JP2004076742A - エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法 - Google Patents

エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法 Download PDF

Info

Publication number
JP2004076742A
JP2004076742A JP2003360104A JP2003360104A JP2004076742A JP 2004076742 A JP2004076742 A JP 2004076742A JP 2003360104 A JP2003360104 A JP 2003360104A JP 2003360104 A JP2003360104 A JP 2003360104A JP 2004076742 A JP2004076742 A JP 2004076742A
Authority
JP
Japan
Prior art keywords
ejector
fluid
primary fluid
energy
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360104A
Other languages
English (en)
Inventor
Kanetoshi Hayashi
林 謙年
Hidemasa Ogose
生越 英雅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2003360104A priority Critical patent/JP2004076742A/ja
Publication of JP2004076742A publication Critical patent/JP2004076742A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Abstract

【課題】 比較的簡単な構成としたエジェクタを用いることにより一次流体(高エネルギー流体)を非定常流とし、さらに一次流体(高エネルギー流体)と二次流体(低エネルギー流体)の界面が流体流れ方向に対してほぼ鉛直となるようにすることにより、有効エネルギーの損失を抑制し、エジェクタの効率を向上すること。
【解決手段】 一次流体と二次流体の界面がエジェクタ軸方向に対してほぼ垂直となるように、一次流体の非定常流を生成するエジェクタを用い、エジェクタ内部において、一次流体と二次流体との直接接触による圧力交換により両流体間のエネルギー交換を行うにあたり、一次流体を非定常流とすることにより有効エネルギーの損失を低減する。
【選択図】    図4

Description

 本発明は、真空生成、圧縮、昇圧などに供されるエジェクタの分野において、特に一次流体の流れを非定常流とするようにしたエジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法に関する。
 従来のエジェクタは、図9に示すように、ノズル100とディフューザ102を備え、ノズル100から一次流体を高速度で噴射することによって低圧の二次流体を吸引し、一次流体と二次流体の間で圧力変換(エネルギー交換)を伴ってディフューザ102から流出させることにしている。エジェクタを用いて冷凍サイクルを構成する場合には、上記二次流体が液相の状態で入っている蒸発器をエジェクタに接続し、上記二次流体が蒸発・吸引される際に発生する気化熱(蒸発潜熱)により発生する冷熱を利用する。
 従来のエジェクタでは、一次流体と二次流体が接する界面104において、一次流体の噴流によりせん断的に二次流体を巻き込みつつ混合させるものであるため、つまり吸引過程が一次流体と二次流体の速度差などに起因する両流体間境界領域での乱れや渦による巻き込みに基づいているため、エントロピの増大すなわち有効エネルギーの損失は避けられないものとなっていた。また、高エネルギー状態の一次流体と低エネルギー状態の二次流体が直接混合するため、ここでも有効エネルギーの損失は避けられないものとなっていた。これらの要因により、従来のエジェクタは効率が非常に低いものであった。
 有効エネルギーの損失を抑制し、エジェクタの効率を向上させるためには、高エネルギー流体と低エネルギー流体が直接接触する際、両流体の界面が、それらの流れ方向に対して鉛直なっていることが望ましい。言い換えれば、両流体界面の法線方向に流体が流れていることが望ましい。この状態では、両流体が極力交じり合わないような状態で流体間の界面を介してエネルギー(圧力)の授受が可逆的に行われる。さらに、高エネルギー流体と低エネルギー流体は界面を介してエネルギーを交換し、概略同一エネルギー状態となった後に混合する。このため、吸引・混合時の有効エネルギー損失は、せん断による場合に比較して大幅に低減される。
 このような、高エネルギー流体と低エネルギー流体の界面がそれらの流れ方向に対して鉛直になっている状態は、従来のエジェクタの如く一次流体噴流が定常的に流れている場合には実現不可能である。
 例えば、特許文献1に開示されているエジェクタは、上記の状態を実現する一つの方策を提供している。図10は同文献に示されたエジェクタの断面図である。図10において、110は一次流体供給配管、111は二次流体供給配管、112は一次流体供給配管110の先端部に取り付けられたノズル、113はディフューザ、114はノズル112に対向して回転自在に設けられた円錐体状のロータで、その円錐表面には複数の羽根115が取り付けられている。116はロータ114を支持する軸、117はディフューザ113内に同心に固定されたスピンドルで、ロータ114を同心軸上で支持する紡錘形状の部材である。
米国特許第6,138,456号明細書
 このエジェクタは、ノズル112の噴射口に対向して極低摩擦で自由回転する円錐体状のロータ114を配設し、このロータ114の円錐面上に複数の傾斜した羽根115を設け、この羽根115付きロータ114をディフューザ113内に同軸に支持する構成となっている。かかるエジェクタの構成によると、ノズル112からの一次流体の噴流がロータ114に取り付けられた羽根115に作用し、ロータ114が自由回転する。回転しているロータ114の羽根115が横切る下流側には、一次流体のらせん流が形成される。このらせん流の速度成分は、エジェクタ軸方向に大きな速度成分を持つ。二次流体はこの一次流体らせん流のらせんとらせんの間に保持され、あたかもらせん形状のピストンで押されるようにして運搬される。この際、一次流体と二次流体の界面が、流体の速度方向に対して平行ではなく、らせんの強さに応じた角度を有するため、容積ポンプ的な現象に近くなり、せん断により巻き込む従来方式に比較してエントロピの増大、すなわち有効エネルギーの損失を低減することができる。さらに、一次流体と二次流体が、その界面を介してエネルギー(圧力)を交換して概略等エネルギー状態となった後に混合するため、エネルギー状態の異なる流体が直接混合する場合に比較して有効エネルギー損失を抑制することができる。これらの効果により、エジェクタの効率が向上する。この一次流体および二次流体のらせん流は「非定常流(non-steady flow)」と呼ばれている。ここに、非定常流とは、流量、速度、圧力、温度などの状態が時間的、空間的に変化する流れをいう。
 上記のように特許文献1のエジェクタでは、一次流体の非定常らせん流を生成し、これによりエジェクタの効率を向上させている。
 しかしながら、このエジェクタでは、自由回転する羽根付きロータをノズル下流側に設置する必要があるため、エジェクタ構造が従来のものに比較して複雑となり、また、稼働部となる回転体の回転軸、軸受の耐久性などから、メンテナンスの必要が生じる。さらに、一次流体と二次流体の界面が流体の速度方向に対して鉛直にはなり得ないという問題点もある。一次流体と二次流が、その界面を介してエネルギー(圧力)を最も効率よく交換するためには、界面が流体の速度方向に対して鉛直であることが望ましい。界面が速度方向に対して鉛直でない場合には、界面と平行方向の速度成分に起因するせん断による巻き込みが発生し、効率が低下してしまうためである。特許文献1のらせん流は、羽根付きロータの羽根取付角度によりらせんの強さを調整可能である。羽根取付角度を一次流体噴流速度方向に対して鉛直に近づけることにより、一次流体/二次流体界面の速度方向に対する角度を鉛直に近づけることは可能であるが、真の鉛直にはなり得ない。また、羽根取付角度を一次流体噴流速度方向に対して鉛直に近づけることは、一次流体流れに対して抵抗となり、別の意味で効率を低下させてしまう。
 本発明は、かかる課題を解決するためになされたもので、比較的簡単な構成としたエジェクタを用いることにより一次流体(高エネルギー流体)を非定常流とし、さらに一次流体(高エネルギー流体)と二次流体(低エネルギー流体)の界面が流体流れ方向に対してほぼ鉛直となるようにすることにより、有効エネルギーの損失を抑制し、エジェクタの効率を向上することができる、エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法を提供することを目的としている。
 本発明に係るエジェクタの効率向上方法は、エジェクタ内部において、高エネルギー流体と低エネルギー流体との直接接触による圧力交換により両流体間のエネルギー交換を行うにあたり、高エネルギー流体を非定常流とすることにより有効エネルギーの損失を低減することを特徴とする。
 また、本発明に係るエジェクタの有効エネルギー損失の抑制方法は、エジェクタ内部において、高エネルギー流体と低エネルギー流体との直接接触による圧力交換により両流体間のエネルギー交換を行うにあたり、両流体間の界面がエジェクタ軸方向に対してほぼ垂直となるように高エネルギー流体を非定常流とすることを特徴とする。
 ここに、本発明によるエジェクタは、高エネルギー流体(以下、「一次流体」という)の噴流によって低エネルギー流体(以下、「二次流体」という。)の吸引および/または昇圧を行うエジェクタにおいて、一次流体と二次流体の界面がエジェクタ軸方向に対してほぼ垂直となるように、一次流体の非定常流を生成してなるものである。なお、ここでいう界面とは、必ずしも明確な境界があるものだけではなく、遷移層のようなものも含める。
 また、本発明のエジェクタの効率向上方法又はエジェクタの有効エネルギー損失の抑制方法においては、非定常流の形態を間欠流もしくは脈動流とするものである。
 ここに、「間欠流」とは、間欠的に流体が一方向に流動する流れをいい、流体の流量が0となる瞬間があるものである。「脈動流」は、流体の流量が主流方向に時間変動する形態で、流量が最小となった瞬間でも0にはならないものを指す。
 このような間欠流あるいは脈動流とすることによって、ロータ等の旋回または回転を伴わずに一次流体の非定常流を生成することが可能となる。二次流体は一次流体塊同士の狭間にはさまれ保持される状態となり、両流体間の界面は流体の流れ方向に対してほぼ鉛直となる。
 以上のような、一次流体の非定常流は、(1)一次流体供給配管内に設けた内管の周期的加熱制御、(2)一次流体供給装置の周期的供給制御、(3)一次流体供給制御装置の周期的流量制御、(4)一次流体加熱装置への高電場の周期的印加制御のいずれかの方法により生成することができる。
(1)の方法では、一次流体供給配管内に設けた内管を周期的に加熱することによって、内管内の液を蒸発させ、その気泡によって液を吐出させる。これをノズルに導き、気相となった一次流体をノズル先端から噴出させることにより、一次流体の非定常流を生成することができる。
(2)の方法では、一次流体供給装置として、例えばダイヤフラムポンプの如き間欠押し出し式のものを用い、これを周期的に制御するものである。
(3)の方法では、一次流体供給制御装置として、例えば電磁弁等を用い、これを周期的に開閉制御するものである。
(4)の方法では、一次流体加熱装置内に、例えば絶縁被覆電極を設け、これに高電場を周期的に印加することにより、加熱装置内の一次流体の蒸発量の増減を間欠的に行うものである。
 本発明のエジェクタは、上記のことから明らかなように、エジェクタ内部にロータのような回転体が存在せず、構造が比較的単純であり、低コストである。
 また、本発明によるエジェクタを用いて冷凍サイクルを構成することにより、冷凍システムを構成することができる。
 本発明によるエジェクタを使用することにより、一次流体を非定常流かつ二次流体との界面を流れ方向に鉛直とすることができ、二次流体の吸引・混合時の有効エネルギー損失が低減し、エジェクタの効率が向上する。言い換えれば、一次流体に対する二次流体の流量比(=[二次流体流量]/[一次流体流量])が増大し、単位量の二次流体を吸引するに必要な一次流体量が低減される。因みに、図9の従来例を用いた冷凍システムと比較すると、本発明では同一量の二次流体を吸引するに必要な一次流体量が1/3以下に低減され、すなわち、効率が3倍以上に向上する。
 以上のように、本発明によるエジェクタを使用することにより、エジェクタ内部において、一次流体と二次流体との直接接触による圧力交換により両流体間のエネルギー交換を行うにあたり、一次流体を非定常流とすることができ、それにより有効エネルギーの損失を低減することができるため、エジェクタの効率が大幅に向上する効果がある。
 また、エジェクタ内部において、一次流体と二次流体との直接接触による圧力交換により両流体間のエネルギー交換を行うにあたり、両流体間の界面がエジェクタ軸方向に対してほぼ垂直となるように一次流体を非定常流とすることができ、そのためエジェクタの有効エネルギーの損失を抑制できる効果がある。
 以下、本発明の方法において使用するエジェクタの実施の形態を図面を用いて説明する。
実施の形態1.
 図1は、本発明の実施の形態1によるエジェクタの概要を示す図である。
 このエジェクタ1は、ノズル2と、内部にノズル2を同心状に配したディフューザ3とから主として構成されている。ディフューザ3は上流側に導入部4を有し、ノズル2はこの導入部4を貫く一次流体供給配管5の先端部に取り付けられている。ノズル2は、一次流体供給配管5により、一次流体加熱装置6を介してポンプなどからなる一次流体供給装置7に接続されており、また、ディフューザ3の導入部4には、二次流体供給配管8を介して二次流体の供給元である二次流体供給部9が接続されている。ディフューザ3は流出配管10を介して他のプロセス、凝縮器、あるいは大気などへ接続されている。
 図1には、一次流体の非定常流生成手段の一例として、内管を細管群11により構成したものが示されている。この細管群11は、一次流体供給配管5の内部上流側に設置され、一次流体加熱装置6に接続されている。また、細管群11は、図2に示すように、細管12を複数本束ねた構成となっており、それぞれの細管12の先端部に加熱手段13を設けたものである。加熱手段13は、例えば電気ヒータであり、細管12を周期的、かつ、瞬間的に加熱するものである。
 図3は、加熱手段13によって細管12を加熱したときの一次流体の吐出現象を模式的に示したものである。すなわち、一次流体加熱装置6を通過後、過熱液相状態となっている一次流体が細管12に充填されている状態で、加熱手段13により瞬間的に加熱した場合、液の一部が蒸発し、蒸発した気泡14が一気に膨張することにより、細管12内の加熱部13より先端側に存在する加熱液を細管12より押し出す。押し出された加熱液の液滴15は蒸発、膨張しつつノズル2に至り、ノズル2から高速度で噴出することになる。細管群11における細管12の本数は一次流体の流量に応じて任意の数としてよい。
 このように、加熱手段13で瞬間加熱を周期的に繰り返すことにより、間欠的な一次流体流れが生成される。図4はその間欠的な一次流体流れがエジェクタ1内部で生成されている状況を図示したものである。間欠的な一次流体流れにより、一次流体塊16が図4の右方向に流動し、それら一次流体塊16の狭間に二次流体が吸引され、二次流体塊17が形成され、やはり右方向へ流動する。一次流体塊16と二次流体塊17の間の界面は、流体塊の流れ方向に対し、概略垂直面をなし、一次流体塊16と二次流体塊17の間ではエネルギーの授受が行われる。エネルギーの授受後、ほぼ同一エネルギー状態となった一次流体塊16と二次流体塊17は混合し、ディフューザ3で速度エネルギーを圧力エネルギーに回復しつつ流出配管10へと流出する。したがって、一次流体塊16と二次流体塊17のエネルギー授受は垂直界面を介して行われ、また、両流体のエネルギー状態が近くなってから混合するため、有効エネルギーの損失が抑制され、エジェクタの効率が向上する。
 なお、加熱手段13は、上記のように電気ヒータを用い、これにパルス電流を周期的に印加することにより上記機能を持たせることが可能となるが、電気ヒータ以外の加熱手段で断続的に各細管12を加熱しても構わない。
実施の形態2.
 図5は、本発明の実施の形態2によるエジェクタの概略図である。この実施の形態では、図1に示したような細管群11に代えて、一次流体の非定常流生成手段の他の例を示すものであり、一次流体供給装置7として、間欠流もしくは脈動流を発生させる構造のものを使用することにより、間欠的もしくは脈動的な一次流体流れを生成するものである。このような一次流体供給装置7の例として、ダイヤフラムポンプやチューブポンプなどがある。
実施の形態3.
 図6は、本発明の実施の形態3によるエジェクタの概略図である。この実施の形態では、実施の形態2と異なり、一次流体供給装置7と一次流体加熱装置6との間に、一次流体供給制御装置18を設置したもので、一次流体供給制御装置18によって一次流体の流れに間欠流もしくは脈動流を発生させるものである。このような一次流体供給制御装置18の例として、電磁弁などがある。なお、図6では一次流体供給制御装置18は、一次流体供給装置7と一次流体加熱装置6の間に設置してあるが、一次流体加熱装置6の下流側や、一次流体供給装置7の上流側など、任意の位置に設置可能である。
実施の形態4.
 図7は、本発明の実施の形態4によるエジェクタの概略図である。この実施の形態では、一次流体の非定常流生成手段のさらに他の例として、いわゆる「浅川効果」と称される方法を狙いとするものである。すなわち、一次流体加熱装置6は、内部に熱交換器19などを備えており、内部で一次流体を蒸発させる構造となっている。この加熱装置6の内部には、気相部に高圧電場を印加するための絶縁被覆電極20が設置してあり、高電圧電源21により電圧が印加されている。高圧電場を印加することにより、流体の表面張力の低下、粘性の低下が生じ、一次流体の蒸発が促進される(浅川効果)。したがって、高圧電場をパルス的、周期的に印加することにより、間欠的もしくは脈動的な一次流体流れが生成される。なお、図7では高電圧電源21は直流電源となっているが、交流電源であっても構わない。
 上述した一次流体の非定常流は、数Hz〜数十Hzの間欠流または脈動流となるように制御される。
実施の形態5.
 図8は、本発明のエジェクタを用いて冷凍サイクルを構成した実施の形態を示す概要図である。
 エジェクタ1は、ノズル2、ディフューザ3により主として構成される。ノズル2は、一次流体供給配管5を介して、一次流体加熱装置6、一次流体供給装置7に接続されている。また、エジェクタ1は二次流体供給配管8を介して蒸発器51に接続されている。エジェクタ1の流出側には流出配管10を介して凝縮器52が接続されている。凝縮器52に流入する一次流体と二次流体の混合気は凝縮器52に接続されている冷却水配管54により冷却され、凝縮する。凝縮した液は、配管58を流れ、一次流体供給装置7により一次流体加熱装置6に戻されると同時に、二次流体戻り配管59、減圧弁57を介して蒸発器51に戻る。
 蒸発器51内の二次流体がエジェクタ1により吸引される際に発生する二次流体の気化熱(蒸発潜熱)により温度低下、すなわち冷凍が発生し、蒸発器51に接続されている冷熱負荷56を冷却する。
 このエジェクタ1を用いることにより、上述したようにエジェクタの効率が向上するため、一次流体に対する二次流体の流量比(=[二次流体流量]/[一次流体流量])が増大し、冷凍機としての効率(COP)が向上する。
 なお、一次流体加熱装置6に接続されている熱交換器19の熱源としては、電力や燃料の燃焼によるもののほか、工場排熱や排ガス熱なども利用される。また、一次、二次流体の冷媒としては、水、フロン、アルコール、アンモニア、あるいはこれらの混合物などが利用される。
本発明の実施形態1によるエジェクタの概要図である。 図1の細管群を示す概略図である。 細管群における一次流体の吐出現象を示す説明図である。 本発明のエジェクタにおける一次流体と二次流体の流れを示す作用説明図である。 本発明の実施形態2によるエジェクタの概要図である。 本発明の実施形態3によるエジェクタの概要図である。 本発明の実施形態4によるエジェクタの概要図である。 本発明の実施形態5による冷凍システムの概要図である。 従来のエジェクタの概要図である。 米国特許第6,138,456号明細書に示されたエジェクタの断面図である。
符号の説明
 1 エジェクタ
 2 ノズル
 3 ディフューザ
 4 導入部
 5 一次流体供給配管
 6 一次流体加熱装置
 7 一次流体供給装置
 8 二次流体供給配管
 9 二次流体供給部
10 流出配管
11 細管群
12 細管
13 加熱手段
16 一次流体塊
17 二次流体塊
18 一次流体供給制御装置
20 絶縁被覆電極
21 高電圧電源
51 蒸発器
52 凝縮器

Claims (4)

  1.  エジェクタ内部において、高エネルギー流体と低エネルギー流体との直接接触による圧力交換により両流体間のエネルギー交換を行うにあたり、高エネルギー流体を非定常流とすることにより有効エネルギーの損失を低減することを特徴とするエジェクタの効率向上方法。
  2.  エジェクタ内部において、高エネルギー流体と低エネルギー流体との直接接触による圧力交換により両流体間のエネルギー交換を行うにあたり、両流体間の界面がエジェクタ軸方向に対してほぼ垂直となるように高エネルギー流体を非定常流とすることを特徴とするエジェクタの有効エネルギー損失の抑制方法。
  3.  非定常流の形態を間欠流もしくは脈動流とすることを特徴とする請求項1記載のエジェクタの効率向上方法。
  4.  非定常流の形態を間欠流もしくは脈動流とすることを特徴とする請求項2記載のエジェクタの有効エネルギー損失の抑制方法。
JP2003360104A 2003-10-21 2003-10-21 エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法 Pending JP2004076742A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003360104A JP2004076742A (ja) 2003-10-21 2003-10-21 エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360104A JP2004076742A (ja) 2003-10-21 2003-10-21 エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001141597A Division JP3589194B2 (ja) 2001-05-11 2001-05-11 エジェクタおよび冷凍システム

Publications (1)

Publication Number Publication Date
JP2004076742A true JP2004076742A (ja) 2004-03-11

Family

ID=32025916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360104A Pending JP2004076742A (ja) 2003-10-21 2003-10-21 エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法

Country Status (1)

Country Link
JP (1) JP2004076742A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532799A (ja) * 2013-10-03 2016-10-20 エナジー リカバリー,インコーポレイティド 水圧エネルギー伝達システムを備えた破砕システム
CN108035915A (zh) * 2017-12-04 2018-05-15 清华大学 增强混合的气液两相旋转射流泵

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016532799A (ja) * 2013-10-03 2016-10-20 エナジー リカバリー,インコーポレイティド 水圧エネルギー伝達システムを備えた破砕システム
US10767457B2 (en) 2013-10-03 2020-09-08 Energy Recovery, Inc. Frac system with hydraulic energy transfer system
US11326430B2 (en) 2013-10-03 2022-05-10 Energy Recovery, Inc. Frac system with hydraulic energy transfer system
US11512567B2 (en) 2013-10-03 2022-11-29 Energy Recovery, Inc. Hydraulic energy transfer system with fluid mixing reduction
CN108035915A (zh) * 2017-12-04 2018-05-15 清华大学 增强混合的气液两相旋转射流泵
CN108035915B (zh) * 2017-12-04 2019-07-02 清华大学 增强混合的气液两相旋转射流泵

Similar Documents

Publication Publication Date Title
JP3589194B2 (ja) エジェクタおよび冷凍システム
US10088238B2 (en) High efficiency thermal management system
US7261144B2 (en) Bubble generator
KR101441765B1 (ko) 열기 및 냉기 관리용 제트 펌프 시스템, 장치, 배열체 및 사용방법
CN102022387B (zh) 喷射器
CN101464069B (zh) 热力喷射及涡流复合型空调机
US20050204771A1 (en) Ejector
BR0308624B1 (pt) aparelho e método para o preparo e distribuição de combustìvel.
TW201224376A (en) Apparatus and method for utilizing thermal energy
JP2009299609A (ja) エジェクタ
US20070084207A1 (en) Thermally driven cooling systems
JP2017003252A (ja) 熱交換装置及びヒートポンプ装置
JP2004076742A (ja) エジェクタの効率向上方法及びエジェクタの有効エネルギー損失の抑制方法
JP2002349500A (ja) エジェクタおよび冷凍システム
JP2005155571A (ja) エジェクタおよび冷凍システム
JP2005264747A (ja) エジェクタ及びその運転方法並びに冷凍システム
JP2003247500A (ja) エジェクタおよび冷凍システム
RU51403U1 (ru) Теплогенератор кавитационного типа
CN104075508A (zh) 随冷凝温度自动调节面积比的喷射器及喷射式制冷机
JP2023043616A (ja) 冷却装置
CN221132720U (zh) 一种具有扰流元件的喷射器
JP2005016412A (ja) エジェクタおよび冷凍システム
JPH09125913A (ja) 全熱効率タービン
JP2005061722A (ja) 圧縮空気を利用した熱交換器の熱格差発生システム
US3457437A (en) Continuous fractional vaporizer for use in a closed loop mpd generation system