JP2004074426A - Heat-shrinkable polyolefinic film - Google Patents

Heat-shrinkable polyolefinic film Download PDF

Info

Publication number
JP2004074426A
JP2004074426A JP2002233693A JP2002233693A JP2004074426A JP 2004074426 A JP2004074426 A JP 2004074426A JP 2002233693 A JP2002233693 A JP 2002233693A JP 2002233693 A JP2002233693 A JP 2002233693A JP 2004074426 A JP2004074426 A JP 2004074426A
Authority
JP
Japan
Prior art keywords
film
heat
resin
weight
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002233693A
Other languages
Japanese (ja)
Other versions
JP4106602B2 (en
Inventor
Toru Hashioka
橋岡 徹
Seizo Takabayashi
高林 清蔵
Tadashi Tahoda
多保田 規
Naonobu Oda
小田 尚伸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002233693A priority Critical patent/JP4106602B2/en
Priority to US10/635,674 priority patent/US20040072002A1/en
Priority to KR1020030055163A priority patent/KR20040014366A/en
Priority to AT03017627T priority patent/ATE323735T1/en
Priority to DE2003604634 priority patent/DE60304634T2/en
Priority to CNB031530907A priority patent/CN100460190C/en
Priority to EP20030017627 priority patent/EP1388559B1/en
Publication of JP2004074426A publication Critical patent/JP2004074426A/en
Application granted granted Critical
Publication of JP4106602B2 publication Critical patent/JP4106602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-shrinkable polyolefinic film, which is enhanced in heating shrinkage factor and low temperature shrinkage factor and of which natural thrinkage is almost equal to that of conventional polypropylene and to obtain adhesive strength having no problem from a practical aspect even if only tetrahydrofuran is used as an organic solvent when solvent seal is applied. <P>SOLUTION: The heat-shrinkable polyolefinic film is obtained by laminating a substrate layer (A) comprising a polypropylene resin, a petroleum resin and a cyclic polyolefinic resin and an inner and an outer layers (B) comprising a styrenic resin and a polyolefinic resin on at least one surface of the substrate layer (A). The shrinkage factor in the main stretching direction of the film is 50% or more at 95°C x 10 s and the yield stress in the direction right-angled to a main shrinkage direction of the film is 26 MPa or more and the adhesive strength of the film is not less than 3.0 [N/15 mm]. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、オレフィン系樹脂を主成分とする熱収縮性ポリオレフィン系フィルムに関する。
【0002】
【従来の技術】
近年、包装品の、外観向上のための外装、内容物の直接衝撃を避けるための包装、ガラス瓶またはプラスチックボトルの保護と商品の表示を兼ねたラベル包装等を目的として、シュリンクラベルが広範に使用されている。これらの目的で使用されるプラスチック素材としては、ポリ塩化ビニル、ポリスチレン、ポリエチレンテレフタレート、ポリプロピレン等が知られている。しかしながら、ポリ塩化ビニルラベルは、シュリンク特性には優れるものの、燃焼時に塩素ガスを発生する等の環境問題を抱えている。ポリスチレンやポリエチレンテレフタレートラベルについては、熱収縮性は良好であるものの、ポリエチレンテレフタレートボトルとの比重差が小さいため浮遊分離が困難であり、ポリエチレンテレフタレートボトルのリサイクルをさまたげる。さらに、十分な熱収縮性を得るために、耐熱性の悪い樹脂を使用しており、レトルト殺菌を行うと溶融樹脂による印刷インキ流れを生じるという問題も有する。ポリプロピレンは、ポリエチレンテレフタレートボトルとの比重差が大きく、浮遊分離がし易い上、耐熱性にも優れるが、低温収縮性が不十分である。低温収縮性を改良する目的でポリプロピレンにプロピレン−ブテン−1共重合体を添加する方法および石油樹脂やテルペン樹脂を添加する方法(特開2001−301101公報)等が知られているが、これらの樹脂組成は剛性が低く、製膜後の自然収縮が従来のポリプロピレンと比べて高くなり、経時により巻き締まり等のトラブルを発生させる原因にもなる。また剛性を上げるために環状オレフィン系樹脂を内外層に用いる方法(特開2000−246797公報)等が知られているが、これは有機溶剤を用いたセンターシールを施す際の有機溶剤は混合溶剤(テトラヒドロフランとイソプロピルアルコール混合液等)を用いたものが推奨されており、一般的に溶剤シール用として使用されるテトラヒドロフランのみでの接着強度は劣っており、さらなる改良が望まれている。
【0003】
【発明が解決しようとする課題】
本発明の課題は、このような状況下において加熱収縮率、低温収縮率の向上したオレフィン系樹脂組成フィルムであっても自然収縮は従来ポリプロピレン程度であり、溶剤シールを施す際の有機溶剤としてテトラヒドロフランのみを用いても実用上問題のない接着強度が得られる熱収縮性ポリオレフィン系フィルムを提供することにある。
【0004】
【課題を解決するための手段】
前記の課題を解決する手段を鋭意検討した結果、本願発明完成するに至ったものである。
【0005】
すなわち、本発明の第1の発明によればポリプロピレン系樹脂と石油系樹脂および環状ポリオレフィン系樹脂からなる基材層(A)と、基材層(A)の少なくとも一方の表面にスチレン系樹脂およびポリオレフィン系樹脂からなる内外層(B)を積層した熱収縮性ポリオレフィン系フィルムでありフィルム主延伸方向の熱収縮率が、95℃×10秒で50%以上であり、主収縮方向と直角方向の降伏点応力が26MPa以上である熱収縮性ポリオレフィン系フィルムが提供される。このような構成をとることにより、自然収縮は従来ポリプロピレン程度であっても加熱収縮率および低温収縮率が向上したフィルムである。また内外層を溶剤接着層として用いる際、テトラヒドロフラン溶液のみで3.0[N/15mm]以上の溶剤接着強度が得られるという利点を有する。
ここでいうポリプロピレン樹脂は、結晶性プロピレン−α−ランダム共重合体等が挙げられる。また溶剤接着強度は次のように測定した値である。すなわち延伸したフィルムにテトラヒドロフランを用いてシールを施し、シール部をフィルムの主延伸方向に15mmの幅に切り取り、それを(株)ボールドウィン社製 万能引張試験機 STM−50」にセットし、180°ピール試験で引張速度200[mm/分]で測定したときの値である。
【0006】
また本発明の第2の発明によれば前記基材層(A)がプロピレン−α−オレフィンランダム重合体50〜70重量部と石油系樹脂25〜5重量部および環状オレフィンコポリマー25〜5重量部とからなる熱収縮性ポリオレフィン系フィルムが提供される。
【0007】
また本発明の第3の発明によれば前記内外層(B)がスチレン系樹脂50〜100重量部およびプロピレン−α−ランダム共重合体50〜0重量部からなる上記の熱収縮性ポリオレフィン系フィルムが提供される。
【0008】
また本発明の第4の発明によればフィルムの主収縮方向と直角方向の自然収縮率(40℃ 1週間経時)が0.5%未満である上記の熱収縮性ポリオレフィン系フィルムが提供される。
ここでいう「自然収縮率」とは、フィルムの主延伸方向と直角方向において幅30mm×長さ300mmに切り出し(n=2)、標線間の距離を正確に測定した値(a)。その後速やかに40℃に保たれた恒温室において放置し、1週間経過時にサンプルを取り出し標線間の距離を測定した値(b)を用い、
自然収縮率=((a)−(b))/(a)×100
の式にて得られた値をいう。
【0009】
また本発明の第5の発明によれば基材層と内外層で積層された積層フィルムの内外層の厚み合計と全体の厚みの比が0.1〜0.4の範囲を満足する上記の熱収縮性ポリオレフィン系フィルムが提供される
【0010】
また本発明の第6の発明によればフィルムの比重が0.95以下を満足する上記の熱収縮性ポリオレフィン系フィルムが提供される。
【0011】
【発明の実施の形態】
本発明の実施の形態を以下に記述する。本発明の熱収縮性ポリオレフィン系フィルムはポリプロピレン系樹脂と石油系樹脂および環状ポリオレフィン系樹脂からなる基材層(A)と、基材層(A)の少なくとも一方の表面にスチレン系樹脂およびポリオレフィン系樹脂からなる内外層(B)を積層した熱収縮性ポリオレフィン系フィルムでありフィルム主延伸方向の熱収縮率が、95℃×10秒で50%以上であり、主収縮方向と直角方向の降伏点応力が26MPa以上であり、内外層(B)をテトラヒドロフランで溶剤接着させた際の接着強度が、3.0[N/15mm]以上である熱収縮性ポリオレフィン系フィルムとする。
【0012】
基材層の構成をポリプロピレン系樹脂と石油系樹脂および環状ポリオレフィン系樹脂としたのは、従来ポリオレフィン系樹脂と石油系樹脂の構成により低温収縮特性を得られることは確認されている。しかしながらこれらの樹脂組成は剛性が低く、製膜後の自然収縮が従来のポリプロピレンと比べて高くなり、経時により巻き締まり等のトラブルを発生させる場合がある。そこで非晶で高いガラス転移点温度を有する環状ポリオレフィン系樹脂を加えることにより適度な剛性を得られかつ収縮特性を維持できるフィルムを得ることができた。内外層の構成をスチレン系樹脂およびポリオレフィン系樹脂としたのは、スチレン系樹脂は溶剤接着を行う際、最も一般的に用いられているテトラヒドラフラン対しての接着性が確認されており、内外層を溶剤接着層として用いる際に適している。またポリオレフィン系樹脂を加えることにより、基材層と内外層の結合力が高まり、内外層を溶剤接着層として用いた際の相間はく離等が発生しにくくなり、高い接着力を得られる。接着強度を3.0[N/15mm]以上としたのは以下の理由による。即ち予め印刷した熱収縮性フィルムを印刷面が内側になるように折り畳んで溶剤接着によりセンターシールを施しチューブ状とする際、センターシール部のシール強度が3.0[N/15mm]以上であると、このチューブ状としたフィルムをPETボトル等に被覆ラベルとして使用した際に、ホット充填、ボイル処理、レトルト処理等の熱処理工程において剥離しなく、シール面に波打ち等がなく良好な外観を有する為である。逆にシール強度が3.0[N/15mm]未満であるとホット充填、ボイル処理、レトルト処理等の熱処理工程において剥離の恐れがあり、シール面の美観を低下させる恐れがある。フィルム主延伸方向の熱収縮率が、95℃×10秒で50%以上としたのは、95℃×10秒で50%以上のラベルではガラス瓶、プラスチックボトルに対して良好な被覆を行うことができる。逆に95℃×10秒で50%未満のラベルでは熱収縮が少なくガラス瓶、プラスチックボトルに対して被覆後にラベルはがれ等のトラブルが発生する恐れがある。
【0013】
本発明の熱収縮性ポリオレフィン系フィルムのフィルム主収縮方向と直角方向の降伏点応力を26MPa以上としたのは以下の理由による。即ち、フィルムを製膜、スリット工程を経て一定期間の後ユーザーへ製品ロールは届けられる。製膜後ユーザーへ届けられまでの間にフィルム主延伸方向と直角方向への収縮が発生すると製品半径方向への巻き締まりが発生し、使用時ユーザーにおいて巻出し時ブロッキング等のトラブル発生の原因となる。つまり主収縮方向と直角方向の降伏点応力が、26MPa以下であるフィルムはフィルムの主収縮方向と直角方向の自然収縮率が0.5%以上なりスリット仕上がり後の巻き締まりの発生が予測される。そこで前記のようにフィルム主収縮方向と直角方向の降伏点応力を26MPa以上とした。
【0014】
[I]樹脂組成物
基材層
(a)本発明で用いる結晶性プロピレン−α−オレフィンランダム共重合とはプロピレンとα−オレフィンとのランダム共重合でありα−オレフィンとしてはエチレンまたは炭素数4〜20のα−オレフィンが挙げられ、エチレン、ブテン−1、ヘキセン−1、オクテン−1等を用いることが好ましく、エチレンもしくはブチレンを用いたコポリマーもしくはターポリマーを用いることが特に好ましい。しかしながら、本発明の主旨、即ち、その熱特性と剛性を確保できるものであれば種類を問わず使用することができる。プロピレン−α−オレフィンの比重は0.96以下、好ましくは0.94以下、さらに好ましくは0.92以下であることが望ましい
【0015】
(b)本発明で用いる石油系樹脂とは、芳香族系石油樹脂を、部分水素添加もしくは完全水素添加することによって得られる樹脂であり、該石油樹脂としては、例えば荒川化学工業(株)製のアルコンまたはトーネックス(株)製のエスコレッツ等の市販品が挙げられる。石油樹脂の軟化点は110℃以上であることが必要であり好ましくは、125℃以上である。石油樹脂の軟化点が、110℃未満であるとフィルムにべたつきが生じたり、経時変化により白濁する。石油系樹脂の比重は一般的には0.97〜1.04である。
【0016】
(c)環状ポリオレフィンとは一般的な総称であり具体的には、▲1▼環状オレフィンの開環共重合体を必要に応じ水素添加した重合体 ▲2▼環状オレフィンの付加(共)重合体 ▲3▼環状オレフィンとエチレン、プロピレン等 α―オレフィンとのランダム共重合体である上記の熱収縮性ポリオレフィン系フィルムが提供される。その他に、▲4▼前記▲1▼〜▲3▼を不飽和カルボン酸やその誘導体へ変性したグラフト変性体等が例示できる。環状ポリオレフィンとしては特に限定するものではなく、例えばノルボルエンやテトラシクロドデセンが例示できる。環状オレフィン系樹脂の比重は一般的には1.00〜1.05である。環状オレフィン系樹脂のガラス転移温度は55〜100℃、好ましくは60〜90℃である。55℃未満では60℃×10秒における主延伸方向の熱収縮率が大きくなりすぎる傾向があり、100℃を越えると70〜90℃における主延伸方向の熱収縮率が小さくなりすぎる傾向がある。
【0017】
内外層
(a)スチレン系樹脂とはスチレン系単量体と共役ジエン系単量体との共重合物である。
スチレン系単量体の例としてはスチレン、α−メチルスチレン、p−メチルスチレンがあげられる。共役ジエン系単量体としては例えばブタジエン、イソプレン、1,3−ブタジエン等が挙げられ、これらの共役ジエン系単量体の1種または2種以上が含まれる。
これらの共役ジエン系単量体と上記スチレン系単量体とのブロック共重合体が本発明で使用されるスチレン系重合体としてあげられる。これらの中で最も好適にされるブロック共重合体はスチレン系単量体がスチレンであり、共役ジエン系単量体がブタジエンであるスチレン−ブタジエンブロック共重合体である。ブロック共重合体において、該重合体中のスチレン含有量は15〜90重量%である。スチレン含有量が95重量%を越えるとフィルムの対衝撃性が低下してしまい好ましくない。またスチレン含有量が10重量%以下になると溶剤接着性が低下してしまい、内外層を溶剤接着層として用いる際その機能が損なわれる場合が生じる。加えてジエン系単量体は軟質でありこの比率が増加すると十分な剛性を得られずフィルムの主収縮方向と直角方向への自然収縮が大きくなる。その結果フィルムロール半径方向への巻き締まりが発生し、ブロッキング等のトラブルを発生する場合が生じる。
【0018】
(b)プロピレン−α−オレフィン共重合は内外層と基材層の層間の結合力をより強固なものとする目的で添加した。本発明で使用するプロピレン−α−オレフィン共重合体は前記した基材層において使用するものができるものとして挙げたプロピレン−α−オレフィン共重合体の中から選ばれる。
【0019】
(原料配合比)
本発明の積層フィルムの基材層における石油系樹脂の混合割合は基材層を構成する樹脂混合物全体に対して5〜25重量%である。また、環状オレフィンの混合割合は基材層を構成する樹脂混合物全体に対して5〜25重量%である。石油系樹脂の混合割合が5重量%未満の場合、良好な低収縮特性が得られない場合が生じる。環状ポリオレフィンの混合割合が5重量%未満の場合、十分な剛性を得られずフィルムの主収縮方向と直角方向の自然収縮が大きくなる。その結果、フィルムロール半径方向への巻き締まりが発生し、ブロッキング等のトラブルを発生する場合が生じる。石油系樹脂と環状ポリオレフィンの比重はそれぞれ0.97〜1.04、1.00〜1.05であり、この合計比率が50重量%を越えると、得られた積層フィルムの比重が0.950以上となる場合が生じ易く、印刷を施した該フィルムを飽和ポリエステル系樹脂製ボトルの被覆用として使用した場合、リサイクル時に液比重法により精度よく分別しにくくなることがある。
また内外層におけるスチレン系樹脂の比率は50〜100重量%である。スチレン系樹脂の割合が50重量%未満の場合、内外層を溶剤接着層として用いる際、十分な溶剤接着性が得られず、その機能が損なわれる場合が生じる。
【0020】
(基材層、内外層 各層の厚み)
本発明における内外層の厚み合計と全体の厚みの比は0.1〜0.4の範囲が良好であり0.15〜0.35がより好ましい。この値が0.1よりも小さくなると内外層を溶剤接着層として用いる際、十分な溶剤接着性が得られず、その機能が損なわれる場合が生じる。この値が0.4よりも大きくなると積層フィルムの比重が0.950以上となる場合が生じやすくなる。
【0021】
(その他の成分)
本発明の効果を阻害しない範囲で、酸化防止剤、帯電防止剤、中和剤、造核剤、アンチブロッキング剤、スリップ剤等を添加することができる。また、本発明の効果を阻害しない範囲で、より一層の収縮特性向上を目的として、プロピレン−ブテン−1共重合体、ポリブテン−1、線状低密度ポリエチレン等、公知の収縮特性向上成分を添加してもよい。
【0022】
[II]シュリンクラベル用フィルムの成形方法
本発明の熱収縮性ポリプロピレン系シュリンクラベル用フィルムは上記のポリプロピレン系樹脂組成物をインフレーション法、フラット状延伸方法等の公知の成形方法を用いて成形することができるが、本発明においてはフラット状延伸法、特にテンター一軸延伸法を用いることが好ましい。
【0023】
上記の方法により溶融押出し後、公知の方法により、少なくとも一軸方向に2倍以上延伸して、本発明のシュリンクラベル用フィルムを製造する。延伸方向は、一軸方向以上であればよいが、ラベルの流れ方向に対して直角である方向へのみ1軸延伸することが好ましい。また、延伸倍率が2倍未満であると、十分な収縮率が得られない。また、収縮率を向上させる目的より、でき得るかぎり低温で延伸することが好ましく、特に未延伸シートに予熱をかける工程がある場合は、予熱温度を成型可能な範囲内で、でき得る限り低くすることが収縮率向上の観点から好ましい。
【0024】
本発明のシュリンクラベル用の厚みは、特に限定されないが、100μm以下であり、好ましくは30〜80μmである。さらに、本発明のシュリンクラベル用フィルムは多層ラベル用フィルムであり、積層方法としては、多層共押出法やドライラミネート法等が挙げられる。
【0025】
[III]熱収縮性フィルムの用途
本発明の熱収縮性ポリプレン系シュリンクラベル用フィルムは、良好な加熱収縮特性を持ちPETボトル用表示ラベル用材料、瓶容器用表示ラベル用材料等としての実用特性を有している。また、低温収縮率が向上しているため、高速ラベル包装性に優れ、特に予め低温充填されたペットボトルや瓶容器へのラベル包装に適してしている。あわせて耐熱性というポリプレン系樹脂の特長を生かし、高温充填されたPETボトル用表示ラベル用材料として好適に用いることができる。
【0026】
【実施例】
次に本発明の内容および効果を実施例によって説明するが、本発明は、その要旨を逸脱しないかぎり以下の実施例に限定されるものではない。尚、本明細書中における特性値の測定方法は以下の通りである。
【0027】
(降伏点応力)
TENSILON/UTM−IIIL(TOYO MEASURING INSTRUMENTS CO.LTD)を用いて、フィルムの主延伸方向と直角方向において、雰囲気温度23℃、チャック間を100mmとして、幅15mmのフィルム試験片を引張速度200mm/分で引張り試験を行い、引張応力−ゆがみ曲線を作成した。降伏点応力(単位:MPa)は、引張応力−ゆがみ曲線の始めの極大点部分を用いた。
【0028】
(自然収縮率)
弾力性評価として、フィルムの自然収縮率を求めた。
フィルムの主延伸方向と直角方向において幅30mm×長さ300mmに切り出し(n=2)、標線間の距離を正確に測定(a)。その後速やかに40℃に保たれた恒温室において放置。1週間経時にサンプルを取り出し標線間の距離を測定(b)
自然収縮率=((a)−(b))/(a)×100
の式にて自然収縮率の計算をおこなった。
【0029】
(ヘイズ)
NDH−1001DP(日本電色工業株式会社)を用いて、JISK7105に準拠し
測定した。
【0030】
(加熱収縮率)
延伸したフィルムを10cm×10cmの正方形に、その一辺がフィルム流れ方向と平行になるように切り出し、これを所定の温度に加熱した水槽に10秒間浸漬した。10秒経過後、直ちに別途用意した23℃の水槽に20秒間浸漬した後、フィルムの主収縮方向、その直行方向各々の長さを測定し、加熱収縮率を求めた。
【0031】
(溶剤接着強度)
延伸したフィルムにテトラヒドロフランを用いてシールを施した。シール部をフィルムの主延伸方向に15mmの幅に切り取り、それを(株)ボールドウィン社製 万能引張試験機 STM−50」にセットし、180°ピール試験で引張速度200mm/分で測定した。
【0032】
(フィルム比重)
JIS K7112に準拠して、密度こうばい管法により測定したフィルムの密度と温度23℃における水の密度との比により、フィルムの比重を計算した。
【0033】
(実施例1)
基材層にはプロピレン−ブテンランダム共重合体(住友化学工業(株)社製 SPX78H3)26重量部、プロピレン−エチレンランダム共重合体(住友化学工業(株)社製 S131)30重量部、石油樹脂(荒川化学工業(株)社製アルコンP140)19重量部、環状ポリオレフィン(三井化学(株)社製 APEL8008T)25重量部を混合した混合物を使用した。内外層にはプロピレン−エチレン−ブテンランダム共重合体(住友化学工業(株)社製 FL6741G)38.6重量部、水添ブタジエン−スチレンラバー50重量部、帯電防止剤(グリセリン6重量%とホモポリプロピレン96重量%)6重量部、アンチブロッキング剤(平均粒径7.0μmのポリメチルメタアクリレートの架橋体からなる粒子 10重量%とホモポリプロピレン90重量%)2重量部、滑り助剤I(エルカ酸アミド5重量%とホモポリプロピレン95重量%)0.4重量部および滑り助剤II(ベヘミン酸アミド重量2%とホモポリピレン98重量%)3重量部を混合した混合物とをそれぞれ別の押出機に投入し、230℃でTダイより共押出しし、20℃に保持した冷却ロールで冷却固化させた後、105℃で24秒予熱後、75℃で横方向に6倍テンター延伸し、次いで同テンター内で巾方向に8%弛緩させつつ70℃で43秒かけて徐冷してフラット状の熱収縮性フィルムを得た。
【0034】
このフィルムの厚さは内外層が各々6μm、基材層が38μmでトータルの厚さは50μmであった。このフィルム主延伸方向の熱収縮率は95℃×10秒で50%以上の値が得られた。このフィルムの主延伸方向と直角方向の降伏点応力を測定したところ26MPa以上の値が得られ、フィルムの主延伸方向と直角方向の自然収縮率(MD)も0.5%以下の値を得られた。またテトラヒドロフランを溶剤とする接着強度は3.0[N/15mm]以上の値を得られた。表1には降伏点応力、自然収縮率、外観(ヘイズ)、溶剤接着強度、80℃、95℃での熱収縮率、比重を示す。
【0035】
(実施例2)
基材層にはプロピレン−ブテンランダム共重合体 30重量部、プロピレン−エチレンランダム共重合体 34重量部、石油樹脂(荒川化学工業(株)社製 アルコンP140)21重量部、環状ポリオレフィン(三井化学(株)社製 APEL8008T)15重量とし内外層は実施例1と同様にして熱収縮性フィルムを成形した。このフィルム主延伸方向の熱収縮率は95℃×10秒で50%以上の値が得られた。このフィルムの主延伸方向と直角方向の降伏点応力を測定したところ26MPa以上の値が得られ、フィルムの主延伸方向と直角方向の自然収縮率(MD)も0.5%以下の値を得られた。またテトラヒドロフランを溶剤とする接着強度は3.0[N/15mm]以上の値を得られた。表1には降伏点応力、自然収縮率、外観(ヘイズ)、溶剤接着強度、80℃、95℃での熱収縮率、比重を示す。
【0036】
(比較例1)
基材層にはプロピレン−ブテンランダム共重合体 35重量部、プロピレン−エチレンランダム共重合体 40重量部、石油樹脂(荒川化学工業(株)社製 アルコンP140)25重量部とし内外層は実施例1と同様にしてシュリンクラベル用フィルムを成形した。このフィルム主延伸方向の熱収縮率は95℃×10秒で50%以上の値が得られた。このフィルムの主延伸方向と直角方向の降伏点応力を測定したところ26MPa以下の値であり、フィルムの主延伸方向と直角方向の自然収縮率(MD)も0.5%を超える値となった。評価結果は表1に示す。
【0037】
(比較例2)
基材層にはプロピレン−ブテンランダム共重合体 35重量部、プロピレン−エチレンランダム共重合体 40重量部、環状ポリオレフィン(三井化学(株)社製 APEL8008T)25重量部とし内外層は実施例1と同様にしてシュリンクラベル用フィルムを成形した。このフィルムの主延伸方向と直角方向の降伏点応力を測定したところ26MPa以上の値であり、フィルムの主延伸方向と直角方向の自然収縮率(MD)も0.5%以下の値を得られた。しかしながら、このフィルム主延伸方向の熱収縮率は95℃×10秒で50%以下の値であった。評価結果は表1に示す。
【0038】
(比較例3)
基材層にはプロピレン−ブテンランダム共重合体 35重量部、プロピレン−エチレンランダム共重合体 40重量部、石油樹脂(荒川化学工業(株)社製 アルコンP140)25重量部を混合した混合物とし内外層には環状ポリオレフィン(三井化学(株)社製 APEL8008T)95重量部、帯電防止剤(AS成分20重量%、ポリエチレン80重量%)2重量部アンチブロッキング剤(10μmポリメチルメタアクリレート 10重量%、ポリエチレン 90重量%)3重量部を混合した混合物とし実施例1と同様にしてシュリンクラベル用フィルムを成形した。このフィルム主延伸方向の熱収縮率は95℃×10秒で50%以上の値を得、このフィルムの主延伸方向と直角方向の降伏点応力を測定したところ26MPa以上の値を得た。しかしながら、テトラヒドロフランを溶剤とする接着強度は3.0[N/15mm]以下の値となった。評価結果は表1に示す。
【0039】
【表1】

Figure 2004074426
【0040】
【発明の効果】
本願発明の熱収縮性フィルムは、シュリンクラベルとして十分な収縮特性を得られるだけでなく、フィルムの主延伸方向と直角方向の弾性を保つことにより自然収縮率の悪化に起因する加工不良が解消された。また溶剤接着の際、一般的に使用されるテトラヒドロフランで十分な接着強度が得られる、熱収縮性ポリオレフィン系フィルムを提供できることになった。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat-shrinkable polyolefin-based film containing an olefin-based resin as a main component.
[0002]
[Prior art]
In recent years, shrink labels have been widely used for the purpose of packaging, for improving the appearance, packaging for avoiding direct impact of the contents, label packaging for protecting glass bottles or plastic bottles and labeling products, etc. Have been. As plastic materials used for these purposes, polyvinyl chloride, polystyrene, polyethylene terephthalate, polypropylene and the like are known. However, although the polyvinyl chloride label has excellent shrink properties, it has environmental problems such as generation of chlorine gas during combustion. Polystyrene and polyethylene terephthalate labels have good heat shrinkage, but have a small difference in specific gravity from that of polyethylene terephthalate bottles, making it difficult to carry out floating separation, thereby hindering the recycling of polyethylene terephthalate bottles. Furthermore, in order to obtain sufficient heat shrinkability, a resin having poor heat resistance is used, and there is also a problem that when retort sterilization is performed, a printing ink flow occurs due to a molten resin. Polypropylene has a large difference in specific gravity from a polyethylene terephthalate bottle, is easily floated and separated, and has excellent heat resistance, but has insufficient low-temperature shrinkage. A method of adding a propylene-butene-1 copolymer to polypropylene and a method of adding a petroleum resin or a terpene resin (JP-A-2001-301101) for the purpose of improving low-temperature shrinkage are known. The resin composition has low rigidity, and spontaneous shrinkage after film formation is higher than that of conventional polypropylene, which may cause troubles such as tightness of winding over time. A method of using a cyclic olefin-based resin for the inner and outer layers to increase the rigidity (Japanese Patent Laid-Open No. 2000-246797) is known. However, this method uses a mixed solvent in the case of performing a center seal using an organic solvent. (A mixed solution of tetrahydrofuran and isopropyl alcohol, etc.) is recommended, and the adhesive strength of tetrahydrofuran alone, which is generally used for solvent sealing, is inferior, and further improvement is desired.
[0003]
[Problems to be solved by the invention]
The problem of the present invention is that under such circumstances, even in the case of an olefin-based resin composition film having improved heat shrinkage and low-temperature shrinkage, the natural shrinkage is about the same as that of conventional polypropylene, and tetrahydrofuran is used as an organic solvent when applying a solvent seal. It is an object of the present invention to provide a heat-shrinkable polyolefin-based film that can provide an adhesive strength that does not cause any practical problem even when only using the film.
[0004]
[Means for Solving the Problems]
As a result of intensive studies on means for solving the above-mentioned problems, the present invention has been completed.
[0005]
That is, according to the first aspect of the present invention, a base material layer (A) composed of a polypropylene-based resin, a petroleum-based resin, and a cyclic polyolefin-based resin, and a styrene-based resin on at least one surface of the base material layer (A). A heat-shrinkable polyolefin-based film in which the inner and outer layers (B) made of a polyolefin-based resin are laminated, and the heat shrinkage in the film main stretching direction is 50% or more at 95 ° C. × 10 seconds, and the heat shrinkage in the direction perpendicular to the main shrinkage direction is A heat-shrinkable polyolefin-based film having a yield point stress of 26 MPa or more is provided. By adopting such a configuration, a film having improved heat shrinkage and low-temperature shrinkage even if the natural shrinkage is about the same as that of conventional polypropylene. In addition, when the inner and outer layers are used as a solvent adhesive layer, there is an advantage that a solvent adhesive strength of 3.0 [N / 15 mm] or more can be obtained only with a tetrahydrofuran solution.
The polypropylene resin mentioned here includes a crystalline propylene-α-random copolymer and the like. The solvent adhesive strength is a value measured as follows. That is, the stretched film is sealed with tetrahydrofuran, and the seal portion is cut out to a width of 15 mm in the main stretching direction of the film, and the cut portion is set on a universal tensile tester STM-50 manufactured by Baldwin Co., Ltd. It is a value measured at a tensile speed of 200 [mm / min] in the peel test.
[0006]
According to the second invention of the present invention, the base material layer (A) is composed of 50 to 70 parts by weight of a propylene-α-olefin random polymer, 25 to 5 parts by weight of a petroleum resin, and 25 to 5 parts by weight of a cyclic olefin copolymer. And a heat-shrinkable polyolefin-based film comprising:
[0007]
According to the third invention of the present invention, the heat-shrinkable polyolefin film wherein the inner and outer layers (B) comprise 50 to 100 parts by weight of a styrene resin and 50 to 0 parts by weight of a propylene-α-random copolymer. Is provided.
[0008]
According to a fourth aspect of the present invention, there is provided the above-mentioned heat-shrinkable polyolefin film having a natural shrinkage (at 40 ° C. for one week) of less than 0.5% in a direction perpendicular to the main shrinkage direction of the film. .
The term "natural shrinkage ratio" as used herein means a value (a) obtained by cutting out a film having a width of 30 mm x a length of 300 mm in the direction perpendicular to the main stretching direction of the film (n = 2) and accurately measuring the distance between marked lines. After that, the sample was immediately left in a constant temperature room kept at 40 ° C., and after one week, a sample was taken out, and the value (b) obtained by measuring the distance between the marked lines was used.
Natural shrinkage = ((a)-(b)) / (a) × 100
Means the value obtained by the following equation.
[0009]
According to the fifth aspect of the present invention, the ratio of the total thickness of the inner and outer layers of the laminated film laminated with the base layer and the inner and outer layers to the total thickness satisfies the range of 0.1 to 0.4. A heat-shrinkable polyolefin film is provided.
Further, according to the sixth invention of the present invention, there is provided the above-mentioned heat-shrinkable polyolefin film, wherein the specific gravity of the film satisfies 0.95 or less.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below. The heat-shrinkable polyolefin film of the present invention comprises a base layer (A) composed of a polypropylene resin, a petroleum resin and a cyclic polyolefin resin, and a styrene resin and a polyolefin base film on at least one surface of the base layer (A). It is a heat-shrinkable polyolefin-based film in which the inner and outer layers (B) made of a resin are laminated, and the heat shrinkage in the film main stretching direction is 50% or more at 95 ° C. × 10 seconds, and the yield point in the direction perpendicular to the main shrinkage direction A heat-shrinkable polyolefin-based film having a stress of 26 MPa or more and an adhesive strength of 3.0 [N / 15 mm] or more when the inner and outer layers (B) are solvent-bonded with tetrahydrofuran.
[0012]
It has been confirmed that low-temperature shrinkage characteristics can be obtained by using a polyolefin-based resin and a petroleum-based resin for the reason that the configuration of the base material layer is made of a polypropylene-based resin, a petroleum-based resin, and a cyclic polyolefin-based resin. However, these resin compositions have low rigidity, spontaneous shrinkage after film formation is higher than that of conventional polypropylene, and may cause troubles such as tightness with the passage of time. Therefore, by adding an amorphous, polyolefin-based resin having a high glass transition temperature, it was possible to obtain a film capable of obtaining appropriate rigidity and maintaining shrinkage characteristics. The reason that the inner and outer layers are made of a styrene resin and a polyolefin resin is that the styrene resin has been confirmed to have the most commonly used adhesiveness to tetrahydrafuran when performing solvent bonding. Suitable when the layer is used as a solvent adhesion layer. Further, by adding the polyolefin-based resin, the bonding force between the base material layer and the inner and outer layers is increased, and the separation between phases when the inner and outer layers are used as the solvent adhesive layer is less likely to occur, so that a high adhesive force can be obtained. The reason for setting the adhesive strength to 3.0 [N / 15 mm] or more is as follows. That is, when the pre-printed heat-shrinkable film is folded so that the printing surface is on the inside and subjected to a center seal by solvent bonding to form a tube, the seal strength of the center seal portion is 3.0 [N / 15 mm] or more. When this tube-shaped film is used as a covering label on a PET bottle or the like, it does not peel off in a heat treatment step such as hot filling, boil treatment, retort treatment, and has a good appearance without waving or the like on a sealing surface. That's why. Conversely, if the seal strength is less than 3.0 [N / 15 mm], peeling may occur in heat treatment steps such as hot filling, boil processing, and retort processing, and the aesthetic appearance of the seal surface may deteriorate. The reason that the heat shrinkage in the main stretching direction of the film is 50% or more at 95 ° C. × 10 seconds is that good coating can be performed on glass bottles and plastic bottles for labels at 95 ° C. × 10 seconds or more. it can. Conversely, if the label is less than 50% at 95 ° C. × 10 seconds, heat shrinkage is small, and there is a possibility that trouble such as peeling of the label may occur after coating the glass bottle or plastic bottle.
[0013]
The yield point stress of the heat-shrinkable polyolefin-based film of the present invention in the direction perpendicular to the film main shrinkage direction is set to 26 MPa or more for the following reason. That is, the product roll is delivered to the user after a certain period of time through the film forming and slitting processes. If shrinkage occurs in the direction perpendicular to the main stretching direction of the film before the film is delivered to the user after film formation, the product will tighten in the radial direction, causing problems such as blocking during unwinding by the user during use. Become. In other words, a film having a yield point stress in the direction perpendicular to the main shrinkage direction of 26 MPa or less has a natural shrinkage ratio in the direction perpendicular to the main shrinkage direction of the film of 0.5% or more, and the occurrence of tight tightening after slit finishing is predicted. . Therefore, as described above, the yield point stress in the direction perpendicular to the film main shrinkage direction is set to 26 MPa or more.
[0014]
[I] Resin composition base layer (a) The crystalline propylene-α-olefin random copolymer used in the present invention is a random copolymer of propylene and α-olefin, and the α-olefin is ethylene or carbon number 4 Α-20 to α-20, and it is preferable to use ethylene, butene-1, hexene-1, octene-1, and the like, and it is particularly preferable to use a copolymer or terpolymer using ethylene or butylene. However, any type can be used as long as the gist of the present invention, that is, its thermal characteristics and rigidity can be ensured. It is desirable that the specific gravity of the propylene-α-olefin is 0.96 or less, preferably 0.94 or less, more preferably 0.92 or less.
(B) The petroleum resin used in the present invention is a resin obtained by partially or completely hydrogenating an aromatic petroleum resin. Examples of the petroleum resin include Arakawa Chemical Industries, Ltd. Commercially available products such as Alcon or Escolets manufactured by Tonex Corporation. The softening point of the petroleum resin needs to be 110 ° C. or higher, and preferably 125 ° C. or higher. If the softening point of the petroleum resin is lower than 110 ° C., the film becomes sticky or becomes cloudy due to aging. The specific gravity of the petroleum resin is generally 0.97 to 1.04.
[0016]
(C) The cyclic polyolefin is a general generic term, and specifically, (1) a polymer obtained by hydrogenating a ring-opening copolymer of a cyclic olefin as required. (2) an addition (co) polymer of a cyclic olefin. {Circle around (3)} The heat-shrinkable polyolefin-based film is provided as a random copolymer of a cyclic olefin and an α-olefin such as ethylene or propylene. In addition, (4) a graft-modified product obtained by modifying the above (1) to (3) with an unsaturated carboxylic acid or a derivative thereof can be exemplified. The cyclic polyolefin is not particularly limited, and examples thereof include norbornene and tetracyclododecene. The specific gravity of the cyclic olefin-based resin is generally 1.00 to 1.05. The glass transition temperature of the cyclic olefin-based resin is 55 to 100 ° C, preferably 60 to 90 ° C. If it is less than 55 ° C, the thermal shrinkage in the main stretching direction at 60 ° C for 10 seconds tends to be too large, and if it exceeds 100 ° C, the thermal shrinkage in the main stretching direction at 70 to 90 ° C tends to be too small.
[0017]
Inner and outer layers (a) The styrene resin is a copolymer of a styrene monomer and a conjugated diene monomer.
Examples of the styrene-based monomer include styrene, α-methylstyrene, and p-methylstyrene. Examples of the conjugated diene-based monomer include butadiene, isoprene, 1,3-butadiene and the like, and one or more of these conjugated diene-based monomers are included.
Block copolymers of these conjugated diene-based monomers and the styrene-based monomers are mentioned as the styrene-based polymer used in the present invention. The most preferred block copolymer among these is a styrene-butadiene block copolymer in which the styrene monomer is styrene and the conjugated diene monomer is butadiene. In the block copolymer, the styrene content in the polymer is from 15 to 90% by weight. If the styrene content exceeds 95% by weight, the impact resistance of the film is undesirably reduced. Further, when the styrene content is less than 10% by weight, the solvent adhesiveness is reduced, and when the inner and outer layers are used as the solvent adhesive layer, the function may be impaired. In addition, the diene monomer is soft, and if this ratio increases, sufficient rigidity cannot be obtained, and natural shrinkage in the direction perpendicular to the main shrinkage direction of the film increases. As a result, winding of the film roll in the radial direction occurs, which may cause troubles such as blocking.
[0018]
(B) The propylene-α-olefin copolymer was added for the purpose of strengthening the bonding force between the inner and outer layers and the base layer. The propylene-α-olefin copolymer used in the present invention is selected from the propylene-α-olefin copolymers mentioned above as those which can be used in the base layer.
[0019]
(Raw material blending ratio)
The mixing ratio of the petroleum-based resin in the base material layer of the laminated film of the present invention is 5 to 25% by weight based on the entire resin mixture constituting the base material layer. The mixing ratio of the cyclic olefin is 5 to 25% by weight based on the whole resin mixture constituting the base material layer. If the mixing ratio of the petroleum resin is less than 5% by weight, good low shrinkage characteristics may not be obtained. If the mixing ratio of the cyclic polyolefin is less than 5% by weight, sufficient rigidity cannot be obtained, and natural shrinkage in the direction perpendicular to the main shrinkage direction of the film increases. As a result, winding tight in the radial direction of the film roll occurs, and troubles such as blocking may occur. The specific gravities of the petroleum resin and the cyclic polyolefin are 0.97 to 1.04 and 1.00 to 1.05, respectively. When the total ratio exceeds 50% by weight, the specific gravity of the obtained laminated film becomes 0.950. In the case where the printed film is used for covering a saturated polyester resin bottle, it may be difficult to accurately separate the bottle by the liquid specific gravity method at the time of recycling.
The ratio of the styrene resin in the inner and outer layers is 50 to 100% by weight. When the proportion of the styrene resin is less than 50% by weight, when the inner and outer layers are used as the solvent adhesive layer, sufficient solvent adhesiveness cannot be obtained, and the function may be impaired.
[0020]
(Thickness of each base layer, inner and outer layers)
The ratio of the total thickness of the inner and outer layers to the total thickness in the present invention is preferably in the range of 0.1 to 0.4, more preferably 0.15 to 0.35. If this value is smaller than 0.1, when the inner and outer layers are used as the solvent adhesive layer, sufficient solvent adhesiveness cannot be obtained, and the function may be impaired. If this value is larger than 0.4, the specific gravity of the laminated film tends to be 0.950 or more.
[0021]
(Other components)
An antioxidant, an antistatic agent, a neutralizing agent, a nucleating agent, an antiblocking agent, a slip agent and the like can be added as long as the effects of the present invention are not impaired. In addition, as long as the effects of the present invention are not impaired, known shrinkage property improving components such as propylene-butene-1 copolymer, polybutene-1, and linear low-density polyethylene are added for the purpose of further improving shrinkage properties. May be.
[0022]
[II] Method of Forming Shrink Label Film The heat-shrinkable polypropylene shrink label film of the present invention is obtained by molding the above-mentioned polypropylene resin composition by a known molding method such as an inflation method or a flat stretching method. In the present invention, it is preferable to use a flat stretching method, particularly a tenter uniaxial stretching method.
[0023]
After melt-extrusion by the above method, the film is stretched at least twice in a uniaxial direction by a known method to produce the shrink label film of the present invention. The stretching direction may be uniaxial or more, but it is preferable to uniaxially stretch only in a direction perpendicular to the flow direction of the label. On the other hand, if the stretching ratio is less than 2, sufficient shrinkage cannot be obtained. In addition, for the purpose of improving the shrinkage, it is preferable to stretch at as low a temperature as possible. Particularly, when there is a step of applying preheating to the unstretched sheet, the preheating temperature is set as low as possible within a moldable range. This is preferable from the viewpoint of improving the shrinkage.
[0024]
Although the thickness for the shrink label of the present invention is not particularly limited, it is 100 μm or less, and preferably 30 to 80 μm. Furthermore, the film for a shrink label of the present invention is a film for a multilayer label, and examples of a lamination method include a multilayer coextrusion method and a dry lamination method.
[0025]
[III] Use of heat-shrinkable film The heat-shrinkable polypropylene shrink label film of the present invention has good heat-shrinkage properties and has practical properties as a material for display labels for PET bottles, a material for display labels for bottle containers, and the like. have. In addition, since the low-temperature shrinkage rate is improved, it is excellent in high-speed label packaging, and is particularly suitable for label packaging in PET bottles and bottle containers which are preliminarily low-temperature filled. In addition, it can be suitably used as a display label material for PET bottles filled at a high temperature, taking advantage of the heat resistance of the polypropylene resin.
[0026]
【Example】
Next, the contents and effects of the present invention will be described with reference to examples, but the present invention is not limited to the following examples unless departing from the gist thereof. The method for measuring the characteristic values in the present specification is as follows.
[0027]
(Yield point stress)
Using TENSILON / UTM-IIIL (TOYO MEASURING INSTRUMENTS CO. LTD), in a direction perpendicular to the main stretching direction of the film, an ambient temperature of 23 ° C., a distance between chucks of 100 mm, and a film test piece having a width of 15 mm and a tensile speed of 200 mm / min. A tensile test was performed to prepare a tensile stress-distortion curve. As the yield point stress (unit: MPa), the maximum point at the beginning of the tensile stress-distortion curve was used.
[0028]
(Natural shrinkage)
As the elasticity evaluation, the natural shrinkage of the film was obtained.
The film was cut out into a width of 30 mm × length of 300 mm in the direction perpendicular to the main stretching direction of the film (n = 2), and the distance between the marked lines was accurately measured (a). After that, it was immediately left in a constant temperature room maintained at 40 ° C. Remove the sample after one week and measure the distance between the marked lines (b)
Natural shrinkage = ((a)-(b)) / (a) × 100
The natural shrinkage rate was calculated by the following equation.
[0029]
(Haze)
It measured using NDH-1001DP (Nippon Denshoku Industries Co., Ltd.) according to JISK7105.
[0030]
(Heating shrinkage)
The stretched film was cut into a square of 10 cm × 10 cm so that one side thereof was parallel to the film flow direction, and this was immersed in a water bath heated to a predetermined temperature for 10 seconds. Immediately after the elapse of 10 seconds, the film was immediately immersed in a separately prepared water bath at 23 ° C. for 20 seconds, and the lengths of the film in the main shrinkage direction and in the direction perpendicular thereto were measured to determine the heat shrinkage.
[0031]
(Solvent bond strength)
The stretched film was sealed with tetrahydrofuran. The seal portion was cut into a width of 15 mm in the main stretching direction of the film, and the cut portion was set on a universal tensile tester STM-50 manufactured by Baldwin Co., Ltd., and measured at a pulling speed of 200 mm / min by a 180 ° peel test.
[0032]
(Film specific gravity)
In accordance with JIS K7112, the specific gravity of the film was calculated from the ratio of the density of the film measured by the density gradient tube method to the density of water at a temperature of 23 ° C.
[0033]
(Example 1)
The base material layer includes 26 parts by weight of a propylene-butene random copolymer (SPX78H3 manufactured by Sumitomo Chemical Co., Ltd.), 30 parts by weight of a propylene-ethylene random copolymer (S131 manufactured by Sumitomo Chemical Co., Ltd.), petroleum A mixture obtained by mixing 19 parts by weight of resin (Alcon P140 manufactured by Arakawa Chemical Industries, Ltd.) and 25 parts by weight of cyclic polyolefin (APEL8008T manufactured by Mitsui Chemicals, Inc.) was used. 38.6 parts by weight of a propylene-ethylene-butene random copolymer (FL6741G manufactured by Sumitomo Chemical Co., Ltd.), 50 parts by weight of hydrogenated butadiene-styrene rubber, and an antistatic agent (6% by weight of glycerin and 6 parts by weight of polypropylene (96% by weight), 2 parts by weight of an antiblocking agent (10% by weight of particles of crosslinked polymethyl methacrylate having an average particle diameter of 7.0 μm and 90% by weight of homopolypropylene), and slip aid I (Erca) A mixture of 5 parts by weight of acid amide and 95 parts by weight of homopolypropylene) and 3 parts by weight of slip aid II (2% by weight of behemic acid amide and 98% by weight of homopolypyrene) were mixed in separate extruders. It is co-extruded from a T-die at 230 ° C., cooled and solidified by a cooling roll maintained at 20 ° C., and then pre-heated at 105 ° C. for 24 seconds. After the heating, the film was stretched 6 times in the transverse direction at 75 ° C., and then slowly cooled at 70 ° C. for 43 seconds in the same tenter while relaxing 8% in the width direction to obtain a flat heat-shrinkable film.
[0034]
The thickness of this film was 6 μm for each of the inner and outer layers, and 38 μm for the base material layer, and the total thickness was 50 μm. The heat shrinkage in the main stretching direction of the film was 50% or more at 95 ° C. × 10 seconds. When the yield point stress in the direction perpendicular to the main stretching direction of the film was measured, a value of 26 MPa or more was obtained, and the natural shrinkage (MD) in the direction perpendicular to the main stretching direction of the film also obtained a value of 0.5% or less. Was done. The adhesive strength using tetrahydrofuran as a solvent was 3.0 [N / 15 mm] or more. Table 1 shows the yield point stress, natural shrinkage, appearance (haze), solvent adhesive strength, heat shrinkage at 80 ° C. and 95 ° C., and specific gravity.
[0035]
(Example 2)
For the base material layer, 30 parts by weight of a propylene-butene random copolymer, 34 parts by weight of a propylene-ethylene random copolymer, 21 parts by weight of a petroleum resin (Alcon P140 manufactured by Arakawa Chemical Industries, Ltd.), and a cyclic polyolefin (Mitsui Chemicals) A heat-shrinkable film was formed in the same manner as in Example 1 with the inner and outer layers being 15 weight parts (APEL8008T, manufactured by Corporation). The heat shrinkage in the main stretching direction of the film was 50% or more at 95 ° C. × 10 seconds. When the yield point stress in the direction perpendicular to the main stretching direction of the film was measured, a value of 26 MPa or more was obtained, and the natural shrinkage (MD) in the direction perpendicular to the main stretching direction of the film also obtained a value of 0.5% or less. Was done. The adhesive strength using tetrahydrofuran as a solvent was 3.0 [N / 15 mm] or more. Table 1 shows the yield point stress, natural shrinkage, appearance (haze), solvent adhesive strength, heat shrinkage at 80 ° C. and 95 ° C., and specific gravity.
[0036]
(Comparative Example 1)
The base material layer was composed of 35 parts by weight of a propylene-butene random copolymer, 40 parts by weight of a propylene-ethylene random copolymer, and 25 parts by weight of a petroleum resin (Alcon P140 manufactured by Arakawa Chemical Industry Co., Ltd.). In the same manner as in Example 1, a film for shrink label was formed. The heat shrinkage in the main stretching direction of the film was 50% or more at 95 ° C. × 10 seconds. When the yield point stress in the direction perpendicular to the main stretching direction of this film was measured, it was 26 MPa or less, and the natural shrinkage (MD) in the direction perpendicular to the main stretching direction of the film also exceeded 0.5%. . The evaluation results are shown in Table 1.
[0037]
(Comparative Example 2)
The base material layer was composed of 35 parts by weight of a propylene-butene random copolymer, 40 parts by weight of a propylene-ethylene random copolymer, and 25 parts by weight of a cyclic polyolefin (APEL8008T manufactured by Mitsui Chemicals, Inc.). A shrink label film was formed in the same manner. When the yield point stress in the direction perpendicular to the main stretching direction of this film was measured, it was a value of 26 MPa or more, and the natural shrinkage (MD) in the direction perpendicular to the main stretching direction of the film was 0.5% or less. Was. However, the heat shrinkage in the main stretching direction of the film was 50% or less at 95 ° C. × 10 seconds. The evaluation results are shown in Table 1.
[0038]
(Comparative Example 3)
The base material layer is a mixture of 35 parts by weight of a propylene-butene random copolymer, 40 parts by weight of a propylene-ethylene random copolymer, and 25 parts by weight of a petroleum resin (Alcon P140 manufactured by Arakawa Chemical Industries, Ltd.). In the layer, 95 parts by weight of a cyclic polyolefin (APEL8008T manufactured by Mitsui Chemicals, Inc.), 2 parts by weight of an antistatic agent (20% by weight of an AS component, 80% by weight of polyethylene), 10 parts by weight of an antiblocking agent (10% by weight of 10 μm polymethyl methacrylate, A mixture of 3 parts by weight of polyethylene (90% by weight) was used to form a shrink label film in the same manner as in Example 1. The thermal shrinkage in the main stretching direction of the film was 50% or more at 95 ° C. × 10 seconds, and the yield point stress in the direction perpendicular to the main stretching direction of the film was measured to be 26 MPa or more. However, the adhesive strength using tetrahydrofuran as a solvent was 3.0 [N / 15 mm] or less. The evaluation results are shown in Table 1.
[0039]
[Table 1]
Figure 2004074426
[0040]
【The invention's effect】
The heat-shrinkable film of the present invention not only obtains sufficient shrinkage properties as a shrink label, but also eliminates processing defects caused by deterioration of the natural shrinkage rate by maintaining elasticity in the direction perpendicular to the main stretching direction of the film. Was. In addition, it has become possible to provide a heat-shrinkable polyolefin-based film in which a generally used tetrahydrofuran can provide a sufficient adhesive strength during solvent bonding.

Claims (6)

ポリプロピレン系樹脂と石油系樹脂および環状ポリオレフィン系樹脂を含む基材層(A)と、基材層(A)の少なくとも一方の表面にスチレン系樹脂およびポリオレフィン系樹脂を含む内外層(B)を積層した熱収縮性ポリオレフィン系フィルムでありフィルム主延伸方向の熱収縮率が、95℃×10秒で50%以上であり、主収縮方向と直角方向の降伏点応力が26MPa以上であり、かつ内外層(B)をテトラヒドロフランで溶剤接着させた際の接着強度が3.0[N/15mm]以上であることを特徴とする熱収縮性ポリオレフィン系フィルム。A base layer (A) containing a polypropylene resin, a petroleum resin and a cyclic polyolefin resin, and an inner / outer layer (B) containing a styrene resin and a polyolefin resin on at least one surface of the base layer (A) A heat-shrinkable polyolefin-based film having a heat shrinkage in the main stretching direction of the film of 50% or more at 95 ° C. × 10 seconds, a yield point stress in a direction perpendicular to the main shrinkage direction of 26 MPa or more, and an inner and outer layer. A heat-shrinkable polyolefin-based film, wherein the adhesive strength when (B) is solvent-adhered with tetrahydrofuran is 3.0 [N / 15 mm] or more. 前記基材層(A)がプロピレン−α−オレフィンランダム重合体50〜70重量部と石油系樹脂25〜5重量部および環状オレフィンコポリマー25〜5重量部とからなる請求項1記載の熱収縮性ポリオレフィン系フィルム。The heat shrinkability according to claim 1, wherein the base material layer (A) comprises 50 to 70 parts by weight of a propylene-α-olefin random polymer, 25 to 5 parts by weight of a petroleum resin, and 25 to 5 parts by weight of a cyclic olefin copolymer. Polyolefin film. 前記内外層(B)がスチレン系樹脂50〜100重量部およびプロピレン−α−ランダム共重合体50〜0重量部からなる請求項1および2記載の熱収縮性ポリオレフィン系フィルム。The heat-shrinkable polyolefin-based film according to claim 1, wherein the inner and outer layers (B) comprise 50 to 100 parts by weight of a styrene resin and 50 to 0 parts by weight of a propylene-α-random copolymer. フィルムの主収縮方向と直角方向の自然収縮率が0.5%未満である請求項1乃至4記載の熱収縮性ポリオレフィン系フィルム5. The heat-shrinkable polyolefin film according to claim 1, wherein the natural shrinkage in the direction perpendicular to the main shrinkage direction of the film is less than 0.5%. 下記式で表される基材層と内外層で積層された積層フィルムの内外層の厚み合計と全体の厚みの比が0.1〜0.4である請求項1乃至5記載の熱収縮性ポリオレフィン系フィルム。
厚み比=内外層/(内外層+基材層)
The heat shrinkability according to any one of claims 1 to 5, wherein the ratio of the total thickness of the inner and outer layers of the laminated film laminated with the base layer and the inner and outer layers represented by the following formula to the total thickness is 0.1 to 0.4. Polyolefin film.
Thickness ratio = inner / outer layer / (inner / outer layer + substrate layer)
フィルムの比重が0.95以下である請求項1乃至6記載の熱収縮性ポリオレフィン系フィルム7. The heat-shrinkable polyolefin film according to claim 1, wherein the specific gravity of the film is 0.95 or less.
JP2002233693A 2002-08-09 2002-08-09 Heat-shrinkable polyolefin film Expired - Lifetime JP4106602B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002233693A JP4106602B2 (en) 2002-08-09 2002-08-09 Heat-shrinkable polyolefin film
US10/635,674 US20040072002A1 (en) 2002-08-09 2003-08-07 Heat-shrinkable polyolefin film
KR1020030055163A KR20040014366A (en) 2002-08-09 2003-08-09 Heat-shrinkable polyolefin film
DE2003604634 DE60304634T2 (en) 2002-08-09 2003-08-11 Heat shrinkable polyolefin film
AT03017627T ATE323735T1 (en) 2002-08-09 2003-08-11 HEAT SHRINKABLE POLYOLEFIN FILM
CNB031530907A CN100460190C (en) 2002-08-09 2003-08-11 Heat-shrinkable polyolefin film
EP20030017627 EP1388559B1 (en) 2002-08-09 2003-08-11 Heat-shrinkable polyolefin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233693A JP4106602B2 (en) 2002-08-09 2002-08-09 Heat-shrinkable polyolefin film

Publications (2)

Publication Number Publication Date
JP2004074426A true JP2004074426A (en) 2004-03-11
JP4106602B2 JP4106602B2 (en) 2008-06-25

Family

ID=32018763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233693A Expired - Lifetime JP4106602B2 (en) 2002-08-09 2002-08-09 Heat-shrinkable polyolefin film

Country Status (1)

Country Link
JP (1) JP4106602B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075705A1 (en) 2006-12-20 2008-06-26 Toyo Boseki Kabushiki Kaisha Heat shrinkable polyolefin film and process for producing the same
JP2017016151A (en) * 2016-09-28 2017-01-19 Dic株式会社 Easy-to-tear label

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075705A1 (en) 2006-12-20 2008-06-26 Toyo Boseki Kabushiki Kaisha Heat shrinkable polyolefin film and process for producing the same
US8697207B2 (en) 2006-12-20 2014-04-15 Toyo Boseki Kabushiki Kaisha Heat shrinkable polyolefin film and process for producing the same
JP2017016151A (en) * 2016-09-28 2017-01-19 Dic株式会社 Easy-to-tear label

Also Published As

Publication number Publication date
JP4106602B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
EP1388559B1 (en) Heat-shrinkable polyolefin film
JP5869569B2 (en) Heat-sealable film with linear tear properties
US20080124563A1 (en) Heat shrinkable multi-layer film and method for preparing the same
US20130095338A1 (en) Soft Multi-Layer Shrink Films
WO2001038434A1 (en) Stretched resin film and process for producing the same
JP4370498B2 (en) Heat-shrinkable polyolefin film
JP5064523B2 (en) Heat-shrinkable polyolefin film
JP2004066533A (en) Heat-shrinkable laminated polyolefin film
JP2002234115A (en) Multilayered heat-shrinkable film, and shrinkable label and container using the same
JP4106602B2 (en) Heat-shrinkable polyolefin film
JP2005068317A (en) Heat shrinkable polyolefin film
JP7395839B2 (en) sealant film
JP2006001088A (en) Heat-shrinkable polyolefinic film
JP2004149778A (en) Heat shrinkable polyolefin film
JP6151694B2 (en) Shrink film and shrink label
JP2001192470A (en) Oriented resin film and method for producing the same
JP2001214013A (en) Resin drawn film and method for producing the same
JP4788197B2 (en) Polyolefin foamed film with improved surface strength and improved printability
JP2007021814A (en) Laminated polypropylene resin film for container lid material
JPH039852B2 (en)
JP4380330B2 (en) Heat-shrinkable polyolefin film with improved heat resistance
JP2002120862A (en) Amorphous olefin cylindrical shrink label of excellent appearance, and manufacturing method thereof
JP6227906B2 (en) Shrink film
JP2005186518A (en) Heat-shrinkable plastic film showing excellent heat resistance
JP5050317B2 (en) Polyolefin foamed film with improved surface strength and improved printability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4106602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

EXPY Cancellation because of completion of term