., development number N-38), and the details are unknown.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a fiber having heat generation performance by light irradiation, negative ion generation ability, or heat-and-moisture heat generation property and maintaining these properties for a long period of time, and a product thereof.
[0005]
[Means for Solving the Problems]
The present inventors have promoted the development of a fiber having the above characteristics, and as a result, an acrylic fiber blend obtained by blending a core-sheath type acrylic composite conductive fiber containing a conductive component in a core with another fiber. Yarn has heat generation performance by light irradiation and negative ion generation ability in addition to wet heat generation property, and since this property is based on a blended yarn structure containing core-sheath type acrylic composite conductive fiber, it lasts for a long time I found out.
That is, the present invention provides an acrylic fiber characterized by having a heat generating property and a negative ion generating property obtained by blending a core-sheath type acrylic composite conductive fiber containing a conductive component in a core portion with another fiber. In blended yarn.
Further, the present invention provides a fiber obtained by blending a core-sheath type acrylic composite conductive fiber containing a conductive component in a core portion and a sea-island type composite fiber weight of cellulose acetate and / or cellulose and an acrylonitrile polymer. The acrylic fiber blended yarn has a temperature rise of 20 to 5 ° C. when the humidity is changed from 40% RH to 90% RH at a temperature of 20 ° C.
The present invention also relates to a fiber product using the above-mentioned acrylic fiber blended yarn.
[0006]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
In general, as conductive fibers, fibers containing carbon black, fibers containing metal fine particles, and the like are known, but from the viewpoint of the color of the fibers themselves, fiber production, that is, spinnability, etc., they are used in clothing fibers. Has a problem.
Therefore, in the present invention, a core-sheath type acrylic composite fiber containing a conductive material in a core portion, for example, a composite fiber described in Japanese Patent No. 3227528 is preferably used. The fiber is a conjugate fiber made of an acrylonitrile copolymer in both the core and the sheath. The area ratio of the core and the sheath in the fiber cross section is core / sheath = 5/95 to 60/40, and the core has a conductivity of 10%. -3 S / cm or more of a conductive substance in an amount of 15 to 70% by volume, a core having a cross-sectional area of 7 μm 2 or more, a sheath having a thickness of 3 μm or less in at least a part thereof, and a fiber surface of the core. It is a conductive fiber whose exposure amount is 5% or less of the fiber surface.
[0007]
As a conductive substance having a conductivity of 10 −3 S / cm or more, an oxide of a metal having an average particle diameter of 3 μm or less and high whiteness, for example, tin oxide, zinc oxide, indium oxide, or Titanium oxide whose surface is coated with these oxides is preferably used.
[0008]
The monomer constituting the acrylonitrile-based polymer used for the conductive fiber is not particularly limited as long as it is a monomer constituting a usual acrylic fiber. (Meth) acrylic acid, maleic acid, vinyl acetate, vinyl chloride and the like. In addition, an acrylic polymer obtained by adding p-sulfophenyl methallyl ether, methallyl sulfonic acid, allyl sulfonic acid, 2-acrylamido-2-methylpropane sulfonic acid and an alkali salt thereof to a copolymer component has a stainability. Improved and preferred.
[0009]
The acrylic polymer forming the conductive fiber of the present invention is a commonly used organic solvent, for example, dimethylformamide, dimethylacetamide, dimethylsulfoxide, ethylene carbonate, acetone and the like, inorganic solvents such as nitric acid, zinc chloride, Rodin salts (all in aqueous solution) and the like are used.
[0010]
The concentration of the spinning dope for forming the conductive fiber of the present invention is in the range of 5 to 25% of the acrylic polymer forming the core and 20 to 40% of the acrylic polymer forming the sheath. A conductive substance is added to the acrylic polymer stock solution forming the core so that the volume ratio with the acrylic polymer is 15/85 to 70/30.
The spinning is preferably performed by a dry method or a dry-wet method. When attempting to obtain a fiber having a high content of the conductive material in the core, high draft spinning is preferably performed using a die having a large hole diameter. The undrawn yarn after spinning is stretched 2 to 7 times in hot water at 70 ° C. or higher, and at the same time, desolventized, and then dried and subjected to mild heat treatment to shrink by 5 to 50%.
[0011]
The present invention relates to a fiber blend obtained by incorporating 1 to 15% by mass of such a conductive fiber in a fiber blended yarn so that the textile product obtained from the blended yarn can be moved during clothing, during sports, or while sleeping. Or that the fibers are rubbed by external movement or the like to generate negative ions. The fibers mixed with the conductive fibers may be either natural fibers or synthetic fibers. Natural fibers include animal fibers such as wool, wool, and silk; synthetic fibers include acrylic fibers, polyester fibers, nylon 6 fibers, and nylon 66 fibers; and regenerated fibers such as viscose rayon, acetate, and cupra fibers, and semi-synthetic fibers. Fibers, mixed fibers of these fibers, and blended fibers are used. The blending ratio of the conductive fibers to these fibers is 1 to 15% by mass. This effect does not occur when the blending ratio of the conductive fibers is 1% by mass or less, and the effect cannot be expected to increase when the blending ratio exceeds 15% by mass. When the content is in the range of 1 to 15% by mass, the number of negative ions reaches 200 / cm 3 or more, and the movement and contact of the user refreshes the atmosphere around the user or in a room such as a vehicle. The negative ion generating fiber of the present invention is obtained by adhering a negative ion generating substance to the fiber surface with a binder or the like, since the conductive fiber used is caused by a conductive substance contained in the core part of the composite fiber. Generates negative ions for a longer period.
[0012]
In the present invention, the blended yarn of the conductive fiber having a blending ratio of 5 to 15% by mass exhibits heat generation under light irradiation in addition to generating negative ions. A fiber product made of this blended yarn, for example, a sock, was irradiated with light for a certain period of time at 20 ° C. and 40% RH, and the temperatures before and after irradiation were measured. The results shown in FIG. 1 were obtained. In FIG. 1, curve 1 is a comparison of the so-called acrylic fiber socks with a blending ratio of 10% of the conductive fiber, and curve 2 is a comparison of the heat generation of a normal acrylic fiber sock with no blended conductive fiber (control product). It is. According to this, it is clear that the product in which the conductive fiber is blended has a temperature rise of 5 to 7 ° C. from around 150 sec after the start of irradiation to 900 sec of irradiation compared to the control product. After irradiation is stopped, both products return to the temperature before irradiation after 900 sec. This fact shows that under light irradiation environment, it is more effective than ordinary textiles in heat retention, which is preferable for work clothes and outer garments used at night, and also saves heating costs.
[0013]
Further, a fiber prepared by blending 10 to 60% by mass of the conductive fiber with 90 to 40% by mass of sea-island composite fiber composed of cellulose acetate and / or cellulose and an acrylonitrile-based polymer has an atmosphere at a temperature of 20 ° C. and a humidity of 40%. When the temperature is changed from% RH to a temperature of 20 ° C and a humidity of 90% RH, the temperature of the fiber itself increases by 2 to 5 ° C. This mixed fiber has a property of generating heat by heat of adsorption when absorbing moisture.
[0014]
The sea-island composite fiber composed of cellulose acetate and / or cellulose and an acrylonitrile-based polymer is a fiber filed by the applicant of the present invention (Japanese Patent Application No. 2002-070368). Unlike the composite fiber having a so-called salami structure cross section, in which the sea component is present in a granular form, cellulose acetate and / or cellulose which forms an island component in the cross section within the fiber communicate in the fiber axis direction within the fiber. It has a fine structure, has fine concave portions on the outer peripheral surface of the fiber in the fiber axis direction, and has pores inside the fiber.
[0015]
To produce this fiber, cellulose acetate and an acrylonitrile-based polymer are dissolved in a solvent that dissolves both to prepare a spinning stock solution. As the solvent, those described for the production of the conductive fiber described in the paragraph number 0009 are used. The spinning dope may be prepared by dissolving cellulose acetate and an acrylonitrile-based polymer together in a solvent, or may be separately dissolved and then mixed. The spinning method is such that the cellulose acetate forms an island component, an acrylonitrile-based polymer forms a sea component by cross-sectional observation when the fiber is formed, and a concave portion is formed on the outer surface of the fiber. From the viewpoint of easy control of the solidification speed, it is preferable to employ a wet spinning method of discharging into a coagulation bath.
The spinning is performed by using a normal spinneret, drawing 3 to 7 times after spinning, removing the solvent in hot water, drying and heat relaxation treatment.
[0016]
As the cellulose acetate to be used, cellulose diacetate and cellulose triacetate are used. It may be saponified cellulose. Since this fiber contains acetate in its component, it has excellent moisture absorption and moisture retention properties and has a deodorizing function. In particular, it was found that acetate obtained by completely saponifying the acetate by alkali saponification and being converted into cellulose had excellent hygroscopicity and also improved hygroscopic heat generation.
[0017]
FIG. 2 shows heat generation due to heat of adsorption of a fiber obtained by blending a composite fiber of sea-island type cellulose diacetate and an acrylonitrile-based polymer obtained in Example 2 described later with ordinary acrylic fiber at a ratio shown in Table 1. The sea-island type composite fiber was prepared by blending 50% by mass or 30% by mass of saponified sodium hydroxide with the fiber concentration shown in Table 1 and 50% by mass or 70% by mass of ordinary acrylic fiber. It is the graph which showed the sex. According to this, as time elapses after humidification from a temperature of 20 ° C. and a humidity of 40% RH to a temperature of 20 ° C. and a humidity of 90% RH, each of the products generates 2 to 3.5 ° C. heat as compared with the control product (normal acrylic fiber product). It is understood that.
[0018]
[Table 1]
Figure 2004091984
In Table 1, "AN" indicates an acrylonitrile-based polymer, and "%" indicates mass%. The NaOH treatment refers to a case in which NaOH is used as a 0.7% aqueous solution with 10% of the fiber weight and treated at 80 ° C. for 60 minutes, and a case in which 20% is used as a 1.4% aqueous solution and treated at 80 ° C. for 60 minutes. . “None” indicates no processing.
[0019]
In this test, after a 7 g sample was completely dried, a thermocouple temperature sensor was attached to the center of the sample, fixed with a rubber band, and placed in an environment of 20 ° C. and 40% RH for 2 hours using a high-temperature and high-humidity device. Immediately after the measurement, the temperature change of the sample when the environment was changed to an environment of 20 ° C. and a humidity of 90% RH was measured every minute for 30 minutes.
[0020]
A fiber obtained by blending the conductive fiber with a cellulose acetate and / or a sea-island composite fiber composed of cellulose and an acrylonitrile polymer has a negative ion generating effect. The blending ratio of the sea-island composite fibers to the conductive fibers is not particularly limited, but is preferably 1 to 15% by mass of the conductive fibers, and the sea-island composite fibers 10 to 60 made of cellulose acetate and / or cellulose and an acrylonitrile-based polymer. %, And the balance is 89 to 25% by mass of fibers other than the two fibers. When no other fiber is blended, the content is 1 to 15% by mass of the conductive fiber and 85 to 99% by mass of the sea-island composite fiber.
[0021]
【Example】
Next, an example of the present invention will be further described.
[Example 1] (Production of conductive fiber)
An acrylonitrile copolymer (molecular weight 160,000) consisting of 93.5 parts of acrylonitrile, 6.0 parts of methyl acrylate and 0.5 part of sodium methallylsulfonate was dissolved in dimethylformamide so that the polymer concentration became 30%. A spinning solution A was prepared. 90 parts by mass of granular conductive titanium oxide (trade name: ET-500W, manufactured by Ishihara Sangyo Co., Ltd.) having a particle size of 0.2 to 0.3 μm and a conductivity of 0.4 S / cm is the same acrylonitrile as the spinning solution A. The mixture was dispersed in 100 parts of a spinning dope composed of a copolymer to prepare a spinning dope B.
[0022]
After heating the spinning stock solutions A and B thus obtained to 130 ° C. respectively, a core-sheath spinneret having 400 holes and a hole diameter of 0.2 mmφ was used so that the spinning stock solution B became a core and the spinning stock solution A became a sheath. It was discharged into an inert gas at 230 ° C. The obtained unstretched yarn was stretched 3.75 times in hot water at 100 ° C. and washed with hot water at 95 ° C.
The obtained fiber bundle was dried and relaxed at a relative humidity of 40% and a temperature of 150 ° C. under a non-tension state and contracted by 20%.
This fiber has a fineness of 3 dtex, a core-sheath ratio of 75/25, a conductive material content of 43% by volume in the core, a minimum thickness of the sheath of 1.8 μm, a cross-sectional area of the core of 30 μm 2 , and a surface resistivity of 3.0. × 10 6 Ω, conductivity 2.1 × 10 −4 S / cm, width in the longitudinal direction of fiber cross section / minimum width of fiber cross section: 4.4, cross section: dumbbell type, and generation of fluff during spinning process was observed. Did not.
[0023]
The measurement method of the above data is as follows.
Surface resistivity: A single fiber was taken out from the fiber bundle, separated exactly 1 cm from the fiber bundle, and connected to a metal terminal with a silver paste (trade name: Dotite, manufactured by Fujikura Kasei Co., Ltd.). A DC voltage of 1000 V is applied between the terminals, and the resistance Rs (Ω) between the terminals is measured by a super-insulation meter (SM-8210 manufactured by Toa Denpa Co., Ltd.). It was determined by the formula.
σ = 3.7 × 10 −3 × Rs × (d / ρ) 1/2
Here, d represents fineness and ρ represents the specific gravity of the fiber.
[0024]
Conductivity: In the above measurement of the surface resistivity, the same applies until a DC voltage of 1000 V is applied between the terminals, and the resistance value Rv (Ω) between the terminals is measured by a super-insulation meter (SM-8210 manufactured by Toa Denpa Co., Ltd.). The conductivity ζ (S / cm) was determined from the following equation.
ζ = 1 / (1.11 × 10 −6 × Rv × (d / ρ))
Here, d represents fineness and ρ represents the specific gravity of the fiber.
The minimum thickness of the sheath, the ratio of the core and the sheath, and the cross-sectional area of the core were measured from a micrograph of the cross section of the fiber and determined as an average value.
[0025]
[Example 2] (Production of sea-island composite fiber comprising cellulose acetate and acrylonitrile polymer)
Consisting of cellulose diacetate (A) having an average acetylation degree of 55.2%, 93 parts by weight of acrylonitrile having a reduced viscosity of 1.98 as measured by 0.5% dimethylformamide obtained by an aqueous suspension polymerization method, and 7 parts by weight of vinyl acetate. The acrylonitrile polymer (B) was mixed and dissolved in dimethylacetamide at a solid content ratio of 30/70 so that the solid content concentration became 22% to prepare a spinning dope. This spinning dope is discharged from a spinneret having a circular spinning hole into a spinning bath composed of a 56% aqueous dimethylacetamide solution at 35 ° C., wet-spun, and then stretched 6 times while washing the solvent in boiling water, followed by drying and relaxation. By performing the treatment, a sea-island composite fiber having a single fiber fineness of 2.2 dtex was obtained.
[0026]
The spinnability of the obtained fiber was good. When the cross section of this composite fiber was observed, the cellulose diacetate (A) component formed an island component, the sea component was formed of an acrylonitrile polymer (B), and the ratio of the longest diameter to the shortest diameter of the fiber cross section was 1.4, the number of concave portions having a width of 0.3 μm or more and 3 μm or less and a depth of 3 μm or less expressed in the outer peripheral portion of the fiber cross section, the solid content ratio of A / B is 10/90, and the moisture absorption Aa4. It was 2%, the moisture absorption Ab 2.8%, and ΔA 1.4%.
[0027]
The cross-section observation and the confirmation of the sea-island structure are as follows: the fiber bundle is embedded in a two-component urethane resin, cut into 2 mm lengths with a safety razor, and the cut surface is cut into a plasma reactor (FR-302, manufactured by Yamato Scientific Co., Ltd.). ), And the treated surface was metal-deposited by an ordinary method, and observed with a scanning electron microscope (JMS-T20, manufactured by JEOL Ltd.).
The ratio of the longest diameter to the shortest diameter of the fiber cross section and the number of recesses at the outer periphery of the fiber cross section were determined by embedding the fiber bundle in paraffin resin, cutting the fiber bundle into a thin layer of 5 μm with a microtome, Observed with a microscope (manufactured by Nikon Corporation, biological microscope E-800).
About 5 g of a sample was taken after leaving a sample of about 5 g at a temperature of 40 ° C. and a humidity of 90% RH for 24 hours, the mass and the absolute dry mass were measured, and the moisture absorption Aa (%) was calculated by the following equation. Similarly, the moisture absorption rate Ab (%) was the same except that the temperature was 20 ° C. and the humidity was 65% RH.
Moisture absorption (Aa or Ab) = (mass at the time of collection−absolute dry mass) / absolute dry mass × 100
[0028]
[Example 3] (Example of alkali treatment of fiber of Example 2)
The sea-island type composite fiber obtained in Example 2 was subjected to alkali treatment at 60 ° C. for 30 minutes using aqueous solutions of 3% and 12% of NaOH (both based on fiber mass). NaOH treatment with a fiber mass of 3% was used. The moisture absorption Aa 4.8% and the moisture absorption Ab 3.2%, and the material using 12% by weight of the fiber with NaOH was moisture absorption Aa 8.1% and moisture absorption Ab6. 0.8%.
Further, the sea-island type composite fiber obtained in Example 2 was treated with NaOH (concentration of fiber) at a concentration of 14% at 80 ° C. for 30 minutes, and the cellulose acetate in the composite fiber was converted into cellulose by alkali treatment, and the moisture absorption Aa13 was obtained. 0.0% and a moisture absorption Ab of 11.6%.
[0029]
[Example 4]
The conductive fiber obtained in Example 1 was cut into a piece of 51 mm, and this was mixed with ordinary acrylic fiber cotton by 10%.
In order to measure the exothermic development from the blended yarn, a sock was knitted and a test for confirming the exothermic development effect when light was applied to the sock was performed.
The test method was to irradiate the sock heel from the front surface at a distance of 50 cm from the sample with a reflex lamp manufactured by Iwasaki Electric Co., Ltd., <Spot> PRS100V500W, measure the temperature from the back surface of the sample with a thermocouple, irradiated for 15 minutes, and allowed to cool. The test was performed for 15 minutes at an ambient temperature and humidity of 20 ° C. and a humidity of 40% RH. The results are shown in the following table.
[0030]
Condition 1 Measured with a thermocouple sandwiched between the "heels" of the socks.
[Table 2]
Figure 2004091984
In the table, "AN" fiber represents a normal acrylic fiber made of an acrylonitrile polymer.
[0031]
Condition 2: Measurement was carried out by placing the “heel” of the cut sock on a thermocouple on a sample stand.
[Table 3]
Figure 2004091984
[0032]
[Example 5]
The conductive fiber obtained in Example 1 was cut into 51 mm, and a negative knitting effect was confirmed for a smooth knitted fabric composed of a blended yarn with ordinary acrylic fiber shown in Table 4. Table 4 shows the results.
The negative ion was measured using a smooth knitted fabric as a measuring device using an ion tester KST-900 manufactured by Kobe Ion Shokai, rubbing 200 times / min, and measuring based on the measuring method of the Far Infrared Application Research Group.
[0033]
[Table 4]
Figure 2004091984
[0034]
【The invention's effect】
According to the present invention, a fiber product obtained by blending conductive fibers at various blending ratios is rich in heat generation due to light irradiation, and generates negative ions due to friction during use, and generates a negative ion around the user. It has effects and effects such as refreshing the environment, and since these effects are based on the conductive substance in the core component of the core-sheath composite fiber that forms the conductive fiber, it lasts for a long time, It is suitable for materials such as clothing, clothing for fall and winter, bedding, vehicles, curtains and the like.
In particular, a fiber obtained by blending a conductive fiber with a sea-island composite fiber of acetate and acrylonitrile is rich in hygroscopicity, excellent in water absorption and wet heat generation, and suitable for various uses.
[Brief description of the drawings]
FIG. 1 is a graph showing a temperature rise when light is irradiated to a conductive fiber and a temperature change when light irradiation is stopped.
FIG. 2 is a graph showing the heat generation by moisture absorption shown in Table 1.
[Explanation of symbols]
1: Curve of blended yarn of conductive fiber and acrylic fiber.
2: Curve of acrylic fiber yarn.
In FIG. 1 to 6 correspond to the document numbers in Table 1.

Claims (7)

導電性成分を芯部に含有する芯鞘型アクリル系複合導電性繊維と他の繊維とを混紡してなる発熱性及び/又はマイナスイオン発生性を有することを特徴とするアクリル系繊維混紡糸。An acrylic fiber blend spun yarn having a heat generation property and / or a negative ion generation property obtained by blending a core-sheath type acrylic composite conductive fiber containing a conductive component in a core and another fiber. 芯鞘型アクリル系複合導電性繊維の混紡率が5〜15質量%である発熱性を有する請求項1記載のアクリル系繊維混紡糸。The acrylic fiber blended yarn according to claim 1, which has a heat generation property in which the blend ratio of the core-sheath type acrylic composite conductive fiber is 5 to 15% by mass. 芯鞘型アクリル系複合導電性繊維の混紡率が1〜15質量%である摩擦によりマイナスイオンを200個/cm3 以上発生する請求項1記載のアクリル系繊維混紡糸。Acrylic fiber blended yarn according to claim 1, wherein the core-sheath type acrylic composite conductive fiber blend ratio generates negative ions 200 / cm 3 or more by friction from 1 to 15 wt%. 導電性成分を芯部に含有する芯鞘型アクリル系複合導電性繊維と混紡する他の繊維が、セルロースアセテート及び/又はセルロースとアクリロニトリル系重合体とからなる海島型複合繊維であって、温度20℃で、湿度を40%RHから90%RHに変化させたときの温度上昇が2〜5℃である請求項1記載のアクリル系繊維混紡糸。Another fiber blended with the core-sheath type acrylic composite conductive fiber containing a conductive component in the core portion is a cellulose acetate and / or sea-island type composite fiber composed of cellulose and an acrylonitrile-based polymer, and has a temperature of 20%. The acrylic fiber blended yarn according to claim 1, wherein the temperature rise when the humidity is changed from 40% RH to 90% RH at 2 ° C is 2 ° C. 芯部に含有する導電性成分が導電率が10−3S/cm以上の粉末状金属酸化物である請求項1〜4の何れか1項記載のアクリル系繊維混紡糸。The acrylic fiber blend spun yarn according to any one of claims 1 to 4, wherein the conductive component contained in the core is a powdery metal oxide having a conductivity of 10 −3 S / cm or more. 海島型アクリル系複合繊維がセルロースアセテート及び/又はセルロースを島成分とし、アクリロニトリル系重合体を海成分とする請求項4記載のアクリル系繊維混紡糸。The acrylic fiber blend spun yarn according to claim 4, wherein the sea-island type acrylic composite fiber comprises cellulose acetate and / or cellulose as an island component, and an acrylonitrile polymer as a sea component. 請求項1〜6の何れか1項記載のアクリル系繊維混紡糸を用いた繊維製品。A fiber product using the acrylic fiber blended yarn according to any one of claims 1 to 6.
JP2002255890A 2002-08-30 2002-08-30 Fiber having heat-generating property and minus ion-generating property Pending JP2004091984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002255890A JP2004091984A (en) 2002-08-30 2002-08-30 Fiber having heat-generating property and minus ion-generating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002255890A JP2004091984A (en) 2002-08-30 2002-08-30 Fiber having heat-generating property and minus ion-generating property

Publications (2)

Publication Number Publication Date
JP2004091984A true JP2004091984A (en) 2004-03-25
JP2004091984A5 JP2004091984A5 (en) 2005-10-27

Family

ID=32061268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002255890A Pending JP2004091984A (en) 2002-08-30 2002-08-30 Fiber having heat-generating property and minus ion-generating property

Country Status (1)

Country Link
JP (1) JP2004091984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015209617A (en) * 2014-04-30 2015-11-24 三菱レイヨン株式会社 Sheet-like material and fabric using electromagnetic wave absorbing exothermic fiber
DE102005014207B4 (en) 2004-03-26 2018-05-24 Jatco Ltd Stepless belt drive gearbox

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005014207B4 (en) 2004-03-26 2018-05-24 Jatco Ltd Stepless belt drive gearbox
JP2015209617A (en) * 2014-04-30 2015-11-24 三菱レイヨン株式会社 Sheet-like material and fabric using electromagnetic wave absorbing exothermic fiber

Similar Documents

Publication Publication Date Title
JP6241133B2 (en) Spun yarn and knitted fabric including the spun yarn
EP2243870B1 (en) An antistatic acrylic fiber and a method for manufacturing the same
JP2008045240A (en) Functional fiber and method for producing the same, and textile product
JP2013204204A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JP2007009390A (en) Synthetic acrylic fiber having conductivity, antipilling properties and heat storage properties, method for producing the same and spun yarn using the same
RU2402655C2 (en) Method for production of antimicrobial silver-containing fibre based on natural polymer
JP2004091984A (en) Fiber having heat-generating property and minus ion-generating property
JPS5818444B2 (en) Microporous acrylic fiber with improved water absorption
TWI739033B (en) Moisture-absorptive acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP2716695B2 (en) Blended yarn for clothing with humidity control function
JP2013204205A (en) Deodorant regenerated cellulosic fiber, method for producing the same, and fiber structure
JP7177986B2 (en) Shrinkable, moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3635183B2 (en) Deodorant acrylic fiber
JP2019085688A (en) Hygroscopic acrylonitrile-based fiber, method for producing the same and fiber structure containing the same
JP3338604B2 (en) Method for producing deodorant / antibacterial acrylic synthetic fiber
TWI828639B (en) Liquid retention nonwoven fabric and face mask containing the same
JP2000027063A (en) Heat-storable and heat-insulating material and fiber product using the same
JP7177988B2 (en) Water-repellent and moisture-absorbing acrylonitrile-based fiber, method for producing said fiber, and fiber structure containing said fiber
JPH02300315A (en) Deodorizing acrylic conjugate fiber and production thereof
JP7177987B2 (en) Easily de-crimpable and moisture-absorbing acrylonitrile fiber, method for producing said fiber, and fiber structure containing said fiber
JP3048434B2 (en) Acrylic synthetic fiber
JPH02127511A (en) Far infrared radiating acrylic yarn and production thereof
JPWO2017179633A1 (en) Functional component sustained-release fiber, fiber structure and underwear having the fiber, and method for regenerating them
JP2000290832A (en) Porous fiber and its production
JP5979419B2 (en) Pile fabric

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115