JP2004083934A - Multi-layer sliding part and method for manufacturing it - Google Patents

Multi-layer sliding part and method for manufacturing it Download PDF

Info

Publication number
JP2004083934A
JP2004083934A JP2002242759A JP2002242759A JP2004083934A JP 2004083934 A JP2004083934 A JP 2004083934A JP 2002242759 A JP2002242759 A JP 2002242759A JP 2002242759 A JP2002242759 A JP 2002242759A JP 2004083934 A JP2004083934 A JP 2004083934A
Authority
JP
Japan
Prior art keywords
powder
solid lubricant
bearing
plated
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002242759A
Other languages
Japanese (ja)
Other versions
JP3861771B2 (en
Inventor
Itsusaku Satou
佐藤 一策
Kenzo Tadokoro
田所 健三
Hideaki Tanihata
谷端 秀晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Priority to JP2002242759A priority Critical patent/JP3861771B2/en
Priority to US10/644,965 priority patent/US7195825B2/en
Priority to EP03292081A priority patent/EP1391620A3/en
Publication of JP2004083934A publication Critical patent/JP2004083934A/en
Priority to US10/919,525 priority patent/US7255933B2/en
Application granted granted Critical
Publication of JP3861771B2 publication Critical patent/JP3861771B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/12Structural composition; Use of special materials or surface treatments, e.g. for rust-proofing
    • F16C33/121Use of special materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/10Alloys based on copper
    • F16C2204/12Alloys based on copper with tin as the next major constituent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/20Shaping by sintering pulverised material, e.g. powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/60Shaping by removing material, e.g. machining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/02Mechanical treatment, e.g. finishing
    • F16C2223/04Mechanical treatment, e.g. finishing by sizing, by shaping to final size by small plastic deformation, e.g. by calibrating or coining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/40Coating surfaces by dipping in molten material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S384/00Bearings
    • Y10S384/90Cooling or heating
    • Y10S384/91Powders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12146Nonmetal particles in a component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12708Sn-base component
    • Y10T428/12722Next to Group VIII metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12903Cu-base component
    • Y10T428/12917Next to Fe-base component
    • Y10T428/12924Fe-base has 0.01-1.7% carbon [i.e., steel]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Sliding-Contact Bearings (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that conventional phosphor bronze or high strength brass which does not contain lead is inadequate to a sliding part where high load is applied in an instant, and a bearing which uses Cu-plated solid lubricant does not has a sufficient mechanical strength as the bearing is made by mixing Cu powder, Sn powder and solid lubricant powder, and then compressing a mixture of powder in a die and sintering it. <P>SOLUTION: A multi-layer sliding part is prepared by a process including mixing 100 parts by volume of a Cu-based alloy powder comprising 5-20 mass % of Sn and a remainder of Cu to form a mixed powder with 1-50 parts by volume of a Cu-plated solid lubricant powder uniformly, and pre-sintering the mixed powder to form a sintered mass, the pulverized powder obtained pulverizing the sintered mass is sintered on steel plate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、軸受合金が鋼板に接合されているブッシュや平軸受等のPbフリー複層摺動部品および該複層摺動部品の製造方法に関する。
【0002】
【従来の技術】
複層摺動部品のブッシュとは、鋼板に軸受合金が張り合わされた複層材を円筒状に形成したものである。ブッシュは機械的強度の高い鋼板を裏金として使用しているため、ボールベアリングやローラーベアリングに比べて高荷重に耐えられるという特長を有している。従って、ブッシュはブルドーザーやパワーシャベル等の建設機械における下転輪のように高荷重がかかる部分や、荷重がかかるとともに高速回転する自動車の動力部の軸受として多く使用されている。
【0003】
また複層摺動部品の平軸受とは、鋼板を軸受合金が張り合わされた平板状に形成したもので、高荷重下で使用されている摺動部品である。従って、平軸受は、コンプレッサー、油圧機器において高荷重のかかる摺動部分として多く使用されている。
【0004】
ブッシュや平軸受に用いられていた従来の軸受合金は、鉛青銅、燐青銅、高力黄銅等、Cu主成分の軸受合金であった。また従来から軸受特性を向上させる目的で、これらの軸受合金に黒鉛粉末や二硫化モリブデンのような固体潤滑材を混合したり、特開昭55−134102号公報、同55−4415号公報に提案されているようなCuメッキがなされた固体潤滑材を混合したりした複層摺動部品がある。
【0005】
【発明が解決しようとする課題】
ところで鉛青銅の複層摺動部品は、地球環境問題に影響があることからその使用が規制されるようになってきた。つまり鉛青銅からなる複層摺動部品を組み込んだ自動車や建設機械が古くなって解体されたとき、鉄、アルミニューム、銅等の金属は回収されて再使用されるが、複層摺動部品は、軸受合金が鋼板と金属的に接合されていて、これらを分離できないため、埋め立て処分されていた。この埋め立て処分された複層摺動部品に、近時の酸性度の高くなった酸性雨が接触して複層摺動部品から鉛成分を溶出させ、地下水を汚染するようになる。こうして鉛で汚染された地下水を長年にわたって飲用すると、人体や家畜に鉛成分が蓄積されて鉛中毒をおこす恐れがあるとされている。
【0006】
また燐青銅と高力黄銅は、コンプレッサーや油圧機械に使用する平軸受として機能を十分満足していなかった。なぜならばコンプレッサーや油圧機械では、稼動し始めるときに高荷重がかかることがあるが、燐青銅や高力黄銅ではこの瞬時にかかる高荷重に対応することができず、焼付をおこしてしまうからである。
【0007】
従来の固体潤滑剤を混合した軸受合金は、高荷重がかかると、衝撃により亀裂が入り、根こそぎ取りさられたり、磨耗して焼き付けをおこしたりすることがあった。またCuメッキを施した固体潤滑剤では亀裂や剥離等はおこりにくいが、軸受特性がバラツクという問題があった。特開昭55−134102号公報、同55−4415号公報のCuメッキ潤滑剤含有の軸受は、圧粉焼結であるため、機械強度が弱く、高荷重のかかる建設機械のブッシュには到底使用できなかった。
【0008】
本発明は、軸受特性向上に効果のある鉛を含有していないにもかかわらず、鉛青銅軸受と同等以上の軸受け特性を有し、しかも高速・高荷重のかかるコンプレッサーや油圧機械の平軸受にも使用できるばかりでなく、高荷重のかかる建設機械の軸受としても十分に使用できる複層摺動部品を提供することにある。
【0009】
【課題を解決するための手段】
本発明者らが従来の軸受合金の問題点について鋭意研究を行ったところ次のようなことが分かった。燐青銅や高力黄銅が高荷重に対して焼付をおこすのは、潤滑性が悪いためである。つまりこれらの合金には潤滑性を良好にする固体潤滑剤が存在しないことが原因となっている。また固体潤滑剤を添加した従来の軸受が亀裂や剥離をおこすのは、鋼板との接合強度が十分でないからである。即ち、黒鉛や二硫化モリブデン等の固体潤滑剤は軸受合金や鋼板と金属的に接合しないため、この部分の接合強度が弱くなるわけである。
【0010】
固体潤滑剤含有でも、Cuメッキした固体潤滑剤であれば、Cuメッキが軸受合金や鋼板と金属的に接合するため、Cuメッキしない固体潤滑剤含有の軸受よりも接合強度は強い。しかしながら、このCuメッキ含有軸受は、軸受特性にバラツキが生じるという問題があった。これは、Cuメッキ固体潤滑剤とCu粉、Sn粉等を混合するときに、それぞれの粉末の比重が相違すること、および機械的な攪拌では偏りがあること、等が原因となっている。さらに従来のCuメッキ固体潤滑剤含有の軸受は、混合粉を型で圧粉成形して焼結したもの、つまり焼結による粉末同士の結合だけであるため、十分な機械的強度が得られない。
【0011】
本発明は軸受合金の組織を均一にするとともに、さらに強度を持たせるようにしたものであって、具体的には、Snが5〜20質量%、残部CuからなるCu主成分の合金粉末100体積部に対してCuメッキされた固体潤滑剤粉末1〜50体積部が均一に分散混合しており、しかも該混合粉末が鋼板に焼結しているとともに、Cu主成分の合金粉末とCuメッキされた固体潤滑剤粉末とが金属的に接合している複層摺動部品である。
【0012】
また本発明の複層摺動部品を得る方法は、(a)Snが5〜20質量%、残部CuからなるCu主成分の合金粉末100体積部とCuメッキされた固体潤滑剤粉末1〜50体積部を混合した混合粉を得る混合工程、(b)該混合粉を750〜850℃の還元雰囲気中で焼結を行って焼結塊を得る仮焼結工程、(c)焼結塊を粉砕装置で300μm以下の粉末に粉砕する粉砕工程、(d)粉砕粉を鋼板上に均一に散布する散布工程、(e)粉砕粉が散布された鋼板を800〜880℃の還元雰囲気中で加熱して粉砕粉同士および粉砕粉と鋼板とを接合して軸受合金面と鋼板からなる複層材を得る焼結工程、(f)前記複層材を押圧して軸受合金面を緻密化する一次押圧工程、(g)軸受合金面が緻密化された複層材を840〜880℃の還元雰囲気中で加熱する焼鈍工程、(h)焼鈍された複層材を再度押圧して所定の機械的強度の複層摺動部品を得る二次押圧工程、からなっている。
【0013】
【発明の実施の形態】
本発明の複層摺動部品は、従来のCuメッキ固体潤滑剤含有軸受のようにCu粉末、Sn粉末の単体金属粉を混合したものではなく、CuとSnを完全に合金にした合金粉末を使用し、該合金粉末と鋼板とを接合するものである。本発明では、Cu−Sn合金中のSnの含有量が5質量%よりも少ないと十分な硬さが得られず、しかるにSnの含有量が20質量%を超えると脆くなる。
【0014】
本発明の複層摺動部品に用いる固体潤滑剤はCuメッキされた黒鉛粉末、二硫化モリブデン粉末、或はこれらの混合物であり、固体潤滑剤の混合割合は、Cu−Sn合金粉末100体積部に対して1〜50体積部である。この混合割合が1体積部よりも少ないと十分な摩擦特性が得られず、早期に焼付が発生し、50体積部を超えると、軸受合金の機械的強度が十分に得られなくなる。
【0015】
本発明の複層摺動部品の製造方法における仮焼結工程での温度が750℃よりも低いと粉末同士間の接合強度が十分とならない。しかるに仮焼結温度が850℃よりも高くなると固体潤滑剤をメッキしたCuがCu−Sn合金粉中に拡散して消失してしまい、Cu−Sn合金粉と固体潤滑剤が接合できなくなって分離してしまう。
【0016】
この仮焼結で得られた焼結塊をミルのような粉砕装置で粉末状に粉砕する。Cuメッキ固体潤滑剤とSn−Cu合金粉とは比重が異なり、また機械で攪拌したぐらいではCuメッキ固体潤滑剤はCu−Sn合金粉と均一に混ざらない。しかしながら混合粉を仮焼結してから粉砕すると、固体潤滑剤は全体に均一に存在するようになる。この粉砕粉の粒度は300μm以下にする。該粉末粒度が300μmよりも大きいと、軸受の空隙が多くなって軸を保持する特性が弱くなってしまう。本発明に使用して好適な粉砕粉の大きさは、100μm近辺のものである。
【0017】
粉砕した粉末を鋼板上に散布してから行う焼結の温度が800℃よりも低いと合金粉末同士および合金粉末と鋼板との接合強度が十分とならず、880℃を超えると鉄と銅との金属間化合物が生成して接合強度が低下する。
【0018】
焼結で得られた複層材を一次押圧するが、これは軸受合金面を緻密化するためである。複層材への押圧力は150〜250トンが適している。
【0019】
軸受合金面を緻密化した複層材を840℃〜880℃で焼鈍を行う。ここにおける焼鈍とは、一次押圧で加工硬化しすぎた複層材を適当な硬度まで下げるとともに、押圧で生じた剥離部分を再焼結して接合強度を上げることにある。焼鈍温度が840℃よりも低いと十分な焼鈍が行えず、しかるに880℃よりも高いと鋼板の硬度が下がって機械的強度が弱くなってしまう。
【0020】
そして焼鈍後の複層材に対して二次押圧を行う。ここでの二次押圧は、焼鈍工程で下がりすぎた硬度を所定の硬度に上げて機械的強度を上げ、さらに所定の厚さ近くまで押圧して、その後の機械加工での工程をしやすくすることにある。
【0021】
【実施例】
本発明の実施例、比較例の軸受合金の組成を表1に示す。
【0022】
【表1】

Figure 2004083934
【0023】
次に本発明の複層摺動製品の製造方法について説明する。ここではカーエアコン用コンプレッサーの斜板に使用する平軸受の製造方法について説明する。斜板は表裏に軸受面を形成するため、片面に一次散布・焼結を行った後、もう一方の面にも二次焼結を行うが、二次散布・焼結は一時散布・焼結と同一作業であるため説明は省略する。
【0024】
(a)混合工程:Snが10質量%、残部Cuからなる合金粉末100体積部に対して、Cuメッキされた黒鉛粉末を4体積部の割合で混合する。
(b)仮焼結工程:前記混合工程で得られた混合粉を800℃の還元雰囲気中で加熱して焼結塊を製造する。
(c)粉砕工程:焼結塊をハンマーミルで粉砕して粒径が200μm以下の粉末を製造する。
(d)散布工程:厚さ5.0mm、直径80mmの鋼板上に粉砕した粉末を厚さ0.8mmで均一に散布する。
(e)焼結工程:粉砕粉が散布された鋼板を還元雰囲気の加熱炉中860℃で加熱して粉末同士、粉末と鋼板を接合して軸受合金面と鋼板からなる複層材を得る。
(f)一次押圧工程:前記複層材をプレスにより200トンで押圧し、焼結後の軸受面を緻密化する。
(g)焼鈍工程:軸受面が緻密化された複層材を水素雰囲気の加熱炉中で860℃で15分間加熱する。
(h)二次押圧工程:焼鈍した複層材をプレスにより180トンで押圧し、所定の機械的強度を有する平軸受を得る。その後、精密旋盤で切削して平軸受を製造した。
【0025】
本発明の平軸受および従来の平軸受の軸受特性を図1に示す。焼付荷重の測定は摩擦試験機を用い、ドライで行った。摩擦係数の測定は、軸受形状が平軸受であり、試験方法はスラスト試験機を用い、周速2.31m/secで行った。図1からも明らかなように本発明実施例の複層摺動部品は従来の複層摺動部品よりも軸受特性に優れていることが分かる。
【0026】
【発明の効果】
本発明の複層摺動部品は、従来のCu主成分の複層摺動部品よりも軸受特性に優れており、またCuメッキ粉が混合された摺動部品よりも機械的強度が強い。従って、コンプレッサーや油圧機械の平軸受、さらには非常に高荷重のかかる建設機械の下転輪ブッシュ等に用いても長期間安定した軸受特性を維持できるものである。そして本発明の摺動複層部品の製造方法は黒鉛粉末や二硫化モリブデン等の固体潤滑剤を軸受合金面に均一に存在させることができるため安定した品質の摺動複層部品を得ることができるという従来にない優れた効果を奏するものである。
【図面の簡単な説明】
【図1】実施例と比較例における軸受特性のグラフ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a Pb-free multilayer sliding component such as a bush or a flat bearing in which a bearing alloy is joined to a steel plate, and a method for manufacturing the multilayer sliding component.
[0002]
[Prior art]
The bush of the multilayer sliding component is formed by forming a multilayer material in which a bearing alloy is bonded to a steel plate into a cylindrical shape. Since the bush uses a steel plate having high mechanical strength as a backing metal, it has a feature that it can withstand a higher load than a ball bearing or a roller bearing. Accordingly, the bush is often used as a bearing for a portion where a heavy load is applied, such as a lower rolling wheel in a construction machine such as a bulldozer or a power shovel, or a power portion of an automobile which is loaded and rotates at high speed.
[0003]
Further, the plain bearing of the multi-layer sliding component is a sliding component which is formed by forming a steel plate into a flat plate with a bearing alloy bonded thereto and used under a high load. Therefore, flat bearings are often used as sliding parts that are subject to high loads in compressors and hydraulic equipment.
[0004]
Conventional bearing alloys used for bushings and flat bearings have been Cu-based bearing alloys such as lead bronze, phosphor bronze, and high-strength brass. Conventionally, for the purpose of improving bearing characteristics, a solid lubricant such as graphite powder or molybdenum disulfide has been mixed with these bearing alloys, and has been proposed in JP-A-55-134102 and JP-A-55-4415. There is a multi-layer sliding component in which a Cu-plated solid lubricant is mixed as described above.
[0005]
[Problems to be solved by the invention]
By the way, the use of lead-bronze multi-layer sliding parts has been regulated because of its influence on global environmental problems. In other words, when automobiles and construction machines incorporating multi-layer sliding parts made of lead bronze are old and dismantled, metals such as iron, aluminum, and copper are recovered and reused. Has been landfilled because the bearing alloy is metallically bonded to the steel plate and cannot be separated. Acid rain, which has recently increased in acidity, comes into contact with the landfilled multi-layer sliding component, causing the lead component to elute from the multi-layer sliding component and contaminating groundwater. It is said that drinking the groundwater contaminated with lead for many years may lead to lead poisoning due to accumulation of lead components in the human body and livestock.
[0006]
Phosphor bronze and high-strength brass have not sufficiently satisfied functions as flat bearings used in compressors and hydraulic machines. This is because compressors and hydraulic machines may be subject to high loads when they start operating, but phosphor bronze and high-strength brass cannot cope with the instantaneous high loads, causing seizure. is there.
[0007]
When a heavy load is applied to a conventional bearing alloy mixed with a solid lubricant, the bearing may be cracked by impact, and may be stripped or abraded and burned. In addition, the solid lubricant coated with Cu does not easily cause cracking or peeling, but has a problem in that the bearing characteristics vary. The bearings containing Cu-plated lubricant disclosed in JP-A-55-134102 and JP-A-55-4415 are compacted and sintered, so their mechanical strength is weak, and they are almost never used for bushes of construction machinery that are subject to high loads. could not.
[0008]
The present invention has a bearing characteristic equal to or higher than that of a lead bronze bearing, even though it does not contain lead, which is effective for improving the bearing characteristics, and is applied to flat bearings of compressors and hydraulic machines that are subject to high speed and high load. Another object of the present invention is to provide a multi-layer sliding part which can be used not only as a bearing but also as a bearing for a construction machine under a heavy load.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the problems of the conventional bearing alloys and found the following. Phosphor bronze and high-strength brass cause seizure under high load due to poor lubricity. That is, these alloys do not have a solid lubricant for improving lubricity. Further, the reason why the conventional bearing to which the solid lubricant is added causes cracking or peeling is that the bonding strength with the steel plate is not sufficient. That is, since the solid lubricant such as graphite and molybdenum disulfide does not metallically bond to the bearing alloy or the steel plate, the bonding strength at this portion is weakened.
[0010]
Even if the solid lubricant is contained, if the Cu-plated solid lubricant is used, since the Cu plating is metallically joined to the bearing alloy or the steel plate, the joining strength is stronger than that of the solid lubricant-containing bearing without the Cu plating. However, this Cu-plated bearing has a problem in that the bearing characteristics vary. This is due to the fact that when mixing the Cu-plated solid lubricant with Cu powder, Sn powder and the like, the specific gravities of the respective powders are different, and there is a bias in mechanical stirring. Further, the conventional bearing containing a Cu-plated solid lubricant is obtained by compacting and sintering a mixed powder in a mold, that is, since only the powders are bonded by sintering, sufficient mechanical strength cannot be obtained. .
[0011]
The present invention is intended to make the structure of the bearing alloy uniform and to further enhance the strength. More specifically, the alloy powder 100 is mainly composed of Cu containing 5 to 20% by mass of Sn and the balance of Cu. 1 to 50 parts by volume of Cu-plated solid lubricant powder is uniformly dispersed and mixed with respect to the volume part, and the mixed powder is sintered to a steel sheet, and the Cu-based alloy powder and the Cu plating This is a multilayer sliding part in which the solid lubricant powder is metallically bonded.
[0012]
Further, the method for obtaining the multilayer sliding component of the present invention comprises the steps of: (a) 5 to 20 mass% of Sn, 100 parts by volume of a Cu-based alloy powder consisting of the balance Cu, and 1 to 50 Cu-plated solid lubricant powder; A mixing step of obtaining a mixed powder obtained by mixing volume parts, (b) a preliminary sintering step of sintering the mixed powder in a reducing atmosphere at 750 to 850 ° C. to obtain a sintered block, and (c) a sintering block. A pulverizing step of pulverizing to a powder of 300 μm or less with a pulverizer, (d) a sprinkling step of uniformly dispersing the pulverized powder on the steel sheet, and (e) heating the steel sheet on which the pulverized powder is dispersed in a reducing atmosphere at 800 to 880 ° C. A sintering step of joining the pulverized powder to each other and the pulverized powder to the steel sheet to obtain a multilayer material composed of the bearing alloy surface and the steel sheet; (f) pressing the multilayer material to densify the bearing alloy surface Pressing step, (g) reducing the multilayer material whose bearing alloy surface is densified to a reducing atmosphere of 840 to 880 ° C. Annealing step of heating in air has become a secondary pressing step to obtain a multilayered sliding member having a predetermined mechanical strength by again pressing the multilayer material which is annealed (h).
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The multilayer sliding component of the present invention is not a mixture of a single metal powder of Cu powder and Sn powder as in a conventional Cu-plated solid lubricant-containing bearing, but an alloy powder in which Cu and Sn are completely alloyed. Used to join the alloy powder and the steel plate. In the present invention, if the content of Sn in the Cu-Sn alloy is less than 5% by mass, sufficient hardness cannot be obtained, and if the content of Sn exceeds 20% by mass, the alloy becomes brittle.
[0014]
The solid lubricant used for the multilayer sliding component of the present invention is a graphite powder coated with Cu, a molybdenum disulfide powder, or a mixture thereof, and the mixing ratio of the solid lubricant is 100 parts by volume of the Cu-Sn alloy powder. 1 to 50 parts by volume. If the mixing ratio is less than 1 part by volume, sufficient friction characteristics cannot be obtained, and seizure occurs early. If the mixing ratio exceeds 50 parts by volume, the mechanical strength of the bearing alloy cannot be sufficiently obtained.
[0015]
If the temperature in the preliminary sintering step in the method for producing a multilayer sliding component of the present invention is lower than 750 ° C., the bonding strength between the powders will not be sufficient. However, when the sintering temperature is higher than 850 ° C., the Cu coated with the solid lubricant diffuses into the Cu—Sn alloy powder and disappears, and the Cu—Sn alloy powder and the solid lubricant cannot be joined and separated. Resulting in.
[0016]
The sintered mass obtained by the preliminary sintering is pulverized into a powder by a pulverizing device such as a mill. The specific gravity of the Cu-plated solid lubricant is different from that of the Sn-Cu alloy powder, and the Cu-plated solid lubricant does not mix uniformly with the Cu-Sn alloy powder even with mechanical stirring. However, when the mixed powder is pre-sintered and then pulverized, the solid lubricant is uniformly present throughout. The particle size of the pulverized powder is 300 μm or less. If the powder particle size is larger than 300 μm, the gap of the bearing is increased, and the characteristic of holding the shaft is weakened. The size of the pulverized powder suitable for use in the present invention is around 100 μm.
[0017]
If the temperature of sintering performed after dispersing the pulverized powder on the steel sheet is lower than 800 ° C, the bonding strength between the alloy powders and between the alloy powder and the steel sheet is not sufficient. Of the intermetallic compound is generated, and the bonding strength is reduced.
[0018]
The multilayer material obtained by sintering is primarily pressed in order to densify the bearing alloy surface. The pressing force on the multilayer material is suitably from 150 to 250 tons.
[0019]
The multilayer material whose bearing alloy surface is densified is annealed at 840 ° C to 880 ° C. Annealing in this context refers to lowering the multi-layered material that has been excessively work-hardened by primary pressing to an appropriate hardness and re-sintering the peeled portion generated by pressing to increase the bonding strength. If the annealing temperature is lower than 840 ° C., sufficient annealing cannot be performed, whereas if it is higher than 880 ° C., the hardness of the steel sheet decreases and the mechanical strength decreases.
[0020]
Then, secondary pressing is performed on the multilayer material after annealing. The secondary pressing here increases the mechanical strength by increasing the hardness that has dropped too much in the annealing step to a predetermined hardness, further presses it to near a predetermined thickness, and facilitates the subsequent steps in machining. It is in.
[0021]
【Example】
Table 1 shows the compositions of the bearing alloys of Examples of the present invention and Comparative Examples.
[0022]
[Table 1]
Figure 2004083934
[0023]
Next, a method for manufacturing the multilayer sliding product of the present invention will be described. Here, a method of manufacturing a flat bearing used for a swash plate of a compressor for a car air conditioner will be described. The swash plate has bearing surfaces on the front and back, so after primary spraying and sintering on one side, secondary sintering is also performed on the other side. Since the operation is the same as that described above, the description is omitted.
[0024]
(A) Mixing step: Cu-plated graphite powder is mixed at a ratio of 4 parts by volume to 100 parts by volume of an alloy powder composed of 10% by mass of Sn and the balance of Cu.
(B) Temporary sintering step: The mixed powder obtained in the mixing step is heated in a reducing atmosphere at 800 ° C. to produce a sintered mass.
(C) Pulverizing step: The sintered mass is pulverized by a hammer mill to produce a powder having a particle size of 200 μm or less.
(D) Spraying step: The powder pulverized on a steel plate having a thickness of 5.0 mm and a diameter of 80 mm is uniformly dispersed with a thickness of 0.8 mm.
(E) Sintering step: The steel sheet on which the pulverized powder has been sprayed is heated at 860 ° C. in a heating furnace in a reducing atmosphere to join the powders, the powder and the steel sheet, to obtain a multilayer material composed of the bearing alloy surface and the steel sheet.
(F) Primary pressing step: The multilayer material is pressed with a press at 200 tons to densify the bearing surface after sintering.
(G) Annealing step: The multilayer material whose bearing surface is densified is heated at 860 ° C. for 15 minutes in a heating furnace in a hydrogen atmosphere.
(H) Secondary pressing step: The annealed multilayer material is pressed with a press at 180 tons to obtain a flat bearing having a predetermined mechanical strength. Then, it was cut with a precision lathe to produce a flat bearing.
[0025]
FIG. 1 shows the bearing characteristics of the flat bearing of the present invention and the conventional flat bearing. The seizure load was measured dry using a friction tester. The friction coefficient was measured using a flat bearing as a bearing shape, and a test method was performed using a thrust tester at a peripheral speed of 2.31 m / sec. As is clear from FIG. 1, the multilayer sliding component of the embodiment of the present invention has better bearing characteristics than the conventional multilayer sliding component.
[0026]
【The invention's effect】
The multilayer sliding component of the present invention has better bearing characteristics than the conventional multilayer sliding component mainly composed of Cu, and has higher mechanical strength than the sliding component mixed with Cu plating powder. Therefore, stable bearing characteristics can be maintained for a long period of time even when used for flat bearings of compressors and hydraulic machines, and also for lower rolling bushes of construction machines that are subjected to extremely high loads. The method for manufacturing a sliding multilayer component according to the present invention allows a solid lubricant such as graphite powder or molybdenum disulfide to be uniformly present on the bearing alloy surface, thereby obtaining a sliding multilayer component having stable quality. It has an unprecedented superior effect of being able to do so.
[Brief description of the drawings]
FIG. 1 is a graph of bearing characteristics in an example and a comparative example.

Claims (4)

Snが5〜20質量%、残部CuからなるCu主成分の合金粉末100体積部に対してCuメッキされた固体潤滑剤粉末1〜50体積部が均一に分散混合しており、しかも該混合粉末が鋼板に焼結されているとともに、Cu主成分の合金粉末とCuメッキされた固体潤滑剤粉末とが金属的に接合していることを特徴とする複層摺動部品。1 to 50 parts by volume of a Cu-plated solid lubricant powder is uniformly dispersed and mixed with 100 parts by volume of a Cu-based alloy powder composed of 5 to 20 mass% of Sn and the balance of Cu. Is sintered on a steel sheet, and an alloy powder mainly composed of Cu and a solid lubricant powder plated with Cu are metallically joined to each other. 前記Cuメッキされた固体潤滑剤粉末は、黒鉛粉末、二硫化モリブデン粉末、或は黒鉛粉末と二硫化モリブデン粉末の混合粉末であることを特徴とする請求項1記載の複層摺動部品。The multilayer sliding component according to claim 1, wherein the Cu-plated solid lubricant powder is graphite powder, molybdenum disulfide powder, or a mixed powder of graphite powder and molybdenum disulfide powder. (a)Snが5〜20質量%、残部CuからなるCu主成分の合金粉末100体積部とCuメッキされた固体潤滑剤粉末1〜50体積部を混合した混合粉を得る混合工程、(b)該混合粉を750〜850℃の還元雰囲気中で焼結を行って焼結塊を得る仮焼結工程、(c)焼結塊を粉砕装置で300μm以下の粉末に粉砕する粉砕工程、(d)粉砕粉を鋼板上に均一に散布する散布工程、(e)粉砕粉が散布された鋼板を800〜880℃の還元雰囲気中で加熱して粉砕粉同士および粉砕粉と鋼板とを接合して軸受合金面と鋼板からなる複層材を得る焼結工程、(f)前記複層材を押圧して軸受合金面を緻密化する一次押圧工程、(g)軸受合金面が緻密化された複層材を840〜880℃の還元雰囲気中で加熱する焼鈍工程、(h)焼鈍された複層材を再度押圧して所定の機械的強度の複層摺動部品を得る二次押圧工程、からなることを特徴とする複層摺動部品の製造方法。(A) a mixing step of obtaining a mixed powder obtained by mixing 100 parts by volume of a Cu-based alloy powder composed of 5 to 20% by mass of Sn with the balance being Cu and 1 to 50 parts by volume of a solid lubricant powder plated with Cu; A) a sintering step of sintering the mixed powder in a reducing atmosphere at 750 to 850 ° C. to obtain a sintered mass; d) a spraying step of uniformly spraying the pulverized powder on the steel sheet, and (e) heating the steel sheet on which the pulverized powder is sprayed in a reducing atmosphere at 800 to 880 ° C. to join the pulverized powder and the pulverized powder to the steel sheet. (F) a primary pressing step of pressing the multilayer material to densify the bearing alloy surface, and (g) densifying the bearing alloy surface. An annealing step of heating the multilayer material in a reducing atmosphere at 840 to 880 ° C., (h) annealing Method of manufacturing a multilayered sliding part, characterized in that by pressing the multilayer material again consists secondary pressing step to obtain a multilayered sliding member having a predetermined mechanical strength. 前記Cuメッキされた固体潤滑剤粉末は、黒鉛粉末、二硫化モリブデン粉末、或は黒鉛粉末と二硫化モリブデン粉末の混合粉末であることを特徴とする請求項3記載の複層摺動部品の製造方法。4. The manufacturing method according to claim 3, wherein the Cu-plated solid lubricant powder is graphite powder, molybdenum disulfide powder, or a mixed powder of graphite powder and molybdenum disulfide powder. Method.
JP2002242759A 2002-08-23 2002-08-23 Plain bearing and manufacturing method thereof Expired - Lifetime JP3861771B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002242759A JP3861771B2 (en) 2002-08-23 2002-08-23 Plain bearing and manufacturing method thereof
US10/644,965 US7195825B2 (en) 2002-08-23 2003-08-21 Multi-layer sliding part and a method for its manufacture
EP03292081A EP1391620A3 (en) 2002-08-23 2003-08-22 Multi-layer sliding part and a method for its manufacture
US10/919,525 US7255933B2 (en) 2002-08-23 2004-08-17 Multi-layer sliding part and a method for its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242759A JP3861771B2 (en) 2002-08-23 2002-08-23 Plain bearing and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004083934A true JP2004083934A (en) 2004-03-18
JP3861771B2 JP3861771B2 (en) 2006-12-20

Family

ID=31185229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242759A Expired - Lifetime JP3861771B2 (en) 2002-08-23 2002-08-23 Plain bearing and manufacturing method thereof

Country Status (3)

Country Link
US (1) US7195825B2 (en)
EP (1) EP1391620A3 (en)
JP (1) JP3861771B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037179A (en) * 2004-07-28 2006-02-09 Taiho Kogyo Co Ltd Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
JP2006307284A (en) * 2005-04-28 2006-11-09 Taiho Kogyo Co Ltd Lead-free copper-based sliding material
JP2017088972A (en) * 2015-11-13 2017-05-25 新日本電工株式会社 Titanium boride-containing powder and manufacturing method therefor and manufacturing method of sintered metal
JP2019052352A (en) * 2017-09-14 2019-04-04 大同メタル工業株式会社 Slide member
CN111850527A (en) * 2020-07-21 2020-10-30 湖南大学 Preparation method of copper-plated tungsten disulfide, copper-plated tungsten disulfide and application of copper-plated tungsten disulfide

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100420843C (en) * 2002-01-18 2008-09-24 株式会社理研 Spraying piston ring
US7255933B2 (en) * 2002-08-23 2007-08-14 Senju Metal Industry Co., Ltd. Multi-layer sliding part and a method for its manufacture
EP1508693B1 (en) * 2003-08-18 2015-08-12 Senju Metal Industry Co., Ltd. Multi layer sliding part and a method for its manufacture
WO2006032068A1 (en) * 2004-09-23 2006-03-30 Arc Seibersdorf Research Gmbh Self-lubricating bronze matrix composite material
US8389129B2 (en) * 2010-07-09 2013-03-05 Climax Engineered Materials, Llc Low-friction surface coatings and methods for producing same
CN103447540A (en) * 2013-09-10 2013-12-18 江苏三环实业股份有限公司 Lead granular extrusion mechanism on lead pig granulating production line
EP3195958B1 (en) * 2014-09-19 2020-05-06 NTN Corporation Slide member and method for producing same
KR102118595B1 (en) 2015-04-24 2020-06-04 한온시스템 주식회사 Method for manufacturing cylinder block and Double-headed swash plate type compressor

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US142186A (en) * 1873-08-26 Improvement in flux for smelting ores
US4243728A (en) * 1976-01-01 1981-01-06 Nihon Kogyo Kabushiki Kaisha Double-metal-coated metal sulfide powder and process of producing the same
JPS5494495A (en) * 1978-01-09 1979-07-26 Nippon Mining Co Ltd Granulation of metal sulfide powder
US4240830A (en) * 1978-11-30 1980-12-23 Westinghouse Electric Corp. Method for making sintered metal-coated graphite for high-current collector brushes
JPS55134103A (en) * 1979-04-03 1980-10-18 Dowa Mining Co Ltd Copper alloy blank for bearing
JPS55134102A (en) 1979-04-03 1980-10-18 Dowa Mining Co Ltd Cu-base sintered bearing of high graphite content and production thereof
JPS55164050A (en) 1979-06-08 1980-12-20 Nippon Funmatsu Gokin Kk Sliding frictional material
JPS5980521A (en) * 1982-10-29 1984-05-10 N D C Kk Bearing material
US4582368A (en) * 1985-05-06 1986-04-15 Ndc Company, Ltd. Dry bearing
JPS63282221A (en) 1987-05-15 1988-11-18 Hitachi Ltd Manufacture of composite sintered material
JPH0443622Y2 (en) * 1988-03-04 1992-10-15
JPH05248441A (en) 1991-12-04 1993-09-24 Ndc Co Ltd Cu base bearing material
JPH05209207A (en) * 1992-01-29 1993-08-20 Mitsubishi Materials Corp Bearing
JP3013946B2 (en) * 1992-02-18 2000-02-28 大同メタル工業株式会社 Multi-layer composite sliding material with excellent seizure resistance
JP3765071B2 (en) 1997-10-23 2006-04-12 三井金属鉱業株式会社 Composite sintered sliding material
US6132487A (en) * 1998-11-11 2000-10-17 Nikko Materials Company, Limited Mixed powder for powder metallurgy, sintered compact of powder metallurgy, and methods for the manufacturing thereof
JP2001335812A (en) * 2000-03-24 2001-12-04 Senju Metal Ind Co Ltd Lead-free plain bearing and its production method
JP2002181047A (en) * 2000-12-13 2002-06-26 Senju Metal Ind Co Ltd Thrust bearing and manufacturing method
JP2002295473A (en) * 2001-03-28 2002-10-09 Senju Metal Ind Co Ltd Lead free journal bearing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037179A (en) * 2004-07-28 2006-02-09 Taiho Kogyo Co Ltd Pb-FREE COPPER-ALLOY-BASED COMPOSITE SLIDING MATERIAL SUPERIOR IN SEIZURE RESISTANCE
JP2006307284A (en) * 2005-04-28 2006-11-09 Taiho Kogyo Co Ltd Lead-free copper-based sliding material
JP2017088972A (en) * 2015-11-13 2017-05-25 新日本電工株式会社 Titanium boride-containing powder and manufacturing method therefor and manufacturing method of sintered metal
JP2019052352A (en) * 2017-09-14 2019-04-04 大同メタル工業株式会社 Slide member
CN111850527A (en) * 2020-07-21 2020-10-30 湖南大学 Preparation method of copper-plated tungsten disulfide, copper-plated tungsten disulfide and application of copper-plated tungsten disulfide
CN111850527B (en) * 2020-07-21 2021-05-11 湖南大学 Preparation method of copper-plated tungsten disulfide, copper-plated tungsten disulfide and application of copper-plated tungsten disulfide

Also Published As

Publication number Publication date
US7195825B2 (en) 2007-03-27
US20040091732A1 (en) 2004-05-13
EP1391620A2 (en) 2004-02-25
JP3861771B2 (en) 2006-12-20
EP1391620A3 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JP4675563B2 (en) Bearing and manufacturing method thereof
JP4215285B2 (en) Self-lubricating sintered sliding material and manufacturing method thereof
JP4424810B2 (en) Sintered material
JP3861771B2 (en) Plain bearing and manufacturing method thereof
JP2010514935A (en) Powder, parts manufacturing method and parts
JP3839740B2 (en) Sliding material
JP4545162B2 (en) Composite sintered sliding member and manufacturing method thereof
US7255933B2 (en) Multi-layer sliding part and a method for its manufacture
JP2010533756A (en) Lead-free sintered lubricating material and sintered powder for its production
US6492033B2 (en) Lead-free plain bearing and method for its manufacture
JP4214519B2 (en) Copper-based sliding material and manufacturing method thereof
JPH07166278A (en) Coppery sliding material and production thereof
JP4462297B2 (en) Sliding material and manufacturing method thereof
US7906222B2 (en) Sliding material and a method for its manufacture
JP5073925B2 (en) Lead-free copper-based sliding material
JP2001050273A (en) Copper system sliding material
JP4349719B2 (en) Aluminum bronze sintered bearing material and manufacturing method thereof
JPH0819945B2 (en) Multi-layer lead bronze bearing for high loads
JPH0569894B2 (en)
JP2005098294A (en) Swash plate and method for its manufacture
JPH08219174A (en) Synchronous ring for transmission and its manufacture
JP4794814B2 (en) Copper alloy sintered sliding material
JP3941923B2 (en) Sliding bearing materials and bearing parts
JPH01182622A (en) Oilless sliding member
JPH10140265A (en) Wear resistant composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060531

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Ref document number: 3861771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term