JP2004079855A - Printed circuit board - Google Patents

Printed circuit board Download PDF

Info

Publication number
JP2004079855A
JP2004079855A JP2002239648A JP2002239648A JP2004079855A JP 2004079855 A JP2004079855 A JP 2004079855A JP 2002239648 A JP2002239648 A JP 2002239648A JP 2002239648 A JP2002239648 A JP 2002239648A JP 2004079855 A JP2004079855 A JP 2004079855A
Authority
JP
Japan
Prior art keywords
metal
chain
adhesive
printed circuit
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002239648A
Other languages
Japanese (ja)
Other versions
JP3878527B2 (en
Inventor
Yoshio Oka
岡 良雄
Masahiko Kanda
神田 昌彦
Norikata Hayashi
林 憲器
Toshihide Kimura
木村 寿秀
Shuji Kashiwagi
柏木 修二
Akira Nishimura
西村 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Printed Circuits Inc
Original Assignee
Sumitomo Electric Printed Circuits Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Printed Circuits Inc filed Critical Sumitomo Electric Printed Circuits Inc
Priority to JP2002239648A priority Critical patent/JP3878527B2/en
Publication of JP2004079855A publication Critical patent/JP2004079855A/en
Application granted granted Critical
Publication of JP3878527B2 publication Critical patent/JP3878527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel printed circuit board which is formed by adhering a metallic plate firmly with higher thermal conductivity and enables the metallic plate to fully exert its function as a heat sink and a reinforcing plate. <P>SOLUTION: A metallic plate 3 is adhered to the rear of a chip mounting part 2 of a substrate 1 having the bump-method chip mounting part 2 consisting of a number of conductor circuits 21 in the surface of the substrate 1 via an adhesive layer 4 containing chain-like metallic powder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、バンプ方式のチップ実装部を有する、フレキシブルプリント基板などのプリント基板に関するものである。
【0002】
【従来の技術】
従来、バンプ方式のチップ実装部を有するプリント基板においては、上記チップ実装部に実装したチップを作動時の発熱から保護するための放熱板として、またとくにフレキシブルプリント基板において、上記チップを曲げ応力から保護するための補強板として、基板の、チップ実装部の裏面に、接着剤層を介して金属板を接着するのが一般的である(例えば特開2001−053410号公報)。
【0003】
また接着剤層を形成する接着剤としては、熱伝導性を高めるために粉末状の熱伝導成分、具体的には金属粉末を配合したものが使用される。
【0004】
【発明が解決しようとする課題】
近年、信号処理の高速化に対応して、チップの消費電力が増加する傾向にあり、それに伴ってチップの発熱量が増加する傾向にある。
ところが、従来の接着剤を用いて金属板を接着したプリント基板では、かかる発熱量の増加に十分に対応することができず、チップの温度上昇による誤動作や破損などを十分に防止できなくなりつつあるのが現状である。
【0005】
これは、従来の接着剤に配合される金属粉末が、粒状や薄片状などのアスペクト比の小さい形状を有するためである。
すなわち金属板の、放熱板としての機能を十分に発揮させるべく、接着剤層の熱伝導性を高めようとすると、金属粉末同士の接触点数を増やす必要があるが、上記のようにアスペクト比の小さい形状を有する金属粉末を用いた場合には、当該金属粉末を、接着剤中に多量に配合しなければならない。
【0006】
ところが、金属粉末の配合量を多くすればするほど、相対的に、接着剤の接着性を担う成分(主に樹脂)の割合が少なくなって、接着剤層の接着力が低下するため、例えばフレキシブルプリント基板では、チップ実装部に曲げ応力が加わった際に金属板が簡単にはく離、脱落してしまって補強板としての用をなさなくなるといった問題を生じる。また金属板が脱落してしまえば、当然ながらチップの冷却もできなくなるため、温度上昇による誤動作や破損などを全く防止できなくなるという問題も生じる。
【0007】
このため従来は、接着剤層の接着力をある程度の範囲で確保するために、接着剤中に配合できる金属粉末の量が限られてしまうため、更なる発熱量の増加に十分に対応できなくなりつつあるのである。
この発明の目的は、金属板をより強固に、しかもこれまでよりも高い熱伝導性でもって接着してなり、当該金属板の、放熱板および補強板としての機能を十二分に発揮させることが可能な新規なプリント基板を提供することにある。
【0008】
【課題を解決するための手段および発明の効果】
請求項1記載の発明は、基板の表面に、多数の導体回路からなる、バンプ方式のチップ実装部を有するとともに、基板の、上記チップ実装部の裏面に、金属板を、鎖状の金属粉末を含む接着剤の層を介して接着したことを特徴とするプリント基板である。
請求項1の構成において接着剤層の熱伝導成分として用いる金属粉末は、上記のようにアスペクト比の高い鎖状に形成されており、従来の、粒状のものなどに比べて、接着剤層中で互いに接触する機会が著しく増加する。
【0009】
このため鎖状の金属粉末を用いると、従来に比べてより少ない配合量で、それゆえ接着剤層の接着力を十分に高いレベルに維持しつつ、なおかつ接着剤層の熱伝導性をこれまでよりも高めることができる。
したがって請求項1の構成によれば、金属板をより強固に、しかもこれまでよりも高い熱伝導性でもって接着してなり、当該金属板の、放熱板および補強板としての機能を十二分に発揮させることが可能なプリント基板を提供することができる。
【0010】
請求項2記載の発明は、基板に、その裏面から、チップ実装部を構成する少なくとも一部の導体回路に達する通孔を設けるとともに、金属板を接着する接着剤の一部をこの通孔に充てんすることで、導体回路と金属板とを、接着剤を介して直接に接続したことを特徴とする請求項1記載のプリント基板である。
例えばチップ実装部を構成する導体回路のうち、発熱量の大きい特定の導体回路を、上記のように通孔に充てんした接着剤を介して、金属板と熱的に直接に接続してやると、チップの作動時の発熱を、この接着剤中の金属粉末を介して、金属板によってより効率的に放熱することができる。したがって金属板の、放熱板としての機能をより一層、高めることができる。
【0011】
また、通孔に充てんした接着剤のアンカー効果によって、金属板を、基板により強固に接着することもできる。したがって、例えばフレキシブルプリント基板において、チップ実装部に曲げ応力が加わった際に金属板が簡単にはく離、脱落するのを防止して、当該金属板の、補強板としての機能を高めることもできる。請求項3記載の発明は、鎖状の金属粉末として、微細な金属粒が多数、鎖状に繋がった形状を有するものを用いるとともに、当該鎖状の金属粉末、またはこの金属粉末を形成する個々の金属粒を、常磁性を有する金属単体、常磁性を有する2種以上の金属の合金、常磁性を有する金属と他の金属との合金、もしくは常磁性を有する金属を含む複合体にて形成したことを特徴とする請求項1記載のプリント基板である。
【0012】
上記の構成では、後述する還元析出法などによって、常磁性を有する金属を含む、サブミクロンオーダーの微細な金属粒を析出させると、当該金属粒が、単結晶構造か、もしくはそれに近い構造に形成されるため、単純に2極に分極する。そして多数個が互いに鎖状に繋がることで、鎖状の金属粉末が自動的に形成される。
よって請求項3の構成によれば、鎖状の金属粉末の製造が容易であり、接着剤の生産効率の向上やコストダウン、ひいてはプリント基板のコストダウンが可能となる。
【0013】
また上記金属粉末としては、多数の微細な金属粒が単に磁力によって鎖状に繋がったものから、繋がった金属粒の周囲にさらに金属層が析出して金属粒間が強固に結合されたものまで種々の構造を有するものが含まれるが、このいずれのものにおいても、基本的に金属粒は磁力を保持している。
このため、例えば接着剤を製造する際や層状に塗布する際の応力程度では鎖が簡単に切れたりしない上、もし切れた場合でも、応力が加わらなくなった時点で鎖の再結合等を生じやすい。しかも塗布後の接着剤層中では、複数の金属粉末が、金属粒の磁力に基づいて互いに接触しやすい。
【0014】
よって請求項3の構成によれば、接着剤層の熱伝導性をさらに向上することができる。
【0015】
【発明の実施の形態】
図1は、この発明のプリント基板の一例としての、フレキシブルプリント基板FPの、チップ実装部2の周囲を拡大した断面図である。
図に見るようにこの例のフレキシブルプリント基板FPは、柔軟な樹脂フィルムなどからなる基板1の表面に、多数の導体回路21からなり、バンプ方式のベアチップBTを実装するためのチップ実装部2を形成するとともに、基板1の、上記チップ実装部2の裏面に、金属板3を、接着剤層4を介して接着したものである。
【0016】
また基板1には、その裏面から、チップ実装部2を構成する図において左端と右から2番目の導体回路21に達する通孔10を設けてあり、この通孔10内に、接着剤層4を形成したのと同じ接着剤を充てんすることで、導体回路21と金属板3とを、接着剤を介して熱的に直接に接続してある。
なお図において符号5は、導体回路21と接続された、もしくは接続されていない他の導体回路、符号6は、上記導体回路5を、チップ実装時の熱などから保護するための絶縁層である。
【0017】
上記のうち基板1としては、前述したように柔軟な樹脂フィルムなどを使用することができる。かかる樹脂フィルムとしては、例えばポリイミド(全芳香族ポリイミド、ポリエーテルイミド、ポリマレイミドアミンその他)フィルム、ポリエチレンナフタレートフィルム、ポリアミドイミドフィルム、ポリエチレンテレフタレートフィルム、全芳香族ポリアミドフィルム、液晶ポリエステルフィルムなどを挙げることができる。
【0018】
また、この発明の構成は、フレキシブルでないリジッドなプリント基板に適用することもでき、その場合の基板1としては、上記フィルムと同様の樹脂からなる単層の、厚手のシート(板体)や、上記フィルムまたはシートを強化繊維層などと積層して強化した積層体、樹脂中に強化繊維などを分散させた複合体、あるいは表面に上記樹脂をコーティングした複合体等を挙げることができる。
上記基板1の通孔10は、例えばレーザー加工などによって形成することができる。
【0019】
導体回路21、5は、従来同様にCu、Auなどによって形成できる。
また、基板1の表面に導体回路21、5を形成するためには、これも従来同様に、アディティブ法やサブトラクティブ法などの、従来公知の種々の方法を採用することができる。
導体回路21、5は、図では基板1上に直接に形成してあるが、例えばサブトラクティブ法では、導体回路21、5のもとになる金属箔を、接着剤層を介して基板1上に積層する場合があり、その場合には、図示していないものの、導体回路21、5は、例えばエポキシ系、ウレタン系、ポリエステル系などの接着剤の層を介して基板1上に積層されたものとする。
【0020】
金属板3としては、放熱性能等を考慮すると、アルミニウム板を好適に用いることができる。
接着剤層4は、前記のように熱伝導成分として、鎖状の金属粉末を配合した接着剤にて形成する。
(金属粉末)
接着剤に配合する鎖状の金属粉末としては、常磁性を有する微細な金属粒が多数、鎖状に繋がった形状を有するものが好ましい。この理由は前記のとおりである。
【0021】
鎖状の金属粉末としては、微細な金属粒が、分岐のない直鎖状に繋がったものと、1つまたは多数の分岐部を有する分岐鎖状に繋がったものとが考えられるが、この発明ではこのいずれを用いてもよい。
かかる鎖状の金属粉末の具体例としては、下記(i)〜(v)のいずれか1種、もしくは2種以上の混合物などを挙げることができる。
(i)  常磁性を有する金属単体、常磁性を有する2種以上の金属の合金、または常磁性を有する金属と他の金属との合金から形成したミクロンオーダーないしサブミクロンオーダーの金属粒を、自身の磁性によって多数個、直鎖状または分岐鎖状に繋がらせた金属粉末。
【0022】
(ii) 上記(i)の金属粉末の表面にさらに、常磁性を有する金属単体、常磁性を有する2種以上の金属の合金、または常磁性を有する金属と他の金属との合金からなる金属層を析出させて、金属粒間を強固に結合した金属粉末。
(iii)  上記(i)または(ii)の金属粉末の表面にさらに、他の金属や合金からなる金属層を析出させて、金属粒間を強固に結合した金属粉末。
(iv) 常磁性を有する金属単体、常磁性を有する2種以上の金属の合金、または常磁性を有する金属と他の金属との合金から形成した粒状の芯材の表面を、他の金属や合金で被覆して複合体を得、この複合体を金属粒として、芯材の磁性によって多数個、直鎖状または分岐鎖状に繋がらせた金属粉末。
【0023】
(v)  上記(iv)の金属粉末の表面にさらに、他の金属や合金からなる金属層を析出させて、金属粒間を強固に結合した金属粉末。
上記のうち常磁性を有する金属単体、常磁性を有する2種以上の金属の合金、または常磁性を有する金属と他の金属との合金によって形成される金属粉末または金属粒の全体、もしくは
常磁性を有する金属を含む複合体によって形成される金属粉末または金属粒のうち、常磁性を有する金属を含む部分は、還元析出法によって、その形成材料である、常磁性を有する金属のイオンを少なくとも含む溶液に還元剤を加えることで、液中に析出させて形成するのが好ましい。
【0024】
還元析出法においては、まず還元剤、例えば三塩化チタンなどの3価のチタン化合物と、例えばクエン酸三ナトリウム等とを溶解させた溶液(以下「還元剤溶液」とする)に、アンモニア水等を加えてpHを9〜10に調整する。これにより、3価のチタンイオンが錯化剤としてのクエン酸と結合して配位化合物を形成して、Ti(III)からTi(IV)に酸化する際の活性化エネルギーが低くなり、還元電位が高くなる。具体的には、Ti(III)とTi(IV)との電位差が1Vを超える。この値は、Ni(II)からNi(0)への還元電位や、Fe(II)からFe(0)への還元電位などに比べて著しく高い値である。よって各種の金属のイオンを効率よく還元して、金属粒や金属膜などを析出、形成することができる。
【0025】
それと前後して上記の還元剤溶液に、例えばNi等の、常磁性を有する金属単体のイオンを含む溶液、または常磁性を有する金属を含む合金を形成する2種以上のイオンを含む溶液を加える。
そうするとTi(III)が還元剤として機能して、自身がTi(IV)に酸化する際に、金属のイオンを還元して液中に析出させる。すなわち液中に、上記金属単体または合金からなる金属粒が析出するとともに、自身の磁性によって多数が鎖状に繋がって鎖状の金属粉末を形成する。また、このあとさらに析出を続けると、上記金属粉末の表面にさらに金属層が析出して、金属粒同士を強固に結合する。
【0026】
つまり前記(i)(ii)などの金属粉末や、その元になる金属粒、あるいは前記(iv)の金属粉末の元になる複合体のうち芯材などを、上記の方法によって製造することができる。
このうち金属粒や芯材は個々の粒径が揃っており、粒度分布がシャープである。これは、還元反応が系中で均一に進行するためである。したがってかかる金属粒や芯材から製造される金属粉末は、とくに接着剤層の熱伝導性を、当該接着剤層の全面にわたって均一な状態とする効果に優れている。
【0027】
金属粒や芯材等を析出させた後の還元剤溶液は、電解再生を行うことで、何度でも繰り返し、還元析出法による鎖状の金属粉末の製造に利用することができる。すなわち、金属粒や芯材等を析出させた後の還元剤溶液を電解槽に入れるなどして電圧を印加することで、Ti(IV)をTi(III)に還元してやれば、再び電解析出用の還元剤溶液として使用することができる。これは、電解析出時にチタンイオンが殆ど消費されない、つまり析出させる金属とともに析出されないためである。
【0028】
金属粒や芯材等を形成する、常磁性を有する金属または合金としては、例えばNi、Fe、Coおよびこれらのうち2種以上の合金等をあげることができ、とくにNi単体やNi−Fe合金(パーマロイ)等が好ましい。かかる金属や合金にて形成した、とくに金属粒は、鎖状に繋がる際の磁気的な相互作用が強いため、金属粒間の熱伝導性を高める効果に優れている。
また上記の、常磁性を有する金属や合金とともに、前記(iii)(iv)(v)の複合体を形成する他の金属としては、Cu、Rb、Rh、Pd、Ag、Re、PtおよびAuからなる群より選ばれた少なくとも1種の金属またはその合金などをあげることができる。金属粉末の熱伝導性を向上することを考慮すると、これらの金属で形成される部分は、鎖の外表面に露出している部分であるのが好ましい。つまり鎖の表面をこれらの金属で被覆した、前記(iii)(v)の構造を有する複合体が好ましい。被覆は、例えば無電解めっき法、電解めっき法、還元析出法、真空状着法などの種々の成膜方法によって形成できる。
【0029】
金属粉末は、以上で説明した、微細な金属粒が多数、直鎖状または分岐鎖状に繋がった形状などを有し、なおかつその鎖の径が1μm以下であるのが好ましい。鎖の径が1μmを超える場合には、アスペクト比が低下して、金属粉末同士の接触の機会が低下するおそれがある。
なお鎖の径があまりに小さすぎると、接着剤を製造する際や、下地上に塗布して接着剤層を形成する際の応力程度で簡単に切れやすくなるおそれがある。したがって鎖の径は10nm以上であるのが好ましい。
【0030】
また、微細な金属粒が多数、繋がって金属粉末が形成される場合、個々の金属粒の粒径は、鎖の径を1μm以下に維持することを考慮すると、400nm以下であるのが好ましい。
ただし金属粒の粒径があまりに小さすぎると、鎖状に繋がれた金属粉末自体のサイズが小さくなりすぎて、熱伝導成分としての機能が十分に得られないおそれがある。したがって金属粒の粒径は10nm以上であるのが好ましい。
【0031】
(接着剤)
上記金属粉末を配合する接着剤としては、例えばエポキシ系、ウレタン系、ポリエステル系などの、従来公知の種々の接着剤を用いることができる。
とくにチップ発熱時の耐熱性などを考慮すると、エポキシ系の接着剤が好ましい。
鎖状の金属粉末の、接着剤への配合量は特に限定されないが、接着剤中の固形分(主に樹脂)と、鎖状の金属粉末との総量に対する、鎖状の金属粉末の割合で表して1〜40体積%であるのが好ましい。
【0032】
鎖状の金属粉末の割合が上記の範囲未満では、当該鎖状の金属粉末による、接着剤層4の熱伝導性を向上する効果が得られないおそれがあり、逆に上記の範囲を超えた場合には、相対的に接着剤の接着性を担う樹脂の割合が少なくなって、接着剤層4の接着力が低下するおそれがある。
絶縁層6は、例えばエポキシ系、ウレタン系、ポリエステル系、ポリイミド系等の、硬化性でかつ液状のソルダーレジストを塗布し、硬化させて形成してもよいし、これらの樹脂からなるカバーレイフィルムを、図示しない同系の接着剤層を介して接着して形成してもよい。
【0033】
【実施例】
以下に、この発明を実施例、比較例に基づいて説明する。
実施例1
(接着剤の調製)
無溶剤型のエポキシ系接着剤80体積%と、図2に示すように微細な金属粒が分岐鎖状に繋がれた形状を有するNi粉末20体積%とを配合して接着剤を調製した。
【0034】
走査型電子顕微鏡を用いて測定した、Ni粉末の鎖の径は約300nm、Ni粉末の平均粒径は約3μmであった。
また、接着剤の固形分とNi粉末との総量に対する、Ni粉末の割合は、上記のように接着剤が無溶剤型であったため、両者の配合比率と一致する20体積%であった。
(フレキシブルプリント基板の製造)
基板1としての、厚み25μmのポリイミドフィルムの片面に、厚み18μmの電解銅箔を貼り付けた2層銅貼り基板を用意した。そしてこの2層銅貼り基板のうち銅箔を、サブトラクティブ法によって回路形成して、チップ実装部2を構成する多数の導体回路21と、その他の導体回路5とを形成した。
【0035】
また導体回路5は、エポキシ系のソルダーレジストを塗布し、硬化させて形成した絶縁層6で被覆した。
そして金属板3としての、厚み0.2mmのアルミニウム板の片面に、前記接着剤を塗布して接着剤層4を形成し、このアルミニウム板を、上記基板1の、導体回路21、5を形成した側と反対面に、接着剤層4を挟んで積層した後、加熱により接着剤を硬化させて、通孔10を有しないこと以外は図1に示す層構成を有するフレキシブルプリント基板FPを製造した。
【0036】
実施例2
導体回路21、5を形成した、基板1としてのポリイミドフィルムに、その裏面から、導体回路21のうち接地回路に達する通孔10をレーザー加工によって形成するとともに、接着剤層4を形成する接着剤の一部をこの通孔10に充てんすることで、導体回路21と、金属板3としてのアルミニウム板とを、接着剤を介して熱的に直接に接続したこと以外は実施例1と同様にして、図1に示す層構成を有するフレキシブルプリント基板FPを製造した。
【0037】
比較例1
金属粉末として、平均粒径が1μmである粒状のCu粉末を用いたこと以外は実施例1と同様にして、通孔10を有しないこと以外は図1に示す層構成を有するフレキシブルプリント基板FPを製造した。
比較例2
通孔10を形成したこと以外は比較例1と同様にして、図1に示す層構成を有するフレキシブルプリント基板FPを製造した。
【0038】
放熱性試験
一定の電流を流すと一定の発熱をするダミーチップを用意し、このダミーチップを、上記各実施例、比較例で製造したフレキシブルプリント基板FPのチップ実装部2に実装した。
そして、導体回路21を通して給電してダミーチップを発熱させた際の最高温度を記録して、フレキシブルプリント基板FPの放熱性を評価した。
【0039】
結果を表1に示す。
【0040】
【表1】

Figure 2004079855
【0041】
表より、実施例1、2のフレキシブルプリント基板FPは、比較例1、2に比べてダミーチップの最高温度が低いことから、放熱性に優れることが確認された。
また基板1に通孔10を形成しなかった実施例1と、形成した実施例2の結果から、通孔10を形成して導体回路21と金属板1とを接着剤を介して熱的に直接に接触させることによって、フレキシブルプリント基板FPの放熱性をさらに向上できることも確認された。
【図面の簡単な説明】
【図1】この発明のプリント基板の一例としての、フレキシブルプリント基板の、チップ実装部の周囲を拡大した断面図である。
【図2】この発明の、実施例1、2で使用した鎖状のNi粉末の電子顕微鏡写真である。
【符号の説明】
FP フレキシブルプリント基板
1 基板
2 チップ実装部
21 導体回路
3 金属板
4 接着剤層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a printed circuit board such as a flexible printed circuit board having a bump type chip mounting portion.
[0002]
[Prior art]
Conventionally, in a printed circuit board having a chip mounting portion of a bump type, as a heat sink for protecting the chip mounted on the chip mounting portion from heat generation during operation, and particularly in a flexible printed circuit board, the chip is subjected to bending stress. As a reinforcing plate for protection, a metal plate is generally bonded to the back surface of a chip mounting portion of a substrate via an adhesive layer (for example, Japanese Patent Application Laid-Open No. 2001-053410).
[0003]
As the adhesive for forming the adhesive layer, a powdery heat-conductive component, specifically, a metal powder-blended compound is used to increase the heat conductivity.
[0004]
[Problems to be solved by the invention]
In recent years, the power consumption of chips has tended to increase in response to the speeding up of signal processing, and the amount of heat generated by chips has tended to increase accordingly.
However, a printed circuit board bonded to a metal plate using a conventional adhesive cannot sufficiently cope with such an increase in the amount of heat generated, and it is becoming difficult to sufficiently prevent malfunction or damage due to a rise in chip temperature. is the current situation.
[0005]
This is because the metal powder compounded in the conventional adhesive has a shape with a small aspect ratio such as a granular shape or a flaky shape.
That is, in order to enhance the thermal conductivity of the adhesive layer in order to sufficiently exhibit the function of the metal plate as a heat sink, it is necessary to increase the number of contact points between the metal powders. When a metal powder having a small shape is used, the metal powder must be blended in a large amount in the adhesive.
[0006]
However, as the amount of the metal powder increases, the proportion of the component (mainly, resin) responsible for the adhesiveness of the adhesive decreases, and the adhesive force of the adhesive layer decreases. In the case of a flexible printed circuit board, when a bending stress is applied to the chip mounting portion, a problem arises in that the metal plate is easily peeled off and falls off, making it unusable as a reinforcing plate. In addition, if the metal plate is dropped, the chip cannot be cooled, of course, so that a malfunction or damage due to a rise in temperature cannot be prevented at all.
[0007]
For this reason, conventionally, in order to secure the adhesive force of the adhesive layer in a certain range, the amount of metal powder that can be blended in the adhesive is limited, and it is not possible to sufficiently cope with a further increase in heat generation. It is coming.
It is an object of the present invention to bond a metal plate more firmly and with a higher thermal conductivity than before so that the function of the metal plate as a heat radiating plate and a reinforcing plate is sufficiently exhibited. It is to provide a new printed circuit board which can be used.
[0008]
Means for Solving the Problems and Effects of the Invention
The invention according to claim 1 has a bump type chip mounting portion composed of a large number of conductor circuits on the surface of the substrate, and a metal plate on the back surface of the chip mounting portion of the substrate, and a chain-like metal powder. A printed circuit board which is bonded through an adhesive layer containing:
The metal powder used as the heat conductive component of the adhesive layer in the configuration of claim 1 is formed in a chain shape having a high aspect ratio as described above, and is formed in the adhesive layer in comparison with a conventional granular material. The chance of contact with each other increases significantly.
[0009]
For this reason, the use of chain-like metal powder requires a smaller amount of compounding than before, thus maintaining the adhesive force of the adhesive layer at a sufficiently high level and further improving the thermal conductivity of the adhesive layer. Than can be raised.
Therefore, according to the structure of the first aspect, the metal plate is bonded more firmly and with higher thermal conductivity than before, and the function of the metal plate as a heat radiating plate and a reinforcing plate is more than sufficient. It is possible to provide a printed circuit board that can be used in a printed circuit board.
[0010]
According to a second aspect of the present invention, the substrate is provided with a through hole reaching at least a part of the conductor circuit constituting the chip mounting portion from the back surface, and a part of the adhesive for bonding the metal plate is provided in the through hole. 2. The printed circuit board according to claim 1, wherein the filling is such that the conductor circuit and the metal plate are directly connected via an adhesive.
For example, among the conductor circuits constituting the chip mounting portion, a specific conductor circuit having a large heat value is thermally directly connected to the metal plate via the adhesive filled in the through hole as described above. Can be more efficiently dissipated by the metal plate through the metal powder in the adhesive. Therefore, the function of the metal plate as a heat sink can be further enhanced.
[0011]
Further, the metal plate can be more firmly bonded to the substrate by the anchor effect of the adhesive filled in the through hole. Therefore, for example, in a flexible printed circuit board, when a bending stress is applied to the chip mounting portion, it is possible to prevent the metal plate from easily peeling off and falling off, and to enhance the function of the metal plate as a reinforcing plate. The invention according to claim 3 uses, as the chain-like metal powder, a metal powder having a large number of fine metal particles connected in a chain, and the chain-like metal powder or an individual forming the metal powder. Formed of a single metal having paramagnetism, an alloy of two or more metals having paramagnetism, an alloy of a metal having paramagnetism and another metal, or a composite containing a metal having paramagnetism 2. The printed circuit board according to claim 1, wherein:
[0012]
In the above configuration, when submicron-order fine metal particles including a metal having paramagnetism are precipitated by a reduction precipitation method or the like to be described later, the metal particles are formed into a single crystal structure or a structure close thereto. Is simply polarized into two poles. Then, a chain-like metal powder is automatically formed by connecting a large number of them to each other in a chain.
Therefore, according to the configuration of the third aspect, it is easy to produce chain-like metal powder, and it is possible to improve the production efficiency of the adhesive, reduce the cost, and further reduce the cost of the printed circuit board.
[0013]
In addition, as the above metal powder, a variety of fine metal particles are simply connected in a chain shape by magnetic force, to a material in which a metal layer is further deposited around the connected metal particles and the metal particles are strongly bonded. Although those having various structures are included, in any of these, the metal particles basically retain the magnetic force.
For this reason, for example, the chain does not easily break at the stress level when manufacturing an adhesive or applying it in a layered form, and even if it breaks, it is easy to cause recombination of the chain when the stress is no longer applied . Moreover, in the adhesive layer after application, the plurality of metal powders are likely to come into contact with each other based on the magnetic force of the metal particles.
[0014]
Therefore, according to the configuration of the third aspect, the thermal conductivity of the adhesive layer can be further improved.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is an enlarged sectional view of the periphery of a chip mounting portion 2 of a flexible printed circuit board FP as an example of the printed circuit board of the present invention.
As shown in the figure, the flexible printed circuit board FP of this example has a chip mounting portion 2 for mounting a bump type bare chip BT, which includes a large number of conductor circuits 21 on the surface of a substrate 1 made of a flexible resin film or the like. It is formed by bonding a metal plate 3 to the back surface of the chip mounting portion 2 of the substrate 1 via an adhesive layer 4.
[0016]
Further, the substrate 1 is provided with a through hole 10 reaching the second end from the right and the second conductor circuit 21 from the right in the figure constituting the chip mounting portion 2 from the back surface thereof. The conductive circuit 21 and the metal plate 3 are thermally and directly connected to each other through the adhesive by filling the same adhesive as that used to form the conductive layer.
In the drawing, reference numeral 5 denotes another conductive circuit connected or not connected to the conductive circuit 21, and reference numeral 6 denotes an insulating layer for protecting the conductive circuit 5 from heat during chip mounting. .
[0017]
As described above, a flexible resin film or the like can be used as the substrate 1 as described above. Examples of such resin films include polyimide (wholly aromatic polyimide, polyetherimide, polymaleimidoamine and others) films, polyethylene naphthalate films, polyamide imide films, polyethylene terephthalate films, wholly aromatic polyamide films, liquid crystal polyester films, and the like. be able to.
[0018]
The configuration of the present invention can also be applied to a rigid printed board that is not flexible. In this case, the board 1 may be a single-layer thick sheet (plate) made of the same resin as the above film, Examples include a laminate obtained by laminating the film or sheet with a reinforcing fiber layer or the like, a composite in which reinforcing fibers or the like are dispersed in a resin, a composite in which the surface is coated with the resin, or the like.
The through holes 10 in the substrate 1 can be formed by, for example, laser processing.
[0019]
The conductor circuits 21 and 5 can be formed of Cu, Au, or the like as in the related art.
In addition, in order to form the conductor circuits 21 and 5 on the surface of the substrate 1, various conventionally known methods such as an additive method and a subtractive method can be employed as in the related art.
Although the conductor circuits 21 and 5 are formed directly on the substrate 1 in the drawing, for example, in the subtractive method, a metal foil that forms the conductor circuits 21 and 5 is formed on the substrate 1 via an adhesive layer. In this case, although not shown, the conductor circuits 21 and 5 are laminated on the substrate 1 via an adhesive layer such as an epoxy-based, urethane-based, or polyester-based adhesive. Shall be.
[0020]
As the metal plate 3, an aluminum plate can be suitably used in consideration of heat dissipation performance and the like.
As described above, the adhesive layer 4 is formed of an adhesive mixed with a chain-like metal powder as a heat conductive component.
(Metal powder)
As the chain-like metal powder to be mixed with the adhesive, a powder having a large number of paramagnetic fine metal particles connected in a chain is preferable. The reason is as described above.
[0021]
As the chain-like metal powder, fine metal particles are considered to be connected in a straight chain without branching or in a branched chain having one or many branching portions. Then, any of these may be used.
Specific examples of such chain-like metal powder include any one of the following (i) to (v) or a mixture of two or more of them.
(I) A metal particle of micron order or submicron order formed from a paramagnetic metal alone, an alloy of two or more metals having paramagnetism, or an alloy of a metal having paramagnetism and another metal. Metal powders connected in a linear or branched chain by the magnetism of
[0022]
(Ii) On the surface of the metal powder of (i), a single metal having paramagnetism, an alloy of two or more metals having paramagnetism, or a metal comprising an alloy of a metal having paramagnetism and another metal A metal powder in which a layer is deposited and metal particles are firmly bonded.
(Iii) A metal powder in which a metal layer made of another metal or an alloy is further deposited on the surface of the metal powder of the above (i) or (ii), whereby metal particles are firmly bonded.
(Iv) The surface of a granular core material formed of a paramagnetic metal alone, an alloy of two or more metals having paramagnetism, or an alloy of a paramagnetic metal and another metal is used to remove other metals and A metal powder obtained by coating with an alloy to obtain a composite, and using the composite as metal particles, a large number of which are connected in a linear or branched chain by the magnetic properties of the core material.
[0023]
(V) A metal powder in which a metal layer made of another metal or an alloy is further deposited on the surface of the metal powder of the above (iv), and the metal particles are firmly bonded.
Metal powder or metal grains formed of a paramagnetic metal alone, an alloy of two or more metals having paramagnetism, or an alloy of a paramagnetic metal and another metal, or paramagnetism Of the metal powder or metal particles formed by the composite containing a metal having a paramagnetic portion, a portion containing a paramagnetic metal is formed by a reductive precipitation method and contains at least ions of a paramagnetic metal. It is preferable to form the solution by adding a reducing agent to the solution to precipitate the solution.
[0024]
In the reductive precipitation method, first, a solution in which a reducing agent, for example, a trivalent titanium compound such as titanium trichloride, and, for example, trisodium citrate or the like are dissolved (hereinafter, referred to as a “reducing agent solution”) is mixed with ammonia water or the like. To adjust the pH to 9-10. Thereby, trivalent titanium ions combine with citric acid as a complexing agent to form a coordination compound, and the activation energy at the time of oxidation from Ti (III) to Ti (IV) is reduced, thereby reducing The potential increases. Specifically, the potential difference between Ti (III) and Ti (IV) exceeds 1V. This value is significantly higher than the reduction potential from Ni (II) to Ni (0) or the reduction potential from Fe (II) to Fe (0). Therefore, various metal ions can be efficiently reduced to deposit and form metal particles and metal films.
[0025]
Before or after that, a solution containing ions of a paramagnetic metal alone, such as Ni, or a solution containing two or more ions forming an alloy containing a paramagnetic metal is added to the above reducing agent solution. .
Then, when Ti (III) functions as a reducing agent and oxidizes itself to Ti (IV), it reduces metal ions and precipitates in the liquid. That is, the metal particles composed of the above-mentioned metal simple substance or alloy are precipitated in the liquid, and a large number of them are connected in a chain by their own magnetism to form a chain metal powder. Further, when the precipitation is further continued, a metal layer is further deposited on the surface of the metal powder, and the metal particles are strongly bonded to each other.
[0026]
In other words, it is possible to produce the metal powder of (i) and (ii) above, the metal particles of the metal powder, and the core material of the composite of the metal powder of the above (iv) by the above method. it can.
Among them, the metal particles and the core material have the same individual particle size, and the particle size distribution is sharp. This is because the reduction reaction proceeds uniformly in the system. Therefore, the metal powder produced from such a metal particle or a core material has an excellent effect of making the thermal conductivity of the adhesive layer uniform over the entire surface of the adhesive layer.
[0027]
The reducing agent solution after the metal particles, the core material, and the like are precipitated can be used for producing a chain-like metal powder by the reductive precipitation method repeatedly by performing electrolytic regeneration. That is, if a voltage is applied by, for example, putting the reducing agent solution after the metal particles and the core material are deposited into the electrolytic bath to reduce Ti (IV) to Ti (III), electrolytic deposition is again performed. As a reducing agent solution. This is because titanium ions are hardly consumed during electrolytic deposition, that is, they are not deposited together with the metal to be deposited.
[0028]
Examples of the paramagnetic metal or alloy that forms the metal grains and the core material include Ni, Fe, Co, and alloys of two or more of these, and particularly Ni alone and Ni-Fe alloy (Permalloy) and the like are preferable. Particularly, metal particles formed of such a metal or alloy have a strong magnetic interaction when linked in a chain, and thus have an excellent effect of increasing the thermal conductivity between the metal particles.
Other metals forming the composite of (iii), (iv) and (v) together with the paramagnetic metals and alloys include Cu, Rb, Rh, Pd, Ag, Re, Pt and Au. At least one metal selected from the group consisting of: or an alloy thereof. In consideration of improving the thermal conductivity of the metal powder, the portion formed of these metals is preferably a portion exposed on the outer surface of the chain. That is, a complex having the structure of (iii) or (v), in which the surface of the chain is coated with these metals, is preferable. The coating can be formed by various film forming methods such as an electroless plating method, an electrolytic plating method, a reduction deposition method, and a vacuum deposition method.
[0029]
It is preferable that the metal powder has a shape in which a large number of fine metal particles are connected in a linear or branched chain as described above, and the diameter of the chain is 1 μm or less. If the diameter of the chain exceeds 1 μm, the aspect ratio may decrease, and the chance of contact between the metal powders may decrease.
If the diameter of the chain is too small, there is a possibility that the chain may be easily cut due to the stress at the time of producing the adhesive or forming the adhesive layer by applying it on the base. Therefore, the diameter of the chain is preferably 10 nm or more.
[0030]
When a large number of fine metal particles are connected to form a metal powder, the particle size of each metal particle is preferably 400 nm or less in consideration of maintaining the chain diameter at 1 μm or less.
However, if the particle size of the metal particles is too small, the size of the chained metal powder itself becomes too small, and the function as a heat conductive component may not be sufficiently obtained. Therefore, it is preferable that the metal particles have a particle size of 10 nm or more.
[0031]
(adhesive)
As the adhesive for blending the metal powder, various conventionally known adhesives such as an epoxy-based, urethane-based, and polyester-based adhesive can be used.
In particular, an epoxy-based adhesive is preferable in consideration of heat resistance at the time of heat generation of the chip.
The amount of the chain-shaped metal powder to be mixed into the adhesive is not particularly limited, but the ratio of the chain-shaped metal powder to the total amount of the solid content (mainly resin) in the adhesive and the chain-shaped metal powder. It is preferably from 1 to 40% by volume.
[0032]
If the ratio of the chain-like metal powder is less than the above range, the effect of improving the thermal conductivity of the adhesive layer 4 by the chain-like metal powder may not be obtained, and conversely, the ratio exceeds the above range. In this case, the proportion of the resin that plays a role in adhesiveness of the adhesive becomes relatively small, and the adhesive strength of the adhesive layer 4 may be reduced.
The insulating layer 6 may be formed by applying and curing a curable and liquid solder resist such as an epoxy-based, urethane-based, polyester-based, or polyimide-based solder cover, or a coverlay film made of these resins. May be formed by bonding via a similar adhesive layer (not shown).
[0033]
【Example】
Hereinafter, the present invention will be described based on examples and comparative examples.
Example 1
(Preparation of adhesive)
An adhesive was prepared by blending 80% by volume of a solventless epoxy adhesive and 20% by volume of Ni powder having a shape in which fine metal particles were connected in a branched chain as shown in FIG.
[0034]
The chain diameter of the Ni powder was about 300 nm, and the average particle diameter of the Ni powder was about 3 μm, as measured using a scanning electron microscope.
In addition, the ratio of the Ni powder to the total amount of the solid content of the adhesive and the Ni powder was 20% by volume, which was the same as the mixing ratio of both, because the adhesive was a solventless type as described above.
(Manufacture of flexible printed circuit boards)
As a substrate 1, a two-layer copper-clad substrate was prepared in which an electrolytic copper foil having a thickness of 18 μm was adhered to one surface of a polyimide film having a thickness of 25 μm. Then, a circuit was formed from the copper foil of the two-layer copper-clad substrate by a subtractive method, and a large number of conductor circuits 21 constituting the chip mounting portion 2 and other conductor circuits 5 were formed.
[0035]
The conductor circuit 5 was covered with an insulating layer 6 formed by applying and curing an epoxy solder resist.
Then, the adhesive is applied to one surface of an aluminum plate having a thickness of 0.2 mm as the metal plate 3 to form an adhesive layer 4. The aluminum plate is used to form the conductor circuits 21 and 5 of the substrate 1. On the side opposite to the side where the adhesive layer 4 is sandwiched, the adhesive is cured by heating to produce a flexible printed circuit board FP having the layer configuration shown in FIG. did.
[0036]
Example 2
An adhesive for forming an adhesive layer 4 on the polyimide film as the substrate 1 on which the conductor circuits 21 and 5 are formed, by forming a through hole 10 reaching the ground circuit in the conductor circuit 21 from the back surface thereof by laser processing. Is filled in the through-hole 10 in the same manner as in Example 1 except that the conductor circuit 21 and the aluminum plate as the metal plate 3 are thermally connected directly via an adhesive. Thus, a flexible printed board FP having the layer configuration shown in FIG. 1 was manufactured.
[0037]
Comparative Example 1
A flexible printed circuit board FP having the layer configuration shown in FIG. 1 except that no through-hole 10 was provided in the same manner as in Example 1 except that a granular Cu powder having an average particle size of 1 μm was used as the metal powder. Was manufactured.
Comparative Example 2
A flexible printed board FP having the layer configuration shown in FIG. 1 was manufactured in the same manner as in Comparative Example 1 except that the through holes 10 were formed.
[0038]
Heat dissipation test A dummy chip that generates a certain amount of heat when a certain amount of current flows was prepared, and this dummy chip was mounted on the chip mounting part 2 of the flexible printed circuit board FP manufactured in each of the above-described Examples and Comparative Examples.
Then, the highest temperature when the dummy chip was heated by supplying power through the conductor circuit 21 was recorded, and the heat dissipation of the flexible printed circuit board FP was evaluated.
[0039]
Table 1 shows the results.
[0040]
[Table 1]
Figure 2004079855
[0041]
From the table, it was confirmed that the flexible printed circuit boards FP of Examples 1 and 2 had excellent heat dissipation because the maximum temperatures of the dummy chips were lower than those of Comparative Examples 1 and 2.
In addition, from the results of Example 1 in which the through hole 10 was not formed in the substrate 1 and Example 2 in which the through hole 10 was formed, the through hole 10 was formed, and the conductive circuit 21 and the metal plate 1 were thermally bonded via an adhesive. It was also confirmed that the direct contact makes it possible to further improve the heat dissipation of the flexible printed circuit board FP.
[Brief description of the drawings]
FIG. 1 is an enlarged sectional view of the periphery of a chip mounting portion of a flexible printed circuit board as an example of the printed circuit board of the present invention.
FIG. 2 is an electron micrograph of a chain Ni powder used in Examples 1 and 2 of the present invention.
[Explanation of symbols]
FP Flexible printed board 1 Board 2 Chip mounting section 21 Conductor circuit 3 Metal plate 4 Adhesive layer

Claims (3)

基板の表面に、多数の導体回路からなる、バンプ方式のチップ実装部を有するとともに、基板の、上記チップ実装部の裏面に、金属板を、鎖状の金属粉末を含む接着剤の層を介して接着したことを特徴とするプリント基板。On the front surface of the substrate, having a bump-type chip mounting portion composed of a large number of conductor circuits, and on the back surface of the chip mounting portion of the substrate, a metal plate is interposed via an adhesive layer containing chain-like metal powder. A printed circuit board characterized by being adhered. 基板に、その裏面から、チップ実装部を構成する少なくとも一部の導体回路に達する通孔を設けるとともに、金属板を接着する接着剤の一部をこの通孔に充てんすることで、導体回路と金属板とを、接着剤を介して直接に接続したことを特徴とする請求項1記載のプリント基板。The substrate is provided with a through hole that reaches at least a part of the conductor circuit forming the chip mounting portion from the back surface, and a part of an adhesive for bonding the metal plate is filled in the through hole to form a conductor circuit. 2. The printed circuit board according to claim 1, wherein the printed circuit board is directly connected to the metal plate via an adhesive. 鎖状の金属粉末として、微細な金属粒が多数、鎖状に繋がった形状を有するものを用いるとともに、当該鎖状の金属粉末、またはこの金属粉末を形成する個々の金属粒を、常磁性を有する金属単体、常磁性を有する2種以上の金属の合金、常磁性を有する金属と他の金属との合金、もしくは常磁性を有する金属を含む複合体にて形成したことを特徴とする請求項1記載のプリント基板。As the chain-like metal powder, a large number of fine metal particles having a shape connected in a chain are used, and the chain-like metal powder or the individual metal particles forming the metal powder are paramagnetic. The metal is formed of a simple substance of a metal, an alloy of two or more metals having paramagnetism, an alloy of a metal having paramagnetism and another metal, or a composite containing a metal having paramagnetism. The printed circuit board according to 1.
JP2002239648A 2002-08-20 2002-08-20 Printed board Expired - Fee Related JP3878527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002239648A JP3878527B2 (en) 2002-08-20 2002-08-20 Printed board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002239648A JP3878527B2 (en) 2002-08-20 2002-08-20 Printed board

Publications (2)

Publication Number Publication Date
JP2004079855A true JP2004079855A (en) 2004-03-11
JP3878527B2 JP3878527B2 (en) 2007-02-07

Family

ID=32022694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002239648A Expired - Fee Related JP3878527B2 (en) 2002-08-20 2002-08-20 Printed board

Country Status (1)

Country Link
JP (1) JP3878527B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006202970A (en) * 2005-01-20 2006-08-03 Fujikura Ltd Heat radiation structure of mounting membrane
KR100781584B1 (en) * 2006-06-21 2007-12-05 삼성전기주식회사 Pcb and method of manufacturing thereof
CN100385648C (en) * 2004-10-05 2008-04-30 夏普株式会社 Semiconductor device and electronic apparatus
JP2008109044A (en) * 2006-10-27 2008-05-08 Nitto Denko Corp Wiring circuit board, and electronic component device
JP2008270453A (en) * 2007-04-19 2008-11-06 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2008306102A (en) * 2007-06-11 2008-12-18 Hitachi Cable Ltd Tape carrier for semiconductor device and method of manufacturing same
KR101273526B1 (en) 2011-12-26 2013-06-17 주식회사 루셈 Chip-on-film package with enhanced performance of heat radiation
WO2013145390A1 (en) * 2012-03-28 2013-10-03 日本メクトロン株式会社 Flexible printed circuit board and fabrication process for same
JP2014110263A (en) * 2012-11-30 2014-06-12 Mitsui Mining & Smelting Co Ltd Conductive film and electronic component package
JP2016143880A (en) * 2015-02-05 2016-08-08 ▲き▼邦科技股▲分▼有限公司 Flexible substrate
WO2024046064A1 (en) * 2022-09-02 2024-03-07 京东方科技集团股份有限公司 Flexible circuit board, display module and display apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100385648C (en) * 2004-10-05 2008-04-30 夏普株式会社 Semiconductor device and electronic apparatus
JP2006202970A (en) * 2005-01-20 2006-08-03 Fujikura Ltd Heat radiation structure of mounting membrane
KR100781584B1 (en) * 2006-06-21 2007-12-05 삼성전기주식회사 Pcb and method of manufacturing thereof
US7985926B2 (en) 2006-10-27 2011-07-26 Nitto Denko Corporation Printed circuit board and electronic component device
JP2008109044A (en) * 2006-10-27 2008-05-08 Nitto Denko Corp Wiring circuit board, and electronic component device
JP2008270453A (en) * 2007-04-19 2008-11-06 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2008306102A (en) * 2007-06-11 2008-12-18 Hitachi Cable Ltd Tape carrier for semiconductor device and method of manufacturing same
KR101273526B1 (en) 2011-12-26 2013-06-17 주식회사 루셈 Chip-on-film package with enhanced performance of heat radiation
WO2013145390A1 (en) * 2012-03-28 2013-10-03 日本メクトロン株式会社 Flexible printed circuit board and fabrication process for same
JP2014110263A (en) * 2012-11-30 2014-06-12 Mitsui Mining & Smelting Co Ltd Conductive film and electronic component package
JP2016143880A (en) * 2015-02-05 2016-08-08 ▲き▼邦科技股▲分▼有限公司 Flexible substrate
US9510441B2 (en) 2015-02-05 2016-11-29 Chipbond Technology Corporation Flexible substrate
US9961759B2 (en) 2015-02-05 2018-05-01 Chipbond Technology Corporation Flexible substrate
WO2024046064A1 (en) * 2022-09-02 2024-03-07 京东方科技集团股份有限公司 Flexible circuit board, display module and display apparatus

Also Published As

Publication number Publication date
JP3878527B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
JP5428667B2 (en) Manufacturing method of semiconductor chip mounting substrate
CN100551687C (en) Ultrathin copper foil and the manufacture method and the printed wiring board of band carrier
US9265158B2 (en) Inductor component and printed wiring board incorporating inductor component and method for manufacturing inductor component
CN107039144A (en) Inductor components
KR100804924B1 (en) Conductive paste and conductive film using it, plating method and production method for fine metal component
JP2006294650A (en) Method of mounting electronic component
TWI288591B (en) Circuit board structure and dielectric structure thereof
JP3878527B2 (en) Printed board
WO2007007857A1 (en) Multilayer printed wiring board
JP2004169181A (en) Ultrathin copper foil with carrier and method for manufacturing the same, and printed wiring board using ultrathin copper foil with carrier
US20200335429A1 (en) Flexible printed circuit board and method of manufacturing flexible printed circuit board
WO2003075409A1 (en) Anisotropic conductive film and method for producing the same
WO2018131964A1 (en) Carrier-foil-attached ultra-thin copper foil
JP2012004527A (en) Heat-radiating substrate and method of manufacturing the same
JP2004023072A (en) Film carrier tape for mounting electronic component
WO2019077804A1 (en) Printed circuit board and printed circuit board production method
JP4433449B2 (en) Anisotropic conductive film and manufacturing method thereof
JP2004234900A (en) Conductive paste using conductive particle, and sheet for connection using the paste
JP5682678B2 (en) Semiconductor chip mounting substrate and manufacturing method thereof
JP2021167468A (en) Ultrathin copper foil with carrier foil
JP2013089913A (en) Substrate for mounting semiconductor chip and manufacturing method thereof
JP3912310B2 (en) Anisotropic conductive film
CN109644561A (en) Circuit board and its manufacturing method
JP2003253239A (en) Method for connecting circuit and adhesive therefor
JP3282776B2 (en) Metal-based multilayer circuit board

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees